刚体力学 习题库

合集下载

刚体力学

刚体力学

刚体力学(一)选择题 1.一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v (C) j i 8.18 1.25--=v (D) k 4.31=v [ ] 2.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]3.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6.有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]7.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]8.质量为m 、长度为l 的匀质细杆AB ,对通过杆的中心C 与杆垂直的轴的转动惯量为12/21ml J =,对通过杆端A (或B )与杆垂直的轴的转动惯量为2231ml J =.O 为杆外一点,AO =d ,AO 与AB 间的夹角为θ,如图所示.若杆对通过O 点并垂直于O 点和杆所在平面的轴的转动惯量为J ,则(A)J =J 1+m (d sin θ)2=ml 2/12+md 2sin 2θ(B)J =J 2+m (d sin θ)2=31ml 2+md 2sin 2θ (C)J =J 2+md 2=31ml 2+md 2 (D)J =J 1+m [(21l )2 +d 2–2(21l )d cos θ ]=31ml 2+md 2-mld cos θ [ ] 9.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 10.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A)L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L 712v . [ ] 11.如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) ML m 23v . (C) MLm 35v . (D) ML m 47v . [ ] 12.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]13.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ]O v 俯视图俯视图14.一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O在竖直平面内转动.杆的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要(A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12. [已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]15.图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则:(A) 2121ωω=. (B) ω 1 = ω 2. (C) 2132ωω=. (D) 213/2ωω=. [ ] 16.如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长l = (5/3) m .今使杆从与竖直方向成60°角的位置由静止释放(g 取10 m/s 2),则杆的最大角速度为(A) 3 rad /s . (B) π rad /s . (C) 5 rad /s . (D) 53 rad /s . [ ]17.如图所示,将一根质量为m 、长为l 的均匀细杆悬挂于通过其一端的固定光滑水平轴O 上.今在悬点下方距离x 处施以水平冲力F ,使杆开始摆动,要使在悬点处杆与轴之间不产生水平方向的作用力,则施力F 的位置x 应等于(A) 3l / 8. (B) l / 2.(C) 2l / 3. (D) l . [ ]18.一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:(A) 杆沿力的方向平动.(B) 杆绕其未受打击的端点转动.(C) 杆的质心沿打击力的方向运动,杆又绕质心转动.(D) 杆的质心不动,而杆绕质心转动. [ ]19.实心圆柱体、空心圆筒和实心球,三者质量相同,且柱的半径、筒的外径和球的半径均相同.当它们沿同一斜面,由同一高度同时从静止无滑动地滚下时,它们到达斜面底的先后次序是(A) 实心球最先,圆柱体次之,圆筒最后.(B) 圆柱体最先,圆筒次之,实心球最后.(C) 圆筒最先,实心球次之,圆柱体最后.(D) 实心球最先,圆筒次之,圆柱体最后.(E) 圆筒最先,圆柱体次之,实心球最后. [ ]20.质量不同的一个球和一个圆柱体,前者的半径和后者的横截面半径相同.二者放在同一斜面上,从同一高度静止开始无滑动地滚下(圆柱体的轴始终维持水平),则(A) 两者同时到达底部. (B) 圆柱体先到达底部.Ol(a)(b)(C) 圆球先到达底部. (D) 质量大的先到达底部. [ ](二)填空题1.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt=________________.2.半径为r =1.5 m 的飞轮,初角速度ω 0=10 rad · s -1,角加速度 β=-5 rad · s -2,则在t =___________时角位移为零,而此时边缘上点的线速度v =___________.3.绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω =0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ=___________________.4.半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________.5.用三根长度为l 、质量为M 的均匀细杆,将四个质量为m 的质点连接起来,成一条直线,如图所示.这一系统对通过端点O 并垂直于杆的轴的转动惯量为________________.6. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________,此时该系统角加速度的大小β =________________.7.如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 /4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B点的切向加速度a t =_____________,法向加速度a n =_____________.8.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为____________.9.一定滑轮质量为M 、半径为R ,.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________.10.三根匀质细杆,质量均为m ,长度均为l ,将它们首尾相接构成一个三角架.三角架对通过角顶与架面垂直的轴的转动惯量为____________.11.定轴转动刚体的角动量(动量矩)定理的内容是___________________________________________________________________________,其数学表达式可写成___________________________________________.动量矩守恒的条件是____________________________________________.12.如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的______________守恒,原因是__________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.13.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 S ′ m2m l R 俯视图___________________.14. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 15.如图所示,一均匀细杆AB ,长为l ,质量为m .A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动.杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小v B =________________________.16.一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 17.水平桌面上有一圆盘,质量为m ,半径为R ,装在通过其中心、固定在桌面上的竖直转轴上.在外力作用下,圆盘绕此转轴以角速度ω 0转动.在撤去外力后,到圆盘停止转动的过程中摩擦力对圆盘做的功为__________.18.如图所示,一长为l ,质量为M 的均匀细棒悬挂于通过其上端的光滑水平固定轴上.现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以021v 的速度穿出棒.在此射击过程中细棒和子弹系统对轴的____________守恒.如果此后棒的最大偏转角恰为90°,则0v 的大小v 0=________. 19.如图所示的质点组A 1、A 2、A 3,其质心坐标为x c =________;y c =________. 20.如图所示,一个细杆总长为L ,单位长度的质量为ρ=ρ0+ax ,其中ρ0和a 为正常量.此杆的质心的坐标x c =______________.21.质量为m 、横截面半径为R 的实心匀质圆柱体,在水平面上做无滑动的滚动,如果圆柱体的中心轴线方向不变,且其质心以速度v 作水平匀速运动,则圆柱体的动量的大小为____________,动能等于______________,对中心轴线的角动量大小为____________________.22.如图所示.圆柱体的半径为R ,其上有一半径为r 的固定圆盘(圆盘质量忽略不计),盘周绕有细绳,今沿垂直于圆盘轴的水平方向以力F 拉绳.若使该圆柱体在水平面上作纯滚动,则该柱体与水平面间的静摩擦力f =________.当r =R /2时静摩擦力f =________. (三)计算题1.一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?2.已知一定轴转动体系,在各个时间间隔内的角速度如下:ω=ω0 0≤t ≤5 (SI)ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI)式中ω0=18 rad /s(1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.3.一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少?4.一电唱机的转盘以n = 78 rev/min 的转速匀速转动.m 0 俯视图0v(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B .(2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度β及转过的圈数N .5.有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 6. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 8.质量分别为m 和2m 、半径分别为r 和2r轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2/ 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小. 9.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度;(2) 绳中张力.(设绳与定滑轮间无相对滑动)10.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m .11.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)12.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?5.2v m '13.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间. 14.一均匀木杆,质量为m 1 = 1 kg ,长l = 0.4 m ,可绕通过它的中点且与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位置时,一质量为m 2 = 10 g 的子弹在距杆中点l / 4处穿透木杆(穿透所用时间不计),子弹初速度的大小v 0 = 200 m/s ,方向与杆和轴均垂直.穿出后子弹速度大小减为v= 50 m/s ,但方向未变,求子弹刚穿出的瞬时,杆的角速度的大小.(木杆绕通过中点的垂直轴的转动惯量J = m 1l 2 / 12)15.质量为M 、长为l 的均匀直棒,可绕垂直于棒的一端的水平固定轴O 无摩擦地转动.转动惯量231Ml J =.它原来静止在平衡位置上,如图,图面垂直于O 轴.现有一质量为m 的弹性小球在图面内飞来,正好在棒的下端与棒垂直相撞.相撞后使棒从平衡位置摆动到最大角度θ=60°处,(1) 设碰撞为弹性的,试计算小球刚碰前速度的大小v 0. (2) 相撞时,小球受到多大的冲量? 16.如图所示,一长为l 质量为M 的匀质竖直杆可绕通过杆上端的固定水平轴O 无摩擦地转动.一质量为m 的泥团在垂直于轴O 的图面内以水平速度v 0打在杆的中点并粘住,求杆摆起的最大角度. 17.一长为L 、质量为m 的均匀细棒,一端可绕固定的水平光滑轴O 在竖直平面内转动.在O 点上还系有一长为l (<L )的轻绳,绳的一端悬一质量也为m 的小球.当小球悬线偏离竖直方向某一角度时,由静止释放(如图所示).已知小球与静止的细棒发生完全弹性碰撞,问当绳的长度l 为多少时,碰撞后小球刚好停止?略去空气阻力.18.一个半径为R ,质量为m 的硬币,竖直地立放在粗糙的水平桌面上.开始时处于静止状态,而后硬币受到轻微扰动而倒下.求硬币平面与桌面碰撞前(即硬币平面在水平位置)时质心的速度大小.(已知质量为m ,半径为R 的圆盘对沿盘直径的轴的转动惯为241mR ) 19.有质量分别为12 kg 和20 kg 的两球,球心相距4 m ,中间并未连结.二者最初都静止,今以64 N 的恒力沿球心连线方向作用于20 kg 的球上,如图所示.设两球半径相等,求从力开始作用起,第三秒末质心的位置.20.两个人分别在一根质量为m 的均匀棒的两端,将棒抬起,并使其保持静止,今其中一人突然撒手,求在刚撒开手的瞬间,另一个人对棒的支持力f .21.水平桌面上的一圆柱体的质量 m =1 kg ,半径R =0.05 m .今用F =30 N 的水平拉力垂直于柱轴作用于圆柱体的质心C 上(如图).求此圆柱体作纯滚动时的质心加速度a c .(已知圆柱体对其中心轴的转动惯量为221mR J =). (四)理论推导与证明题1.一刚体绕固定轴从静止开始转动,角加速度为一常数.试证明该刚体中任一点的法向加速度和刚体的角位移成正比.2.从牛顿运动定律出发,推导出刚体的定轴转动定律.A m 1 ,l 1v 2 俯视图3.质量为m 1、半径为r 1的匀质圆轮A ,以角速度ω绕通过其中心的水平光滑轴转动,此时将它放在质量为m 2、半径为r 2的另一匀质圆轮B 上,B 轮原为静止,但可绕通过其中心的水平光滑轴转动.放置后A 轮的重量由B 轮支持,如图所示(水平横杆的质量不计).设两轮间的摩擦系数为μ.A 、B 轮对各自转轴的转动惯量分别为21121r m 和22221r m .证明:A 轮放在B 轮上到两轮间没有相对滑动为止,经过的时间为()21122m m g r m t +=μω 4.一可绕定轴转动的刚体,在合外力矩M 作用下由静止开始转动.试根据合外力矩对刚体所作的功等于刚体动能的增量以及转动定律,证明刚体的动能表示式为221ωJ E k = 式中的J 和ω分别为刚体对于转轴的转动惯量和角速度.5.试证,不同质量,不同半径之均匀实心圆柱体在同一斜面上无滑动地滚下同样距离时圆柱体质心具有同样大小的线速度.6.两质点的质量各为m 1,m 2,试证明它们的质量中心在它们的连线上并且质心到两个质点的距离与两质点的质量成反比.(五)问答题1.绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何?2.刚体转动惯量的物理意义是什么?它与什么因素有关?3.一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么?(2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?22。

第03章---刚体力学习题汇总

第03章---刚体力学习题汇总

(A)匀角速转动; (B)匀角加速转动;
(D)
(C)角加速度越来越大的变加速运动;
(D)角加速度越来越小的变加速运动。
分析:当棒转到θ角位置时,棒所受 到的外力矩为:
θ
M 1 mgLcos 根据转动定律 M I ,有:
2
mg
1 mgL cos
可见角5
5. (a)(b)两图中的细棒和小球均相同,系统可绕o 轴在竖直面内自由转动系统从水平位置静止释放,转
(D)只有动量守恒
(C)
分析:
(A)错。非弹性碰撞,机械能不守恒。 (B)错。轴上有外力,动量不守恒。
(C)对。外力矩为零,角动量守恒。
2
2.一绕固定水平轴0匀速转动的转盘,沿图示的同一 水平直线从相反方向射入两颗质量相同、速率相等的 子弹并留在盘中,则子弹射入转盘后的角速度
(A)增大 (B)不变 分析:
边缘并粘在上面,则系统的角速度是
3v

分析:取如图的细长条面积:
4b
b
I r 2ds r 2adr
1 ab3 1 mb2
0
3
3
合外力矩为零,系统角动量守恒。
mvb (1 mb2 mb2 )
3
3v
4b
9
二、填空题
1.如图,半径为R,质量为M的飞轮,
可绕水平轴o在竖直面内自由转动(飞
R2
2 3
mgR
11
3.一飞轮的转动惯量为I,在t=0时角速度为 0 , 此后
飞轮经历制动过程。阻力矩M的大小与角速度的平方
成正比,比例系数K>0。当 0 / 3 时,飞轮的角加
速度 = k02 9I ,从开始制动到 0 / 3所经过

大学物理06刚体力学

大学物理06刚体力学

刚体力学1、(0981A15)一刚体以每分钟60转绕z 轴做匀速转动(ωϖ沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ϖϖϖϖ 157.0 125.6 94.2++=v (B) j i ϖϖϖ 8.18 1.25+-=v (C) j i ϖϖϖ 8.18 1.25--=v (D) k ϖϖ 4.31=v [ ]2、(5028B30)如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则有(A)A =B . (B) A >B . (C) A <B . (D) 开始时A =B ,以后A <B . [ ] 3、(0148B25)几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4、(0153A15)一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]5、(0165A15)均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、(0289A10)关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]7、(0291B25)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]8、(0292A15) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]9、(0499A15)如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为41mg cos . (B) 为21mg tg (C) 为mg sin . (D) 不能唯一确定. [ ] 10、(0646A15)两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A >B ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ] m 2m 1 OAθB11、(5265B25)有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]12、(5401B25)有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]13、(0500C50)如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成角,则A 端对墙壁的压力大小 (A) 为 41mg cos . (B)为21mg tg . (C) 为 mg sin . (D) 不能唯一确定. [ ]14、(5641B30)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. [ ]15、(0126A20)花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 310. (B) ()3/10. A θB(C) 30. (D) 3 0. [ ]16、(0132A20)光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A) L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L712v . [ ] 17、(0133A20) 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) MLm 23v . (C) MLm 35v . (D) ML m 47v . [ ] 18、(0137A30)光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是(A) 12v l . (B) l 32v . (C) l 43v . (D) lv 3. [ ] 19、(0197A15)O v v 俯视图 ϖ21 v ϖ 俯视图一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]20、(0228A20)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ]21、(0230B30)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变.(C) 减小. (D) 不能确定. [ ]22、(0247A15)如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]23、(0294A15)刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. O(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]24、(0677A15)一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ]25、(0772A20)如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 20. (B) 0. (C) 21 0. (D)041 . [ ] 26、(5030B30)关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]27、(5640B25)一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变. O d d l(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大. [ ]28、(5643A20)有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A) 02ωmR J J +. (B) ()02ωR m J J +. (C) 02ωmRJ . (D) 0ω. [ ]二、填空题:1、(0110A15)一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s , 再转60转后角速度为ω2=30πrad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________. 2、(0111A10) 利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450rev/min ,则真空泵上的轮子的边缘上一点的线速度为__________________,真空泵的转速为____________________.3、(0290A10)半径为r =1.5 m 的飞轮,初角速度0=10 rad · s -1,角加速度 =-5 rad · s -2, 则在t =___________时角位移为零,而此时边缘上点的线速度v =___________. 4、(0302A10)可绕水平轴转动的飞轮,直径为1.0 m ,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s 内绳被展开10 m ,则飞轮的角加速度 为________________.5、(0645A10)绕定轴转动的飞轮均匀地减速,t =0时角速度为0=5 rad / s ,t =20 s 时角速度为 = 0.80,则飞轮的角加速度=______________,t =0到 t =100 s0.1m 0.29m时间内飞轮所转过的角度=___________________.6、(0977A15)一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t=________;由静止到10 rev/s时圆盘所转的圈数N=________.7、(0980B25)一飞轮作匀减速转动,在5 s内角速度由40rad·s1减到10rad·s-1,则飞轮在这5 s内总共转过了________________圈,飞轮再经______________的时间才能停止转动.8、(0982A10)半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________,法向加速度a n=_______________.9、(0983A15)半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8 rad·s-1,则主动轮在这段时间内转过了________圈.10、(0146A15)一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒是否作匀角加速转动?________________.理由是__________________________________________________________________________________________________________________________________.11、(0147A15)决定刚体转动惯量的因素是________________________________________________________________________________________________.12、(0149A20)一长为l,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度0=____________,杆与水平方向夹角为60°时的角加速度=________________.13、(0150B25)质量为20 kg、边长为1.0 m的均匀立方物体,放在水lm F平地面上.有一拉力F 作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转90°,则拉力F 不能小于___________________.14、(0152A20)一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =________________, 此时该系统角加速度的大小=________________. 15、(0240A15)一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的 制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.16、(0243A15)如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 / 4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B 点的切向加速度a t =_____________,法向加速度a n =_____________.17、(0244A15)一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在 t =10 s 内,轮子的角速度由=0增大到=10 rad/s ,则M r =_____________. 18、(0543A10) 如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS=l ,则系统对O O '轴的转动惯量为____________.19、(0546B30) 一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一劲度系数为k 的弹簧.当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成角且处于平衡状态时, m 2m O θ A R B R A ' R P S R Q R O ′ A B θ(1) 地面对梯子的作用力的大小为__________________.(2) 墙对梯子的作用力的大小为________________________.(3) W 、k 、l 、应满足的关系式为______________________. 20、(0551A15)一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到 =2.0 rad/s 时,物体已转过了角度=_________________. 21、(0552A15)一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的 角速度ω=-0ω,则0ω=________________.22、(0553A15)一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后, 物体停止了转动.物体的转动惯量J =__________.23、(0559A20)一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O轴的转动惯量J =____________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =______________;角加速度________________. 24、(0647A10)如图所示,一轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N 的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________.25、(0675A10)一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零 均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.26、(0676A10)一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =21MR 2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承 O 60° m 2m F间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________. 27、(0683A20)如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度=_______________.28、(0684A20)半径为R 具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m 的物体.绳的质量可以忽略,绳与定滑轮之间无相对滑动.若物体下落的加速度为a , 则定滑轮对轴的转动惯量J =______________________. 29、(0685A20)如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m CR 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度a =________________________. 30、(5031C45)转动着的飞轮的转动惯量为J ,在t =0时角速度为0.此后飞轮经历制动过程.阻力矩M 的大小与角速度的平方成正比,比例系数为k (k 为大于0的常量).当031ωω=时,飞轮的角加速度= ___________.从开始制动到031ωω=所经过的时间t =__________________. 31、(5402A20)一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml .32、(5642B25) 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为,则杆转动时受的摩擦力矩的大小为________________. 33、(0125B30)mCAB一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为 前者的二倍.啮合后整个系统的角速度=__________________. 34、(0139A15)定轴转动刚体的角动量(动量矩)定理的内容是__________________________ _____________________________________________________________________, 其数学表达式可写成_________________________________________________. 动量矩守恒的条件是________________________________________________. 35、(0144B25)在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一质量也为m 的套管B (可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO '的距离为l 21,杆和套管所组成的系统以角速度0绕OO '轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度与套管离轴的距离x 的函数关系为_______________.(已知杆本身对OO '轴的转动惯量为231ml )36、(0229A20) 有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度2=__________________________. 37、(0235B35)长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v ϖ射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度=__________________________.38、(0236B30)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入 后棒的角速度=_____________________.39、(0248A10)0v ϖAO2l /3 mmml 0v ϖ俯视图力矩的定义式为______________________________________________.在力 矩作用下,一个绕轴转动的物体作__________________________运动.若系统所 受的合外力矩为零,则系统的________________________守恒. 40、(0296A20)一转台绕竖直固定光滑轴转动,每10 s 转一周,转台对轴的转动惯量为1200 kg ·m 2.质量为80kg 的人,开始时站在台的中心,随后沿半径向外跑去,问当 人离转台中心2m 时,转台的角速度为__________________. 41、(0305A10)长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直 下垂,一子弹水平地射入杆中.则在此过程中,_____________系 统对转轴O的_______________守恒. 42、(0542B25)质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统 对转轴的角动量(动量矩)大小为___________________. 43、(0556A20)一个质量为m 的小虫,在有光滑竖直固定中心轴的水平圆盘边缘上,沿逆时针方向爬行,它相对于地面的速率为v ,此时圆盘正沿顺时针方向转动,相对于地面的角速度为.设圆盘对中心轴的转动惯量为J .若小虫停止爬行,则圆盘的角速度为______________________________________. 44、(0649A20)如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度A 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为.若A 轮的转动惯量为J A ,则B 轮的转动惯J B =_______________.45、(0650A20)一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度 =______________.O Mm2mO lR l /3 v 俯视图46、(0651A10)地球的自转角速度可以认为是恒定的.地球对于自转轴的转动惯量J =9.8× 1037 kg ·m 2.地球对自转轴的角动量L =__________________. 47、(0678B25)一个圆柱体质量为M ,半径为R ,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m 、速度为v 的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=____________________________.(已知圆柱体绕固定轴的转动惯量J =221MR )48、(0679B25) 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度 为=__________________. 49、(0680B25)一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为 0.6 m .先让人体以5 rad/s 的角速度随转椅旋转.此后,人将哑铃拉回使与转轴距离为0.2 m .人体和转椅对轴的转动惯量为5 kg ·m 2,并视为不变.每一哑铃的质量为5 kg 可视为质点.哑铃被拉回后,人体的角速度=__________________________.50、(0681B25)两个质量都为100 kg 的人,站在一质量为200 kg 、半径为3 m 的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5 s 转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度=__________________.(已知转台对转轴的转动惯量J =21MR 2,计算时忽略转台在转轴处的摩擦). 51、(0682B25)质量为M = 0.03 kg 、长为l = 0.2 m 的均匀细棒,可在水平面内绕通过棒中心并与棒垂直的光滑固定轴转动,其转动惯量为M l 2 / 12.棒上套有两个可沿棒滑动的小物体,它们的质量均为m = 0.02 kg .开始时,两个小物体分别被夹子固定于棒中心的两边,到中心的距离均为r = 0.05 m ,棒以 0.5 rad/s 的角速度转动.今将夹子松开,两小物体就沿细棒向外滑去,当达到棒端时棒的角速度 =______________________. 52、(0773A20)如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的 __________守恒. 53、(0774A20)判断图示的各种情况中,哪种情况角动量是守恒的.请把序号填在横线上的空白处 ___________________________.(1) 圆锥摆中作水平匀速圆周运动的小球m ,对竖直轴OO '的角动量.(2) 光滑水平桌面上,匀质杆被运动的小球撞击其一端,杆与小球系统,对于通过杆另一端的竖直固定光滑轴O 的角动量.(3) 绕光滑水平固定轴O 自由摆动的米尺,对轴O 的角动量.(4) 一细绳绕过有光滑轴的定滑轮,滑轮一侧为一重物m ,另一侧为一质量等于m 的人,在人向上爬的过程中,人与重物系统对转轴O 的角动量. 54、(0776B25)如图所示,有一长度为l ,质量为m 1的均匀细棒,静止平放在光滑水平桌面上,它可绕通过其端点O ,且与桌面垂直的固定光滑轴转动,转动惯量J =31m 1l 2.另有一质量为m 2、水平运动的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,碰撞时间极短.已知小滑块与细棒碰撞前后的速率分别为v和u ,则碰撞后棒绕O 轴转动的角速度=________________.三、计算题:1、(0114A20)一半径为r 的圆盘,可绕一垂直于圆盘面的转轴作定轴转动.现在由于某种原因转轴偏离了盘心O ,而在C 处,如图所示.若A 、B 是通过CO 的圆盘直径上的两个端点,则A、B两点的速率将有所不同.现在假定圆盘转动的角速度ω 是已知的,而v A 、v B 可以通过仪器测出,试通过这些量求出偏心距l .OOO Om O '(3)(2)(4)Ol m 1m 2 A u vlOC BA2、(0116A20)一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间? 3、(0119B35)已知一定轴转动体系,在各个时间间隔内的角速度如下: ω=ω0 0≤t ≤5 (SI) ω=ω0+3t -15 5≤t ≤8 (SI) ω=ω1-3t +24 t ≥8 (SI) 式中ω0=18 rad /s (1) 求上述方程中的ω1. (2) 根据上述规律,求该体系在什么时刻角速度为零. 4、(0120A15)一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少? 5、(0122A20)如图所示,一圆盘绕通过其中心且垂直于盘面的转轴,以角速度作定轴转动,A 、B 、C 三点与中心的距离均为r .试求图示A 点和B 点以及A 点和C 点的速度之差B A v v ϖϖ-和C A v v ϖϖ-.如果该圆盘只是单纯地平动,则上述的速度之差应该如何? 6、(0112C50)质量为M 的匀质圆盘,可绕通过盘中心垂直于盘的固定光滑轴转动,转动惯量为21M r 2.绕过盘的边缘挂有质量为m ,长为l 的匀质柔软绳索(如图).设绳与圆盘无相对滑动,试求当圆盘两侧绳长之差为S 时,绳的加速度的大小. 7、(0115B40)有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量).8、(0123B30) 如图所示,一圆盘形工件K 套装在一根可转动的固定轴A 上,它们的中心线互相重合,圆盘的内外直径分别为D 和D 1.该工件在外力矩作用下获得角速度,这BCAωrSMa。

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

《大学物理学》第二章 刚体力学基础 自学练习题

《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。

【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。

对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。

【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。

【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。

大学物理学 习题四 刚体力学

大学物理学  习题四 刚体力学

习题四 刚体力学院 系: 班 级:_____________ 姓 名:___________ 班级个人序号:______一、选择题1.一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。

现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为90︒,则v 0的大小为 [ ](A; (B; (C; (D )22163M glm 。

答案:A 解:11122,1122J J J J Mg l ωωωω=+⎧⎪⎨=⋅⎪⎩ 22211, 243l ml J m J Ml ⎛⎫=== ⎪⎝⎭ 0012/2v v l l ω==,0021/21/22v v l l ωω===,111121()2J J J J ωωωω-== 21122J Mgl ω=, 2112J J Mgl J ω⎛⎫⋅= ⎪⎝⎭, 22114J Mgl Jω= 2220244143v ml l Mgl Ml ⎛⎫ ⎪⎝⎭=⋅,Mgl M v m =⋅202163,2202163M v gl m =,所以 340gl m Mv =2.圆柱体以80rad/s 的角速度绕其轴线转动,它对该轴的转动惯量为24kg m ⋅。

在恒力矩作用下,10s 内其角速度降为40rad/s 。

圆柱体损失的动能和所受力矩的大小为 [ ](A )80J ,80N m ⋅; (B )800J ,40N m ⋅;(C )4000J ,32N m ⋅;(D )9600J ,16N m ⋅。

答案:D解:800=ω,40=ω,10=t ,4J =2201122k E J J ωω-∆=- 22011()4(64001600)9600(J)22k E J ωω∆=-=⨯⨯-=M 恒定,匀变速,所以有0t ωωα=-,0tωωα-=,08040416N m 10M J J tωωα--==⋅=⨯=⋅3.一个转动惯量为J 的圆盘绕一固定轴转动,初角速度为0ω。

002刚体力学习题汇总(答案)

002刚体力学习题汇总(答案)
2
(3) v l
3 gl sin
10、如图所示,长为 l 的轻杆,两端各固定质量分
别为 m 和 2m 的小球,杆可绕 水平光滑固定轴 O 在竖直面 内转动, 转轴 O 距两端分别为
解:受力分析如图,可建立方程:
2mg T2 2ma ┄① T1 mg ma ┄②
1 2 l和 l. 轻杆原来静止在竖 3 3
2、对于一根质量分布均匀的木棒,质量 m,长度为 L,以木棒端点为轴旋转的转动惯量为 J1=
1 2 ml , 3
以 木 棒 中 点 为 轴 旋 转 的 转 动 惯 量 为 J2=
1 2 ml ,则 J1 是 J2 的 12
3、如图 1 所示的圆锥摆,绳长为 l ,绳子一端固定 在 O 点,另一端系一质量为 m 的质点,以匀角速 度 绕竖直轴线作圆周运动, 绳子与轴线的夹角为
得: t
(2)相碰时小球受到的冲量为
2m2 (v1 v2 ) 。 m1 g
Fdt (mv) mv mv
0
由①式求得
Fdt mv mv
0
J 1 Ml 3 l
-3-
Mr Lee 制作,内部交流
a r , J mr / 2 ┄⑤
2
联立,解得: a
1 11 g , T mg 。 4 8
9、如图所示,一匀质细杆质量为 m ,长为 l ,可绕
杆于水平位置由静止 过一端 O 的水平轴自由转动, 开始摆下.求:
2 2 2l l mv0 l m v l m( ) 2 2m ( ) 2 3 3 3 3
以逆时针为正向,有:
v0
J v ml

刚体力学 习题库

刚体力学 习题库

第四章 刚体力学一、计算题 1。

如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ①2分对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 1分将①、②、③式联立得a =mg / (m +21M ) 1分 ∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)解:根据转动定律 f A r A = J A βA ① 1分其中221A A A r m J =,且 f B r B = J B βB ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A βA = r B βB ③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 βA / βB = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分3。

一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg 。

刚体力学习题

刚体力学习题
解:设小球运动到最低点时,其质心速 度为v,绕质心转动的角速度为ω,由机械
能守恒: m (R g r) 1 2m 2 1 2 v (5 2m 2 )r 2
只滚不滑条件: ω=v/r, 代入上式, 求得 v 170(Rr)g 在最低点应用质心运动定理:Nmg m2/vR (r)
N m [ g v 2 /R ( r ) ] m ( g 1 7 g 0 ) 2 7 3 m g
ra
x
h
⑴圆锥体为匀质, ρ=C, m d m L 2 a 2 0 Lx2 d x1 3 a2L
xcx dd m m a 2 a x 23 L d /3 /x L 2L 3 3 0 Lx3d x4 3L
⑵ 0 ( 1 L h ) 0 ( 1 L L x ) L 0 x , d m 0 a 2 x 3 d / L 3 x
7.4.2 质量为2.97kg,长为1.0m的匀质等截面细杆可绕水平光滑的轴 线o转动,最初杆静止于铅直方向。一弹片质量为10g,以水平速度 200m/s射出并嵌入杆的下端,和杆一起运动,求杆的最大摆角θ
解:将子弹、杆构成的物体系作为研究
o
对象,整个过程可分为两个阶段研究:
第一阶段,子弹与杆发生完全非弹性碰 获得共同的角速度ω,此过程时间极短,
时,框架质心的线速度vc及框架作用于支点的压力N.
A
解:正方形框架对支点o的转动惯量:
o
I Ic o 4 I(c1 1 2 m 4m 2( l2 l)m 2 l4 2I)c 4 3m m 22 llIo7 3m2lE0 p=
据机械能守恒定律:
B
B A
4 m 2 l g 1 2Io 21 2(7 3m 2)l2,
隔离木板, 其受力及运动情况如图示,其中a为板对地

刚体力学

刚体力学

一、选择题:1. 关于刚体对轴的转动惯量,下列说法中正确的是( )A. 只取决于刚体的质量,与质量的空间分布和轴的位置无关;B. 取决于刚体的质量和质量的空间分布,与轴的位置无关;C. 取决于刚体的质量、质量的空间分布和轴的位置;D. 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2. 有两个半径相同,质量相等的细圆环A和B,A环的质量分布均匀,B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则( )A. J A>J B;B. J A<J B;C. J A=J B;D. 不能确定J A、J B哪个大。

3. 刚体角动量守恒的充分而必要的条件是( )A. 刚体不受外力矩的作用;B. 刚体所受合外力矩为零;C. 刚体所受的合外力和合外力矩均为零;D. 刚体的转动惯量和角速度均保持不变。

4. 一圆盘饶过盘心且与盘面垂直的轴O以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度( )A. 必然增大;B. 必然减少;C. 不会改变;D. 如何变化,不能确定。

5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J0,角速度为ω0。

然后她将两臂收回,使转动惯量减少为J0/3,这时她转动的角速度变为( )A. ω0/3;B. ()ω0;C. ω0;D. 3ω0。

6. 几个力同时作用于一个有固定转轴的刚体上,若这几个力的矢量和为零,则( )A. 刚体必然不会转动;B. 转速必然不变;C. 转速必然会变;D. 转速可能变也可能不变。

7. 一人坐在定轴转动的转椅上,双臂水平各举一只哑铃,在把哑铃水平收缩到胸前的过程中,不计转轴的摩擦,对哑铃、人和转椅组成的系统( )A. 机械能和角动量皆不守恒;B. 机械能和角动量皆守恒;C. 机械能不守恒,角动量守恒;D. 机械能守恒,角动量不守恒。

第五章 刚体力学基础

第五章  刚体力学基础

第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。

[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。

[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。

那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。

[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。

如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。

[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。

[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。

刚体力学

刚体力学

刚体力学习题一选择题1.两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定.2. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ]3. 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]4. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则(A) J A >J B . (B) J B >J A .(C) J A =J B . (D) J A 、J B 哪个大,不能确定. [ ]5. 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ]7. 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v. (B) ML m 23v .O v 俯视图(C) ML m 35v. (D) ML m 47v . [ ]8. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]9. 光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A)L 32v . (B) L 54v . (C)L 76v . (D) L 98v . (E) L 712v. [ ]10. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A) 增大. (B) 不变.(C) 减小.(D) 不能确定. [ ]11. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]12. 一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量.(C) 机械能. (D) 动量. [ ] O v 俯视图mm13.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmR J J +. (B) ()02ωR m J J +. (C) 02ωmR J. (D) 0ω. [ ]二填空题14. 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s , 再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt =________________.15. 绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s时间内飞轮所转过的角度θ =___________________.16. 一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.17. 半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________.18. 一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0=____________,杆与水平方向夹角为60°时的角加速度β =________________.19. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆 转到水平位置时,该系统所受到的合外力矩的大小M =_____________________, 此时该系统角加速度的大小β =______________________.20. 如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS=l ,则系统对O O '轴的转动惯量为____________.21. 一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的角速度ω=-0ω,则0ω=________________.mS ′22. 一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O轴的转动惯量J =____________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =______________;角加速度β ________________.23. 一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零 均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.24. 一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml . 25. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 /12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 26. 长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直 下垂,一子弹水平地射入杆中.则在此过程中,_____________系统对转轴O的_______________守恒.27. 一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω=__________________.三计算题28.一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?29.一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少?30.一电唱机的转盘以n = 78 rev/min 的转速匀速转动.(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B .(2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度β及转过的圈数N .31一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).m 0v 俯视图32. 一质量为m 的物体悬于一条轻绳的一端,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r、t 和S 表示)..33. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.34. 一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离;(2) 绳中的张力.35. 如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.36. 一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求:(1) 棒的角加速度的大小;(2) 棒所受阻力矩的大小;(3) 从t = 0到t = 10 s 时间内棒转过的角度.37.质量为75 kg 的人站在半径为2 m 的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg ·m 2.开始时整个系统静止.现人以相对于地面为1 m ·s -1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.38. 一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J =231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '=0.020 kg ,速率为v = 400 m ·s -1.试问: (1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?39. 一均匀木杆,质量为m 1 = 1 kg ,长l = 0.4 m ,可绕通过它的中点且与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位置时,一质量为m 2 = 10 g 的子弹在距杆mm , l O vm '中点l / 4处穿透木杆(穿透所用时间不计),子弹初速度的大小v 0 = 200 m/s ,方向与杆和轴均垂直.穿出后子弹速度大小减为v = 50 m/s ,但方向未变,求子弹刚穿出的瞬时,杆的角速度的大小.(木杆绕通过中点的垂直轴的转动惯量J = m 1l 2 / 12)40. 如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v 的子弹,沿着与水平面成α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.。

第五章 刚体力学参考答案

第五章  刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ.(C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8mm图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。

设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫⎝⎛=RJ mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=RJ mR v2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mRJ mRv 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。

刚体力学习题

刚体力学习题

第四章 刚体力学一、计算题 1.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221AA A r m J =和221B B B r m J =)3.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).4.质量为5 kg 的一桶水悬于绕在辘轳上的轻绳的下端,辘轳可视为一质量为10 kg 的圆柱体.桶从井口由静止释放,求桶下落过程中绳中的张力.辘轳绕轴转动时的转动惯量为221MR ,其中M 和R 分别为辘轳的质量和半径,轴上摩擦忽略不计.5.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.6.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向. 7.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离;8.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?9.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到ω=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.10.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力.11.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?12.长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为μ,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?13.一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.14.一圆柱体截面半径为r ,重为P ,放置如图所示.它与墙面和地面之间的静摩擦系数均为31.若对圆柱体施以向下的力F =2P 可使它刚好要反时针转动,求(1) 作用于A 点的正压力和摩擦力,(2) 力F 与P之间的垂直距离d .15.一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.16.质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.17.质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.18.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )19.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.20.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,1) 物体的速度; 2) 绳中张力(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =)21.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求:(1) 组合轮的角加速度β;(2) 当物体A 上升h =40 cm 时,组合轮的角速度ω . 22.物体A 和B 叠放在水平桌面上,由跨过定滑轮的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、B 和滑轮的质量都为m ,滑轮的半径为R ,对轴的转动惯量J =221mR .AB 之间、A 与桌面之间、滑轮与其轴之间的摩擦都可以忽略不计,绳与滑轮之间无相对的滑动且绳不可伸长.已知F =10 N ,m =8.0 kg ,R =0.050 m .求: (1) 滑轮的角加速度; (2) 物体A 与滑轮之间的绳中的张力; (3) 物体B 与滑轮之间的绳中的张力.23.两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m ',半径为r ',对轴的转动惯量J =221mr .大滑轮的质量m =2m ,半径r =2r ,对轴的转动惯量221r m J ''='.一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体A 和B .A 的质量为m ,B 的质量 m '=2m .这一系统由静止开始转动.已知m =6.0 kg ,r =5.0 cm .求两滑轮的角加速度和它们之间绳中的张力.m'24.一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求: (1) 棒的角加速度的大小;(2) 棒所受阻力矩的大小;(3) 从t = 0到t = 10 s 时间内棒转过的角度.25.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为2321r m26.如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v的子弹,沿着与水平面成α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.27.如图所示,一半径为R ,质量为m 的水平圆台,正以角速度ω0绕通过其中心的竖直固定光滑轴转动,转动惯量J =221mR .台上原站有2人,质量各等于转台质量的一半,一人站于台边A 处,另一人站于距台中心R 21的B 处.今A 处的人相对于圆台以速率v 顺着圆台转向沿圆周走动,同时B 处的人相对于圆台以速率2v 逆圆台转向沿圆周走动.求圆台这时的角速度ω.28.一质量均匀分布的圆盘,质量为M ,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动。

大学物理刚体力学习题课

大学物理刚体力学习题课

l 1 1 2 mg sin mgl sin ( ml ml 2 ) 2 2 2 3 9g 3 2 sin g sin / l 4l 2

m m
9 g cos 16l
角加速度对应于该位置的力矩
l 1 2 mg cos mgl cos ( ml ml 2 ) 2 3
12. 一长为l ,质量为 M的均匀木棒,可绕水平轴O在 竖直平面内转动,开始时棒自然地竖直下垂,今有 一质量m、速率为v的子弹从A点射入棒中,假定A点 与O点的距离为3l/4,求:(1)棒开始运动时的角速度; (2)棒的最大偏转角。
解:对题中非弹性碰撞,角动量守恒,
3 3 2 1 mv l J J m( l ) Ml2 4 4 3 36ml (27m 16 M )l
mg T ma
O
Tr J
J m( g a)r 2 / 2
2 gt J mr 2 ( 1) 2s
a r
由已知条件v0 = 0, 得
1 2 s at a 2 s / t 2 2
m
9. 如图所示,滑轮为质量均匀分布的圆柱体,其质 量为m轮,半径为r,在绳与轮缘的摩擦力作用下旋转。 忽略桌面与物体间的摩擦。设m1=50 kg, m2=200 kg, m轮=15 kg, r=0.1 m,计算该系统中物体m1和m1的加 速度。
解:细杆由初始位置竖直位置,机械能守恒
1 1 L 2 2 J 0 J1 mg (1 cos ) 2 2 2
0
60
v0
碰撞前后角动量守恒, 取为角 动量正向 mv0 L J1 (J mL2 )2 系统竖直位置由初始位置
1 L 1 2 ( J mL2 )2 Mg (1 cos ) mgL(1 cos ) ( J mL2 ) 2 2 2 2

刚体力学习题

刚体力学习题

第七章 刚体力学 习题7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).[解 答]-527.2710(rad/s)243600πω==⨯⨯自-72 2.0410(rad/s)365243600πω==⨯⨯⨯公R νω=自22n a RRνω==7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?[解 答] (1)22(30001200)1/601.57(rad /s )t 12ωπβ⨯-⨯===(2)22222()(30001200)302639(rad)2215.7πωωθβ--===⨯所以 转数=2639420()2π=转7.1.3 某发动机飞轮在时间间隔t 内的角位移为34at bt ct θ=+- (:rad,t :s).θ球t 时刻的角速度和角加速度.[解 答]34at bt ct θ=+- 23d a 3bt 4ct dt θω==+- 2d 6bt 12ct dt ωβ==-7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立O-xy 坐标系,原点在轴上.x 和y轴沿水平和铅直向上的方向.边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3)转过90时,A 点的速度和加速度在x 和y 轴上的投影.[解 答]21.2t t 1.22t 2θωβ=+=+=(1) A ˆˆt 0,1.2,R j 0.12j(m/s).0,0.12(m/s)x y ωνωνν====∴== 22n a a 0.144(m /s )Ryx ν==-=-2y a R 0.2(m/s )β==(2)45θ=时,由2A 1.2t t ,t 0.47(s)42.14(rad /s)v Rπθωω=+==∴==⨯得ˆˆˆ i j kˆˆ 0 0 0.15j 0.15i R cos R sin 0ωθθ==-x y A A 0.15(m /s),015(m /s)d dˆˆa (R sin i R cos j)dt dt νννωθωθ∴=-===-+221222x y dˆˆR(sin i cos j)dtˆˆR[(cos sin )i (sin cos )j ˆˆ0.183j0.465i(m /s )a 0.465(m /s ),a 0.183(m /s )ωθωθωθβθωθβθ-=-+=--+-+=--∴=-=-(3)当90θ=时,由2A x y 2x 22x y 1.2t t ,t 0.7895(s), 2.78(rad /s)2ˆˆv R i 0.278i(m/s)0.278(m /s),0(m /s)a R 0.2(m /s )a 0.77(m /s )Rπθωωννβν=+====-⨯=-∴=-==-=-=-=-得7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速度10rad /s ω=逆时针转动,求臂与铅直45时门中心G 的速度和加速度.[解 答]因炉门在铅直面内作平动,门中心G 的速度、加速度与B 或D 点相同。

刚体力学习题

刚体力学习题

1 2 l l mg mg sin I 2 2 2 2 1 1 2 l 2 I ml m ml 12 3 2
由上得
C
hc
o
3g (1 sin ) l

22

角加速度:
3g (1 sin ) l
d d d d 3 g cos d 2l dt d dt
o
1 2 mgS 0 m 2
解得
m
3 gl 3 2gS l
讨论:当l >6S时, >0, 表示碰后棒向右摆; 当l <6S时, <0, 表示碰后棒向左摆。
25
例题 匀质杆:长为l、质量M,可绕水平光滑固 定轴o转动,开始时杆竖直下垂。质量为m的子弹以 水平速度o射入杆上的A点,并嵌在杆中,oA=2l/3, 求:(1)子弹射入后瞬间杆的角速度; (2)杆能转过的最 大角度。
l ( 3 M 4m )
o
2l 3

mo A
9
2 l 3
例题 长为2L、质量为m的匀质细杆,静止在粗糙 的水平桌面上,杆与桌面间的摩擦系数为µ 。两个质量、 速率均为m和的小球在水平面内与杆的两端同时发生 完全非弹性碰撞(设碰撞时间极短), 如图所示。求:
(1)两小球与杆刚碰后,这一系统的角速度为多少? (2)杆经多少时间停止转动?(不计两小球的质量引起 的摩擦力矩)
解 (1)杆+子弹:竖直位置,外力(轴o处的力和 重力)均不产生力矩,故碰撞过程中角动量守恒:
2l 1 2l 2 2 mo [ Ml m( ) ] 3 3 3
解得
o
2l 3

6m o l ( 3 M 4m )

力学(刚体力学习题课)

力学(刚体力学习题课)

v1 v 2
1 R1 2 R 2
J1 M 1R
2 1
3
2
J 2 M 2 R2
解(1)、(2)、(3)得
1
M 1 R 1 1 M 2 R 2 2 R1 M 1 M
2

2
M 1 R 1 1 M 2 R 2 2 R 2 M 1 M
f1 f 2
f1
J 1 1 1 R1
1
1
M1

2
C
R1
M
2

R2

M
2
dt

fR 2 dt J 2 2 2
f dt
J 2 2 2 R2
2
1

f2
2

考虑到稳定后,有
周运动,弹丸的速度的最小值应为多少?
解:取摆锤、地球和子弹为 系统,子弹穿过摆锤过程中,系 统对转轴的角动量守恒:
J 1 1 J 1 1 J 2 J 3
m
l, M
v
M
v 2

ml
2
v l
ml
2
v 2 l
Ml
2
Ml 3 1
2
刚体力学习题课
如图,一个质量为 m 的物体与绕在定滑轮上 的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮的质量为M 、半径为 R,其转动惯量为
1 2 MR
2
习题一

滑轮轴光滑。试求该物体由 静止开始下落的过程中,下落速 度与时间的关系。 解:根据牛顿第二定律和刚体定 轴转动定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 刚体力学一、计算题 1.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ①2分对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 1分将①、②、③式联立得a =mg / (m +21M ) 1分 ∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)解:根据转动定律 f A r A = J A βA ① 1分其中221AA A r m J =,且 f B r B = J B βB ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A βA = r B βB ③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 βA / βB = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分3.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分T r =J β ② 2分 由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④mMRMR βT mgaB A f Ar B r AmOr又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分4.质量为5 kg 的一桶水悬于绕在辘轳上的轻绳的下端,辘轳可视为一质量为10 kg 的圆柱体.桶从井口由静止释放,求桶下落过程中绳中的张力.辘轳绕轴转动时的转动惯量为221MR ,其中M 和R 分别为辘轳的质量和半径,轴上摩擦忽略不计.解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ()[]J TR g /∆-那么 mg J mR T =⎪⎪⎭⎫⎝⎛+21将 J =21MR 2代入上式,得mM mMgT 2+==24.5 N 2分5.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J β 1分其中 4/30sin 21mgl mgl M ==1分 于是 2rad/s 35.743 ===lgJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lg J M β 1分6.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分7.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力. 解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J β 2分 a =R β 1分 ∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分因此(1)下落距离 h =221at =63.3 m2分(2) 张力 T =m (g -a )=37.9 N 1分8.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉a力为多少?解:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中ω 0 = 0 ,则 有ωt = βt那么圆柱体的角速度====55 t t t βω20 rad/s 1分(3) 根据转动定律 fr = J β则 f = J β / r = 32 N 2分9.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3)当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵mg -T =ma 1分 TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分10.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力.解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J β 2分 a =R β 1分 ∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分a因此(1)下落距离 h =221at =63.3 m 2分 (2) 张力 T =m (g -a )=37.9 N 1分11.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中ω 0 = 0 ,则 有ωt = βt那么圆柱体的角速度====55 t t t βω20 rad/s 1分(3) 根据转动定律 fr = J β则 f = J β / r = 32 N 2分12.长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为μ,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg θ =0 1分 f =μN 21分解得 222/tg hL h h x -=⋅=μθμ 1分13.一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间. 解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分14.一圆柱体截面半径为r ,重为P ,放置如图所示.它与墙面和地面之间的静摩擦系数均为31.若对圆柱体施以向下的力F =2P 可使它刚好要反时针转动,求(1) 作用于A 点的正压力和摩擦力,(2) 力F 与P之间的垂直距离d .解:设正压力N A 、N B ,摩擦力f A ,f B 如图.根据力的平衡,有 f A +N B = F+P = 3P ① 1分 N A =f B ② 1分 根据力矩平衡,有Fd = ( f A + f B ) r ③ 2分 刚要转动有 A A N f 31= ④ B B N f 31= ⑤1分(1) 把④及 ②、⑤代入①可求得 N A =0.9P , f A =0.3P 2分(2) 由③可求得 d = 0.6 r 1分15.一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r β2分 解上述5个联立方程得: T =11mg / 82分16.质量分别为m 和2m、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图. 2分amg -T 2 = ma 2 1分 T 1-mg = ma 1 1分 T 2 (2r )-T 1r = 9mr 2β / 2 2分2r β = a 2 1分 r β = a 1 1分 解上述5个联立方程,得:r g 192=β 2分17.质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.解:撤去外加力矩后受力分析如图所示.2分m 1g -T = m 1a1分 Tr =J β 1分a =r β1分 a = m 1gr / ( m 1r + J / r ) 代入J =221mr , a =mm gm 2111+= 6.32 ms -2 2分 ∵ v 0-at =02分∴ t =v 0 / a =0.095 s 1分18.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.2分根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分 根据转动定律,对滑轮有 (T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分a a 1T a2①、②、③、④四式联立解得 a =2g / 7 1分19.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.解:作示力图.两重物加速度大小a 相同,方向如图.示力图 2分 m 1g -T 1=m 1a 1分 T 2-m 2g =m 2a 1分设滑轮的角加速度为β,则 (T 1-T 2)r =J β2分且有 a =r β1分 由以上四式消去T 1,T 2得:()()J r m m grm m ++-=22121β2分开始时系统静止,故t 时刻滑轮的角速度.()()J r m m grtm m t ++-==22121 βω1分20.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度; (2) 绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =) 解:各物体的受力情况如图所示. 图2分 由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:T 1R =J 1β1=12121βR M 方程各1分共5分 T 2r -T 1r =J 2β2=22121βr M mg -T 2=ma , a =R β1=r β2 , v 2=2ahma求解联立方程,得 ()42121=++=m M M mga m/s 2ah 2=v =2 m/s 1分 T 2=m (g -a )=58 N 1分 T 1=a M 121=48 N 1分21.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求: (1) 组合轮的角加速度β;(2) 当物体A 上升h =40 cm 时,组合轮的角速度ω.解:(1) 各物体受力情况如图.图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (2r )-Tr =9mr 2β / 2 1分 a =r β 1分 a '=(2r )β 1分由上述方程组解得:β=2g / (19r )=10.3 rad ·s -2 1分(2) 设θ为组合轮转过的角度,则θ=h / rω2=2βθ所以,ω = (2βh / r )1/2=9.08 rad ·s -1 2分22.物体A 和B 叠放在水平桌面上,由跨过定滑轮的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、B 和滑轮的质量都为m ,滑轮的半径为R ,对轴的转动惯量J =221mR .AB 之间、A 与桌面之间、滑轮与其轴之间的摩擦都可以忽略不计,绳与滑轮之间无相对的滑动且绳不可伸长.已知F =10 N ,m =8.0 kg ,R =0.050 m .求: (1) 滑轮的角加速度; (2) 物体A 与滑轮之间的绳中的张力; (3) 物体B 与滑轮之间的绳中的张力.解:各物体受力情况如图. 图2分F -T =ma 1分 T '=ma 1分21N a2a 'a '(T T '-)R =β221mR 1分 a =R β 1分由上述方程组解得:β =2F / (5mR )=10 rad ·s -22分T =3F / 5=6.0 N 1分 T '=2F / 5=4.0 N1分23.两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m ',半径为r ',对轴的转动惯量J =221mr .大滑轮的质量m =2m ,半径r =2r ,对轴的转动惯量221r m J ''='.一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体A 和B .A的质量为m ,B 的质量 m '=2m .这一系统由静止开始转动.已知m =6.0 kg ,r =5.0 cm .求两滑轮的角加速度和它们之间绳中的张力.解:各物体受力情况如图. 2分 T A -mg =ma 1分 (2m)g -T A =(2m )a 1分(T -T A )r =β221mr 1分 (T B -T )(2r )=21(2m )(2r )2β' 1分a =r β=(2r )β' 1分 由上述方程组解得:β=2g / (9r )=43.6 rad ·s -2 1分β'=β21=21.8 rad ·s -2 1分 T =(4/3)mg =78.4 N 1分24.一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求: (1) 棒的角加速度的大小; (2) 棒所受阻力矩的大小; (3) 从t = 0到t = 10 s 时间内棒转过的角度. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分(3) θ10=ω 0t +21β t 2=75 rad 1分aa T ’ '25.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为2321r m . 解:对两物体分别应用牛顿第二定律(见图),则有 m 1g -T 1 = m 1a ①T 2 – m 2g = m 2a ② 2分对滑轮应用转动定律,则有ββ⋅==-'-'232121r m J M r T r T f ③ 2分 对轮缘上任一点,有 a = β r ④ 1分又: 1T '= T 1, 2T '= T 2 ⑤则联立上面五个式子可以解出 rm r m r m M gr m gr m a f3212121++--==2 m/s 2 2分T 1=m 1g -m 1a =156 NT 2=m 2g -m 2 a =118N 3分26.如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v的子弹,沿着与水平面成α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.解:选子弹、细棒、小木球为系统.子弹射入时,系统所受合外力矩为零,系统对转轴的角动量守恒. 2分 m v 0 (R + l )cos α = [J + m (R + l )2 ]ω 2分()()20cos l R m J l R m +++=αωv 1分27.如图所示,一半径为R ,质量为m 的水平圆台,正以角速度ω0绕通过其中心的竖直固定光滑轴转动,转动惯量J =221mR .台上原站有2人,质量各等于转台质量的一半,一人站于台边A 处,另一人站于距台中心R 21的B 处.今A 处的人相对于圆台以速率v 顺着圆台转向沿圆周走动,同时B 处的人相对于圆台以速率2v 逆圆台转向沿圆周走动.求圆台这时的角速度ω.2122'T解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒.各转动惯量分别为2分 221mR J =,221mR J A =,()22/21R m J B =2分以地面为参照系,A 处的人走动的角速度为ω+(v / R ),B 处的人 1分走动的角速度为ω-(2v /21R )=ω-(4v / R ).由角动量守恒定律 1分 ()02222/212121ω⎥⎦⎤⎢⎣⎡++R m mR mR = ()R mR mR /212122v ++=ωω()R R m /421212v -⎪⎭⎫ ⎝⎛+ω 2分解出 ω =ω 0 2分28.一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.1分m v 0R =(21MR 2+mR 2)ω 2分R m M m ⎪⎭⎫ ⎝⎛+=210v ω 1分(2) 设σ表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR 2分设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R 2分 ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 2分mR O0v29.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =) 解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即 1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 2分 由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分Am 1 ,l1v2v俯视图。

相关文档
最新文档