箱式电阻炉课程设计
任务书2-箱式炉
班级
学生姓名
指导教师
张保议、王献忠
设计题目
题目二60KW中温箱式电阻炉的设计
设计
原始
参数
工件材料和类型:中碳钢及低合金钢的中小型工件、品种繁多。
热处理工艺要求:淬火、正火及调质。
最大装炉量为:700kg
最高工作温度:950℃
空炉升温时间为:≤3h
车间供电电压:380V
生产特点:周期式装料、长时间连续生产。
2.计算确定耐火层,保温层厚度,保证炉壳表面温升在国标范围内。
3.通过热平衡计算,验证设备功率、计算空炉升温时间(平衡状态)、空炉损耗功率及设备效率。
4.计算标准设备(泵、风扇、电机等)选用参数,查产品样本,确定设备型号。
5.绘制设备总装及砌体图
6.选择电热元件材料,设计电热元件的尺寸及结构。
工作
计划
第14~15天,撰写课程设计说明书,完成课程设计的全部任务。
教务处制
和进度安排
进度要求:
第1天,下达设计任务,学生选题,借阅设计资料。
第2~3天,理解课程设计内容,理论计算设备热工参数、结构参数。
第4~5天,确定,撰写课程设计说明书草稿。
第8~10天,绘制设备总装图。
第11~12天,绘制砌体图。
第13天,绘制加热元件图。
4.在老师的指导下,独立完成规定的设计内容。认真书写课程设计说明书、绘制相关图纸。
完成以下设计文件
1)设计说明书一份(不少于8000字)。
2)设备总装图(1号图纸)、砌体图(1号图纸)、加热元件图(3号图纸)。
设计
内容
步骤
1.依据设备功率、最大一次装炉量,确定炉膛有效尺寸(盐浴炉按标准炉膛尺寸、箱式炉按标准炉底板尺寸、渗碳炉按标准炉罐尺寸圆整)。
箱式电阻炉课程设计完整版
一、设计任务书题目:设计一台中温箱式热处理电阻炉;生产能力:160 kg/h;生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产;二、炉型的选择根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度,不通保护气氛。
三、确定炉体结构及尺寸1.炉底面积的确定因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。
已知生产率p为160kg/h,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p0为100 kg/(m2﹒h),故可求得炉底有效面积:由于有效面积与炉底总面积存在关系式,取系数上限,得炉底实际面积:2.炉底长度和宽度的确定由于热处理箱式电阻炉设计时应考虑出料方便,取,因此,可求得:根据标准砖尺寸,为便于砌砖,取,如总图所示。
3.炉膛高度的确定按照统计资料,炉膛高度与宽度之比通常在之间,根据炉子工作条件,取。
因此,确定炉膛尺寸如下:长宽高为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为:4.炉衬材料及厚度的确定由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖。
炉顶采用轻质粘土砖,密度为的普通硅酸铝纤维毡,膨胀珍珠岩。
炉底采用三层轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖和膨胀珍珠岩复合炉衬。
炉门用轻质粘土砖,密度为的普通硅酸铝纤维毡,级硅藻土砖。
炉底隔砖采用重质粘土砖,电热元件搁砖选用重质高铝砖。
炉底板材料选用耐热钢,根据炉底实际尺寸给出,分三块或者四块,厚。
四、砌体平均表面积计算砌体外廓尺寸如下:试中——拱顶高度,此炉子采用60°标准拱顶,取拱弧半径,则f可由求得f=131.052。
箱式电阻炉(材料热处理课程设计汇本说明书)
化学与材料工程学院材料热处理课程设计说明书学生:专业:金属材料工程学号:班级:材料金属指导老师:目录一、设计任务书 (3)二、工艺设计 (3)1.型的选择 (3)2.炉膛尺寸的确定 (3)3.炉子砌砖设计 (4)4.中温箱式电阻炉功率的计算 (4)5.电热元件 (5)6.电热元件的设计计算 (5)三、工艺流程图和设备装置图 (7)四、进度安排 (9)五、总结与体会 (9)一、设计任务书为某厂设计一台热处理电阻炉,其技术条件如下:1)用途:中碳钢、低合金钢毛坯或零件的淬火、正火及退火处理,处理对象为中小型零件,无定型产品,处理批量为多种,小批量。
2)生产率:160 kg/h3)工作温度:最高使用温度950℃4)生产特点:周期式成批装料,长时间连续生产。
二、工艺设计1.炉型的选择根据设计的具体要求和生产特点,进行综合技术经济分析。
决定选用箱式电阻炉,不通保护气体,炉子最高温度为950℃。
属中温箱式电阻炉。
2.炉膛尺寸的确定(1)查表,箱式电阻炉单位炉底面积生产率P0 ,取P0=100[kg/(m2·h)](2)炉底面积采用加热能力指标法计算,F效= ==1.25 m2== 0.75 - 0.85,取上限,0.85,炉底总面积:= 0.85 F总= 1.5625 m2炉底板宽度 B ===0.88 m炉底板长度L ===1.77 m(3).炉膛高度的确定炉膛高度H与宽度B之比=0.52– 0.9,取0.7高度H = 0.628 m(4).炉膛有效尺寸(可装工件)L效×B效×H效=1.77m ×0.88m ×0.628m(5).炉膛尺寸宽B =B效+2×(0.1-0.15)取0.1 B=0.88+2×0.1=1.08 m长L =L效+ 2×(0.1-0.2)取0.1 L=1.77+2×0.1=1.97 m高H=0.67×9+0.37=0.64m3.炉子砌砖设计耐火层选用体积密度为0.6g/cm3的轻质耐火粘土砖,保温层为硅藻土骨架填充蛭石粉。
热处理箱式电阻炉设计
热处理箱式电阻炉设计热处理是一种常见的金属加工方法,它通过控制材料的加热和冷却过程来改变材料的性能和组织结构。
箱式电阻炉是热处理领域中常用的设备之一,它具有结构简单、操作方便、加热均匀等优点。
本文将从箱式电阻炉的结构设计、加热方式、温度控制、安全性等方面进行探讨。
首先,箱式电阻炉的结构设计是其设计的重要方面之一、箱式电阻炉一般由炉体、加热元件、电控系统和保温材料组成。
炉体通常采用优质钢板焊接而成,具有良好的密封性能和耐高温性能。
加热元件一般采用镍铬合金电阻丝或电阻片,通过电流通过加热元件发热,实现对材料的加热。
电控系统一般由温度控制器和电源组成,用于控制加热元件的加热功率和温度的控制。
保温材料一般采用耐高温陶瓷纤维或石棉棉等材料,用于保持炉体内部的高温。
其次,加热方式是箱式电阻炉设计中需要考虑的重要问题之一、常见的加热方式包括顶部加热和底部加热。
顶部加热是指在箱式电阻炉的炉膛顶部布置加热元件,通过上方向下辐射热传导到炉膛内的材料上。
底部加热是指在箱式电阻炉的底部布置加热元件,通过下方向上辐射热传导到炉膛内的材料上。
两种加热方式各有优缺点,根据具体的工艺要求选择合适的加热方式。
在温度控制方面,箱式电阻炉设计需要考虑如何实现对温度的精准控制。
一般情况下,箱式电阻炉采用PID控制方式,即比例-积分-微分控制方式。
PID控制器可以根据温度的反馈信号自动调整加热功率和温度的设定值,从而实现对温度的精准控制。
此外,在箱式电阻炉设计中还需要考虑如何解决温度梯度的问题,以保证加热均匀性。
通常采用设置多个加热区域或者采用电磁感应加热的方式来解决温度梯度的问题。
最后,在设计箱式电阻炉时,安全性也是需要考虑的重要因素。
箱式电阻炉在加热过程中会产生高温,因此需要采取一系列的安全措施来防止事故的发生。
比如,在炉体外部设置保护层,以避免烤伤。
在电控系统中设置过温报警器和断电保护装置,以及温度超限自动切断电源,以确保炉体温度在安全范围内。
箱式电阻炉(材料热处理课程设计说明书)
箱式电阻炉(材料热处理课程设计说明书)化学与材料工程学院材料热处理课程设计说明书学生姓名:专业:金属材料工程学号:班级:材料金属指导老师:刘1目录一、设计任务书 (3)二、工艺设计 (3)1.型的选择 (3)2.炉膛尺寸的确定 (3)3.炉子砌砖设计 (4)4.中温箱式电阻炉功率的计算 (4)5.电热元件 (5)6.电热元件的设计计算 (5)三、工艺流程图和设备装置图 (7)四、进度安排 (9)五、总结与体会 (9)2一、设计任务书为某厂设计一台热处理电阻炉,其技术条件如下:1) 用途:中碳钢、低合金钢毛坯或零件的淬火、正火及退火处理,处理对象为中小型零件,无定型产品,处理批量为多种,小批量。
2) 生产率:160 kg/h3) 工作温度:最高使用温度950℃4) 生产特点:周期式成批装料,长时间连续生产。
二、工艺设计1.炉型的选择根据设计的具体要求和生产特点,进行综合技术经济分析。
决定选用箱式电阻炉,不通保护气体,炉子最高温度为950℃。
属中温箱式电阻炉。
2.炉膛尺寸的确定(1)查表,箱式电阻炉单位炉底面积生产率P0 ,取P0=100[kg/(m2·h)] (2)炉底面积采用加热能力指标法计算,F效= ?? =100 =1.25 m2 0??125炉底有效面积??有效0.75 - 0.85,取上限,0.85,炉底总面积:炉底总面积??总1.25??总总= 1.5625 m211炉底板宽度 B = 2??总= 2?1.5625 =0.88 m炉底板长度L = 2F总= (3).炉膛高度的确定炉膛高度H与宽度B之比=0.52–0.9,取0.7 ????高度H = 0.628 m(4).炉膛有效尺寸(可装工件)L效×B效×H效=1.77m ×0.88m ×0.628m(5).炉膛尺寸宽B =B效+2×(0.1-0.15)取0.1 B=0.88+2×0.1=1.08 m3长L =L效+ 2×(0.1-0.2)取0.1 L=1.77+2×0.1=1.97 m高H=0.67×9+0.37=0.64m3.炉子砌砖设计耐火层选用体积密度为0.6g/cm3的轻质耐火粘土砖,保温层为硅藻土骨架填充蛭石粉。
课程设计说明书 箱式 回火炉
课程设计说明书箱式回火炉(电阻炉)设计说明书材料0702刘伟20071570目录绪言 (3)热处理电阻炉设计 (5)一.设计任务 (5)二.炉型的选择 (5)三.确定炉体结构和尺寸 (5)1. 炉底长宽高的确定 (5)2. 炉衬材料及厚度的确定 (6)四.砌体平均表面积计算 (6)1. 炉墙平均面积 (6)2. 炉底平均面积 (6)五.计算炉子功率 (6)1. 根据经验公式计算炉子功率 (7)2. 根据热平衡计算炉子功率 (7)六.炉子热效率计算 (10)1. 正常工作时的效率 (10)2. 在保温阶段,关闭炉门时的效率 (10)七.炉子空载功率计算 (11)八.空炉升温时间计算 (11)1. 炉墙及炉顶蓄热 (11)2. 炉底蓄热计算 (12)3. 炉底板蓄热 (13)九.功率的分配与接线 (13)十.电热元件材料选择及计算 (13)ρ (13)1. 求950℃时电热元件的电阻率tρ (13)2. 确定电热元件表面功率t3. 每组电热元件功率 (14)4. 每组电热元件端电压 (14)5. 电热元件直径 (14)6. 每组电热元件长度和质量 (14)7. 电热元件的总长度和总重量 (14)8. 校核电热元件表面负荷 (14)9. 电热元件在炉膛内的布置 (15)绪言热处理热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺,金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
箱式电阻炉设计(修改版)
佳木斯大学热处理设备课程设计(说明书)题目:热处理箱式电阻炉的设计(生产率110kg/h,温度≤600℃)院(系):材料科学与工程学院专业班级:金属一班学号:**********学生姓名:位来指导教师:**起止时间:2012-11-19~2012-12-10课程设计任务及评语目录一、炉型的选择 (1)二、确定炉体结构和尺寸 (1)三、砌体平均表面积计算 (2)四、计算炉子功率 (2)五、炉子热效率计算 (5)六、炉子空载功率计算 (5)七、空炉升温时间计算 (5)八、功率的分配与接线 (6)九、电热元件材料选择及计算 (6)十、电热体元件图 (7)十一、电阻炉装配图 (7)十二、电阻炉技术指标 (7)参考文献 (8)设计任务:按工作要求可设计一台热处理电阻炉,其技术要求为:(1)用途:中低碳钢、合金钢毛坯或零件的淬火、正火处理,处理对象为中小型零件,无定型产品,处理批量为多品种,小批量;(2)生产率:110kg/h;(3)工作温度:最高使用温度≤600℃;(4)生产特点:周期式成批装料,长时间连续生产。
一、炉型的选择根据设计任务给出的技术要求和生产特点,本设计宜选用箱式热处理电阻炉。
二、确定炉体结构和尺寸1.炉底面积的确定根据所学知识炉底面积用炉底强度来计算。
生产率为110kg/h,即可选择箱式炉用于淬火和正火时的单位面积炉底强度h为115kg/(m2·h),故可求得炉底有效面积F1 = P/h= 110/115 = 0.96m2K为有效面积与炉底总面积的比例系数,K=F/F1=0.75~0.85,我们取系数为0.84,则炉底实际面积:F = F1/0.84 =0.96/0.84 =1.14m22.炉底长度和宽度的确定考虑到工作时的状态,长度与宽度之比L/B=3:2,因此可知B =930m,L =1310m。
又因为要考虑便于砌砖,根据标准砖尺寸,取L =1380mm,B =920mm。
中温箱式电阻炉设计
中温箱式电阻炉设计1.箱体结构设计中温箱式电阻炉的箱体一般由耐高温材料制成,如不锈钢或钢板,具有良好的隔热性能。
为了方便操作和维护,炉门宜设计成可开启的结构。
箱体的尺寸需要根据加热件的尺寸确定,同时要考虑箱体内的空间利用率和加热均匀性。
2.加热元件设计为了实现中温范围内的温度控制,可以采用电阻丝作为加热元件。
电阻丝通常采用高温耐热性好的材料,如镍铬合金电热丝。
电热丝可以布置在箱体的四壁和底部,以保证加热的均匀性。
根据设计需求,可以设置多个加热区域,每个区域的电热丝可以独立控制。
3.温度控制系统设计温度控制系统是中温箱式电阻炉的关键部分。
常用的温度控制器主要有PID控制器和智能温控仪。
对于中温热处理,一般采用PID控制器来实现温度的精确控制。
PID控制器通常有设定温度、反馈信号和输出控制信号三个主要部分。
根据炉内温度的变化,PID控制器可以自动调节电阻丝的电流,以维持设定温度。
温度探头的选择是影响控制系统准确性的另一个关键因素。
可以选择热电偶或热电阻作为温度传感器,并安装在炉腔内,以实时反馈当前温度给PID控制器。
4.其他参数设置在设计中温箱式电阻炉时,还需要考虑一些其他参数的设置,以确保设备的正常运行和安全性。
例如,功率参数的选择决定了炉内的加热速度和工作效率;安全装置的设置可以包括过温报警器和保险丝等,以防止温度过高引发火灾或其他事故。
总结起来,中温箱式电阻炉的设计需要考虑箱体结构、加热元件、温度控制系统等多个方面的因素。
通过合理选择材料、设计尺寸、加热方式和温度控制方式等参数,可以实现中温范围内的温度控制和热处理需求。
箱式电阻炉课程设计(精编文档).doc
【最新整理,下载后即可编辑】一、设计任务书题目:设计一台中温箱式热处理电阻炉;生产能力:160 kg/h ;生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产;要求:完整的设计计算书一份和炉子总图一张。
二、炉型的选择根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。
三、确定炉体结构及尺寸1.炉底面积的确定因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。
已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为100 kg/(m 2﹒h),故可求得炉底有效面积:F 1=P P 0=160100=1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ⁄=0.60~0.85,取系数上限,得炉底实际面积:F =F 10.85=1.60.85=1.88m 2 2.炉底长度和宽度的确定由于热处理箱式电阻炉设计时应考虑出料方便,取L B ⁄=2,因此,可求得:L =√F 0.5⁄=√1.880.5⁄=1.94mB =L 2⁄=1.942⁄=0.97 m根据标准砖尺寸,为便于砌砖,取L =1.970 m,B =0.978 m,如总图所示。
3.炉膛高度的确定按照统计资料,炉膛高度H与宽度B之比H B ⁄通常在0.5~0.9之间,根据炉子工作条件,取H B ⁄=0.654m。
因此,确定炉膛尺寸如下:长L=(230+2)×8+(230×12+2)=1970m宽B=(120+2)×4+(65+2)×2+(40+2)×3+ (113+2)×2=978mm高H=(65+2)×9+37=640mm为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为:L效=1700mmB效=700mmH效=500mm4.炉衬材料及厚度的确定由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN−0.8轻质粘土砖,+80mm密度为250kg m3⁄的普通硅酸铝纤维毡,+113mm B级硅藻土砖。
箱式电阻炉课程设计
箱式电阻炉课程设计一、教学目标本节课的教学目标是让学生掌握箱式电阻炉的基本原理、结构和操作方法,能够运用所学知识对电阻炉进行简单的故障排查和维护。
具体目标如下:1.知识目标:(1)了解电阻炉的工作原理及其组成部分;(2)掌握电阻炉的启动、停止和运行调节方法;(3)了解电阻炉的故障类型及解决方法。
2.技能目标:(1)能够正确操作电阻炉,进行加热实验;(2)能够根据实验现象判断电阻炉的运行状态;(3)能够运用所学知识对电阻炉进行简单的故障排查和维护。
3.情感态度价值观目标:(1)培养学生对科学实验的兴趣和好奇心;(2)培养学生动手操作能力和团队合作精神;(3)培养学生对安全生产的认识,提高安全意识。
二、教学内容本节课的教学内容主要包括以下几个部分:1.电阻炉的工作原理及其组成部分;2.电阻炉的启动、停止和运行调节方法;3.电阻炉的故障类型及解决方法;4.电阻炉的安全操作规程。
教学过程中,将通过讲解、演示和实验等多种方式,使学生掌握电阻炉的基本知识和操作技能。
三、教学方法为了提高教学效果,本节课将采用以下几种教学方法:1.讲授法:讲解电阻炉的工作原理、结构和故障处理方法;2.演示法:演示电阻炉的启动、停止和运行过程;3.实验法:学生动手操作电阻炉,进行加热实验;4.讨论法:分组讨论实验现象,分析故障原因。
通过多样化教学方法,激发学生的学习兴趣,提高学生的动手能力和解决问题的能力。
四、教学资源为了保证教学质量,本节课将准备以下教学资源:1.教材:提供电阻炉相关知识的教材,以便学生课后复习;2.参考书:推荐一些与电阻炉相关的参考书,拓展学生的知识面;3.多媒体资料:制作PPT、视频等多媒体资料,帮助学生更好地理解电阻炉的工作原理和操作方法;4.实验设备:准备电阻炉实验设备,让学生亲自动手操作,提高实践能力。
以上教学资源将有助于实现本节课的教学目标,提高学生的学习效果。
五、教学评估本节课的教学评估将采用多元化的方式,以全面、客观地评价学生的学习成果。
箱式电阻炉课程设计
箱式电阻炉课程设计一、课程目标知识目标:1. 学生能理解箱式电阻炉的基本结构、工作原理及其在工业中的应用。
2. 学生能掌握箱式电阻炉的操作步骤、安全使用规范及相关维护保养知识。
3. 学生能了解箱式电阻炉的温度控制原理,掌握相关计算公式。
技能目标:1. 学生能够独立操作箱式电阻炉,完成简单的加热实验。
2. 学生能够分析并解决箱式电阻炉使用过程中出现的问题。
3. 学生能够运用所学知识,对箱式电阻炉进行简单的维护和故障排查。
情感态度价值观目标:1. 学生培养对物理实验的兴趣,激发探究科学技术的热情。
2. 学生树立安全意识,养成严格遵守操作规程的好习惯。
3. 学生学会团队合作,培养沟通协调能力和解决问题的能力。
课程性质:本课程为物理实验课,通过箱式电阻炉的操作与实验,使学生将理论知识与实际应用相结合。
学生特点:初三学生,具备一定的物理知识和实验操作能力,好奇心强,善于动手实践。
教学要求:结合学生特点,注重实践操作,提高学生的实际动手能力,强调安全意识,培养学生对物理实验的兴趣。
在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 箱式电阻炉基本结构及工作原理- 箱式电阻炉的构造、主要部件及其功能- 电阻炉的工作原理,包括电阻加热、温度控制等2. 箱式电阻炉的操作与安全规范- 操作步骤及注意事项- 安全使用规范,如用电安全、防火防爆等3. 箱式电阻炉的温度控制- 温度控制原理,包括PID控制、热电偶等- 相关计算公式及实际操作4. 箱式电阻炉的维护保养- 常见故障分析及排除方法- 定期维护保养方法及注意事项5. 实践操作- 简单加热实验,如熔化金属、烘干材料等- 操作过程中的问题分析及解决教学内容安排与进度:第一课时:箱式电阻炉基本结构及工作原理第二课时:箱式电阻炉的操作与安全规范第三课时:箱式电阻炉的温度控制第四课时:箱式电阻炉的维护保养第五课时:实践操作教材章节及内容列举:第一章:物理实验基本知识第三节:箱式电阻炉的结构、原理与操作教学内容紧密结合课程目标,注重科学性和系统性,循序渐进地组织教学,使学生在掌握知识的同时,提高实际操作能力。
低温箱式电阻炉课程设计
低温箱式电阻炉课程设计一、课程目标知识目标:1. 学生能够理解低温箱式电阻炉的基本结构、工作原理及操作流程。
2. 学生能够掌握低温箱式电阻炉在实验中的应用场景,如材料烧结、样品加热等。
3. 学生能够了解低温箱式电阻炉的安全操作规范及维护保养方法。
技能目标:1. 学生能够独立操作低温箱式电阻炉,进行简单的实验加热处理。
2. 学生能够通过实际操作,学会设置低温箱式电阻炉的温度、时间等参数,确保实验的准确性。
3. 学生能够分析实验过程中出现的问题,提出合理的解决方案。
情感态度价值观目标:1. 培养学生对低温箱式电阻炉及相关实验设备的尊重和爱护,养成良好的实验习惯。
2. 培养学生严谨的科学态度,注重实验安全,提高实验操作的规范性和责任感。
3. 培养学生团队协作精神,学会在实验中互相帮助、共同进步。
课程性质:本课程为实验实践课程,以学生动手操作为主,结合理论知识,培养学生的实际操作能力。
学生特点:学生处于中学阶段,具有一定的物理知识和实验操作基础,对低温箱式电阻炉有一定的好奇心。
教学要求:结合课本知识,注重实践操作,强调安全规范,提高学生的实验技能和综合素养。
将课程目标分解为具体的学习成果,以便在教学设计和评估中达到预期效果。
二、教学内容1. 低温箱式电阻炉的基本结构:介绍炉体、加热元件、温控系统等组成部分,结合教材相关章节,让学生了解其工作原理。
2. 低温箱式电阻炉的操作流程:详细讲解开关机、温度设置、时间设定、样品放置等步骤,指导学生按照教材中的操作规范进行实践。
3. 低温箱式电阻炉的应用场景:介绍低温箱式电阻炉在材料烧结、样品加热等实验中的应用,结合教材实例,加深学生的理解。
4. 安全操作规范及维护保养:强调低温箱式电阻炉的安全操作要点,如防止触电、烫伤等,讲解维护保养方法,确保设备长期稳定运行。
5. 实验操作技巧:指导学生掌握设置温度、时间等参数的技巧,分析实验过程中可能遇到的问题及解决方法。
教学大纲安排:第一课时:低温箱式电阻炉的基本结构和工作原理,操作流程预习。
热处理炉(箱式电阻炉)设计
热处理炉设计一、 设计任务设计一箱式电阻炉,计算和确定主要项目,并绘出草图。
基本技术条件:(1)用途:低合金钢等的回火;(2)工件:中小型零件,小批量多品种,最长0.8m ;(3)最高工作温度为550℃;(4)炉外壁温度小于60℃;(5)生产率:120kg/h 。
设计计算的主要项目:(1) 确定炉膛尺寸;(2) 选择炉衬材料及厚度,确定炉体外形尺寸;(3) 计算炉子功率,进行热平衡计算,并与经验计算法比较;(4) 计算炉子主要经济技术指标(热效率,空载功率,空炉升温时间);(5) 选择和计算电热元件,确定其布置方法;(6) 写出技术规范。
二、 炉型选择根据设计任务给出的生产特点,选用低温(≦550℃)箱式热处理电阻炉,炉膛不通保护气氛,为空气介质。
三、 确定炉膛尺寸1. 理论确定炉膛尺寸(1) 确定炉底总面积炉底总面积的确定方法有两种:实际排料法和加热能力指标法。
本设计用加热能力指标法来确定炉底面积。
已知炉子生产率h kg P 120=,按教材表5-1选择适用于回火的一般箱式炉,其单位炉底面积生产率)(00120h m kg p ⋅=。
因此,炉子的炉底有效面积(可以摆放工件的面积)1F 可按下式计算:201 1.2100120m p P F === 通常炉底有效面积和炉底总面积之比值在0.75~0.85之间选择。
本设计取值0.85,则炉底总面积F 为: 21 1.41285.01.285.0m F F ≈== (2) 确定炉膛的长度和宽度 炉底长度和宽度之比BL 在3/2~2之间选择。
考虑到炉子使用时装、出料的方便,本设计取2=BL ,则炉子炉底长度和宽度分别为:m L B m F L 840.021.6802680.15.01.4125.0======(3) 确定炉膛高度 炉膛高度和宽度之比BH 在0.5~0.9之间选择,大炉子取小值,小炉子取大值。
本设计取中值0.7,则炉膛高度为:m B H 588.0840.07.07.0=⨯==2. 实际确定炉膛尺寸为方便砌筑炉子,需根据标准砖尺寸(230×113×65mm ),并考虑砌缝宽度(砌砖时两块砖之间的宽度,2mm )、上、下砖体应互相错开以及在炉底方便布置电热元件等要求,进一步确定炉膛尺寸。
中温箱式电阻炉课程设计说明书
一、炉型的选择因为工件材料为低合金钢,热处理工艺为正火,对于低合金钢正火最高温度为【912+(30~50)】℃,选择中温炉(上限950℃)即可,同时工件没有特殊规定也不是长轴类,则选择箱式炉,并且无需大批量生产、工艺多变,则选择周期式作业。
综上所述,选择周期式中温箱式电阻炉。
二、炉膛尺寸的确定1、用炉底强度指标法计算炉底有效面积:查表得炉底强度h G =100Kg/(m 2·h )F 效=h gG 件=60100=0.6(m 2) 炉膛有效尺寸:L 效=效)(F 5.1~2L 效(m )=960mm炉膛有效宽度:B 效=效(F 2/3)~2/1B 效选择 1000m m ×600mm ×45mm/12mm 的炉底板,取B 效=0.6m2、 炉膛内腔砌墙尺寸炉膛宽度:B 砌=B 效+2×(0.1~0.15)B 砌=0.6+2×0.125=0.85 (m)炉膛长度:L 砌=L 效+0.16 =1.12(m )炉膛内高度:H 砌=(0.5~0.9)B 砌H 砌=0.8×0.85=0.68 (m )层数n=067.0108.03-⨯⨯砌B =10.1 选择10层∴炉膛高度H 砌=10×67+42+39=0.751(m)三、炉体结构设计与材料选择(一)、选择炉衬材料部分炉体包括炉壁、炉底、炉底、炉门、炉壳架几部分。
炉体通常用耐火层和保温层构成,尺寸与炉膛砌筑尺寸有关。
设计时应满足下列要求:(1)确定砌体的厚度尺寸要满足强度要求,并应与耐火砖、隔热保温砖的尺寸相吻合;(2)为了减少热损失和缩短升温时间,在满足强度要求的前提下,应尽量选用轻质耐火材料;(3)要保证炉壳表面温升小于50℃,否则会增大热损失,使环境温度升高,导致劳动条件恶化。
(二)、炉体结构设计和尺寸本炉设计为两层炉壁内层选用RNG-0.6型轻质粘土砖,其厚度S 1=115mm ;外层选用硅酸铝耐火纤维,体积密度λ2=105Kg/m 3厚度S 2待计算;RNG-0.6型轻质粘土砖:ρ1=600【Kg/ m 3】λ1=0.165+0.194×10-3t 均【w/(m ·℃)】C 1=0.836+0.263×10-3t 均【KJ/(Kg ·℃)】耐火纤维当t 3=60℃时,由表查得α∑=12.17【W/(㎡·℃)】∴ q=12.17×(50-20)=486.8(W/㎡)将上述各数据代入公式得: ()[]115.08.486950165.095010194.05.010194.02165.0165.010194.01t 233232⨯-⨯+⨯⨯⨯⨯⨯++-⨯=---=782(℃)代入数据解得:纤维层厚度:()107.0607828.4861S 2⨯-⨯==228(mm ) 取S 2=230mm(三)、炉顶的设计炉膛宽度为850mm ,采用拱顶,拱角60°的标准拱顶,拱顶式炉子最容易损坏的部位,受热时耐火砖发生膨胀,造成砌筑拱顶时,为了减少拱顶向两侧的压力,应采用轻质的楔形砖与标准直角砖混合砌筑。
650℃ 90kgh的箱式电阻炉设计 课程设计报告
报告题目:650℃90kg/h的箱式电阻炉设计《热处理设备》课程设计任务书课题名称650 ℃90 kg/h的箱式电阻炉设计完成时间20XX-10-20指导教师职称高工、讲师学生姓名班级总体设计要求和技术要点总体设计要求:1.通过设计,培养学生具有初步的设计思想和分析问题、解决问题的能力,了解设计的一般方法和步骤。
2.初步培养学生的设计基本技能,如炉型的选择、结构尺寸设计计算、绘图、查阅手册和设计资料,熟悉标准和规范等。
3.使学生掌握设计热处理设备的基本方法,能结合工程实际,选择并设计常用热处理设备,培养学生对工程技术问题的严肃认真和负责的态度。
设计一台热处理箱式电阻炉,其技术要点为:1.用途:中碳钢、低合金钢毛坯或零件的淬火、正火、调质处理及回火。
2.工件:中小型零件,无定型产品,处理批量为多品种,小批量;3.最高工作温度:≤650、750、850、950、1100℃、1200℃(选一个温度);4.生产率:60-120kg/h(分7份);5.生产特点:周期式成批装料,长时间连续生产。
工作内容及时间进度安排1.热处理设备设计准备 0.5天2.箱式电阻炉结构尺寸计算、选择炉体材料、计算分配电阻炉加热功率 0.5天3.计算电热元件尺寸、进行结构设计 0.5天3.核算设备技术经济指标 0.5天4.绘制电阻炉总图、电热元件零件图 1.0天5.编写设计说明书、使用说明书 0.5天6.设计总结 0.5天7.答辨 1.0天课程设计成果1、设计说明书:设计说明书是存档文件,是设计的理论计算依据。
说明书的格式如下: (1)统一模板,正规书写;(2)说明书的内容及计算说明项目:(a )、对设计课题的分析;(b )、设计计算过程;(c )、炉子技术指标;(d )、参考文献。
2、设计图纸:(1)电阻炉总图一张(A 3),要求如下:(a )、图面清晰,比例正确;(b )、尺寸及其标注方法正确;(c )、视图、剖视图完整正确;(d )、注出必要的技术条件。
箱式电阻炉课程教学设计
一、设计任务书题目:设计一台中温箱式热处理电阻炉; 炉子用途:中小型零件的热处理;材料及热处理工艺:中碳钢毛坯或零件的淬火、正火及调制处理; 生产率:160 kg/h ;生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。
二、炉型的选择根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度950℃,不通保护气氛。
三、确定炉体结构及尺寸 1.炉底面积的确定因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。
已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于正火和淬火时的单位面积生产率p 0为 120 kg/(m 2﹒h),故可求得炉底有效面积:F 1=P P 0=160120=1.33 m 2 由于有效面积与炉底总面积存在关系式F 1F ⁄=0.75~0.85,取系数上限,得炉底实际面积:F =F 1=1.33=1.57 m 2 2.炉底长度和宽度的确定由于热处理箱式电阻炉设计时应考虑出料方便,取L B ⁄=2,因此,可求得:L =√F 0.5⁄=√1.570.5⁄=1.772 mB =L 2⁄=1.7722⁄=0.886 m根据标准砖尺寸,为便于砌砖,取L =1.741 m ,B =0.869 m ,如总图所示。
3.炉膛高度的确定按照统计资料,炉膛高度H与宽度B之比H B⁄通常在0.5~0.9之间,根据炉子工作条件,取H B⁄=0.64Om。
因此,确定炉膛尺寸如下:长L=(230+2)×7+(230×1+2)=1741 m2宽B=(120+2)×4+(65+2)+(40+2)×2+(113+2)×2=869 mm高H=(65+2)×9+37=640 mm为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为:=1500 mmL效=700 mmB效=500 mmH效4.炉衬材料及厚度的确定由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN−0.8轻质粘土砖,+80 mm密度为250 kg m3⁄的普通硅酸铝纤维毡,+113mm B级硅藻土砖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
650 − 20 0.115 0.080 0.115 1 0.442 + 0.099 + 0.160 + 12.17 = 417.5 W m2
②验算交界面上的温度t 2 墙 和t 3 墙 t 2 墙 = t1 − q 墙 ∆= t 2 墙 − t ‘2 墙 t ’2 墙 = s1 = 541.5℃ λ1
Tg 100 4
−
Ta 100
4
因为Tg = 650 + 273 = 923 K,Ta = 20 + 273 = 293 K,由于正常工作是,炉门开启高度 为炉膛高度一半,故炉门开启面积F = B ×
H 2
= 0.978 ×
0.640 2
= 0.316 m2 , 炉 门 开 启 率
δt = 6 60 = 0.1。 由于炉门开启后,辐射口为矩形,且H 2与B之比为0.320 0.978 = 0.33,炉门开启高度与 炉墙厚度之比为0.32 0.316 = 1.01,由教材图 1-14 第一条线查得孔口遮蔽系数∅ = 0.7,故 Q辐 = 3.6 × 5.660F∅ςt
Tg 100 4
−
Ta 100
4
= 5.660 × 3.6 × 0.316 × 0.1 × 0.7 × = 3246.6 kJ h (4)开启炉门溢气热损失 溢气热损失由公式得 Q 溢 = qvα ρα cα t ’g − t α δt 式中, q va = 1997B ∙ ∙
2 H H 2
923 4 100
−
293 4 100
= 1997 × 0.978 × 0.320 × 0.320 = 353.5 m3 h
冷空气密度ρa = 1.29 kg m3 ,由附表得ca = 1.302 kJ m3 ∙ ℃ ,t a = 20 ℃,t ‘g 为溢气温 度,近似认为 t ′g = t a + 3 t g − t a = 20 + 3 650 − 20 = 440 ℃ Q溢 = qva ρa ca t g − t g δt = 353.5 × 1.29 × 1.302 × (440 − 20) × 0.1 = 13062.1 kJ h (5)其他热损失 其他热损失约为上述热损失之和的10%~20%,故 Q他 = 0.13 Q 件 + Q 散 + Q 辐 + Q 溢 = 0.13 × 107748.8 + 15922 + 3246.6 + 13062.1 = 18197.335 kJ h (6)炉子热量总支出 其中Q 辅 = 0,Q控 = 0,由公式得 Q总 = Q件 + Q辅 + Q控 + Q散 + Q辐 + Q溢 + Q他 = 107748.8 + 15922 + 3246.6 + 13062.1 + 18197.335 = 158176.835 kJ h (7)炉子安装功率 由教材式(8.15) 3600 其中,K为功率储备系数,本炉设计中K取 1.3,则 1.3 × 158176.835 = 57.11 kW 3600 与标准炉子相比较,取炉子功率为60 kW。 六、炉子热效率计算 1.正常工作时的效率 由教材式(8.18) P安 = η= Q件 Q总 = 107748.8 = 68.12% 158176.835 P安 = KQ 总
2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B = 2,因此,可求得: L = F 0.5 = 1.88 0.5 = 1.94m B = L 2 = 1.94 2 = 0.97 m 根据标准砖尺寸,为便于砌砖,取L = 1.970 m,B = 0.978 m,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H与宽度B之比H B通常在0.5~0.9之间,根据炉子工作条件,取 H B = 0.654m。 因此,确定炉膛尺寸如下: 长 L = 230 + 2 × 8 + 230 × 2 + 2 = 1970 m 宽 B = 120 + 2 × 4 + 65 + 2 × 2 + 40 + 2 × 3 + 113 + 2 × 2 = 978mm 高 H = 65 + 2 × 9 + 37 = 640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间, 确定工作室有效尺寸为: L效 = 1700 mm B效 = 700 mm H效 = 500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN − 0.8轻质粘 土砖,+80 mm 密度为250 kg m3 的普通硅酸铝纤维毡,+113mm B级硅藻土砖。 炉顶采用113 mmQN − 1.0轻质粘土砖,+80 mm密度为250 kg m3 的普通硅酸铝纤维毡, +115 mm膨胀珍珠岩 。 炉底采用三层QN − 1.0轻质粘土砖 67 × 3 mm, +50 mm密度为250 kg m3 的普通硅酸铝
1
纤维毡,+182 mm B 级硅藻土砖和膨胀珍珠岩复合炉衬。 炉门用 65 mmQN − 1.0 轻质粘土砖, +80 mm 密度为 250 kg m3 的普通硅酸铝纤维毡, +65 mm A级硅藻土砖。 炉底隔砖采用重质粘土砖(NZ − 35),电热元件搁砖选用重质高铝砖。 炉底板材料选用Cr − Mn − N耐热钢, 根据炉底实际尺寸给出, 分三块或者四块, 厚20mm。 四、砌体平均表面积计算 砌体外廓尺寸如下: L外 = L + 2 × 115 + 80 + 115 = 2590 mm B外 = B + 2 × 115 + 80 + 115 = 1590 mm H外 = H + f + 115 + 80 + 115 + 67 × 4 + 50 + 182 = 1441mm 试中 f ——拱顶高度,此炉子采用 60 °标准拱顶,取拱弧半径 R = B ,则 f 可由 f = R(1 − cos30° )求得 f=131.052。 1.炉顶平均面积 F顶内 =
满足一般热处理电阻炉表面升温< 50℃的要求。 计算炉墙散热损失 Q 墙散 = q 墙 × F墙均 = 417.5 × 6.74 = 2813.95W II.炉顶的散热损失 和炉墙散热损失同理:
t 2 顶 = 586.9 ℃ t 3 顶 = 376.45℃ t4 顶 = 36.34℃ Q 顶散 = q 顶 ∙ F顶均 = 257.6 × 2.882 = 742.4 W m2 III.炉底的散热损失 t 2 底 = 504.6℃ t 3 底 = 357.9 ℃ t4 底 = 49.5 ℃ Q 底散 = q 底 ∙ F底均 = 309.4 × 2.8 = 866.32 W m2 整个炉体散热损失 Q 散 = Q 墙散 + Q 顶散 + Q 底散 = 2813.95 + 742.4 + 866.32 = 4422.67W = 15922 kJ h (3)开启炉门的辐射热损失 设装出料所需时间为每小时 6 分钟,根据 Q 辐 = 3.6 × 5.660F∅δt
= 3.77 × 12.05 = 6.74 m2 3.炉底平均面积 F底内 = B × L = 0.978 × 1.97 = 1.93 m2 F底外 = B外 × L外 = 1.590 × 2.590 = 4.12m2 F底均 = F底内 × F底外 = 1.93 × 4.12 = 2.8 m2
五、计算炉子功率 1.根据经验公式法计算炉子功率 由教材式(8.5) t 1.55 1000 取式中系数 K 为保温系数,取值为 11,炉温t = 650℃,炉膛面积 P安 = KF 0.9 F 避 = 2 × 1.97 × 0.640 + 2 × 0.978 × 0.640 + 1.97 × 0.978 +2 × 3.14 × 0.978 × 360°× 1.97 = 5.7 m2 所以 P安 = KF 0.9
t 1000 650 1000 1.55 1.55 60°
= 11 × 5.70.9 × = 27 kW 由经验公式法计算得P安 ≈ 30kW 2.根据热平衡计算炉子功率 (1)加热工件所需的热量Q 件
由 资 料 附 表 得 , 工 件 在 650℃ 及 20℃ 时 比 热 容 分 别 为 c件 2 = 1.051 kJ kg ∙ ℃ , c件 1 = 0.486 kJ kg ∙ ℃ ,根据式(5 − 1) Q 件 = p c件 2 t 1 − c件 1 t 0 = 160 × 1.051 × 650 − 0.486 × 20 = 107748.8 kJ h (2)通过炉衬的散热损失的热量Q 散 I.炉墙的散热损失 由于炉子侧壁和前后墙炉衬结构相似,故作统一数据处理,为简化计算,将炉门包括在 前墙内。 根据式 Q散 =
硅藻土砖层s3 的平均温度t s3 均 = 190 ℃,s1 ,s3 层炉衬的导热率由教材附表 3 得
λ1 = 0.290 + 0.256 × 10−3 ts1 均 = 0.442 W (m ∙ ℃) λ3 = 0.131 + 0.23 × 10−3 ts3 均 = 0.160 W (m ∙ ℃)。 普通硅酸铝纤维的热导率由教材附表 4 查得,在与给定温度相差较小范围内近似认为其热导 率与温度成直线关系,由t s2 均 = 430 ℃,得 λ2 = 0.099 W (m ∙ ℃) 当炉壳温度为60℃,室温为20℃是,由教材附表 2 可得炉墙外表面对车间的综合传热系 数α = 12.17 W (m2 ∙ ℃) ①求热流 q墙 = tg − ta s1 s2 s3 1 + + + λ1 λ2 λ3 α