OSPF案例分析之如何得到正常ospf路由
ospf知识点总结与案例分析
Ospf知识点总结与案例分析一、知识点总结1.OSPF报文有哪些?报文的作用?报文hello建立、维护和保持邻居关系DD 数据库摘要描述选举主从LSR 请求所需要的LSA,只携带了LSA的头部信息LSU 更新请求的LSA,携带了完整LSA信息LSACK 对收到的LSA做确认①影响邻居关系建立?OSPF头部:Router ID不冲突、区域ID一致、认证类型、数据一致Hello报文:网络掩码一致(P2P除外)、option选项、hello和dead时间一致、邻居列表有自己的router id②领接关系建立失败?双方开启协商MTU,如果从大主小,从卡在exchange,主卡在exstart,如果从小主大,主从都卡在exstart状态2.OSPF状态机有哪些?状态机的作用?down状态,开启了ospf,未收到对方的hello报文init状态,收到对方的hello报文,不包含自己的router id2-way状态,收到对方hello报文,包含自己的router id,邻居建立成功的标识Exstart状态,双方首包发送DD报文,进行主从关系选举,携带序列号、I、M、MS,进行比较选出主从Exchange,从以主的序列号进行发送DD,进行数据库摘要描述,主收到后,序列号+1,也会给从发送DD数据库摘要,从收到后要给予回复,从永远会比主多发一个回复给予确认Loading状态,进行实际的LSR、LSU、LSACK的交互FUll状态,SPF算法进行路径最优计算状态机作用,标识ospf协商的工作阶段,方便后续排错3.DR BDR 作用?DR作用,避免出现LSA的过度泛洪,减小LSDB数据库大小BDR作用,BDR是DR可靠,当DR出现故障时,BDR能够成为DR的角色DR选举:优先级高的为DR,优先级相同,router id大的优先4.OSPF的网络类型有哪些?broadcast广播P2P点到点NBMA 非广播多路访问P2MP 点到多点这些网络类型的作用是什么?区分二层链路,更好的构建拓扑信息5.OSPF防环原则和LSA头部和分类区域内1/2LSA 通过SPF怎么防环?//说明过程根据spf算法,以自己为根算出最短路径树,不出现环路区域间3/4LSA 通过ABR水平割防环?区域设计防环?3类lsa传递的路由信息,从非骨干区域接收的路由只接收不计算非骨干区域必须和骨干区域相连接3类描述的是区域间的路由信息,而4类描述的是asbr的cost 信息区域外5/7LSA 通过3/4防环。
ospf的原理及应用论文
OSPF的原理及应用一、概述OSPF(Open Shortest Path First)是一种开放式链路状态路由协议,广泛应用于企业网络和互联网中。
本文将介绍OSPF的原理及应用,包括路由算法、网络拓扑构建、路由计算及路由表更新等内容。
二、路由算法OSPF使用Dijkstra算法来计算最短路径,在路由器之间选择最佳路径进行数据传输。
其基本原理如下:•每个OSPF路由器维护一个链路状态数据库(Link State Database),其中存储了与其相邻的路由器和链路信息;•路由器之间通过交换链路状态更新消息(Link State Update)来交换各自的链路状态信息;•使用Dijkstra算法计算最短路径树,确定从一个路由器到其他所有路由器的最佳路径;•计算出的最短路径存储在路由表中,作为数据包转发的依据。
三、网络拓扑构建OSPF使用Hello协议来发现邻居路由器,并建立邻居关系以及网络拓扑信息。
具体步骤如下:1.路由器发送Hello消息到直连网络上,以广播的方式通告自己的存在。
2.监听到Hello消息的其他路由器返回相应的Hello消息,建立邻居关系。
3.邻居关系建立后,交换链路状态更新消息(LSU);4.路由器根据接收到的LSU消息更新链路状态数据库;5.每个路由器使用链路状态数据库构建网络拓扑,计算最短路径。
四、路由计算OSPF路由计算包括从链路状态数据库中获取网络拓扑、使用Dijkstra算法计算最短路径以及构建路由表等步骤。
1.路由器将链路状态数据库中的网络拓扑提取出来,形成一个拓扑图。
2.使用Dijkstra算法计算出到达其他路由器的最短路径。
3.根据最短路径计算出下一跳路由器以及出接口。
4.构建路由表,将最短路径、下一跳路由器和出接口信息存储其中。
五、路由表更新在OSPF中,路由表更新是一种动态的过程,当网络中发生拓扑变化时,OSPF 会对路由表进行更新。
1.监听邻居路由器发送的Hello消息,检测邻居关系是否保持正常。
简述ospf工作原理
简述ospf工作原理
OSPF(Open Shortest Path First)是一种基于链路状态的内部
网关协议(IGP),用于路由器之间的通信和路由表的更新。
它的工作原理如下:
1. 路由器邻居发现:OSPF路由器通过发送和接收Hello消息
来检测和确认与邻居路由器之间的连接。
当两个路由器通过交换Hello消息确定建立邻居关系后,它们将开始交换链路状态
信息。
2. 链路状态信息交换:邻居路由器之间交换链路状态信息(LSA),这包括它们所连接的链路和其它相关信息。
每个路由器将维护一张链路状态数据库(LSDB),其中存储了整个
网络的拓扑结构信息。
3. SPF计算:每个OSPF路由器使用Dijkstra算法来计算从自
身到网络中所有其他路由器的最短路径树。
通过比较链路的代价(成本),路由器能够选择最佳的路径。
4. 创建和更新路由表:根据SPF计算的结果,每个路由器将
生成自己的路由表。
路由表中存储了到达目标网络的最佳路径。
当网络发生链路故障或链路状态信息有变化时,路由器会及时更新路由表。
5. 路由器间的通信:根据路由表中的信息,路由器将转发收到的IP数据包到正确的下一跳路由器上,直到数据包到达目标
网络。
总结而言,OSPF使用邻居发现、链路状态信息交换、SPF计
算和路由表更新等步骤,实现路由器间的通信和网络拓扑结构信息的动态维护。
通过使用链路状态信息,OSPF能够为网络
中的每个路由器选择最佳的路径,并实时适应网络拓扑的改变。
简述ospf工作原理
简述ospf工作原理
OSPF的工作原理是基于链路状态的路由算法。
它使用信标(Hello)消息来建立、维护和验证邻居关系,并通过链路状态更新(LSU)消息来广播链路状态信息。
以下是OSP的工作原理的简要描述:
1. 邻居发现:路由器通过发送Hello消息来发现相邻的OSPF 路由器,并建立邻居关系。
Hello消息包含发送路由器的IP地址、区域ID和Hello间隔等信息。
2. 状态同步:邻居关系建立后,相邻的路由器交换链路状态信息,即每个路由器将其所知道的链路状态信息记录在链路状态数据库(LSDB)中,并使用数据库描述(DBD)消息进行交换。
该过程确保所有的路由器都拥有相同的链路状态信息。
3. 最短路径计算:每个路由器在获得完整的链路状态信息后,使用Dijsktra算法计算出到达所有目的地的最短路径树,这个树被称为最短路径树(SPF Tree)。
4. 路由更新:每个路由器根据最短路径树生成路由表,并将路由更新信息以链路状态更新(LSU)消息的形式发送给相邻的路由器。
这样,所有的路由器都能够互相交换自己的路由表,并将其更新到本地的路由表中。
5. 路由选择:根据本地路由表中的路由信息,路由器可以根据某种路由选择策略选择最佳的路由进行数据转发。
通过使用这种基于链路状态的路由算法,OSPF能够实现快速收敛、网络拓扑灵活性以及容错性。
同时,在OSPF网络中,每个区域之间可以通过区域边界路由器(ABR)进行连接,并在多区域网络中实现更高效的路由。
OSPF配置步骤
OSPF配置步骤1、设备配置将OSPF模块加载到网络设备上,并启用和配置路由协议,如果要使用指定路由协议,必须先进行配置。
2、配置Router IDRouter ID是使用OSPF协议进行通信的路由器节点的标识,在路由器中是唯一的,它必须在OSPF配置的初始步骤中显式定义,无法由系统选择。
可以使用任何32位的IPv4地址,通常是路由器接口的IP地址或者一个特定的Loopback地址。
3、定义网络网络是OSPF划分子网关系和路由器节点间连接点之间的逻辑连接。
定义网络时,需要指定一个“主机”IP地址,它将决定路由器节点间连续网络之间接口上启用OSPF的哪一方。
4、指定区域通过区域可以将路由器分割为一个或多个网络拓扑,以便管理路由条目的传输和收集。
OSPF协议分为区域型、网络型和主机型,每种类型运行不同的OSPF协议。
5、定义路由器节点路由器节点是OSPF网络中的分隔点,连接网络的另一部分。
在网络中,每一个路由器都是一个独立的实体,关联拥有不同或相同网络地址部分网络范围的路由器节点6、设置网络拓扑结构在网络设置完成后,可以按照自己的需求设置不同的网络拓扑结构,包括内网、外网、跨网等。
此外,还可以添加OSPF路由记录以控制流量,以及管理拓扑路由器之间的OSPF链路。
7、OSPF安全配置OSPF安全配置是重要的,可以防止“联盟”路由器的攻击,以及“源路由”攻击,让网络免受外界的威胁,保证网络的稳定性。
8、OSPF性能调整OSPF性能调整可以通过更改链路延迟,使用加权路由等方式来调整,以优化OSPF网络的通信效率和性能。
9、运行测试测试OSPF有效性并验证配置的正确性,以保证OSPF的正确性和安全性,测试过程中可以检查配置、状态和链接数据,以确保正确的路由决策和稳定的通信结果。
OSPF技术原理与案例
OSPF技术原理与案例OSPF(Open Shortest Path First)是一种基于链路状态(Link State)的路由协议,用于在IP网络中确定最佳路径和路由。
该协议使用Dijkstra算法来计算最短路径,并根据链路成本选择最佳路由。
本文将阐述OSPF的技术原理,并提供一些OSPF技术案例。
一、OSPF技术原理:1.路由器要求:OSPF要求所有参与路由计算的路由器运行OSPF协议,并共享链路状态信息。
2.链路状态广播:每个路由器通过发送链路状态公告(LSA)向周围的路由器广播自己的链路状态信息,并接收其他路由器的链路状态信息。
3.构建拓扑图:路由器将收到的链路状态信息存储在链路状态数据库(LSDB)中,并使用这些信息构建网络拓扑图。
4. Dijkstra算法:路由器使用Dijkstra算法计算最短路径树(SPF tree),确定到达每个目的地的最佳路径,并将该路径存储在路由表中。
5.链路状态更新:当链路状态发生变化(例如链路故障或链路成本改变)时,路由器会周期性地将更新的链路状态信息广播给周围的路由器。
6.最佳路径选择:路由器通过比较链路成本来选择最佳路径,并更新路由表中的路径信息。
二、OSPF技术案例:1.多区域OSPF:在大型企业网络中,可以使用多区域OSPF来减少链路状态信息的传播范围,提高网络的可扩展性和性能。
每个区域在逻辑上相互隔离,但通过区域边界路由器(ABR)连接起来。
ABR负责转发区域之间的路由信息,并维护整个网络的链路状态。
2.OSPF负载均衡:OSPF支持负载均衡,可以在多条等价路径中分担流量。
路由器使用平等的成本算法将流量分配到不同的路径上,提高网络的容量和性能。
3.OSPF区域间路由:当有多个区域在企业网络中时,OSPF可以提供区域间路由功能,以支持不同区域之间的通信。
区域之间的通信通过ABR 完成。
4.OSPF虚拟链路:OSP协议支持创建虚拟链路,用于在不同区域之间建立逻辑上的直连连接。
OSPF路由条目排错案例
硬件平台路由器及多层交换机软件版本所有案例简介在日常维护工作中,我们经常会遇到路由器上出现多余路由条目或者缺少路由条目的情况。
这些情况基本上都是路由配置变化或者引入新节点拓扑变化带来的问题。
通常情况下如果我们知道有哪些新设备或者哪些设备做过路由配置变更,就能直接找到问题点。
但对于较大型的网络,在缺少这些信息的情况下,就要先对问题缩小范围,从现象特征最明显的点为突破口进行分析。
以下是一个真实案例,为保护客户资料,路由器输出信息是在实验环境中抓取。
故障诊断步骤这是一个传统的三层城域网络结构,客户发现核心路由器(R0)路由表中一个私有网段地址,并且是自己发布的。
我们不能确定这个网络中最近发生过哪些变化。
因为现象是集中在R0,所以我们从这台路由器入手。
无论我们的网络是选用哪种路由协议,首先我们肯定要查看路由表详细信息。
R0#sh ip routeCodes: L - local, C - connected, S - static, R - RIP,M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPFinter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSAexternal type 2E1 - OSPF external type 1, E2 - OSPF external type2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U -per-user static routeo - ODR, P - periodic downloaded static route, + -replicated routeGateway of last resort is not set161.74.0.0/32 is subnetted, 1 subnetsO 161.74.158.10 [110/3] via 161.174.80.146,00:44:44, FastEthernet0/0161.130.0.0/32 is subnetted, 2 subnetsC 161.130.158.4 is directly connected, Loopback0O 161.130.158.6 [110/2] via 161.174.80.146,00:56:21, FastEthernet0/0161.174.0.0/16 is variably subnetted, 6 subnets, 3masksC 161.174.5.0/24 is directly connected, Loopback2L 161.174.5.1/32 is directly connected, Loopback2C 161.174.72.0/24 is directly connected, Loopback1L 161.174.72.1/32 is directly connected, Loopback1C 161.174.80.144/30 is directly connected,FastEthernet0/0L 161.174.80.145/32 is directly connected,FastEthernet0/0161.189.0.0/30 is subnetted, 1 subnetsO 161.189.31.52 [110/2] via 161.174.80.146,00:44:55, FastEthernet0/0O E2 192.168.0.0/16 [110/20] via 161.174.80.146,00:44:45, FastEthernet0/0注意最后一条路由,我们可以解读为192.168.0.0/16这个网络是从161.174.80.146学来的外部路由,并且是metric-type为2的外部路由,出接口为F0/0。
现网中对OSPF的优化技巧
1. OSPF优化概述1.1 OSPF简介1.1 OSPF简介OSPF(Open Shortest Path First)是一种内部网关协议(IGP),用于在企业网络中实现动态路由。
它是一种链路状态路由协议,通过维护一个链路状态数据库(LSDB)来计算最短路径,并使用Dijkstra算法来确定最佳路径。
OSPF具有以下特点:- 开放性:OSPF是一个开放的标准协议,由IETF(Internet Engineering Task Force)制定,可以在不同厂商的设备上实现和使用。
- 分层结构:OSPF使用分层结构,将网络划分为区域(Area),每个区域有一个区域边界路由器(Area Border Router,ABR)负责与其他区域交换路由信息。
- 快速收敛:OSPF使用Hello消息和链路状态更新(Link State Update)消息来检测链路状态的变化,并快速更新路由表,以实现快速收敛。
- 路由选择:OSPF使用成本(Cost)作为路由选择的度量标准,成本越小表示路径越短,OSPF可以根据不同的需求配置不同的成本。
- 可靠性:OSPF支持路由冗余和负载均衡,可以配置多条等价路径,提高网络的可靠性和容错性。
- 可扩展性:OSPF支持分层设计和分区域划分,可以根据网络规模和需求进行灵活的扩展。
通过了解OSPF的基本概念和特点,可以更好地理解和优化OSPF协议在现网中的应用。
在接下来的内容中,我们将介绍一些常见的OSPF优化技巧,以提高网络的性能和可靠性。
1.2 OSPF优化的重要性1.2 OSPF优化的重要性OSPF(Open Shortest Path First)是一种动态路由协议,被广泛应用于大型企业网络和互联网服务提供商的网络中。
在现网中对OSPF进行优化是非常重要的,因为它可以提高网络的性能和可靠性,同时减少网络故障的发生。
OSPF优化的重要性体现在以下几个方面:1. 提高网络性能:OSPF优化可以通过调整路由器之间的邻居关系、调整链路权重、合理划分区域等方式,优化网络的拓扑结构,从而提高网络的传输速度和吞吐量。
ensp模拟器之ospf实验
ensp模拟器之ospf实验OSPF(开放最短路径优先)是一种常用的链路状态路由协议,用于在互联网络中实现路由器之间的通信。
它基于Dijkstra算法来计算最短路径,并使用LSA(链路状态广播)协议来在网络中传播状态信息。
在该模拟实验中,我们将使用一个OSPF模拟器来演示OSPF协议的工作原理。
首先,我们需要安装一个OSPF模拟器,该模拟器提供了一个虚拟网络环境,可以模拟多个路由器之间的通信。
我们可以使用Cisco Packet Tracer或GNS3等模拟器。
接下来,我们将创建一个包含多个路由器的拓扑图。
在该拓扑图中,每个路由器将代表一个网络节点,并且它们之间通过链路进行连接。
我们可以选择不同的路由器型号和链路速率来模拟真实世界的网络环境。
然后,我们需要对每个路由器进行配置。
配置包括设置路由器的IP 地址、启用OSPF协议、设置区域和配置链路权重等。
每个路由器将作为OSPF的邻居,它们将通过OSPF协议交换状态信息,并计算最短路径。
在这个过程中,可以使用OSPF的一些特性,如区域划分、路径筛选和路由重分发等。
完成配置后,我们可以启动路由器,并观察OSPF协议的工作。
通过在路由器上执行相应的OSPF命令,我们可以查看当前的路由表、OSPF邻居列表和链路状态数据库等信息。
同时,我们还可以进行一些操作,如手动设置链路权重、增加或删除网络、设置路由聚合等。
在实验过程中,我们可以模拟一些故障情况,如链路断开、路由器故障等。
这将导致OSPF重新计算最短路径,并选择备用路径进行通信。
通过这些操作,我们可以观察到OSPF的动态性和可靠性。
最后,我们需要对实验结果进行分析和总结。
我们可以比较不同配置下的路由表和路径选择,评估OSPF协议的性能和可扩展性。
同时,我们还可以探讨OSPF在实际网络中的应用,如大规模网络中的区域设计、网络收敛和负载均衡等。
总结起来,通过该OSPF模拟实验,我们可以深入了解OSPF协议的工作原理和特性。
OSPF实验及解析
OSPF实验及解析:实现OSPF网络实验报告一、实验名称:实现OSPF网络二、实验条件:1、配置路由器运行OSPF协议。
2、拓扑图如(三)所示。
3、要求192.168.1.0/24、192.168.2.0/24为area 1配置为完全末梢区域;192.168.3.0/24为area 0;192.168.4.0/24、192.168.5.0为area 2,配置为NSSA 区域。
路由器D的F0/1端口的辅助IP地址和路由器E运行RIP-V2。
实现OSPF区域的路由器可以和RIP路由器互相学习到网络路径。
三、实验拓扑实现OSPF网络.jpg四、实验步骤及操作:1、路由器A的配置:RouterA(config)#int loopback 0RouterA(config-if)#ip add 172.16.0.1 255.255.255.255 RouterA(config-if)#exitRouterA(config)#int f0/0RouterA(config-if)#ip add 192.168.1.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#int f0/1RouterA(config-if)#ip add 192.168.2.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#router ospf 10RouterA(config-router)#network 192.168.1.0 0.0.0.255 area 1 RouterA(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterA(config-router)#area 1 stubRouterA#show ip ospf databaseRouterA#show ip ospf border-router2、路由器B的配置:RouterB(config)#int loopback 0RouterB(config-if)#ip add 172.16.0.2 255.255.255.255 RouterB(config-if)#exitRouterB(config)#int f0/0RouterB(config-if)#ip add 192.168.2.2 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#int f0/1RouterB(config-if)#ip add 192.168.3.1 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#router ospf 10RouterB(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterB(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterB(config-router)#area 1 stub no-summary注:设置某区域为完全末梢区域的条件:1、设置内部路由器的区域为末梢区域2、在区域边界路有器上设置该区域为末梢区域且不进行路由汇总3、路由器C的配置:RouterC(config)#int loopback 0RouterC(config-if)#ip add 172.16.0.3 255.255.255.255 RouterC(config-if)#exitRouterC(config)#int f0/0RouterC(config-if)#ip add 192.168.3.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#int f0/1RouterC(config-if)#ip add 192.168.4.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#router ospf 10RouterC(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterC(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterC(config-router)#area 2 nssa no-summary4、路由器D的配置:RouterD(config)#int loopback 0RouterD(config-if)#ip add 172.16.0.4 255.255.255.255 RouterD(config-if)#exitRouterD(config)#int f0/0RouterD(config-if)#ip add 192.168.4.2 255.255.255.0RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#int f0/1RouterD(config-if)#ip add 192.168.5.1 255.255.255.0RouterD(config-if)#ip add 192.168.6.1 255.255.255.0 secondary RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#router ospf 10RouterD(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterD(config-router)#network 192.168.5.0 0.0.0.255 area 2 RouterD(config-router)#area 2 nssaRouterD(config-router)#redistribute rip metric 2 metric-type 1 RouterD(config-if)#exitRouterD(config)#router ripRouterD(config-router)#version 2RouterD(config-router)#network 192.168.6.0RouterD(config-router)#redistribute ospf 10 metric 25、路由器E的配置:RouterE(config)#int f0/0RouterE(config-if)#ip add 192.168.6.2 255.255.255.0RouterE(config-if)#no shutRouterE(config-if)#exitRouterE(config)#int f0/1RouterE(config-if)#ip add 192.168.7.1 255.255.255.0RouterE(config-if)#exitRouterE(config)#router ripRouterE(config-router)#version 2RouterE(config-router)#network 192.168.6.0RouterE(config-router)#network 192.168.7.0注:设置某区域为非完全末梢区域的条件:1、设置内部路由器的区域为非完全末梢区域2、在区域边界路有器上设置该区域为非完全末梢区域且不进行路由汇总6、PC工作站的设置:Pc1的设置:IP=192.168.1.10 Netmask=255.255.255.0Pc2的设置:IP=192.168.7.10 Netmask=255.255.255.0五、实验结果及分析在pc1上:Ping+192.168.7.10(通讯正常)在pc2上:Ping+192.168.1.10(通讯正常)由此证明配置成功注一:各Lsa的查看命令1、查看数据库中的所有路由器的Lsa的命令:show ip ospf database router2、查看数据库中的网络Lsa的命令:show ip ospf database network3、查看数据库中的网络汇总Lsa的命令:show ip ospf database summary4、查看数据库中的ASBR汇总Lsa的命令:show ip ospf database asbr-summary5、查看数据库中的自主系统外部Lsa的命令:show ip ospf database external6、查看数据库中的Nssa外部Lsa的命令:show ip ospf database nssa-external【实验环境】BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建!【实验目的】按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area)以及知道为什么要换分多区域的原因?【实验拓扑】【实验步骤】网络拓扑图的具体布线:Router1 S0/0 <----> Router2 S0/0Router2 S1/0 <----> Router3 S0/0Router3 E1/0 <----> Router4 E0/0第一步:配置路由器的回环地址和接口的IP地址;(1) 、配置Router1的回环地址和接口的IP地址;(2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址)(4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了)第二步:启动OSPF的进程,并配置他们的区域末梢区域(Stub Area)和完全末梢区域(Totally Stubby Area)(1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;)末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。
ospf协议的工作原理
ospf协议的工作原理OSPF(Open Shortest Path First)是一种基于链路状态的内部网关协议(IGP),它用于在自治系统内部路由器之间进行动态路由选择。
以下是OSPF协议的工作原理:1. 邻居发现:OSPF路由器通过发送Hello报文来发现相邻的OSPF路由器,并建立邻居关系。
当两个路由器在相同的网络上收到对方的Hello报文时,它们就会成为邻居。
2. 路由器状态:每个OSPF路由器都会维护一个链路状态数据库(Link State Database),其中包含该路由器所知的所有网络和链路的状态信息。
这些信息包括链路带宽、延迟、可靠性等。
3. 链路状态广播:OSPF路由器通过发送链路状态广播(LSA)将自己的链路状态信息传播给网络中的其他路由器。
LSA包含了该路由器所连接网络的拓扑信息以及链路状态。
4. 最短路径计算:每个OSPF路由器根据收到的链路状态信息计算出到达目的网络的最短路径。
OSPF使用Dijkstra算法来计算最短路径,其中考虑了链路的带宽、延迟等因素。
5. 路由更新:一旦计算出最短路径,OSPF路由器就会更新自己的路由表,并将更新后的路由信息传播给其他路由器。
这样,网络中的每个路由器都会拥有到达目的网络的最短路径信息。
6. 动态路由选择:OSPF路由器根据路由表中的信息选择传输数据的最佳路径。
OSPF使用最短路径优先的原则进行路由选择,选择路径时首先考虑路径的成本和可靠性。
7. 路由调整:当网络拓扑发生变化或链路状态信息发生变化时,OSPF路由器会重新计算最短路径并更新路由表。
这种动态的路由调整可以提高网络的可靠性和适应性。
总的来说,OSPF协议通过邻居发现、链路状态广播、最短路径计算和路由更新等步骤实现动态路由选择,并通过路由调整来适应网络拓扑的变化,从而提供高效、可靠的内部网关路由。
思科路由器OSPF协议实验
实验需求如上图,本实验结合真实案例,用来检验学员对OSPF协议的掌握情况R5为A公司总部网关,R2和R4分别是一号楼和二号楼的核心交换机,这里用路由器模拟,R1和R3分别为一号楼和二号楼的分发层交换机,这里也是用路由器模拟,每一栋楼是一个ospf区域,包含着诺干个vlan,核心交换机和网关之间是骨干区域。
R6是A公司分公司网关,和总部通过帧中继互联,R7是分部核心交换机,分部的ospf是区域3,因为分部业务扩展,合并了B公司(R8,R9),B公司原来是ospf区域4。
1.根据上图,搭建好拓扑,ISP用一台路由器模拟,服务器和PC机全部采用回环口模拟2.配置好帧中继环境,要求帧中继不能动态获取映射,也不能静态配置映射,配置好IP地址,测试直连PING通3.依据上图,配置好OSPF协议,验证邻居建立4.确保整个内网全网可达5.确保骨干区域邻居建立高安全性6.尽量减小网关的路由表条目7.R1,R3,R9性能不足,尽量减少其路由表条目实验步骤1、对各路由器配置IP地址2、将R10模拟为帧中继R10#conf tR10(config)#frame-relay swiR10(config)#frame-relay switchingR10(config)#int s0/0R10(config-if)#no shutR10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 506 int s0/1 605R10(config-if)#int s0/1R10(config-if)#encapsulation frame-relayR10(config-if)#frame-relay intf-type dceR10(config-if)#clock rate 64000R10(config-if)#frame-relay route 605 int s0/0 506R10(config-if)#exit在R5的s2/0,及R6的s1/0做相应的帧中继封装R5(config)#int s2/0R5(config-if)#encapsulation frame-relayR5(config-if)#frame-relay intf-type dteR5(config-if)#exitR6(config)#int s1/0R6(config-if)#encapsulation frame-relayR6(config-if)#frame-relay intf-type dteR6(config-if)#exit3、配置OSPF协议,并验证邻居建立R1(config)#router ospf 1R1(config-router)#router-idR1(config-router)#router-id 1.1.1.1R1(config-router)#net 172.16.3.1 0.0.0.0 a 1R1(config-router)#exit其他路由器的配置命令类似在R10帧中继线路上,R5的接口s2/0与R6接口s1/0的OSPF类型为非广播因此不能产生Hello包以建立OSPF邻居。
OSPF协议原理与配置详解
调试OSPF协议的网络连通性
检查区域间的连通性
确认区域内和区域间的路由器能够正常通信。
检查OSPF路由汇总
配置正确的路由汇总,以确保网络的连通性。
检查OSPF下一跳地址
确认OSPF下一跳地址配置正确,以避免路由环路和黑洞路由问题。
05 OSPF协议的应用场景与 案例分析
OSPF协议在企业网络中的应用
02 路由器使用Dijkstra算法计算最短路径树,构建 路由表。
03 路由表中的每一项都包含目标网络、下一跳路由 器和接口等信息。
OSPF协议路由表的更新
当网络发生变化时,相关路由器会发送链路状态 更新报文,通知其他路由器网络变化情况。
收到更新报文的路由器会重新构建链路状态数据 库和路由表。
路由器之间通过OSPF协议的报文交互,实现路由 表的实时更新和维护。
3
路由器之间通过OSPF协议的报文交换链路状态 信息,并使用最短路径算法(Shortest Path Algorithm)来更新路由表。
OSPF协议的特点
支持区域划分
OSPF协议支持将大型网络划分 为多个区域(Area),每个区 域运行一个OSPF实例,维护一 个区域内路由的数据库,降低 了路由器的资源消耗。
使用OSPF版本3
03
在IPv6网络中,使用OSPF版本3替代OSPF版本2可
以减少路由器的资源消耗。
调试OSPF协议的路由问题
检查OSPF路由器间的链 路状态
通过查看OSPF邻居状态机,确认链路是否 正常工作。
检查OSPF路由表
查看OSPF路由表,确保正确的路由信息被学习。
使用调试命令
使用OSPF调试命令,如"debug ospf packet"和"debug ospf adjacency",以帮助 定位问题。
ospf配置实验报告
ospf配置实验报告《OSPF配置实验报告》在网络配置和管理中,Open Shortest Path First(OSPF)是一种常用的路由协议,用于在IP网络中进行动态路由选择。
本实验报告将介绍如何进行OSPF配置,并通过实验验证其功能和效果。
实验环境:- 两台路由器设备- 一台交换机设备- 一台PC设备- 网线、电源线等相关设备实验步骤:1. 连接设备:将两台路由器设备和交换机设备通过网线连接起来,确保连接正确稳定。
2. 配置路由器:登录路由器设备的管理界面,进行OSPF配置。
首先配置路由器的IP地址和子网掩码,然后启用OSPF协议,并配置相关参数,如区域ID、网络地址等。
3. 配置交换机:登录交换机设备的管理界面,配置VLAN和端口,确保路由器和PC设备能够正常通信。
4. 验证网络:通过ping命令验证PC设备能够与路由器设备进行正常通信,检查网络连接是否正常。
5. 测试路由选择:在路由器设备上进行路由表查看和调试命令,验证OSPF协议是否能够正确选择最佳路径。
实验结果:经过以上步骤的配置和验证,实验结果表明OSPF协议能够成功实现动态路由选择,并且网络通信正常稳定。
通过查看路由表和调试信息,可以清晰地看到OSPF协议选择了最佳路径,并且能够动态调整路由信息以适应网络拓扑的变化。
结论:本实验验证了OSPF配置的功能和效果,证明了OSPF协议在IP网络中的重要性和实用性。
通过OSPF协议,网络管理员可以轻松实现动态路由选择和网络优化,提高网络性能和稳定性。
总结:OSPF配置实验报告详细介绍了OSPF协议的配置步骤和验证方法,通过实验结果验证了OSPF协议的功能和效果。
希望本实验报告能够帮助读者更加深入了解和掌握OSPF协议的配置和应用,为网络管理工作提供参考和指导。
OSPF网络中路由超限问题的分析与解决
通信技术网络中路由超限问题的分析与解决俊,刘松鹤,陈相宇,路杨,杨童斌(中国电子科技集团公司第十五研究所,北京网络中出现的路由超限问题出发,通过分析种解决此类问题的方案。
其次对于每种方案,基于华为公司的AR2220E后总结并比较了几种方案的优缺点,旨在帮助相关人员选择低成本的解决方案。
Analysis and Solution of Routing Overflow in OSPF NetworkYE Jun, LIU Songhe, CHEN Xiangyu, LU Yang, YANG Tongbin(The Fifteenth Research Institute of China Electronic Technology Group Corporation, BeijingAbstract: Firstly, starts from the problem of over-limit routing of network equipment in OSPF network, and proposes a variety of solutions by analyzing the principles of the OSPF routing protocol.Secondly, For each solution,this article provides the corresponding configuration routines based on HuaweiFinally, this article summarizes and compares the advantages and disadvantages of several solutions, which will helpNetwork终端三层交换机路由器目的设备图1 故障时网络拓扑图本例中,三层交换机的路由表容量最大值为512条,而通过路由器查看到实际环境中的路由表数量超过1000条,远超三层交换机路由表容量的最大值。
OSPF多实例
OSPF多实例OSPF是一个完美主义者,他的实现非常复杂,目的是做到无懈可击,虽然至今还有不尽如人意的地方,但是绝对堪称是IGP的权威,更有大批大批的粉丝用户,坚定的选用OSPF 作为IGP协议,并跟从OSPF的完美路由设计理念,尽可能的要求网络设计完美无缺。
当MPLS VPN的大潮涌来,BGP一下子与用户拉近了距离,成为了用户私网路由穿越骨干网的承载者。
OSPF自然眼红不已,当其他IGP路由协议纷纷丢盔弃甲将自己关在用户网络的一个小SITE里的时候,OSPF却仗着自己的IGP权威地位对BGP提出了新的要求,要求BGP在将OSPF路由从用户的一个SITE传到另一个SITE的时候携带OSPF的拓扑信息,让用户同一VPN的所有SITE俨然一个IGP整体。
我们下面的文字就将讲一讲这个“故事”,让我们这些网络建设者们明白当我们选用OSPF作为MPLS VPN的PE和CE之间的路由协议的时候,BGP为OSPF做了什么特殊的工作,OSPF自身又做了什么样的改进,以适应这种新的组网需求,最终让我们可以用这些协议实现的原理解释一些特殊的网络问题,并一一解决他们。
希望大家看过这篇文章后可以有所收获!首先我们就讲一讲BGP为OSPF做了什么。
前面我们说过BGP之所以单独为OSPF做一些特殊工作是因为OSPF要求BGP将OSPF路由从用户的一个SITE穿越骨干网传到另外一个SITE的时候,要保留OSPF的拓扑信息。
我们知道OSPF的拓扑信息包含在OSPF的intra-LSA里面,要想保留拓扑信息,BGP最好就是能够将OSPF的LSA传到对端而不是将OSPF路由传到对端。
果然BGP是这样做的,如何实现?我们知道BGP4+的RT属性是作为BGP的扩展属性放在BGP的一个叫Extended Community的地方,其实BGP的Extended Community不只是用来放RT属性,还可以用来携带OSPF的LSA信息,我们可以将他称为OSPF属性,这部分内容包括以下几个部分:1)Domian ID什么是Domian ID?Domian ID是一个用来表示OSPF域的值。
OSPF路由规划设计
OSPF路由规划设计OSPF(Open Shortest Path First)是一种内部网关协议(IGP),常用于大规模企业网络和互联网服务提供商(ISPs)中,用于在路由器之间交换网络信息以建立和维护路由表。
在设计OSPF路由规划时,需要考虑以下几个方面:1. 网络拓扑规划:首先需要了解整个网络的拓扑结构。
根据网络规模和需求,将网络划分为不同的区域(area),每个区域可以包含多个路由器。
区域之间通过区域边界路由器(ABR)相连。
同时,需要确定网络中的核心区域,用于承载主要的流量和数据转发。
2. OSPF区域划分:根据拓扑结构的复杂程度和网络规模,可以将网络划分为不同的OSPF区域。
每个区域都有一个唯一的标识符(Area ID),并且只有在同一个区域内的路由器才会交换路由信息。
这样可以减少OSPF对带宽和处理能力的消耗。
3. OSPF路由器类型选择:根据网络需求和拓扑结构,选择适当的OSPF路由器类型。
OSPF有以下几种类型:主机(Host)、分段(Stub)、点到点(Point-to-Point)、广播(Broadcast)和非广播多点(Non-Broadcast Multiple Access,NBMA)网络类型。
不同的网络类型适用于不同的场景和需求,选择合适的路由器类型可以提高网络的性能和效率。
4.OSPF邻居关系建立:在OSPF网络中,邻居关系的建立非常重要。
邻居关系是指在同一个区域内的路由器之间建立的连接,用于交换路由信息和维护邻居表。
在路由器配置中,需要正确配置OSPF邻居关系,确保所有的邻居都能够正常工作,并及时检测和修复邻居的故障。
5.OSPF路由策略设计:通过优化OSPF路由策略,可以实现网络中的负载均衡和故障冗余。
可以通过调整OSPF的权重、成本、优先级等参数,控制路由器之间的流量分布。
此外,还可以使用路由策略来实现不同类型数据流的分流,提高网络的性能和可靠性。
6.OSPF安全策略设计:对于OSPF网络,安全性是一个重要的考虑因素。
OSPF外部等价路由经验案例
OSPF外部等价路由经验案例1.1 组⽹描述某⾦融单位地市公司采⽤⼀台AR4620和⼀台C2621路由器连接省公司两台友商⾻⼲路由器,地市核⼼交换机采⽤两台S3952P做IRF堆叠,然后交叉双上⾏连接上联路由器。
下⾏通过防⽕墙连接下联路由器。
省公司局域⽹、省市⾻⼲⽹和地市局域⽹均运⾏OSPF协议。
其中地市路由器上联接⼝在⾻⼲区域area 0,地市路由器内⽹⼝、内⽹交换机及下联路由器均在普通区域area n。
省核⼼交换、省上联路由器运⾏BGP协议。
在OSPF和BGP边界做双向路由重分发。
⽐如省⾏两台上联路由器将从EBGP学到路由25.0.0.0/8重分布到OSPF中,使得地市公司可以学习到该OSPF外部路由。
OSPF组⽹简图1.2 问题概述某⽇该单位省公司上联BGP路由调整,发现其中⼀个地市公司的S3900 OSPF外部路由学习异常,正常情况下应该从上联两台路由器学习到3条等价的路由,现在只从AR4620学习到两条等价路由。
<3952p>dis ip routing-table 25.0.0.0Destination/Mask ProtocolPre Cost Nexthop Interface25.0.0.0/8 O_ASE 150 1 49.76.101.1 Vlan-int erface10149.76.101.9 Vlan-int erface1021.3 原因分析1、将S3900连接AR4620的两个vlan虚接⼝(Vlan-interface101、Vlan-interface102)shutdown发现依然可以学习到两条等价路由,但是下⼀跳指向上联路由器C2621<3952p>dis iprou 25.0.0.0Destination/Mask ProtocolPre Cost Nexthop Interface25.0.0.0/8 O_ASE 150 1 49.76.101.5 Vlan-int erface10349.76.101.13 Vlan-int erface1042、将S3900连接AR4620的两个vlan虚接⼝undo shut恢复正常,发现上述ASE 路由⼜切回从AR46学到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
日前,笔者在工作中发现一个问题,即无法得到正常的OSPF路由。
笔者现将OSPF协议排错的过程写下来,希望能与更多的朋友共享。
1、现象描述在下图中,两台路由器通过串口连接,在互连接口上运行OSPF协议。
RouterA的以太网接口地址为111.111.111.1,且运行了OSPF协议,Router的以太网接口地址为222.222.222.1,也启用了OSPF协议。
RouterA的主要配置如下:interface Loopback0ip address 197.7.1.1 255.255.255.255!interface FastEthernet0/0ip address 111.111.111.1 255.255.255.0ip ospf cost 200duplex autospeed auto!interface Serial1/0ip address 100.1.0.1 255.255.0.0ip ospf network point-to-multipointip ospf cost 200serial restart-delay 0!router ospf 22router-id 197.7.1.1log-adjacency-changesnetwork 100.1.0.1 0.0.0.0 area 0network 111.111.111.1 0.0.0.0 area 0neighbor 100.1.0.2 cost 200Router的主要配置如下:interface FastEthernet0/0ip address 222.222.222.1 255.255.255.0ip ospf cost 200duplex autospeed auto!interface Serial1/0ip address 100.1.0.2 255.255.0.0ip ospf network non-broadcastip ospf cost 200serial restart-delay 0router ospf 22router-id 197.7.1.2log-adjacency-changesnetwork 100.1.0.2 0.0.0.0 area 0network 222.222.222.1 0.0.0.0 area 0neighbor 100.1.0.1 cost 200故障现象如下:在RouterA和RouterB上查看路由表,发现相互之间并没有学习到OSPF路由。
2、显示OSPF信息分别在两台路由器上查看邻居状态,显示如下:RouterA#show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface197.7.1.2 0 FULL/ - 00:01:38 100.1.0.2 Serial1/0RouterA#show ip ospf neighborNeighbor ID Pri State Dead Time Address Interface 197.7.1.1 1 FULL/BDR 00:01:54 100.1.0.1 Serial1/0然后分别察看路由表,有下列显示:RouterA#show ip route100.0.0.0/16 is subnetted, 1 subnetsC 100.1.0.0 is directly connected, Serial1/0197.7.1.0/32 is subnetted, 1 subnetsC 197.7.1.1 is directly connected, Loopback0111.0.0.0/24 is subnetted, 1 subnetsC 111.111.111.0 is directly connected, FastEthernet0/0RouterB#show ip routeC 222.222.222.0/24 is directly connected, FastEthernet0/0100.0.0.0/16 is subnetted, 1 subnetsC 100.1.0.0 is directly connected, Serial1/0接下来在来查看两台路由器的接口状态如下:RouterA#show ip ospf interfaceFastEthernet0/0 is up, line protocol is upInternet Address 111.111.111.1/24, Area 0Process ID 22, Router ID 197.7.1.1, Network Type BROADCAST, Cost: 200 Transmit Delay is 1 sec, State DR, Priority 1Designated Router (ID) 197.7.1.1, Interface address 111.111.111.1No backup designated router on this networkTimer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5oob-resync timeout 40Hello due in 00:00:09Index 2/2, flood queue length 0Next 0x0(0)/0x0(0)Last flood scan length is 0, maximum is 0Last flood scan time is 0 msec, maximum is 0 msecNeighbor Count is 0, Adjacent neighbor count is 0Suppress hello for 0 neighbor(s)Serial1/0 is up, line protocol is upInternet Address 100.1.0.1/16, Area 0Process ID 22, Router ID 197.7.1.1, Network Type POINT_TO_MULTIPOINT, Cost: 200Transmit Delay is 1 sec, State POINT_TO_MULTIPOINT,Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5oob-resync timeout 120Hello due in 00:00:23Index 1/1, flood queue length 0Next 0x0(0)/0x0(0)Last flood scan length is 1, maximum is 1Last flood scan time is 0 msec, maximum is 0 msecNeighbor Count is 1, Adjacent neighbor count is 1Adjacent with neighbor 197.7.1.2, cost is 200Suppress hello for 0 neighbor(s)RouterB#show ip ospf interfaceFastEthernet0/0 is up, line protocol is upInternet Address 222.222.222.1/24, Area 0Process ID 22, Router ID 197.7.1.2, Network Type BROADCAST, Cost: 200Transmit Delay is 1 sec, State DR, Priority 1Designated Router (ID) 197.7.1.2, Interface address 222.222.222.1No backup designated router on this networkTimer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5oob-resync timeout 40Hello due in 00:00:07Index 2/2, flood queue length 0Next 0x0(0)/0x0(0)Last flood scan length is 0, maximum is 0Last flood scan time is 0 msec, maximum is 0 msecNeighbor Count is 0, Adjacent neighbor count is 0Suppress hello for 0 neighbor(s)Serial1/0 is up, line protocol is upInternet Address 100.1.0.2/16, Area 0Process ID 22, Router ID 197.7.1.2, Network Type NON_BROADCAST, Cost: 200 Transmit Delay is 1 sec, State DR, Priority 1Designated Router (ID) 197.7.1.2, Interface address 100.1.0.2Backup Designated router (ID) 197.7.1.1, Interface address 100.1.0.1Timer intervals configured, Hello 30, Dead 120, Wait 120, Retransmit 5oob-resync timeout 120Hello due in 00:00:17Index 1/1, flood queue length 0Next 0x0(0)/0x0(0)Last flood scan length is 1, maximum is 1Last flood scan time is 0 msec, maximum is 0 msecNeighbor Count is 1, Adjacent neighbor count is 1Adjacent with neighbor 197.7.1.1 (Backup Designated Router)Suppress hello for 0 neighbor(s)3、原因分析从查看路由器相应接口配置和状态信息来看,RouterA和Router相连接口的OSPF网络类型并不一致,因此导致路由计算错误,无法得到正常的OSPF路由。