作业5刚体力学答案解析2014版

合集下载

刚体部分习题参考答案

刚体部分习题参考答案

m2 g.
4-26 小幅摆动的周期: T = 2π l12 + l22 ; g(l2 − l1 )
等值摆长:
l0
=
l12 + l2 2 l2 − l1
> l1 + l2
.
4-27
I
=
T12 T2 2 − T12
ml(l

T2 2 4π 2
g)
= 1.21×103 g ⋅ cm2
4-28
(1)
T= T0
T2 = T1e−0.3π = 53.3N .
a1
=
(m1R − m2r)R I c + m1R 2 + m2r 2
g,
a2
=
r R
a1
=
(m1R − m2r)r I c + m1R 2 + m2r 2
g;
T1
=
Ic + m2r(r + R) I c + m1R 2 + m2r 2
m1 g
,
T2
=
I c + m1r(r + R) I c + m1R 2 + m2r 2
ω
=
1 mr 2
h 2π
= 4.13 ×1016 md / s
4-4
v2
=
r1 r2
v1, tgθ2
=
v23 gr1v1
∝ v23;即v2增大,故θ2亦增大,θ2
> θ1.
4-5 ω' = 8 ω; 5
ΔEk
= 39 25
Ek0 ,增加的能量来自汽车的动力。
4-6 ω = v (这是转台反方向旋转地角速度) 。 2R

大学物理第五章刚体力学1

大学物理第五章刚体力学1

例:课本P182习题5.5
质量连续分布: J r2dm
dm为质量元,简称质元。其计算方法如下:
质量为线分布 dm dl 其中、、分
质量为面分布
dm ds
别为质量的线密 度、面密度和体
质量为体分布 dm dV 密度。
线分布
面分布
体分布
例1、求质量为m、半径为R的均匀圆环的转动 惯量。轴与圆环平面垂直并通过圆心。
a物对地=
g-a 3
0
a人对地=
2a
0 3
g
习题册 P12 典型例题4
典例4.一个质量为M半径为R的匀质球壳可 绕一光滑竖直中心轴转动。轻绳绕在球壳 的水平最大圆周上,又跨过一质量为m半径 为r的匀质圆盘,此圆盘具有光滑水平轴, 然后在下端系一质量也为m的物体,如图。 求当物体由静止下落h时的速度v。
B
已知滑轮对 o 轴的转动惯量
J=MR2/4 ,设人从静止开始以
相对绳匀速向上爬时,绳与滑
轮间无相对滑动,求 B 端重物
上升的加速度?
解:受力分析如图 由题意 a人=aB=a
由牛顿第二定律 由转动定律 :
人 : Mg T 2 Ma
B
:
T
1
1 4
Mg
1 Ma 4
① ②
对滑轮 :
(T2 -T1)R J
再利用 v 2ah 得
1
v
12mgh
2
4M 9m
练习1.一轻绳跨过两个质量为 m、半径为 r 的均匀圆盘状定滑轮, 绳的两端分别挂着质量为 2m 和 m 的重物,如图所示,绳与滑轮间 无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 mr2/2, 将由 两个定滑轮以及质量为 2m 和 m 的重物组成的系统从静止释放,求 重物的加速度和两滑轮之间绳内的张力。

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

2014版教材课后习题答案4_7章

2014版教材课后习题答案4_7章

P78 第四章3.一物体按规律x =ct 3在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功.解:由x =ct 3可求物体的速度: 23d d ct tx==v 1分 物体受到的阻力大小为: 343242299x kc t kc k f ===v 2分力对物体所作的功为:⎰=W W d =⎰-lx x kc 03432d 9 =7273732lkc - 2分4.一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所作的功.解:选竖直向上为坐标y 轴的正方向,井中水面处为原点.由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量即: F =P =gy mg ky P 2.00-=-=107.8-1.96y (SI) 3分人的拉力所作的功为:W=⎰⎰=Hy F W 0d d =⎰-10d )96.18.107(y y =980 J 2分5.质量m =2 kg 的质点在力i t F ρρ12=(SI)的作用下,从静止出发沿x 轴正向作直线运动,求前三秒该力所作的功.解: ⎰⎰=⋅=t t r F A d 12d v ρρ 1分而质点的速度与时间的关系为200003d 212d 0d t t t t m Ft a t tt==+=+=⎰⎰⎰v v 2分 所以力F ρ所作的功为 ⎰⎰==33302d 36d )3(12t t t t t A =729 J 2分6.如图所示,质量m 为 0.1 kg 的木块,在一个水平面上和一个劲度系数k 为20 N/m 的轻弹簧碰撞,木块将弹簧由原长压缩了x = 0.4 m .假设木块与水平面间的滑动摩擦系数μ k 为0.25,问在将要发生碰撞时木块的速率v 为多少?解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量.由题意有 222121v m kx x f r -=- 而mg f k r μ= 3分由此得木块开始碰撞弹簧时的速率为 mkx gx k 22+=μv1分= 5.83 m/s 1分[另解]根据动能定理,摩擦力和弹性力对木块所作的功,等于木块动能的增量,应有20210v m kxdx mgx xk -=--⎰μ 其中2021kx kxdx x=⎰7.一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分8.一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分9.劲度系数为k 、原长为l 的弹簧,一端固定在圆周上的A 点,圆周的半径R =l ,弹簧的另一端点从距A 点2l 的B 点沿圆周移动1/4周长到C 点,如图所示.求弹性力在此过程中所作的功.解:弹簧长为AB 时,其伸长量为 l l l x =-=21 1分弹簧长为AC 时,其伸长量为 l l l x )12(22-=-=1分弹性力的功等于弹性势能的减少 2221212121kx kx E E W P P -=-= 2分[]22)12(121--=kl 2)12(kl -= 1分10.一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a r ρρρωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F ρ以及当质点从A 点运动到B 点的过程中F ρ的分力x F ρ和y F ρ分别作的功.解:(1)位矢 j t b i t a r ρρρωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x ρρρ+==j t mb i t ma ρρωωωωsin cos 22-- 2分由A →B ⎰⎰-==2d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分 ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分11.某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =52.8x +38.4x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗? 解:(1) 外力做的功=31 J 1分(2) 设弹力为F ′⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ρρ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m ρρv 3分= 5.34 m/s1分(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关. 2分12.如图所示,悬挂的轻弹簧下端挂着质量为m 1、m 2的两个物体,开始时处于静止状态.现在突然把m 1与m 2间的连线剪断,求m 1的最大速度为多少?设弹簧的劲度系数k =8.9×104 N /m ,m 1=0.5 kg ,m 2=0.3 kg .解:以弹簧仅挂重物m 1时,物体静止(平衡)位置为坐标原点,竖直向下为y 轴正向,此时弹簧伸长为: l 1=m 1 g / k ① 1分再悬挂重物m 2后,弹簧再获得附加伸长为l 2=m 2 g /k ② 1分当突然剪断连线去掉m 2后,m 1将上升并开始作简谐振动,在平衡位置处速度最大.根据机械能守恒,有21221)(21gl m l l k -+=21212121kl m m +v ③ 2分 将①、②代入③得 )(v k m g m m 121= ≈0.014 m/s ④ 1分13.用劲度系数为k 的弹簧,悬挂一质量为m 的物体,若使此物体在平衡位置以初速v 突然向下运动,问物体可降低到何处?解:取物体在平衡位置时,重力势能E P =0,设平衡时弹簧的伸长量为x 0,则物体开始向下运动的一瞬间,机械能为2v m kx E 2121201+=1分 设物体刚好又下降x 距离的一瞬间速度为零(不再下降),则该瞬时机械能为mgx x x k E -+=202)(211分 物体运动过程中,只有保守力作功,故系统的机械能守恒:mgx x x k m kx -+=+2020)(2121212v 2分 把kx 0=mg 代入上式,可解得: k m x v = 1分P103 第五章3.一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?mW2=v 3分解:设在某时刻之前,飞轮已转动了t 1时间,由于初角速度 ω 0=0则 ω1β=t 1 ① 1分而在某时刻后t 2 =5 s 时间,转过的角位移为222121t t βωθ+= ② 2分 将已知量=θ100 rad , t 2 =5s , =β 2 rad /s 2代入②式,得ω1 = 15 rad /s 1分从而 t 1 = ω1/=β 7.5s即在某时刻之前,飞轮已经转动了7.5s. 1分4.有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ3分 总摩擦力矩 mgR M M R μ32d 0==⎰ 1分故平板角加速度 β =M /J 1分设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω 2分可得 g R MJ n μωωπ16/342020=π=1分5.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221AA A r m J =和221B B B r m J =) 解:根据转动定律f A r A = J A βA ① 1分其中221AA A r m J =,且 f B r B = J B βB ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A βA = r B βB ③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 βA / βB = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分B A f Ar B r A6.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分T r =J β ② 2分 由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分7.一定滑轮半径为0.1 m ,相对中心轴的转动惯量为1×10-3 kg ·m 2.一变力F =0.5t (SI)沿切线方向作用在滑轮的边缘上,如果滑轮最初处于静止状态,忽略轴承的摩擦.试求它在1 s 末的角速度.解:根据转动定律 M =J d ω / d t 1分 即 d ω=(M / J ) d t 1分其中 M =Fr , r =0.1 m , F =0.5 t ,J =1×10-3 kg ·m 2, 分别代入上式,得d ω=50t d t 1分则1 s 末的角速度 ω1=⎰150t d t =25 rad / s 2分8.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J β1分其中 4/30sin 21mgl mgl M ==ο 1分 于是 2rad/s 35.743 ===lgJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lg J M β 1分9.长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为μ,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分N 1h -Px ·ctg θ =0 1分f =μN 2 1分 解得 222/tg h L h h x -=⋅=μθμ 1分10.有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为T 0.如它的半径由R 自动收缩为R 21,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯量为J =2mR 2 / 5,式中m 和R 分别为球体的质量和半径).解:球体的自动收缩可视为只由球的力所引起,因而在收缩前后球体的角动量守恒. 1分 设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度, 则有J 0ω 0 = J ω ① 2分由已知条件知:J 0 = 2mR 2 / 5,J = 2m (R / 2)2 / 5代入①式得 ω = 4ω 0 1分即收缩后球体转快了,其周期442200T T =π=π=ωω1分 周期减小为原来的1 / 4. 11.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ 3分式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛= 3分 因碰撞前后角动量守恒,所以L m mL 022112/7v =ω 3分 ∴ ω = 6v 0 / (7L) 1分12.如图所示,长为l 的轻杆,两端各固定质量分别为m 和2m 的小球,杆可绕水平光滑固定轴O 在竖直面转动,转轴O 距两端分别为31lLh N 1 h N 2 P R θ R x RfL21L 21L O0v0v2m mmO21v 0v ϖl32l31和32l .轻杆原来静止在竖直位置.今有一质量为m 的小球,以水平速度0v ϖ与杆下端小球m 作对心碰撞,碰后以021v ϖ的速度返回,试求碰撞后轻杆所获得的角速度.解:将杆与两小球视为一刚体,水平飞来小球与刚体视为一系统.由角动量守恒得 1分ωJ l m lm +-=3223200v v (逆时针为正向) ① 2分 又 22)3(2)32(l m l m J += ② 1分将②代入①得 l230v =ω 1分13.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度,(3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中ω 0 = 0 ,则 有ωt = βt那么圆柱体的角速度====55 t t t βω20 rad/s 1分(3) 根据转动定律 fr = J β则 f = J β / r = 32 N 2分14.一台摆钟每天快1分27秒,其等效摆长l = 0.995 m , 摆锤可上、下移动以调节其周期.假如将此摆当作质量集中在摆锤中心的一个单摆来考虑,则应将摆锤向下移动多少距离,才能使钟走得准确?解:钟摆周期的相对误差∆T / T =钟的相对误差∆t / t 2分等效单摆的周期 g l T /2π=,设重力加速度g 不变,则有 2分2d T / T =d l / l 1分令∆T = d T ,∆l = d l ,并考虑到∆T / T = ∆t / t ,则摆锤向下移动的距离∆l = 2l ∆t / t =8640087995.02⨯⨯ mm = 2.00 mm即摆锤应向下移2.00 mm ,才能使钟走得准确. 3分P124 第六章3.一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =.相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分4.一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分5.一电子以=v 0.99c (c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少?(2) 电子的经典力学的动能与相对论动能之比是多少?(电子静止质量m e =9.11×10-31 kg)解:(1) 222)/(1/c c m mc E e v -== =5.8×10-13 J 2分(2) 20v 21e K m E == 4.01×10-14 J 22c m mc E e K -=22]1))/(1/1[(c m c e --=v = 4.99×10-13 J∴ =K K E E /08.04×10-2 3分P150 第七章 3.一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6 cm 处速度是24 cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为t A x ωcos =,则 t A ωωsin -=v(1) 在x = 6 cm ,v = 24 cm/s 状态下有 t ωcos 126= t ωωsin 1224-=解得 3/4=ω,∴ 72.2s 2/3/2=π=π=ωT s 2分 (2) 设对应于v =12 cm/s 的时刻为t 2,则由t A ωωsin -=v 得 2sin )3/4(1212t ω⨯⨯-=, 解上式得 1875.0sin 2-=t ω 相应的位移为8.10sin 1cos 222±=-±==t A t A x ωω cm 3分4.一质点作简谐振动,其振动方程为 )4131cos(100.62π-π⨯=-t x (SI)(1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少? 解:(1) 势能 221kx W P =总能量 221kA E = 由题意,4/2122kA kx =, 21024.42-⨯±=±=A x m 2分 (2) 周期 T = 2π/ω = 6 s 从平衡位置运动到2A x ±=的最短时间 ∆t 为 T /8.∴ ∆t = 0.75 s . 3分5.在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250 g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方程的数值式. 解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分 )64.07cos(05.0+=t x (SI) 1分6.质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;O x(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 2分(2) )318sin(1042π+π⨯π-==-t x &v (SI) )318cos(103222π+π⨯π-==-t x a && (SI) 2分 (3) 2222121A m kA E E E P K ω==+==7.90×10-5 J 3分 (4) 平均动能 ⎰=T K t m T E 02d 21)/1(v ⎰π+π⨯π-=-Tt t m T 0222d )318(sin )104(21)/1( = 3.95×10-5 J = E 21 同理 E E P 21== 3.95×10-5 J 3分7.在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =. 选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得 220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分π===1.958.28/0l g ω 2分设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分 ∴ )1.9cos(1022t x π⨯=- 2分8.在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则+x )0)(0=+-+∆x l k mg F解得F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分 2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分 解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ), kA F = 2分 2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分 (2) 总能量 221011.12121-⨯===FA kA E J 2分 当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分9.一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI)画出两振动的旋转矢量图,并求合振动的振动方程.解: x 2 = 3×10-2 sin(4t - π/6)= 3×10-2cos(4t - π/6- π/2)= 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示. 图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3. 2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分10.一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求(1) 物体的振动方程;(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 解: k = f/x =200 N/m , 07.7/≈=m k ω rad/s 2分(1) 选平衡位置为原点,x 轴指向下方(如图所示), t = 0时, x 0 = 10A cos φ ,v 0 = 0 = -A ωsin φ. 解以上二式得 A = 10 cm ,φ = 0. 2分∴ 振动方程x = 0.1 cos(7.07t ) (SI) 1分(2) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力f = m (g -a ),而a = -ω2x = 2.5 m/s 2 x 5 cm O∴ f =4 (9.8-2.5) N= 29.2 N 3分(3) 设t 1时刻物体在平衡位置,此时x = 0,即0 = A cos ω t 1或cos ω t 1 = 0.∵ 此时物体向上运动, v < 0∴ ω t 1 = π/2, t 1= π/2ω = 0.222 s 1分 再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即-5 = A cos ω t 1,cos ω t 1 =-1/2∵ v < 0, ω t 2 = 2π/3,t 2=2 π/3ω =0.296 s 2分 ∆t = t 1-t 2 = (0.296-0.222) s =0.074 s 1分11.一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程; (2) 质点在A 点处的速率.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1,ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分 ∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分 (2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分12.一物体作简谐振动,其速度最大值v m = 3×10-2 m/s ,其振幅A = 2×10-2 m .若t = 0时,物体位于平衡位置且向x 轴的负方向运动. 求:(1) 振动周期T ;(2) 加速度的最大值a m ;(3) 振动方程的数值式.解: (1) v m = ωA ∴ω = v m / A =1.5 s -1∴T = 2π/ω = 4.19 s 3分(2) a m = ω2A = v m ω = 4.5×10-2 m/s 2 2分 (3) π=21φ x = 0.02)215.1cos(π+t (SI) 3分13.在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为TA B v ρx= 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板?解:选平板位于正最大位移处时开始计时,平板的振动方程为t A x π=4cos (SI)t A x π4cos π162-=&& (SI) 1分(1) 对物体有 xm N mg &&=- ① 1分 t A mg x m mg N ππ+=-=4cos 162&&(SI) ② 物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4cos 28.16.192 ③ 2分(2) 物体脱离平板时必须N = 0,由②式得 1分 04cos 162=ππ+t A mg (SI)A q t 2164cos π-=π 1分 若能脱离必须 14cos ≤πt (SI)即 221021.6)16/(-⨯=π≥g A m 2分14.一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.解:(1) 221kA E E E p K =+= 2/1]/)(2[k E E A p K +== 0.08 m 3分(2)222121v m kx = )(sin 22222φωωω+=t A m x m)(sin 222φω+=t A x 2222)](cos 1[x A t A -=+-=φω 222A x =, 0566.02/±=±=A x m 3分(3) 过平衡点时,x = 0,此时动能等于总能量221v m E E E p K =+= 8.0]/)(2[2/1±=+=m E E p K v m/s 2分 x &&。

05.刚体力学

05.刚体力学

全加速度——即切向、法向加速度的矢量和. 全加速度——即切向、法向加速度的矢量和 ——即切向 矢量和
6.4 如图 已知某瞬时曲柄的角速度 ω = 4rad / s, 如图. 角加速度 ε = 2rad / s2 ;曲柄长为 r = 20cm 。 托架上重物重心G的轨迹 速度、加速度。 的轨迹、 求:托架上重物重心 的轨迹、速度、加速度。
F 1
z
F 2
r
dF t
dm
ω
ε
F n
F i
M z = I zε
—— 刚体定轴转动 刚体定轴转动 动力学基本方程 基本方程. 的动力学基本方程
作用在刚体上的所有外力对转轴之合力矩等于 作用在刚体上的所有外力对转轴之合力矩等于 刚体 刚体对于转轴的转动惯量与其角加速度的乘积。 刚体对于转轴的转动惯量与其角加速度的乘积。
ρ dm b C θx
(推导用图) 推导用图)
y
Iz = Ix + I
z r
——无限薄刚体板对任一垂直 无限薄刚体板 无限薄刚体 的转动惯量, 于它的坐标轴 z 的转动惯量, 等于该薄板 薄板刚体对另两坐标轴 等于该薄板刚体对另两坐标轴 的转动惯量之和。 的转动惯量之和。
x
y
x
y
(推导用图) 推导用图)
ω
B
如图: 曲柄作 平面运动. 连 如图: OA曲柄作定轴转动,也是平面运动.AB连 曲柄 定轴转动,也是平面运动 杆作平面运动 平面运动. 活塞作直线运动,也是平面运动 活塞作直线运动 平面运动. 杆作平面运动 B活塞作直线运动,也是平面运动
在刚体上有无限多 平面图形始终作平面 个平面图形始终作平面 运动, 这样的一个 一个平面 运动 这样的一个平面 图形的运动 的运动, 代表了 图形的运动,就代表了 平面运动。 整个刚体的平面运动 整个刚体的平面运动。 因此, 因此 只需研究其中的 一个平面图形的运动. 平面图形的运动 一个平面图形的运动 2. 平面运动的分解 平面运动的分解 将复杂的平面运动, 分解成简单的 平动” 成简单的“ --- 将复杂的平面运动, 分解成简单的“平动” 转动(定轴) 应用合成运动的概念, 合成运动的概念 与“转动(定轴)” ;应用合成运动的概念 求刚体上各点的速度 加速度. 速度和 求刚体上各点的速度和加速度 如上: 杆的运动可分解成“ 如上: AB杆的运动可分解成“平动” 与“转 杆的运动可分解成 平动” 动”.

刚体力学习题答案.docx

刚体力学习题答案.docx
体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相
连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m

刚体力学参考答案

刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。

【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。

刚体力学物理力学答案

刚体力学物理力学答案

第七章刚体力学习题7.1.1设地球绕日作圆周运动,求地球自转和公转的角速度为多少rad/s ?估算地球赤道上一点因地球自转具有的线速度和向心加速度。

估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。

解:(1)地球绕日公转s rad T/10236524360014.3227-⨯=⨯⨯⨯==πωs m r v /100.310210496.14711⨯=⨯⨯⨯==-ωs m r a n /100.6)102(10496.1327112--⨯=⨯⨯⨯==ω(2) 球自转 s rad T/103.724360014.3225-⨯=⨯⨯==πωs m r v /1064.4103.710378.6256⨯=⨯⨯⨯==-ωs m r a n /1038.3)103.7(10378.622562--⨯=⨯⨯⨯==ω7.1.2汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min (1)假设转动是匀加速转动,求角加速度。

(2)在此时间内。

发动机转动了多少转? 解:(1)汽车发动机的角加速度22/7.15min /900060/1212003000s rad rev t==-=∆∆=ωβ(2)在此时间内,发动机的转数 因θβωω∆⋅=-2202所以 rev 4209000212003000222202=⨯-=-=∆βωωθ7.1.3某发动机飞轮在时间间隔t 内的角位移为 43ct bt at -+=θ (,:rad θ t :s )求t 时刻的角速度和角加速度。

解:已知 43ct bt at -+=θ (,:rad θ t :s ) 3243ct bta dtd -+==θω(rad/s) 2126ct bt dtd -==ωβ(rad/s 2)7.1.4半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上x 和y 轴沿水平和铅直向上的方向。

5《学习指南 试题精解》 第五章 刚体力学

5《学习指南 试题精解》  第五章  刚体力学

第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。

5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。

积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。

则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。

刚体也是物体的一种理想模型。

5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。

这种运动称为刚体的平动或平移。

6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。

如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。

如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。

刚体的一般运动,可以看作平动和转动所合成。

7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。

对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。

质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。

对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。

刚体力学习题解答.docx

刚体力学习题解答.docx

第三章习题解答3.13 某发动机飞轮在时间间隔t内的角位移为。

求 t时刻的角速度和角加速度。

解:3.14桑塔纳汽车时速为 166km/h,车轮滚动半径为 0.26m,发动机转速与驱动轮转速比为 0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m,发动机转速为 n1, 驱动轮转速为 n2, 汽车速度为 v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,,所以:3.15 如题 3-15图所示,质量为 m的空心圆柱体,质量均匀分布,其内外半径为 r1和r2,求对通过其中心轴的转动惯量。

解:设圆柱体长为 h ,密度为,则半径为 r,厚为 dr的薄圆筒的质量 dm 为:对其轴线的转动惯量为3.17 如题 3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过 O轴且垂直于圆形细杆所在平面的轴的转动惯量为 mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过轴的转动惯量为 mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:3.18 在质量为 M ,半径为 R的匀质圆盘上挖出半径为 r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

解:大圆盘对过圆盘中心 o且与盘面垂直的轴线(以下简称 o轴)的转动惯量为.由于对称放置,两个小圆盘对 o轴的转动惯量相等,设为 I ’,圆盘质量的面密度σ=M/πR2,根据平行轴定理,设挖去两个小圆盘后,剩余部分对o轴的转动惯量为 I ”3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s,两制动闸瓦对轮的压力都为 392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为 r=0.4m,问从开始制动到静止需多长时间?解:由转动定理:制动过程可视为匀减速转动,3.20一轻绳绕于 r=0.2m的飞轮边缘,以恒力F=98N 拉绳,如题 3-20图(a)所示。

刚体力学答案

刚体力学答案

练习一 刚体的转动定律一、填空题1.25π,-π,625π22.刚体转动中惯性大小的量度,⎰=dm r J 2 ,刚体的形状、质量分布、转轴的位置 3.50ml 24.157 N ·m 5.1.5g 6.0.5kg ·m 2二、计算题1.解:由于 β=–kw即 d k dt ωω=-分离变量 kdtd -=ωω积分td kdtωωωω=-⎰⎰有lnkt ωω=-t 时飞轮角速度为 0kte ωω-=2.解:设绳中张力为T对于重物由牛顿第二定律∑=dt v m d F )( 得: m 2g –T =m 2a (1)对于滑轮按转动定律M =J β有β⋅=221mr Tr (2) 由角量线量关系有 a =r β (3)联立以上三式解得 21222m m gm a +=3.解:由转动定律M =J β得 -μNR=mR 2(ω-ω0)/ΔtN=-m R 2 (ω-ω0)/ μR Δt=250π又有 0.5N -(0.5+0.75)F=0F=100π=314(N)4.解:各物体受力情况如图.F -T =maT '=ma(T T '-)R =β221mR a =R β由上述方程组解得: β=2F / (5mR)=10 rad·s -2 T =3F / 5=6.0 N T '=2F / 5=4.0 N练习二 刚体的角动量及守恒定律一、填空题a a T ’1.定轴转动刚体所受外力对轴的冲量矩等于转动刚体对轴的角动量的量,0)(d 21ωωJ J t M t t z -=⎰,刚体所受对轴的合外力矩等于零2.4×1043.F r M⨯=,变角速度,角动量 4.杆和子弹,角动量 5.6π,3∶16.02ωm M M + ,02222ωmrMR MR + 二、计算题1.解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒.设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度 则有 J 0ω 0 = J ω ① 由已知条件知:J 0 = 2mR 2 / 5,J = 2m(R / 2)2 / 5 代入①式得 ω = 4ω 0 即收缩后球体转快了 其周期 442200T T =π=π=ωω周期减小为原来的1 / 4.2.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min(2) A 轮受的冲量矩⎰t M A d = = -4.19×10 2N ·m ·s负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.3.解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆4.解:由人和转台系统的角动量守恒J 1ω1 + J 2ω2 = 0其中 J 1=300 kg ·m 2,ω1=v /r =0.5 rad / s ,J 2=3000 kg ∙m 2 ∴ ω2=-J 1ω1/J 2=-0.05 rad/s 人相对于转台的角速度 ωr =ω1-ω2=0.55 rad/s ∴ t =2π /r ω=11.4 s5.解:(1)小碎块飞出时与轮同步以角速度ω旋转 ∴ v 20=R ω 由机械能守恒定律得m g h mv =22021 gR h 22g v 22220ω==(2)据题意,系统角动量守恒 J 0ω0=J 1ω1+J 2ω2ωωω21222)(2M mR R m M R +-= 即余下部分的角速度、角动量、转动动能为 ωωmM mM --=21ωωω21211)2(2)(R m MR m M J -=-=222212211)(4)2(2)(2121ωωωR m M m M R m M J --=-=刚体自测题一、选择题BBDADCD 二、填空题 1.4s ,-15m/s 2.(1)(2)(4)3.5.0 N ·m 4.mgl 21,2g / (3l)5.()lm M /3460+v6.()212m RJ m r J ++ω7.20m R J m R J +-vω8. 8 rad ·s -1 .三、计算题1.解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中ω1是匀加速阶段的末角速度,也是匀减速阶段的初角速度, 由此可得 t =8 s 时 ω1=ω0+9=27 rad /s 当ω=0时,得 t =(ω1+24)/ 3=17s 所以,体系在17s 时角速度为零.2.解:人受力如图(1)由牛顿第二定律得 mgsin37°-T m =ma (1)由转动定律得 rT m -rT k =Jβ=Ja/r (2) 由胡克定律得 T k =kx (3) 有 dxdv v dt dx dx dv dt dv a =⋅==(4) 联立求解得 mgsin37°-kx=(m+ J /r 2)vdv/dxvdv r J m dx kx mg xv v ⎰⎰==+=-︒020)/()37sin (x=2mgsin37°/k=1.176(m)3.解:(1) ∵ mg -T =ma TR =J βa =R β∴ β = mgR / (mR 2+J)()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2方向垂直纸面向外.(2) ∵βθωω2202-=当ω=0 时, rad 612.022==βωθ物体上升的高度h = R θ = 6.12×10-2 m(3)==βθω210.0 rad/s方向垂直纸面向外.4.解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 将①式代入②式得:R2120v+=ωω ③ (2) 欲使盘对地静止,则式③必为零.即 ω0 +2v / (21R)=0得: v =-21R ω0 / 2式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.5.解:在子弹通过杆的过程中,子弹与杆系统因外力矩为零,故角动量守恒.则有m 2v 0 l / 4 = m 2v l / 4 +J ω()()lm m J l m 1020234v v v v -=-=ω =11.3rad/s6.解:碰撞前瞬时,杆对O 点的角动量为Lm L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中 为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以L m mL 022112/7v =ω∴ = 6v 0 / (7L)。

第五章 刚体力学参考答案

第五章  刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ.(C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8mm图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。

设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫⎝⎛=RJ mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=RJ mR v2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mRJ mRv 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。

简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。

5刚体力学基础习题思考题

5刚体力学基础习题思考题

习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。

解:受力分析如图 ma T mg 222=- (1)ma mg T =-1 (2)βJ r T T =-)(12 (3)βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。

(1) 设杆的线lm =λ,在杆上取一小质元dx dm λ=gdx dmg df μλμ==gxdx dM μλ= 考虑对称mgl gxdx M l μμλ⎰==20412 (2) 根据转动定律d M J Jdt ωβ== ⎰⎰=-tw Jd Mdt 000ω 0212141ωμml mglt -=- 所以 gl t μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。

假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。

dtdv mma T mg ==- βJ TR = βR dtdv = 整理 mg dtdv M m =+)21( gdt M m m dv t v ⎰⎰+=0021 2M m mgt v +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。

刚体习题及答案知识讲解

刚体习题及答案知识讲解
➢ 撞击前后系统的动量是否守恒?为什么? ➢ 动能是否守恒?为什么? ➢ 角动量是否守恒?为什么? (2)子弹和轮开始一起运动时,
轮的角速度是多少?
θ A v0 cos
v0 sin
R
例6.一块质量为M=1kg 的木板,高L=0.6m,可以其一边为轴自 由转动。最初板自由下垂.今有一质量m=10g的子弹,垂直击中 木板A点,l=0.36m,子弹击中前速度为500m/s,穿出后的速度 为200m/s, 求: (1) 子弹给予木板的冲量
解法一: 用转动定律求解
在恒力矩和摩擦力矩作用下,0—10s内有:
M M r J1
1 1t1
M
Mr
J
ω1 t1
移去恒力矩后,0—90s内有:
Mr J2
0 1 2t2
Mr
J
2
t2
J Mt1t2
1(t1 t2 )
54kg m2
解题过程尽可能用文字式,最后再带入数字。
解法二:
0-10s: 0-90s:
m 的匀质圆盘,此圆盘具有光滑水平轴,然后在下端系一质量也 为 m的物体,如图。求当物体由静止下落h 时的速度v。
例11.如图所示,一均匀细杆长为 l ,质量为 m,平放在摩擦系数
为μ的水平桌面上,设开始时杆以角速度 ω0 绕过中心 o 且垂直于
桌面的轴转动,试求:
0
(1)作用在杆上的摩擦力矩;
(2)经过多长时间杆才会停止转动。
人 : Mg T 2 Ma
物:
1
1
T1 - 2 Mg = 2 Ma
轮: (T2 T1)R J
a R
2 a 7g
o
T2
T1
A Ba
Mg 1

第五章 刚体力学基础 动量矩参考答案

第五章 刚体力学基础 动量矩参考答案

第五章 刚体力学基础 动量矩班级______________学号____________姓名________________一、选择题1、力kNj i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为 ( B )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。

2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。

由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。

圆柱体损失的动能和所受力矩的大小为( D ) (A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。

3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( D )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。

4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。

绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。

将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。

( D )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。

5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。

若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 (A )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。

6、关于力矩有以下几种说法,其中正确的是 ( B )(A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。

作业5刚体力学答案2014版资料

作业5刚体力学答案2014版资料

♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dt d ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、(基础8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.J M =质点运动与刚体定轴转动对照[ C ] 1、(基础2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J β [ D ] 2、(基础3)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为θc o s 41(A )mg θtan 21(B)mg θs i n (C )mg(D)不能唯一确定【解答】因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有:A B N f = A B f N mg +=θθθlcon N l f lmg A A +=sin sin 2三个独立方程有四个未知数,不能唯一确定。

第5章刚体力学习题课解析

第5章刚体力学习题课解析

[例3]一物体组。其中滑轮A可随m的下降而上升。两滑轮的质 量均为M ,且均匀分布,半径为R ,绳子的质量及轴上的摩擦不 计。试求:m下降的加速度及绳中的张力。
解:选取地面为参考系,隔离动滑轮A、 定滑轮B 和物体m,分析受力。规定 物体运动方向为正方向。
对物体 m 应用牛顿第二定律,得:
B
o
m1
T3
M2
T3
R1
T1
a 1 R1 2 R2
T1 T1, T2 T2 , T3 T3
联立得:
2( m1 m2 ) g a 2 (m1 m2 ) M1 M 2
4m1m2 g m1 ( M1 M 2 ) g T1 m1 g m1a 2( m1 m2 ) M1 M 2
4m1m2 g m2 ( M1 M 2 ) g T2 m2 g m2a 2( m1 m2 ) M1 M 2
1 4m1m2 g m1 M 2 g m2 M1 g T3 m2 ( g a ) M 2a 2 2(m1 m2 ) M1 M 2
联立上式求解,得:
11mMg T1 8m 7 M
(14m 4 M ) Mg T2 8m 7 M
(5m 3 M ) Mg T3 8m 7 M
[例4]已知m 1 ,m 2 ,M1 ,M2 ,R1 ,R 2 且m 1 > m 2 。 求:m 2的加速度和张力T1 ,T2 ,T3 解:设m 2 的加速度大小为a ,方向向上, m 1 的加速度大小也为a ,方向向下。 分析m1、m2 受力。由牛顿第二定律:

b
a
F dr

b
a
M d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)
T12r T2r J
(3)
a1 2r
(4)
a2 r
(5)
联立以上几式解得:
2g 19r
♫转动惯量:
质量非连续分布: J mjrj2 m1r12 m2r22 mjrj2 质量连续分布: J mjrj2 r2dm
j
1、(基础 10)如图 5-13 所示,P、Q、R 和 S 是附于刚性轻质细杆上的质量分别为 4m、
作业 5 刚体力学
♫刚体:在力的作用下不发生形变的物体
角速度 d dt
0
t2 dt
t1
角加速度
d dt
0
t2 dt
t1
1、(基础 8)绕定轴转动的飞轮均匀地减速,t=0 时角速度为0 5 rad s ,t=20s 时角
速度为 0.80 ,则飞轮的角加速度 -0.05 rad/s2 ,t=0 到 t=100 s 时间内飞轮
所转过的角度 250rad .
【解答】
飞轮作匀变速转动,据
0
t ,可得出:
0 t
0.05 rad
s2

0t
1 2
t 2 可得结果。
♫定轴转动的转动定律:
定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比. M J
质点运动与刚体定轴转动对照
O m1 m2
[ C ] 1、(基础 2)一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别悬
(C)mg sin
【解答】
(B) 1 mg tan 2
(D)不能唯一确定
因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则
有:
NA fB
fA NB mg
mg l sin 2
f Al sin
N Alcon
三个独立方程有四个未知数,不能唯一确定。
3(自测 9)一长为 l、质量可以忽略的直杆,两端分别固定有质量为
2v 21R
0
。所以, v
21R0 2
。式中
负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致。
2、(自测 19)一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为 R,质量为 M / 4,均匀分 布在其边缘上.绳子的 A 端有一质量为 M 的人抓住了绳端,而在绳的另一端 B 系了一质量 为 1 M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,
3m、2m 和 m 的四个质点,PQ=QR=RS=l,则系统对 OO 轴的转动惯量为

【解答】
据 J miri2 有:
J 4m(3l)2 3m(2l)2 2ml2 0 50ml2
dM rdf rdN rgdm
♫摩擦力矩:
M dM
P QR R
O′
S RO
1、(自测 12)一根质量为 m、长为 l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固
0 Rmv J 可得 Rmv mR2 ( v ) 。,顺时针 J JR
4、(基础 16)一转动惯量为 J 的圆盘绕一固定轴转动,起初角速度为0 ,设它所受阻力矩
与转动角速度成正比,即 M k
(k
为正的常数),求圆盘的角速度从 0
变为
1 2
0

所需时间.
【解答】
根据 M J J d dt
的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光 滑固定轴转动,对转轴的转动惯量为 9mr2/2,大小圆盘边缘都绕有绳子, 绳子下端都挂一质量为 m 的重物,求盘的角加速度的大小.
【解答】
受力情况如图 5-17,T1 T1' , T2 T2'
mg T1 ma1
(1)
T2 mg ma2
瞬间,圆盘的角速度
(A) 增大. (B) 不变.(C) 减小. (D) 不能确定.
图 5-11
【解答】
把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。设 L 为每一子弹相对与 O
点的角动量大小,据
角动量守恒定律有:
[ C ]2、(自测 4)光滑的水平桌面上,有一长为 2L、质量为 m 的匀质细杆,可绕过其中
小球
m
作对心碰撞,碰后以
1 2
v0
的速度返回,试求碰撞后轻杆
所获得的角速度.
【解答】
系统所受的合外力矩为零,角动量守恒:
碰前的角动量为:mv0
2 3
l
碰后的角动量为:
m
1 2 v0
2l 3
[m( 2 l)2 3
2m(1 l)2 ] 3
2m
O
1 3
l
1 2
v
0
⅓32ll
⅓l
m v0
⅓l m
⅓l 图 5-24
2m 和 m 的小球,杆可绕通过其中心 O 且与杆垂直的水平光滑固定轴
在铅直平面内转动.开始杆与水平方向成某一角度 ,处于静止状态,
如图所示.释放后,杆绕 O 轴转动.则当杆转到水平位置时,该系统
所受到的合外力矩的大小 mgl / 2
,此时该系统角加速度的
大小
2g
3l
【解答】

M 2mgl / 2 mgl / 2 mgl / 2
v 1R
2v R
2
(1)
视人与盘为系统,所受对转轴合外力矩为零,系统的角动量守恒,设盘的质量为 M,则人
的质量为 M/10,有:
1
2
MR2
M 10
R 2
2
0
1 2
MR2
M 10
R 2
2
(2)
将(1)式代入(2)有:
0
2v 21R
(3)
(2)欲使盘对地静止,则式(3)必为零,即 0
2 3
m0 gR
A
根据
M f
J
d dt
可推出:t M 0
f
dt
0
Jd
0
0 0
1 2
m0 R2
mR2
dB
R C
所以 t 3Байду номын сангаасv0 2m0 g
7、(自测 18)空心圆环可绕光滑的竖直固定轴 AC 自由转动,转动惯量为 J0,环的半径为 R,初始时环的角速度为 0.质量为 m 的小球静止在环内最高处 A 点,由于某种微小干 扰,小球沿环向下滑动,问小球滑到与环心 O 在同一高度的 B 点和环的最低处的 C 点时, 环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质 点,环截面半径 r<<R.)
R
R/2 v
5-16 所示. 已知圆盘对中心轴的转动惯量为 1 MR2 .求:(1) 圆 2
盘对地的角速度.(2) 欲使圆盘对地静止,人应沿着 1 R 圆周
2
对圆盘的速度v 的大小及方向?
图 5-16
【解答】
(1)设当人以速率 v 沿相对圆盘转动相反的方向走动时,
圆盘对地的绕轴角速度为 ω,则人对地的绕轴角速度为
v0
R
O
m
的子弹以水平速度 v0 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,如图 5-25 所示。求:(1)
子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过 O
的竖直轴的转动惯量为 1 MR2 ,忽略子弹重力造成的摩擦阻力矩) 2
【解答】
(1)以子弹和圆盘为系统,设0 为碰撞后瞬间的角加速度,由角动量守恒定律得:
绳子向下拉力为 T2,左端绳子向下拉力为 T1,对滑轮由转动定律得:(T2-T1)R=J
[ D ] 2、(基础 3)如图所示,一质量为 m 的匀质细杆 AB,A 端靠在粗糙的竖直墙壁上,
B 端置于粗糙水平地面上而静止,杆身与竖直方向成 θ 角,则 A 端对墙壁的压力大小为
(A) 1 mg cos 4
M
mgl
2g
J 2m(l / 2)2 m(l / 2)2 3l
4、(基础 12) 如图 5-14 所示,滑块 A、重物 B 和滑轮 C 的 C
质量分别为 mA、mB 和 mC,滑轮的半径为 R,滑轮对轴的转
A
动惯量 J= 1 mC R2.滑 块 A 与桌面间、滑轮与轴承之间均 2
B
无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块 A
点且垂直于杆的竖直光滑固定轴 O 自由转动,其转动惯量为 1 mL2,起初杆静止.桌面上 3
有两个质量均为 m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率 v 相
向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起
转动,则这一系统碰撞后的转动角速度应为
(A) 2v .(B) 4v .(C) 6v .(D) 8v . (E) 12v .
定轴转动.已知细杆与桌面的滑动摩擦系数为 μ,则杆转动时受的摩擦力矩的大小为
=μmgl/2
【解答】
在细杆长 x 处取线元 dx,所受到的摩擦力矩 dM=μ(m/l)gxdx,
则 M l m gxdx mgl
0l
2
♫定轴转动的动能定理: A
♫定轴转动的角动量定理:
M
2 1
Md
dL dt
所以:mv0
2l 3
m
1 2
v0
2l 3
[m( 2 l)2 3
2m(1 l)2 ] 3
得 3v0 2l
6、自测提高(17)如图 5-25 所示,一质量均匀分布的圆盘,质量为 m0 ,
半径为 R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可 绕通过其中心 O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为 m
相关文档
最新文档