高中数学必修3概率统计常考题型:简单随机抽样

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识梳理】
1.简单随机抽样的定义
设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.抽签法
把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.
3.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.
【常考题型】
题型一、简单随机抽样的概念
【例1】下面的抽样方法是简单随机抽样吗?为什么?
(1)从无数个个体中抽取50个个体作为样本;
(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;
(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;
(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.
[解](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.
(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.
(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.
(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.
【类题通法】
简单随机抽样的判断策略
判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;
②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.
【对点训练】
下列问题中,最适合用简单随机抽样方法抽样的是()
A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈
B.从10台冰箱中抽出3台进行质量检查
C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本
D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量
解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.
题型二、抽签法及其应用
【例2】(1)下列抽样实验中,适合用抽签法的有()
A.从某厂生产3 000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3 000件产品中抽取10件进行质量检验
[解析]A,D两项总体容量较大,不适合用抽签法;对C项甲、乙两厂生产的产品质量可能差异明显.
[答案] B
(2)某大学为了选拔世博会志愿者,现从报告的18名同学中选取6人组成志愿小组,请用抽签法写出抽样过程.
[解]第一步,将18名同学编号,号码是01,02, (18)
第二步,将号码分别写在一张纸条上,揉成团,制成号签;
第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;
第四步,从袋子中依次抽取6个号签,并记录上面的编号;
第五步,所得号码对应的同学就是志愿小组的成员.
【类题通法】
1.抽签法的适用条件
一个抽样能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容易被搅匀.一般地,
当总体容量和样本容量都较小时适宜用抽签法.
2.应用抽签法的关注点
(1)对个体编号时,也可以利用已有的编号.例如,从某班学生中抽取样本时,可以利用学生的学号、座位号等.
(2)在制作号签时,所使用的工具(纸条、卡片或小球等)应形状、大小都相同,以保证每个号签被抽到的概率相等.
(3)用抽签法抽样的关键是将号签搅拌均匀.只有将号签搅拌均匀,才能保证每个个体有相等的机会被抽中,从而才能保证样本具有代表性.
(4)要逐一不放回抽取.
【对点训练】
现有30本《三维设计》,要从中随机抽取5本进行印刷质量检验,请用抽签法进行抽样,并写出抽样过程.
解:总体和样本数目较小,可采用抽签法进行:
①先将30本书进行编号,从1编到30;
②把号码写在形状、大小均相同的号签上;
③将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码取出样品,即得样本.
题型三、随机数表法的应用
【例3】(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号____________________.(下面抽取了随机数表第1行至第5行.)
03 47 43 73 8636 96 47 36 6146 98 63 71 6233 26 16 80 4560 11 14 10 95
97 74 24 67 6242 81 14 57 2042 53 32 37 3227 07 36 07 5124 51 79 89 73
16 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 5988 97 54 14 10
12 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 2188 26 49 81 76
55 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 5323 83 01 30 30
[解析]从随机数表第3行第6列的数2开始向右读第一个小于850的数字是227,第二个数字665,第三个数字650,第四个数字267,符合题意.
[答案]227,665,650,267
(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的
样本进行质量检查,若用随机数表法,怎样设计方案?
[解]第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读.
第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916.
第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)
【类题通法】
利用随机数表法抽样时应注意的问题
(1)编号要求位数相同,若不相同?需先调整到一致两再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从1开始编号那么所有个体的号码都必须用三位数字表示,从001~100.很明显每次读两个数字要比读三个数字节省读取随机数的时间.
(2)第一个数字的抽取是随机的.
(3)当随机数选定,开始读数时,读数的方向可左,可右,可上,可下,但应是事先定好的.
【对点训练】
现有一批编号为10,11,…,98,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?
解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)
第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.
第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.
第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.
【练习反馈】
1.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()
A.总体B.个体
C.总体的一个样本D.样本容量
解析:选C200个零件的长度是从总体中抽出的个体所组成的集合,所以是总体的一个样本.故选C.
2.抽签法中确保样本具有代表性的关键是()
A.制签B.搅拌均匀
C.逐一抽取D.抽取不放回
解析:选B在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体“搅拌均匀”,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.
3.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.
解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20
100=0.2.
答案:0.2
4.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.
95 33 95 22 0018 74 72 00 1838 79 58 69 32
81 76 80 26 9282 80 84 25 39
90 84 60 79 8024 36 59 87 3882 07 53 89 35
96 35 23 79 1805 98 90 07 35
46 40 62 98 8054 97 20 56 9515 74 80 08 32
16 46 70 50 8067 72 16 42 79
20 31 89 03 4338 46 82 68 7232 14 82 99 70
80 60 47 18 9763 49 30 21 30
71 59 73 05 5008 22 23 71 7791 01 93 20 49
82 96 59 26 9466 39 67 98 60
解析:所取的号码要在00~59之间且重复出现的号码仅取一次.
答案:18,00,38,58,32,26,25,39
5.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.
解:第一步:编号,把43名运动员编号为1~43;
第二步:制签,做好大小、形状相同的号签,分别写上这43个数;
第三步:搅拌,将这些号签放在暗箱中,进行均匀搅拌;
第四步:抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.。

相关文档
最新文档