8通道8位模_数转换器ADC0808_0809原理及应用

合集下载

adc0809与adc0808的区别,adc0809能否替代adc0808

adc0809与adc0808的区别,adc0809能否替代adc0808

adc0809 与adc0808 的区别,adc0809 能否替代
adc0808
ADC 是指将连续变化的模拟信号转换为离散的数字信号的器件。

真实世界的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数字形式。

模/数转换器可以实现这个功能,在各种不同的产品中都可以找到它的身影。

那幺目前最常用的adc0809 与adc0808 之间有什幺区别?
adc0809 与adc0808 的区别:
ADC0809 是很常用的一款8 位的模数转换芯片。

而ADC0808 是0809 的简化版,主要的不同点是0808 的转换输出out0~7 与常用的输出端高低位是相反的,即0809 的最低位是out0,0808 的最低位是out7。

ADC0809 在proteus 软件中不能正常仿真,而0808 却可以,相比之下0809 的运算速度比前者更快一些。

引脚方面的话,两者都能找到对应!
ADC0808/ADC0809 是单片、CMOS、逐次比较,a 位模/数变换器。

片内包含s 位模/数变换器、通道多路转换器与微制器兼容的控制逻辑。

8 通道多路转换器能直接连通8 个单端模拟信号中的仟何一个。

A/D转换模块

A/D转换模块

A/D转换模块
ADC0809 是8位8个通道的A/D转换电路,
A/D转换器工作原理介绍如下:
IN0-IN7:8 条模拟量输入通道
ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若
信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。

地址输入和控制线:4条
ALE 为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A,B 和C 为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。

通道选择表如下表所示。

C B A 选择的通道
0 0 0 IN0
0 0 1 IN1
0 1 0 IN2
0 1 1 IN3
1 0 0 IN4
1 0 1 IN5
1 1 0 IN6
1 1 1 IN7。

模数转换器ADC0809应用原理

模数转换器ADC0809应用原理

模数转换器ADC0809应用原理模数转换器(Analog-to-Digital Converter,简称ADC)是一种将模拟信号转换为数字信号的电子元件。

在电子领域中,模数转换器有着广泛的应用,其中最常见的就是采集模拟信号,并将其转换为数字信号进行处理。

ADC0809是一种八位分辨率的8通道模数转换器,它可以将输入模拟信号转换为一个八位的二进制数字。

ADC0809的工作原理ADC0809采用了单倍增量逐次比较式ADC,其基本工作原理是,将输入的模拟信号与一个参考电压进行比较,输出相应的数字信号。

具体工作流程如下图所示:___________________________________ ________________________| 时钟||___________________________________________________________________|______________ ________ ________ ________ ________| 输入模拟信号 | | 比较器0 | | 比较器1 | | ...... | | 比较器7 ||_____________| _________ |________| |________| |________| |________|| | || || | ___________ | ___________ | ___________ || |__| |__|__||__|__| |__|| 串—并串—并串—并串—并八个比较结果反相器(INV)| ________ ________ ________|______________________________| 反相器| | 反相器 | | ...... | | 反相器 ||________| |________| |________| |________|| | | || | | || | | |V V V V____ ____ ________ ________ ________| | | | | ...... | | || D0 ~ D7 |_______| D0 ~ D7 |_______| D0 ~ D7 |_______| D0 ~ D7 ||____ _____| |________| |________| |________|| | | || | | || | | || | | || | | |____ ____ ________ ________ ________| | | | | ...... | | || 转换器 | | 转换器 | | ...... | | 转换器 | |____ _____| |________| |________| |________|| | | || | | || | | |V V V V____ ____ ________ ________ ________| | | | | ...... | | || A0 ~ A7 |_______| A0 ~ A7 |______| A0 ~ A7 |_______| A0 ~ A7 ||____ _____| |________| |________| |________| ADC0809采样过程通过时序的序列完成,当转换器满足转换条件时为转换器一个时钟等分周期“CLK R”,其转换过程又称为一次采样,转换结果产生在结束时取样“EOC”有效之后的下一次时钟上升沿ACTIVE EDGE时,由拨动设置开关的方式进行设定(ADDRESS A, B, C, OE)。

ADC0808ADC0809 MP兼容的8位AD转换8通道多路复用器

ADC0808ADC0809 MP兼容的8位AD转换8通道多路复用器

外文资料译文ADC0808/ADC0809 MP兼容的8位A/D转换8通道多路复用器一.总体描述ADC0808,ADC0809的数据采集组件是一个8位模拟 - 数字转换器的单片CMOS器件,8通道多路复用器和微处理器兼容控制逻辑。

8位A / D 转换使用连续逼近作为转换技术。

该转换器具有高阻抗斩波稳定比较器,1模拟开关树和连续256R分压器逼近寄存器。

8通道多路复用直接访问的8路单端模拟信号。

该器件无需外部零点和满刻度的需要调整。

轻松连接到微处理器提供多路复用地址锁存和解码输入和锁存TTL三STATEÉ输出。

ADC0808,ADC0809的设计已优化通过结合几个A/ D转换的最可取的方面,转换技术。

ADC0808,ADC0809的提供高速度快,精度高,最低温度的依赖,优秀的长期精度和可重复性,并消耗最小的功率。

这些特点使该设备适合的应用程序,过程和机器控制消费电子和汽车应用。

16-与常见的输出通道多路复用器(采样/保持端口)看到ADC0816数据表。

(更多信息请参见AN-247。

)二.特点简易所有微处理器的接口5VDC或模拟跨度调整后的电压基准无零或全面调整需要8通道多路复用地址与逻辑0V至5V单电源5V输入范围输出符合TTL电平规格之标准密封或成型28引脚DIP封装28引脚型芯片载体封装ADC0808相当于以MM74C949ADC0809的相当于MM74C949-1三.主要技术指标垂直分辨率8位单电源:5 VDC低功耗15毫瓦转换时间100毫秒四.框图图1框图绝对最大额定值(注1及2)如果指定的军事/航空设备是必需的,请联系美国国家半导体的销售办公室/分销商的可用性和规格。

电源电压(VCC)(注3)6.5V在任何引脚-0.3V电压至(VCC+0.3V)除了控制输入电压控制输入-0.3V到+15V(START,OE时钟,ALE地址,补充B,添加C)存储温度范围-65℃至+150℃875毫瓦TA=25℃封装耗散导致温度。

AD0809

AD0809

ADC0808 ADC0809版权归三毛电子 不得盗版传播 /8位uP 兼容A/D 转换器,8通道复用ADC0808/ADC0809一般描述:ADC0808,ADC0809数据获取器件集成了一个8位的模/数转换器,8通道复用器以及微处理器兼容控制逻辑。

这个8位的A/D 转换器采用了连续逼近的转换技术。

这个转换器具有一个高阻抗稳定的断续比较器,以及一个带有模拟开关树的256欧的分压器,一个连续逼近电阻。

8通道的复用器能直接获取8个单一模拟信号的任何一个。

这个器件不需要外部的0和全量程调节。

依靠锁存和解码复用器地址输入以及锁存TTL 三态输出,这个器件提供与微处理器很方便的接口。

ADC0808和ADC0809采用了几种A/D 转换技术的各自最大优点来优化的。

ADC0808和ADC0809提供了高速,高精度,低温漂,优秀的长期精度和可重复性,低功耗特性。

这些特性使得这个器件对于消费者处理和控制机器以及汽车电子应用上十分理想的选择。

对于具有相同输出(采样/保持端口)的16通道复用器的器件,请参考ADC0816的数据手册。

特性:×跟所有微处理器接口很容易×比例制的操作或带有5V DC 或者可调节参考电压范围的模拟范围×不需要调节0和全量程×用地址逻辑来区分的8通道复用×单电源5V 供电,0V ~5V 输入范围×输出符合TTL 电压声明×标准密封或浇注的28脚DIP 封装×ADC0808跟MM74C949可替换×ADC0809跟MM74C949-1可替换关键说明:×精度 8位×完全不可调节误差 ±1/2LSB 和±1LSB ×单电源供电 5V DC×低功耗 15mW×转换时间 100us方框图:ADC0808 ADC0809版权归三毛电子 不得盗版传播 /管脚分布:定购信息:ADC0808 ADC0809版权归三毛电子 不得盗版传播 /最大绝对值范围(注释1,2):假如军用或航空应用,需要特别的说明,请自己联系国家半导体公司销售部。

adc0809的工作原理

adc0809的工作原理

adc0809的工作原理
ADC0809是一种8位串行模数转换器(Analog-to-Digital Converter,简称ADC),其工作原理如下:
1. 输出控制信号:当待转换的模拟信号准备好后,控制信号线将置为高电平,通知ADC开始转换过程。

2. 选择输入通道:通过输入通道选择信号来选择要进行转换的模拟信号源。

ADC0809有8个输入通道,因此需要使用3个输入引脚来选择通道。

3. 启动时钟信号:通过发送时钟信号来控制转换过程。

ADC0809需要一个时钟源来同步转换过程。

时钟信号的频率决定了转换速度。

4. 采样保持电路:在转换期间,输入信号将被采样并保持在一个样本保持电容中。

这个采样保持电路保证了转换期间输入信号的稳定性。

5. 双斜率积分器:ADC0809采用了双斜率积分器技术来进行模拟信号的转换。

在转换开始后,ADC开始对采样保持电容的电压进行积分,直到电压上升到参考电压。

6. 输出数据:一旦积分电压达到参考电压,ADC会将其状态固定,并将其转换为二进制数字输出。

输出数据以8位二进制形式呈现。

7. 转换结束信号:当转换完成后,ADC会通过标志信号线发出转换完成的信号。

这个信号可以被连接到微控制器或其他数字设备,以通知它们可以读取新的转换结果了。

通过以上步骤,ADC0809可以将模拟信号转换为数字信号,实现模拟到数字的转换功能。

ADC0808

ADC0808

IN3 IN4 IN5 IN6 IN7 START EOC D3 OE CLOCK VCC VREF+ GND D1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
IN2 IN1 IN0 ADDA ADDB ADDC ALE D7 D6 D5 D4 D0 VREFD2
CLOCK IN0 IN1 IN2 IN3 IN4 IN5 IN6 IN7 START
通道 选择 开关
定时和 控 制 逐次逼近 寄存器SAR 寄存器 8位 三态 锁存 缓冲 器
EOC D0 D1 D2 D3 D4 D5 D6 D7
DAC
ADDA ADDB ADDC ALE
地址锁存 和译码
ADC0808
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 D0 IN0 D1 IN1 D2 IN2 D3 IN3 D4 IN4 D5 IN5 D6 IN6 D7 IN7 ADDA ADDB ADDC VREF+ CLK VREFALE START OE EOC ADC0808
转换数据的传送: 转换数据的传送: 定时传送方式; ①定时传送方式; 不需接EOC EOC脚 (不需接EOC脚) 查询方式; ②查询方式; 测试EOC脚的状态) EOC脚的状态 (测试EOC脚的状态) ALE 中断方式。 ③中断方式。 8051 EOC脚接INT脚 脚接INT (EOC脚接INT脚) WR 注意: 注意: P2.7 (1)不能用无条件方式 不能用无条件方式; (1)不能用无条件方式; RD (2)2个ALE不能相接 不能相接。 (2)2个ALE不能相接。

ADC0809

ADC0809

ADC0808/ADC0809是采样分辨率为8位的、转换时间为100us 以逐次逼近原理进行模—数转换的器件。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D 转换。

1.主要特性1)8路输入通道,8位A /D 转换器,即分辨率为8位。

2)具有转换起停控制端。

3)转换时间为100μs 4)单个+5V 电源供电5)模拟输入电压范围0~+5V ,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW 。

2.引脚功能IN0~IN7:8路模拟量输入端。

D1-D7:8位数字量输出端。

ADDA 、ADDB 、ADDC :3位地址输入线,用于选通8路模拟输入中的一路 ALE :地址锁存允许信号,输入,高电平有效。

START : A /D 转换启动脉冲输入端,输入一个正脉冲(至少100ns 宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D 转换)。

START=1;START=0;EOC : A /D 转换结束信号,输出,当A /D 转换结束时,此端输出一个高电平(转换期间一直为低电平)。

While(EOC==0);OE :数据输出允许信号,输入,高电平有效。

当A /D 转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

OE=1;CLK :时钟脉冲输入端。

要求时钟频率不高于640KHZ,可以让单片机定时器产生500K HZ 的时钟REF (+)、REF (-):基准电压。

Vcc :电源,单一+5V 。

工作时序图模拟通道选择信号A 、B 、C 分别接最低三位地址A 0、A 1、A 2即(P 0.0、P 0.1、P 0.2),而地址锁存允许信号ALE 由P 2.0控制,则8路模拟通道的地址为0FEF8H ~0FEFFHCLOCK START ALE A,B,C部输入模拟量输入OE EOC 输出。

ADC0809程序原理及逻辑结构

ADC0809程序原理及逻辑结构
2)具有转换起停控制端。
3)转换时间为100μs(时钟为640KHz时),130μs(时钟为
500KHz时)。
4)单个+5V电源供电。
5)模拟输入电压范围0~+5V,不需零点和满刻度校准。
6)工作温度范围为-40~+85摄氏度。7)低功耗,约15mW。
ADC0809逻辑结构:
ADC0809是带有8位A/D转换器、8路模拟开关以及微处理机兼容
ADC0809信号引脚:
对ADC0809主要信号引脚的功能说明如下:
IN~ IN一一模拟量输入通道
ALE一一地址锁存允许信号。对应ALE上跳沿,A、B、C地址
状态送入地址锁存器中。
START一一转换启动信号。START上升沿时,复位ADC0809;
START下降沿时启动
芯片,开始进行A/D转换;在A/D转换期间,START应保持低
的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,是目前应用比较
广泛的A/D转换芯片之一,主要适用于对精度和采样速率要求不高的场合或
一般的工业控制领域,可以和单片机直接相连。它具有8个通道的模拟量输
入线,可在程序控制下对任意通道进行A/D转换得到8[1]位二进制数字
量。
ADC0809内部结构图:
图中多路开关可选通8个模拟通道,允许8路模拟量分时输入,共
用一个A/D转换器进行转换,这是一种经济的多路数据采集方法。地址锁存
与译码电路完成对A、B.C3个地址位进行锁存和译码,其译码输出用于通
道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统
数据总线相连。
ADC0809应用电路原理图:
Vcc-- +5V电源。

adc0808工作原理

adc0808工作原理

adc0808工作原理
adc0808是一款八位A/D转换器,它可以将模拟信号转换成数字信号来计算机处理。

它的前缀0808表示它是八位的,每一位可以表
示一个数值,它最多可以将输入的模拟信号转换成256种不同的数值。

adc0808是由基本模拟电路,放大器,多位比较器,计时器,数据暂存器等组成的系统。

它由一个定时器,多个放大器和多位比较器组成的系统构成,这种系统可以连续地对输入的模拟信号进行时间分辨率,它能够提供较好的信号转换精度。

输入的模拟信号通过定时器分解,把模拟信号转换成位值。

通过放大器,把位值变成比较电压,多位比较器比较这些比较电压与模拟信号之间的差值,把结果存储在数据暂存器中,最终完成信号的转换。

针对adc0808,其具有较好的性能,它提供比较精准的时间分解,而且转换精度也很高,能够把输入信号准确地转换为数字信号。

另外,它的运行速度也很快,能够很快地完成信号的转换。

adc0808的应用非常的广泛,它可以用在电子计算机、色彩复制机、医疗设备等领域。

例如,在汽车中可以使用它来测量油门的位置,在医疗设备中可以用来测量生物信号,它还可以用来测量影像信号,在色彩复制机中可以使用它来测量彩色图像信号。

总之,adc0808是一款准确和灵敏的A/D转换器,它可以把模拟信号转换成数字信号,所以它在计算机、医疗设备等领域中有着重要的应用。

- 1 -。

ADC0808-0809与8031单片机接口设计

ADC0808-0809与8031单片机接口设计

ADC0808/0809 与8031 单片机接口设计
ADC0808 是采样分辨率为8 位的、以逐次逼近原理进行模/数转换的
器件。

其内部有一个8 通道多路开关,它可以根据地址码锁存译码后的信号,只选通8 路模拟输入信号中的一个进行A/D 转换。

ADC0808 是
ADC0809 的简化版本,功能基本相同。

一般在硬件仿真时采用ADC0808 进
行A/D 转换,实际使用时采用ADC0809 进行A/D 转换。

AD0809 的逻辑结构ADC0809 是8 位逐次逼近型A/D 转换器。


由一个8 路模拟开关、一个地址锁存译码器、一个A/D 转换器和一个三态输出锁存器组成(见图1)。

多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。

三态输出锁存器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。

和偏文章主要就是说ADC0808/0809 与8031 单片机接口的三种方式,一
起来了解一下。

ADC0808/0809 与8031 单片机接口设计
ADC0808/0809 与8031 单片机的硬件接口有三种方式,查询方式,
中断方式和等待延时方式。

究竟采用何种方式,应视具体情况,按总体要求而选择。

这里我们主要谈谈延时方式和中断方式。

ADC0809芯片的原理及应用

ADC0809芯片的原理及应用

目录引言 (1)1 ADC0809的逻辑结构 (1)1.1 ADC0809引脚结构 (1)1.2 ADC0809的主要性能指标 (3)1.3 ADC0809的内部逻辑结构 (3)1.4 ADC0809的时序 (4)2 ADC0809与MCS-51单片机的接口电路 (5)2.1 0809与51单片机的第一种连接方式 (7)2.2 0809与51单片机的第二种连接方式 (9)2.3 0809与51单片机的第三种连接方式 (10)3 ADC0809与单片机制作的数字电压表 (11)总结 (16)参考文献 (16)英文翻译 (17)ADC0809芯片的原理及应用摘要:ADC0809是8位逐次逼近型A/D转换器,是目前应用比较广泛、典型的A/D转换芯片之一。

本文主要介绍ADC0809芯片的内部逻辑结构、引脚分布,并详细阐述了其工作原理。

在此基础上设计了两种相关应用电路——ADC0809与单片机的接口电路及数字电压表,并对这两种应用电路的可行性进行了讨论。

通过对ADC0809应用电路的探究,能更全面的提高对应用系统的分析、设计能力,对实践具有重要的指导意义。

关键词:ADC0809;模数转换;单片机引言A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机等数字系统进行处理、存储、控制和显示。

在工业控制和数据采集及许多其它领域中,A/D转换器是不可缺少的重要组成部分,它的应用已经相当普遍。

目前用软件的方法虽然可以实现高精度的A/D转换,但占用CPU时间长,限制了应用。

8位A/D转换器ADC0809作为典型的A/D转换芯片,具有转换速度快、价格低廉及与微型计算机接口简便等一系列优点,目前在8位单片机系统中得到了广泛的应用。

1 ADC0809的逻辑结构ADC0809是带有8位A/D转换器、8路模拟开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,是目前应用比较广泛的A/D转换芯片之一,主要适用于对精度和采样速率要求不高的场合或一般的工业控制领域,可以和单片机直接相连。

8通道8位模_数转换器ADC0808_0809原理及应用

8通道8位模_数转换器ADC0808_0809原理及应用
1.1 复用器 这个器件包括一个8通道单端模拟信号复用器。通过使用地址 解码器,选择一个输入通道。在地址锁存能使信号由低到高变化 时,地址被锁存住。 1.2 转换器 这个器件的数据获取系统的关键部分是它的8位模/数转换器。 转换器的数字输出是正实数,这个转换器被设计成能在宽的温度范 围内达到快速、精确、可重复的转换。该转换器分成3个主要部 分:256R的阶梯网络、连续逼近的电阻和比较器。256R的阶梯网 络用逼近的办法替代了传统的R/2R阶梯,其本身的单一性保证了 不会丢失数字编码——在闭环反馈系统中,这种单一性尤其重要 (一个非单一性的关系可能引起振荡,这种振荡对于系统可能是灾 难性的)。同时,256R的阶梯网络不会在参考电压上引起负载变化, 对于ADC0808/0809,使用256R网络就可以把逼近技术延伸到8位。 A/D转换器的连续逼近寄存器(SAR)在起始转换(SC)脉冲 的上升沿复位,转换在起始转换脉冲下降沿开始,处理过程中的转 换将被新的起始转换脉冲中断。把转换结束标示(EOC)输出连接 到SC输入,这样可以达到连续转换的目的。假如使用这个模式, 则在上电后,需要从外部输入一个起始转换脉冲,在起始转换脉冲 的上升沿后0~8个时钟脉冲之间EOC将变低。 A/D转换器最重要的部分是比较器,它负责整个转换器的最终 精度。一个稳定断续比较器提供了符合所有转换器要求的最有效方 法。这个稳定断续比较器把DC输入信号转换成一个AC信号,这个 信号通过一个高增益AC放大器反馈,并且能回复DC电平。既然漂 移的是DC分量,它不会通过AC放大器,因此这个技术就限制了放 大器的漂移分量,使得整个A/D转换器对于极端的温漂、长期漂移 和输入偏移误差都不敏感。
输出编码N的中心可通过以下公式给出:
对于任意输入的输出代码N,它应是以下公式范围描述范围内 的整数:

ADC0809芯片的原理及应用

ADC0809芯片的原理及应用

ADC0809芯片的原理及应用1. 原理介绍:ADC0809芯片是一种8位串行输出模数转换器(ADC),用于将模拟信号转换为数字信号。

它采用了逐次逼近型转换技术,具有高精度和稳定性。

其工作原理如下:a. 输入信号采样:ADC0809芯片具有一个多路复用器,可以选择8个不同的模拟输入通道。

输入信号经过采样保持电路进行采样,并转换为对应的模拟电压。

b. 逐次逼近型转换:ADC0809芯片采用逐次逼近型转换技术,即从最高位开始逐位逼近,通过比较DAC输出与输入信号的大小来确定每一位的数字值。

c. 数字输出:转换完成后,ADC0809芯片将结果以串行方式输出,可以通过微处理器或其他数字设备进行接收和处理。

2. 主要特点:a. 8位分辨率:ADC0809芯片可以将模拟信号转换为8位的数字信号,提供256个离散的输出值。

b. 内部参考电压:芯片内部集成了一个参考电压源,可以提供稳定的参考电压,减少外部元器件的需求。

c. 串行输出:转换结果以串行方式输出,可以方便地与其他数字设备进行通信和数据传输。

d. 多路复用输入:芯片具有8个模拟输入通道,可以选择不同的输入信号进行转换。

e. 快速转换速率:ADC0809芯片的转换速率可达到100,000次/秒,适用于高速数据采集和实时控制应用。

3. 应用领域:a. 数据采集系统:ADC0809芯片广泛应用于各种数据采集系统,如温度采集、压力采集、光强度采集等。

它可以将模拟传感器信号转换为数字信号,方便存储、处理和分析。

b. 仪器仪表:ADC0809芯片可用于各种仪器仪表,如多功能测试仪、示波器等,用于测量和分析模拟信号。

c. 自动控制系统:ADC0809芯片可以将模拟控制信号转换为数字信号,用于自动控制系统的输入和输出接口,实现对各种设备和过程的控制。

d. 通信系统:ADC0809芯片可用于通信系统中的信号处理和调制解调等功能,将模拟信号转换为数字信号进行传输和处理。

e. 电力系统:ADC0809芯片可用于电力系统中的电流、电压等参数的测量和监控,实现对电力系统的智能化管理和控制。

ADC0809功能简介

ADC0809功能简介

ADC0809功能简介
ADC0809 功能简介
ADC0809 是8 路8 位逐次逼近型A/D 转换CMOS 器件,在过程控制和机床控制等应用中,能对多路模拟信号进行分时采集和A/D 转换,输出数字信号通过三态缓冲器,可直接与微处理器的数据总线相连接。

一:ADC0809 的内部结构和引脚共能
ADC0809 的内部结构原理如图10.3.1 所示,芯片的主要组成部分是一个8 位逐次比较型A/D 转换器。

为了实现8 路模拟信号的分时采集,片内设置了带有锁存功能的8 路模拟选通开关,以及相应的通道地址锁存和译码电路,可对8 路0~5V 的输入模拟电压进行分时转换,转换后的数据送入三态输出数据锁存器。

ADC0809 的主要特性如下:
(1) 辨率为8 位
(2) 最大不可调误差小于正负ULSB
(3) 可锁存三态输出,能与8 位微处理器接口
(4) 输出与TTL 兼容。

adc0809工作原理

adc0809工作原理

adc0809工作原理
ADC0809是一种8位数模转换器,用于将模拟电压信号转换
为相应的数字数据。

它是一种逐次逼近型模数转换器,工作原理如下:
1.输入电压采样:输入电压信号通过输入引脚IN来采样,通
常使用一个电阻分压器将输入电压范围缩放到ADC0809的工
作范围内。

2.开始转换:当启动输入引脚(START)从低电平切换到高电平时,模数转换开始。

同时,ADC0809开始采样输入信号并
将其转换为相应的数字数据。

3.逐次逼近转换:ADC0809采用逐次逼近型转换方法,即根
据转换结果的高低判断输入信号的数值,并逐步缩小转换范围直到最终达到精确的转换值。

4.转换完成:转换完成后,数值数据可以通过8个输出引脚来
获取。

这些引脚分别对应于转换结果的每一位,从最高位(MSB)到最低位(LSB)。

5.结束转换:当转换完成后,ADC0809会自动将结束信号(EOC)引脚从低电平切换到高电平,表示转换过程已经结束,可以获取结果数据。

总结:ADC0809通过逐次逼近型转换方法将输入电压信号转
换为对应的8位数字数据。

通过合适的输入电路、控制信号和数据处理,可以实现模拟信号的准确数字化处理。

ADC0809芯片资料

ADC0809芯片资料

ADC0809概述ADC0809是美国国家半导体公司生产的CMOS工艺8通道,8位逐次逼近式A/D模数转换器。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。

是目前国内应用最广泛的8位通用A/D芯片1.主要特性1)8路输入通道,8位A/D转换器,即分辨率为8位。

2)具有转换起停控制端。

3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz时)4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.内部结构ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近寄存器、逻辑控制和定时电路组成。

3.外部特性(引脚功能)ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。

START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进入转换器进行转换。

模数转换器ADC0809应用原理

模数转换器ADC0809应用原理

AD0809应用原理一一很全面的资料1. 0809的芯片说明:ADC0809是带有8位A/D 转换器、8路多路开关以及微处理机兼容的控制逻辑的C MOS 组件。

它是逐次逼近式A/D 转换器,可以和单片机直接接口。

(1) ADC0809的内部逻辑结构由上图可知,ADC0809 111-个8路模拟开关、一个地址锁存与译码器、一个A/D 转 换器和一个三态输出锁存器组成。

多路开关可选通8个模拟通道,允许8路模拟量分 时输入,共用A/D 转换器进行转换。

三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。

(2) •引脚结构IN0-IN7: 8条模拟量输入通道ADC0809对输入模拟量要求:信号单极性,电压范围是0 — 5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需 在输入前增加采样保持电路。

地址输入和控制线:4条67 "aio1T1213 14TN3 IN4 INT5 JLN6 IN7 ST EOC D3 QBCLK vcc VRJEF 斗IN2 INI INO A B C ALEOTJD VREF ・ DI 1>228 26 2423222? 20 19 £8 17亘15BA1EIN0 D41 IN2IN4 IN5 IN6 N70E薦转换器态 输 出 锁 存 器ALE为地址锁存允许输入线,高电平有效。

当ALE线为高电平时,地址锁存与译码器将A, B, C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。

A, B和C为地址输入线,用于选通IN0-IN7±的一路模拟量数字量输出及控制线:11条ST为转换启动信号。

当ST±跳沿时,所有内部寄存器清零;下跳沿时,开始进行A /D转换;在转换期间,ST应保持低电平。

EOC为转换结束信号。

当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。

(完整word版)ADC0808功能及简介.doc

(完整word版)ADC0808功能及简介.doc

11.2.4典型的集成ADC芯片为了满足多种需要,目前国内外各半导体器件生产厂家设计并生产出了多种多样的 ADC芯片。

仅美国 AD公司的 ADC产品就有几十个系列、近百种型号之多。

从性能上讲,它们有的精度高、速度快,有的则价格低廉。

从功能上讲,有的不仅具有 A/D 转换的基本功能,还包括内部放大器和三态输出锁存器;有的甚至还包括多路开关、采样保持器等,已发展为一个单片的小型数据采集系统。

尽管 ADC芯片的品种、型号很多,其内部功能强弱、转换速度快慢、转换精度高低有很大差别,但从用户最关心的外特性看,无论哪种芯片,都必不可少地要包括以下四种基本信号引脚端:模拟信号输入端 ( 单极性或双极性 ) ;数字量输出端 ( 并行或串行 ) ;转换启动信号输入端;转换结束信号输出端。

除此之外,各种不同型号的芯片可能还会有一些其他各不相同的控制信号端。

选用 ADC芯片时,除了必须考虑各种技术要求外,通常还需了解芯片以下两方面的特性。

(1)数字输出的方式是否有可控三态输出。

有可控三态输出的ADC芯片允许输出线与微机系统的数据总线直接相连,并在转换结束后利用读数信号 RD 选通三态门,将转换结果送上总线。

没有可控三态输出 ( 包括内部根本没有输出三态门和虽有三态门、但外部不可控两种情况 ) 的 ADC芯片则不允许数据输出线与系统的数据总线直接相连,而必须通过 I/O 接口与 MPU交换信息。

(2)启动转换的控制方式是脉冲控制式还是电平控制式。

对脉冲启动转换的 ADC芯片,只要在其启动转换引脚上施加一个宽度符合芯片要求的脉冲信号,就能启动转换并自动完成。

一般能和MPU配套使用的芯片,MPU的I/O 写脉冲都能满足 ADC芯片对启动脉冲的要求。

对电平启动转换的 ADC芯片,在转换过程中启动信号必须保持规定的电平不变,否则,如中途撤消规定的电平,就会停止转换而可能得到错误的结果。

为此,必须用 D触发器或可编程并行 I/O 接口芯片的某一位来锁存这个电平,或用单稳等电路来对启动信号进行定时变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络纵横
2007年第11期 132
8通道8位模/数转换器ADC0808/0809原理及应用
杨 毅 敖天勇 成 强
(河南大学物理与电子学院)
摘 要 本文介绍了8通道8位A/D转换器ADC0808/0809的工作原理、特性及其应用。 关键词 ADC0808/0809 转换器 工作原理
ADC0808/0809是8通道8位CMOS逐次逼近式A/D转换器,是美 国国家半导体公司的产品,也是目前国内应用最广泛的8位通用 A/D芯片。ADC0808/0809具有8位精度,用单电源5VDC 工作,不需 要外部的0和全量程调节,依靠锁存和解码复用器地址输入,以及 锁存TTL三态输出,ADC0808/0809可提供与微处理器间方便的接 口。ADC0808/0809的主要特性包括:易于联接所有微处理器的接 口;比例制的操作或者5VDC(或可调节参考电压范围)的模拟范 围;不需要0和全量程调节;用地址逻辑来区分的8路通道;单电源 5V供电,输入范围0~5V;输出符合TTL电压声明;标准密封或浇 注的28脚DIP封装;ADC0808可与MM74C949替换及ADC0809可与 MM74C949-1替换。
一个比例制转换器的最好例子就是作为位置传感器的电位计, 滑变点的位置就是通过电位计的全量程电压的一部分。由于数据是 全量程的一部分,这样涉及的要求就大大减少,对于许多应用就消 除了很多误差源和费用。ADC0808和ADC0809的最大优点是输入 电压范围等于供电范围,以至于变换器能直接和电源相连,其输出 又可以直接与复用器输入相连。
输出编码N的中心可通过以下公式给出:
对于任意输入的输出代码N,它应是以下公式范围描述范围内 的整数:
上 述 公 式 中 , VIN为 比 较 器 输 入 电 压 , V 是 REF(+) Ref(+)端的电 压,而VREF(-)是Ref(-)端的电压+)/512。
作者简介 杨毅(1977-),河南大学物理与电子学院讲师。 (收稿日期:2007·08·16)
2 典型应用
2.1 比例制转换 ADC0808和ADC0809可设计成一个比例制转换系统的完整数 据获取系统(DAS)。在比例制系统中,被测量的物理变量是用一 个对全量程的百分比来表达的,不需要有一个绝对标准相关。下面 公式描述了ADC0808的输入电压:
其中,VIN为ADC0808的输入电压,Vfs为全量程电压,VZ为0电 压,DX 为被测试的数据点,DMAX为最大数据极限,DMIN为最小数据 极限。
1 工作原理
ADC0808/0809集成了一个8位的A/D转换器、一个8路通道和 一个兼容控制逻辑的微处理器。其中,8位的A/D转换器采用了连 续逼近的转换技术,具有高阻抗稳定的断续比较器特性,包括一个 带 模 拟 开 关 树 的 2 56R的 分 压 器 和 一 个 逐 次 逼 近 寄 存 器 ; 而 由 ADC0808/0809中的8路通道,可直接从8个单一模拟信号中获取任 何一个作为输入信号。
1.1 复用器 这个器件包括一个8通道单端模拟信号复用器。通过使用地址 解码器,选择一个输入通道。在地址锁存能使信号由低到高变化 时,地址被锁存住。 1.2 转换器 这个器件的数据获取系统的关键部分是它的8位模/数转换器。 转换器的数字输出是正实数,这个转换器被设计成能在宽的温度范 围内达到快速、精确、可重复的转换。该转换器分成3个主要部 分:256R的阶梯网络、连续逼近的电阻和比较器。256R的阶梯网 络用逼近的办法替代了传统的R/2R阶梯,其本身的单一性保证了 不会丢失数字编码——在闭环反馈系统中,这种单一性尤其重要 (一个非单一性的关系可能引起振荡,这种振荡对于系统可能是灾 难性的)。同时,256R的阶梯网络不会在参考电压上引起负载变化, 对于ADC0808/0809,使用256R网络就可以把逼近技术延伸到8位。 A/D转换器的连续逼近寄存器(SAR)在起始转换(SC)脉冲 的上升沿复位,转换在起始转换脉冲下降沿开始,处理过程中的转 换将被新的起始转换脉冲中断。把转换结束标示(EOC)输出连接 到SC输入,这样可以达到连续转换的目的。假如使用这个模式, 则在上电后,需要从外部输入一个起始转换脉冲,在起始转换脉冲 的上升沿后0~8个时钟脉冲之间EOC将变低。 A/D转换器最重要的部分是比较器,它负责整个转换器的最终 精度。一个稳定断续比较器提供了符合所有转换器要求的最有效方 法。这个稳定断续比较器把DC输入信号转换成一个AC信号,这个 信号通过一个高增益AC放大器反馈,并且能回复DC电平。既然漂 移的是DC分量,它不会通过AC放大器,因此这个技术就限制了放 大器的漂移分量,使得整个A/D转换器对于极端的温漂、长期漂移 和输入偏移误差都不敏感。
2.4 模拟比较器输入 动态比较器的输入电流是由偏移电容的周期性开关引发的,这 些电流作为断续稳定比较器的操作部分,交替连接到电阻阶梯/开 关树网络的输出端和比较器的输入端。比较器输入电流的平均值是 直接随着时钟频率和VIN而变化的。 假如在模拟输入端没有滤波电容,同时信号源的阻抗为低,那 么比较器的输入电流就不会引入到转换器的误差,这是因为电容的 瞬时放电现象在比较器输出被探测到之前就已经消失了。若为了减 少噪音和信号调节需要加输入滤波电容时,它们会平衡动态比较器 的输出电流,然后呈现出DC偏移电流的特性,这时电流的影响一 般可以被预测出来。
2.2 电阻阶梯限制 在转换中,来自电阻阶梯组的电压被按照设定的电压比较8 次,电压通过一个模拟开关树与比较器相耦合,这些模拟开关树是 以供电电源作为参考的。该阶梯电阻组的上部、中部与底部都必须 被严格控制,以保持正确地操作。阶梯电阻组的顶部电压 (Ref(+))不能高于供电电压,底部电压(Ref(-))不能低于地, 而中部电压必须接近供电电压的中心,因为在这个点上模拟开关树 由N通道变到P通道。上述条件 在比例制系统中可以自动得到 满足,并且在以地为参考的系 统中很容易获得。 ADC0808需要的供电电流 小于1个毫安,因此对于参考端 的要求很容易达到。右图显示了 一个地参考系统,该系统由参考电压供电。 2.3 转换器等式 在相邻码N和N+1之间的转变可通过以下公式给出:
相关文档
最新文档