数列练习题(带答案)
《数列》单元测试题(含答案解析)
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C )3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )2174.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )236.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B )170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210(B )220(C )216(D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是.12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S . 13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是8.5℃,5km 高度的气温是-17.5℃,那么3km 高度的气温是℃. 14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T ,,,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ; (Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a nb =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列; (Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )8.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4 C.2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值围是( ) A .d >83 B .d <3C.83≤d <3D.83<d ≤3 10.等比数列{}n a 中,首项为1a ,公比为 q ,则下列条件中,使{}n a 一定为递减数列的条件是( ) A .1q < B 、10,1a q >< C 、10,01a q ><<或10,1a q <> D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于( )A.9B.10C.11D.12 12.设函数f (x )满足f (n +1)=2)(2nn f + (n ∈N +),且f (1)=2,则f (20)为( ) A .95B .97C .105D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________. 14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a 16.已知数列满足:a 1=1,a n +1=a na n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +). (1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足2S n =2n a + n -4(n ∈N +). (1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. (1)求{}n a 的通项公式;(2)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0). (1)求证数列{1b n}是等差数列;(2)令11+=n n a c ,求数列{n c }的通项公式.22.(12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .《数列》单元测试题 参考答案 一、选择题1.D 2.A 3.C 4.B5.B 6.C 7.A 8.A 9.B 10.C 二、填空题11.1613 12.21513.-4.5 14.12+n 15.48T T ,812T T 三、解答题16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n .∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a ,从而])21(1[38)21(1])21(1[4n n n S --=----⨯=.18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去). 第1次相遇是在开始运动后7分钟. (Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去). 第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221na a a a n n =++++- ,① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=.在①中,令1=n ,得311=a .∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=,∴nn n S 33332332⋅++⨯+⨯+= ,③ ∴14323333233+⋅++⨯+⨯+=n n n S . ④即31)31(3321---⋅=+n n n n S ,∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b .∵241+=+n n a S ,①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{nn a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a nn ,∴22)13(-⋅-=n n n a . 21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列,∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d 2-8=-2.∴a =a +(n -1)d =8-2(n -1)=10-2n .(2) S =)9(n n -得S = -22018.解:n n S n 272-=282-=∴n a n ∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a (2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1,即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252nn S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n }是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n.∴1211+=+=n na c n n。
数列与不等式30大题(有答案)
S1 S2
Sn
第 1页(共 23页)
10. 在等比数列 an 和等差数列 bn 中,a1 = b1 > 0,a3 = b3 > 0,a1 ≠ a3,试比较 a5 和 b5 的大 小.
11. 设数列 an 的前 n 项和为 Sn,且 a1 = 1,an+1 = 1 + Sn n ∈ ∗ .
(1) 求数列 an 的通项公式;
∗ 成立,
18. 已知常数 p 满足 0 < p < 1,数列 xn 满足 x1 = p + 1p,xn+1 = xn2 − 2.
(1) 求 x2,x3,x4;
(2) 猜想 xn 的通项公式(不用给出证明); (3) 求证:xn+1 > xn 对 n ∈ ∗ 成立.
19. 设 b > 0 ,数列
an
大值.
7. 已知 an 是正整数组成的数列,a1 = 1 ,且点( an,an+1 )( n ∈ ∗ )在函数 y = x2 + 1 的图象上;
(1) 求数列 an 的通项公式;
(2) 若数列 bn 满足 b1 = 1,bn+1 = bn + 2an ,求证:bn ⋅ bn+2 < bn2+1
8. x,y ∈
∈
+ 都成立
的最大正整数 k 的值.
6. 已知数列 an 是等比数列,首项 a1 = 1,公比 q > 0,其前 n 项和为 Sn,且 S1 + a1,S3 + a3,
S2 + a2 成等差数列.
(1) 求数列 an 的通项公式;
(2) 若数列
bn
满足 an+1 =
完整版)数列典型例题(含答案)
完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
数列练习题及答案(通用)
必修5第二章《数列》 练习题一、选择题1.数列1,3,6,10,的一个通项公式是:( )A. 12+-=n n a nB.)1(21-=n n a nC.)1(21+=n n a nD.)1)(1(21+-=n n n a n2.若三个连续整数和为48,则紧随它们后面的三个连续整数的和是 ( ) A .48 B .46 C .54 D .573.等差数列的前三项依次为a-1,a+1,2a+3,则a 的值为 ( ) A .1 B .-1 C .0 D .24.在等差数列中,若1a +2a +…+10a =65,11a +12a +…+20a =165,则1a 的值为;( ) A. 1 B. 2 C. 3 D. 45.若ac >0,m 是a ,c 的等比中项,则有 ( )6.下列等比数列中,首项为1的是( )A.n n a 4=B.n n a 21=C.nn a ⎪⎭⎫⎝⎛⋅=313 D.122-⋅=n n a7.下列几种说法正确的是( )A. 常数列是等差数列也是等比数列B. 常数列是等比数列但不可能是等差数列C. 常数列是等差数列但不可能是等比数列D. 常数列是等差数列也可能是等比数列8.首项为3,末项为3072,公比为2的等比数列的项数有( )A. 11项B. 12项C. 13项D. 10项 9.在等比数列}{n a 中,,24,3876543==a a a a a a 则=11109a a a ( )A. 48B. 72C. 144D. 192 10.公差不为零的等差数列的第2,3,6项组成等比数列,则公比为 ( ) A 、1 B 、2 C 、3 D 、411.在等比数列{}n a 中,如果66=a ,99=a ,那么=3a ( )A 、4B 、23C 、916D 、312.在等比数列{}n a 中,5642a a a +=,则公比q 等于 ( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或213.若数列{}n a 的前n 项和322+-=n n S n ,则这个数列的前三项分别是: ( ) A. -1,1,3 B. 2,1,3 C. 2,1,0 D. 2,1,614.已知等比数列的公比是2,且前四项和为1,那么前八项之和为 ( ) A .15 B .17 C .19 D .2115.设等差数列{}n a 的公差为d ,如果它的前n 项和Sn=-n 2,那么 ( ) A 、2,12-=-=d n a n B 、2,12=-=d n a n C 、 2,12-=+-=d n a n D 、2,12=+-=d n a n二、填空题1.等差数列{a n }中,a 1=-1,a 7=8,则a 8=____。
必修五-数列经典练习题带答案
word 格式-可编辑-感谢下载支持必修五-数列一、选择题(题型注释)1.数列1,3,6,10,…的一个通项公式是( )A .12+-n nB .(1)2n n +C .(1)2n n - D .321-+n2.已知数列1是它的( ) A .第22项 B .第23项 C .第24项 D .第28项 3.数列1,2,4,8,16,32,的一个通项公式是( )A .21n a n =-B .12n n a -= C .2n n a = D .12n n a +=4.数列1,3,7,15,…的通项公式n a 等于( )A 、n 2B 、n 2+1C 、n 2-1D 、12-n 5.数列23,45-,87,169-,…的一个通项公式为( ) A .n n nn a 212)1(+⋅-= B .n n n n a 212)1(+⋅-=C .n nn n a 212)1(1+⋅-=+ D .n n n n a 212)1(1+⋅-=+6.数列5791,,,, (81524)--的一个通项公式是( ) A .1221(1)()n n n a n N n n ++-=-∈+B .1221(1)()3n n n a n N n n -+-=-∈+C .1221(1)()2n n n a n N n n ++-=-∈+D .1221(1)()2n nn a n N n n-++=-∈+7.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .14 8.数列 ,10,6,3,1的一个通项公式是( ) A .)1(2--=n n a n B .12-=n a n C .2)1(+=n n a n D .2)1(-=n n a n9.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .27 10.已知数列{}n a 的前n 项和为332412++=n n S n ,求这个数列的通项公式. 11.数列1,3,5,7,9,--……的一个通项公式为( )A .(1)(12)nn a n =-- B .21n a n =- C .(1)(21)n n a n =-- D .(1)(21)nn a n =-+12.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S =( ) A .12-n B .121-n C .1)32(-n D .1)23(-n13.已知数列{}n a 的前n 项和()21n S n n =+,则5a 的值为( ) A .80 B .40 C .20 D .10 14.已知数列{}n a 满足110,2n n a a a n +==+那么2009a 的值是( )A .22009B .20082007⨯C .20092010⨯D .20082009⨯15.设已知数列{}n a 对任意的N n m ∈,,满足n m n m a a a +=+,且12=a ,那么10a 等于( ) A.3 B.5 C.7 D.9 16.在等差数列{}n a 中,已知a 1-a 4-a 8-a 12+a 15=2,那么S 15=( ) A .-30 B .15 C .-60 D .-15 17.在数列{}n a 中,11=a ,21=-+n n a a ,则51a 的值为 ( ) A .99 B .101 C .102 D .4918.已知等差数列{n a }中,882=+a a ,则该数列前9项和9s 等于( ) A .18 B .27 C .36 D .4519.已知数列}{n a 是等差数列,且48111032=+++a a a a ,则76a a +等于( )A .12B .18C .24D .3020.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .1821.等差数列{}n a 中,14736939,27,a a a a a a ++=++=则数列{}n a 前9项的和9S 等于( ) A .66 B .99 C .144 D .297word 格式-可编辑-感谢下载支持22.设n S 为等差数列{}n a 的前n 项和,8374,2S a a ==-,则9a = ( ) A .6- B .4- C .2- D .2 23.在等差数列{}n a 中,若1201210864=++++a a a a a ,则7513a a -的值为( ) A .8 B .12 C .16 D .7224.设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ) A .6- B .4- C .2- D .225.各项均为正数的等差数列{}n a 中,4936a a =,则前12项和12S 的最小值为( ) A .78 B .48 C .60 D .72 26.已知等差数列}{n a 的前n 项和为n S ,且854,18S a a 则-==( )A .18B .36C .54D .72 27.设等差数列{}n a 的前n 项和为n S ,若111a =-, 466a a +=-,则当n S 取最小值时,n = ( )A .6B .7C .8D .9 28.等差数列{}n a 的前n 项和为Sn,若230,100,n n S S ==则3n S =( )A .130B .170C .210D .26029.已知数列{}n a 满足12a =,110n n a a +-+=()n N *∈ ,则此数列的通项n a 等于( )A .21n +B .1n +C .1n -D .3n -30.已知等差数列{}n a 中,7916a a +=,其前n 项和为n S ,则15S =( ) A 、240 B 、120 C 、80 D 、不确定 311的等差中项为( )A .1 BC .2 D.32.设S n 为等差数列{}n a 的前项和,已知1596a a a -+=,则9S 的值为( ) A .54 B .45 C .27 D .1833.等差数列{}n a 中,a 1>0,d≠0,S 3=S 11,则S n 中的最大值是 ( ) A .S 7 B .S 7或S 8 C .S 14 D .S 834.等差数列{}n a 的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100 D .不能确定35.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 A .15 B .30 C .31 D .64 36.在等差数列{}n a 中,若11101a a <-,且{}n a 的前n 项和n S 有最小值,则使得0n S >的最小值n 为 n( )A .11B .19C .20D .2137.已知等差数列{}n a 的前n 项和满足65S S <且876S S S >=,则下列结论错误..的是( ) A .6S 和7S 均为n S 的最大值 B .07=aC .公差0d <D .59S S > 38.在等差数列中,,则的前5项和=( )A .7B .15C .20D .2539.已知数列}{n a 是等差数列,其前n 项和为n S ,若首项01>a 且0156<<-a a ,有下列四个命题:0:1<d P ;0:1012<+a a P ;:3P 数列}{n a 的前5项和最大;:4P 使0>n S 的最大n 值为10;其中正确的命题个数为( )A .1个B .2个C .3个D .4个40.已知等差数列{}n a 的前n 项和满足65S S <且876S S S >=,则下列结论错误..的是( ) A .6S 和7S 均为n S 的最大值 B .07=a ; C .公差; D .59S S >;41.设等差数列{}n a 的前n 项和为n S .若14611,6a a a =-+=-,则当n S 取最小值时,n 等于( ) A .6 B .7 C .8 D .942.在等差数列{}n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A .9 B .10 C .11 D .1243.已知等差数列{n a },62a =,则此数列的前11项的和11S =( ) A .44 B .33 C .22 D .1144.在等差数列{na }中,27,39963741=++=++a a a a a a ,则数列{na }的前9项和=9SA .66B .99C .144D .29745.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A .15B .16C .49D .64 46.若数列{}n a 中,n a =43-3n ,则n S 最大值n =( )n S n S 0d <word 格式-可编辑-感谢下载支持A .13B .14C .15D .14或1547.已知等差数列{}n a 的公差是2,若a 1,a 3,a 4成等比数列,则a 2等于( ) A .-4 B .-6 C .-8 D .-10 48.已知等比数列{}n a 中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+( )A.1+ B.1-.3+ D.3-49.已知数列}{n a 是等比数列,且811=a ,14-=a ,则数列}{n a 的公比q 为( ) A .2 B .21- C .-2 D .2150.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7 B .5 C .-5 D .-751.等比数列{}n a 中,若69,S =前3项和38S =,则数列{}n a 的公比为( ) A .2 B .12C .1或12D .1或252.在等比数列{}n a 中,481,3S S ==,则17181920a a a a +++=的值是( ) A .14 B .16 C .18 D .2053.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( )A .1B .2C .4D .854.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .21n +-1B .2n -1C .21n —D .2n +155.已知等比数列前n 项和为n S ,若42=S ,164=S ,则=6S ( ) A .52 B .64 C .64- D .52-56.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=A .5B .9C .3log 45D .10 57.已知数列{}n a 的前n 项和为n S ,11a =,133n n S a +=-,则n a =( )A .143n -⎛⎫ ⎪⎝⎭B .134n -⎛⎫⎪⎝⎭C .13n -D .113n -⎛⎫⎪⎝⎭58.已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144aa =,则10S 的值是 ( )(A )511 (B )1023 (C )1533 (D )3069第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题(题型注释)59.已知等差数列{}n a 满足121010a a a +++=,则11a =,则n S 最大值为 .60.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________. 61.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13=________. 62.设等差数列的前项和为,若936S =,则______. 63.若等差数列{}n a 满足212n a a n -+=,则其前n 项和n S = .64.在数列中,已知,,且数列是等比数列,则65.在等比数列{}n a 中,若369a a =,24527a a a =,则2a = .66.在公比大于1的等比数列{}n a 中,3772a a =,2827a a +=,则10a = . 67.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 12= .68.数列{}n a 是等比数列,若22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+= .69.在等比数列{}n a 中,11a =,公比2q =,若{}n a 的前n 项和127n S =,则n 的值为________.{}n a 62a =0q >2122211log log log a a a +++=71.已知等比数列{a n }的前n 项和,则{a n }的通项公式是 .72.已知数列{n a }的前n 项和 21n s n n =++,则89101112a a a a a ++++=________.73.在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += . 74.把数列121n ⎧⎫⎨⎬-⎩⎭的所有数按照从大到小的原则写成如下数表:113 15 17 19 111 113 115 117 119 129第k 行有12k -个数,第t 行的第s 个数(从左数起)记为(),A t s ,则()8,17___A =}{n a n n S =++852a a a {}n a 24a =315a ={}n a n +n a =word 格式-可编辑-感谢下载支持75.在等比数列}{n a 中,1041=<<a a ,则能使不等式0)1()1()1(2211≤-+⋅⋅⋅+-+-nn a a a a a a 成立的最大正整数n 是 .76.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈N*)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8,则25,51a 为 。
(完整版)高二数学数列练习题(含答案)
高二《数列》专题1.与的关系: ,已知求,应分时 ;时,n S n a 11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩n S n a 1=n 1a =2≥n = 两步,最后考虑是否满足后面的.n a 1a n a 2.等差等比数列等差数列等比数列定义()1n n a a d --=2n ≥*1()n na q n N a +=∈通项,d n a a n )1(1-+=(),()n m a a n m d n m =+->,中项如果成等差数列,那么叫做与的等差中,,a A b A a b 项.。
2a bA +=等差中项的设法:如果成等比数列,那么叫做与,,a G b G a 的等比中项.b 等比中项的设法:,,aqa aq 前项n 和,)(21n n a a nS +=d n n na S n 2)1(1-+=若*(,,,,)m n p q a a a a m n p q N m n p q +=+∈+=+,则2m p q =+若,则q p n m +=+2*2,,(,,,)m p q m p q a a a p q n m N =+=⋅∈若则有性质、、为等差数列n S 2n n S S -32n n S S -、、为等比数列n S 2n n S S -32n n S S -函数看数列12221()()22n n a dn a d An Bd d s n a n An Bn=+-=+=+-=+111(1)11nn n n n n a a q Aq q a as q A Aq q q q===-=-≠--判定方法(1)定义法:证明为一个常数;)(*1N n a a n n ∈-+(2)等差中项:证明,*11(2N n a a a n n n ∈+=+-)2≥n (3)通项公式:为常数)()(,n a kn b k b =+*N ∈n (1)定义法:证明为一个常数)(*1N n a a n n ∈+(2)中项:证明21nn a a -=*1(,2)n a n N n +⋅∈≥(3)通项公式:均是不为0(,nna cq c q =3.数列通项公式求法。
数列综合练习题(含答案)精选全文
3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
小学数学数列练习题及答案
小学数学数列练习题及答案一、选择题1. 下列数列中,公差为3的是:A. 1,4,9,14,...B. 3,6,12,24,...C. 2,4,8,16,...D. 5,10,20,40,...2. 若数列的通项公式为an = 3n + 1,其中n为自然数,那么数列的前5项依次是:A. 1,2,3,4,5B. 4,7,10,13,16C. 3,6,9,12,15D. 1,4,7,10,133. 数列1,4,7,10,...的通项公式是:A. an = 3n - 2B. an = 3n + 1C. an = 3n - 1D. an = 3n + 24. 若数列的通项公式为an = n^2,其中n为自然数,那么数列的第6项是:A. 36B. 16C. 25D. 49二、填空题1. 数列7,14,21,28,...的公差是_________。
2. 数列2,5,8,11,...的通项公式是an = __________。
3. 数列3,6,12,24,...的通项公式是an = __________。
4. 数列1,-2,4,-8,...的通项公式是an = __________。
三、解答题1. 求等差数列25,21,17,13,...的第10项。
2. 已知数列-2,-3,-5,-8,-12,...的通项公式为an = 2n^2 - 3n,求数列的第8项。
3. 将以下数列的前5项填入括号中,使其成为等差数列:2,(),(),10,()。
答案:一、选择题1. B2. B3. A4. D二、填空题1. 72. 3n-13. 3×2^(n-1)4. (-1)^(n-1)×2^(n-1)三、解答题1. 第10项为25 + (-4)×(10-1) = 25 + (-4)×9 = 25 - 36 = -11。
2. 第8项为2×8^2 - 3×8 = 128 - 24 = 104。
高中数学《数列》100题(问题+答案)
数列一、单选题1.在ABC 中,AB,45C =︒,O 是ABC 的外心,若OC AB CA CB ⋅+⋅的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =()A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-2.将等比数列{}n b 按原顺序分成1项,2项,4项,…,12n -项的各组,再将公差为2的等差数列{}n a 的各项依次插入各组之间,得到新数列{}n c :1b ,1a ,2b ,3b ,2a ,4b ,5b ,6b ,7b ,3a ,…,新数列{}n c 的前n 项和为n S .若11c =,22c =,3134S =,则S 200=()A .3841117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦B .3861113032⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦C .3861117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦D .38411302⎛⎫- ⎪⎝⎭3.在ABC 中,AB =,45C =︒,O 是ABC 的外心,若21OC AC ⋅-的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =().A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-4.设数列{}n a 的通项公式为()()()*121cos 1N 2nn n a n n π=--⋅+∈,其前n 项和为n S ,则120S =()A .60-B .120-C .180D .2405.已知等差数列{}n a 的前n 项和为n S ,满足190S >,200S <,若数列{}n a 满足10m m a a +⋅<,则m =()A .9B .10C .19D .206.已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =()A .13n -B .12n -C .21n -D .32n -7.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项8.已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a使得14a =,则122n m n+++的最小值为()A.118+B .2615C .74D .28159.设数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,则下列说法正确的是()A .202120221a a ⋅<B .202120221a a ⋅>C.2022a <-D.2022a >10.数列{}n a 满足11a =,且对于任意的*N n ∈都有11n n a a a n +=++,则122015111a a a +++= ()A .10071008B .20151008C .1007504D .2015201611.在数列{}n a 中,12a =,22a =且21(1)(N )nn n a a n ++-=+-∈,100S =()A .0B .1300C .2600D .265012.童谣是一种民间文学,因为常取材于现实生活,语言幽默风趣、朗朗上口而使少年儿童易于接受,从而成为了重要的传统教育方式.有一首童谣中唱到:“玲珑塔上琉璃灯,沙弥点灯向上行.首层掌灯共三盏,明灯层层更倍增(意为:每上一层,灯的数量增加一倍).小僧掌灯到塔顶,心中默数灯几重.玲珑塔上灯火数,三百八十一盏明.灯映湖心点点红,但问塔顶几盏灯?”童谣中的玲珑塔的顶层灯的盏数为()A .96B .144C .192D .23113.已知无穷等比数列{}n a 中12a =,22a <,它的前n 项和为n S ,则下列命题正确的是()A .数列{}n S 是递增数列B .数列{}n S 是递减数列C .数列{}n S 存在最小项D .数列{}n S 存在最大项14.已知等差数列{}n a 中,前4项为1,3,5,7,则数列{}n a 前10项的和10S =()A .100B .23C .21D .1715.已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =()A .54-或54B .54-C .45D .5416.在等比数列{}n a 中,已知对*n N ∈有1221n n a a a ++⋯+=-,那么22212n a a a ++⋯+=()A .2(21)n -B .21(21)3n -C .41n -D .1(41)3n-17.设等比数列{}n a 的各项均为正数,已知237881a a a a =,则267a a a +的最小值为()AB.C.D.18.已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为()A .12B .36C .78D .15619.设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n -中,14a =,211a =,则()4a Ω=()A .21B .20C .41D .4020.已知数列1,12-,14,18-,….则该数列的第10项为()A .1512-B .1512C .11024-D .1102421.有一个非常有趣的数列1⎧⎫⎨⎬⎩⎭n 叫做调和数列,此数列的前n 项和已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式.某数学探究小组为了探究调和数列的性质,仿照“杨辉三角”.将1,12,13,14, (1),…作为第一行,相邻两个数相减得到第二行,依次类推,得到如图所示的三角形差数列,则第2行的前100项和为()A .100101B .99100C .99200D .5010122.等差数列{}n a 的前n 项和为n S ,若1a ,2020a 满足12020OA a OB a OC =+,其中A 为OBC边BC 上任意一点,则2020S =().A .2020B .1010C .1020D .223.一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图,根据前三个点阵图形的规律,第四个点阵表示的三角形数是()A .1B .6C .10D .2024.数列{}n a 的前4项为:1111,,,25811,则它的一个通项公式是()A .121n -B .121n +C .131n -D .131n +25.已知数列1,3-,5,7-,9,…,则该数列的第10项为()A .21-B .19-C .19D .2126.在等差数列{}n a 中,若47101102a a a ++=,则311a a +=()A .2B .4C .6D .827.等差数列{}n a 中,若14a =,公差2d =,则5a =()A .10B .12C .14D .22二、多选题28.在平面四边形ABCD 中,ABD △的面积是BCD △面积的2倍,又数列{}n a 满足12a =,当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,设{}n a 的前n 项和为n S ,则()A .{}n a 为等比数列B .2n n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等差数列D .()152210n n S n +=--29.已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为*,n T n N ∈,则下列选项正确的为()A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <30.已知等差数列{}n a 的前n 项和为n S ,公差为d ,若10911S S S <<,则()A .0d >B .10a >C .200S <D .210S >31.记n S 为等差数列{}n a 的前n 项和,已知342,14a S ==,则()A .{}n a 是递增数列B .18a =C .523S a a =D .n S 的最小值为332.已知数列{}n a 中,13a =,()1*11N n na n a +=∈-,下列选项中能使3n a =的n 有()A .22B .24C .26D .2833.对任意数列{}n a ,下列说法一定正确的是()A .若数列{}n a 是等差数列,则数列{2}n a 是等比数列B .若数列{}n a 是等差数列,则数列{2}n a 是等差数列C .若数列{}n a 是等比数列,则数列{lg |}|n a 是等比数列D .若数列{}n a 是等比数列,则数列{lg |}|n a 是等差数列三、填空题34.在数列{}n a 及{}n b 中,1n n n a a b +=++,1n n n b a b +=+,11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2018项和为_________35.已知数列{}n a 的通项为21n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥且12b a =,则123...n b b b b ++++=________.36.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一个数列:1,1,2,3,5,8,13,21,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列称为“斐波那契数列”,记为{}n F .利用下图所揭示的{}n F 的性质,则在等式()222220221220212022m F F F F F F -++⋅⋅⋅+=⋅中,m =______.37.将公差不为零的等差数列1a ,2a ,3a 调整顺序后构成一个新的等比数列i a ,j a ,k a ,其中{,,}{1,2,3}i j k =,试写出一个调整顺序后成等比数列的数列公比:_____.(写出一个即可).38.已知()f x 为R 上单调递增的奇函数,在数列{}n a 中,120a =,对任意正整数n ,()()130n n f a f a ++-=,则数列{}n a 的前n 项和n S 的最大值为___________.39.给定正整数n 和正数b ,对于满足条件211n a a b +-=的所有无穷等差数列{}n a ,当1n a +=________时,1221n n n y a a a +++=+++ 取得最大值.40.在我国南宋数学家杨辉所著作的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律,下面的数字三角形可以看做当n 依次取0、1、2、3、L 时()na b +展开式的二项式系数,相邻两斜线间各数的和组成数列{}n a ,例11a =,211a =+,312a =+,L ,设数列{}n a 的前n 项和为n S .若20243a m =+,则2022S =___________.41.已知数列{}n a 的前n 项和343n n nS -=,记n b =,则数列{}n b 的前n 项和n T =_______.42.现有一根长为81米的圆柱形铁棒,第1天截取铁棒长度的13,从第2天开始每天截取前一天剩下长度的13,则第5天截取的长度是______米.43.已知数列{}n a 满足112,,n n a a a n +==-则求100a =___________44.已知等差数列的前n 项和为n S ,且13140,0S S ><,则使n S 取得最大值的n 为__________.45.在等差数列{}n a 中,710132a a =+,则该数列的前7项和为_________.46.已知等比数列{}n a 的前n 项和为n S ,公比1q >,且21a +为1a 与3a 的等差中项,314S =.若数列{}n b 满足2log n n b a =,其前n 项和为n T ,则n T =_________.47.已知数列{}n a 是递增数列,且满足121n n a a +=+,且1a 的取值范围是___________.48.已知等比数列{}n a 的公比为2,前n 项和为n S ,则lim nn nS a →∞=__________.49.已知数列{}n a 的首项12a =,且对任意的*n N ∈,都有122nn n a a a +=+,则lim n n a →+∞=______.50.数列{}n a 满足12a =,2111a a =-,若对于大于2的正整数n ,111n n a a -=-,则102a =__________.51.若n a 为()1nx +的二项展开式中2x 项的系数,则2limnn a n →+∞=_________.52.联合国教科文组织将3月14日确定为“国际数学日”,是因为3.14是圆周率数值最接近的数字.我国数学家刘徽首创割圆术,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.步骤是:第1步,计算圆内接正六边形的周长;第2步,计算圆内接正12边形的周长;第3步,计算圆内接正24边形的周长;以此类推,第6步,需要计算的是正______边形的周长.53.已知数列{}n a 满足11n nna a +=+,且46a =,则1a =___________.54.已知无穷数列{}n a 满足12a =,25a =,318a =,写出{}n a 的一个通项公式:______.(不能写成分段函数的形式)55.数列{}n a 的前几项和为n S ,且111,2n n a a a +==,则,4S =__________.56.若等差数列{}n a 满足202220221a a a =+=,则1a 的值为___________.57.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.58.已知数列{}n a 中,11a =,13n n a a +=-,则5S =_________四、解答题59.已知正项数列{}n a 的前n 项和为n S 满足12311111n n S S S S n +++⋯+=+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22na nb =,记n T 为数列{}n b 的前n 项和,()x Ω表示x 除以3的余数,求()21n T +Ω.60.已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<.61.若有穷数列A :1a ,2a ,…,()*,3n a n n ∈≥N ,满足()1121,2,,2i i i i a a a a i n +++-≤-=- ,则称数列A 为M 数列.(1)判断下列数列是否为M 数列,并说明理由;①1,2,4,3②4,2,8,1(2)已知M 数列A :1a ,2a ,…,9a ,其中14a =,27a =,求349a a a +++ 的最小值.(3)已知M 数列A 是1,2,…,n 的一个排列.若1112n k k k a a n -+=-=+∑,求n 的所有取值.62.已知数列{}n a 的前n 项和为n S ,且211122n S n n =++,*N n ∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-,*N n ∈,求数列{}n b 的前n 项和n T .63.已知数列{}n a 满足12a =,{}n a 的前n 项和为n S ,()()121n n a S n n ++=++∈N ,令1n n b a =+.(1)求证:{}n b 是等比数列;(2)记数列{}n nb 的前n 项和为n T ,求n T ;(3)求证:123111156n a a a a ++++<L .64.对于有限数列()12:3n A a a a n ≥ ,,,,如果()12121ni a a a a i n n +++<=- ,,,,则称数列A 具有性质P .(1)判断数列1:2323A ,,,和2:3456A ,,,是否具有性质P ,并说明理由;(2)求证:若数列12:n A a a a ,,,具有性质P ,则对任意互不相等的{}12i j k n ∈ ,,,,,,有i j k a a a +>;(3)设数列122022:A a a a ,,,具有性质P ,每一项均为整数,()1122021i i a a i +≠= ,,,,求122022a a a +++ 的最小值.65.已知数列{}n a 满足11a =,1,,2,.n n n a n a a n +⎧=⎨⎩为奇数为偶数(1)令2n n b a =,求1b ,2b 及{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .66.已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列.(1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列;(3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k = 是公差为(0)d d >等差数列,求d 所有可能的值67.设数列{}n a 的前n 项和n S 满足121n n S S n +-=+(N n *∈),且11a =.(1)求证:数列{}1n a +是等比数列;(2)若()22log 1nn n b a =⋅+,求数列{}n b 的前n 项和nT 68.设数列{}n a 的前n 项和为n S ,已知13n n a a +=,且3431S S +=.(1)求{}n a 的通项公式;(2)设()()311log 3n n n b a n a =++,求数列{}n b 的前n 项和n T.69.(1)已知数列{}n a 是正项数列,12a =,且2211122n n n n n n a a a a a a +++-+=+.求数列{}n a 的通项公式;(2)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式.70.已知数列{}n a 和{}n b 的通项公式:21n a n =-,2n n b =(1)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(2)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .71.已知公差不为零的等差数列{}n a 的前n 项和为n S ,12a =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若11n n b S +=,数列{}n b 的前n 项和为n T ,证明:12n T <.72.设正项数列{}n a 的前n 项和为n S ,且()()647n n n S a a =-+.(1)求{}n a 的通项公式;(2)设1133nn nn n n a a b a a ++-=⋅,求数列{}n b 的前n 项和n T .73.已知数列{}{},n n a b 满足111a b ==.数列{}n n a b +是公差为q 的等差数列,数列{}n n a b 是公比为q 的等比数列,,n n a b n *≥∈N .(1)若1q =,求数列{}n a 的通项公式;(2)若01q <<,证明:12231,1n n qa b a b a b n q*++++<∈-N .74.已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n ++++= .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a -+,求数列{bn }的前n 项和为Tn .75.已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23333123123()n n a a a a a a a a ++++=++++ .(1)写出数列的前三项(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{}n a ,使得20172016a =-?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记n a 的所有取值构成的集合为n A ,求集合n A 中所有元素之和.(结论不要求证明)76.已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .77.设各项均不等于零的数列{}n a 的前n 项和为n S ,已知1114,42n n n a S a a a +=+=.(1)求23,a a 的值,并求数列{}n a 的通项公式;(2)证明:1211121n nS S S a +++<- .78.已知{}n a 是等差数列,{}n b 是等比数列,且22b =,516b =,112a b =,34a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n S .79.已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =;数列{}n b 满足11222n n b b b ++++=- .(1)求数列{}n a 和{}n b 的通项公式;(2)记tan()n n n c b a π=⋅,求数列{}n c 的前3n 项和.80.已知数列{an }的前n 项和为n S ,*1(N )22n n a n S -∈=,数列{bn }满足b 1=1,点P(bn ,bn +1)在直线x ﹣y +2=0上.(1)求数列{an },{bn }的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和Tn ;(3)若0λ>,求对所有的正整数n 都有222nnb k a λλ-+>成立的k 的取值范围.81.已知等比数列{}n a 的公比1q >,且45656a a a ++=,54a +是4a ,6a 的等差中项.(1)求数列{}n a 的通项公式;(2)数列{}1n n a a λ+-的前n 项和为n S ,若()*21n n S n =-∈N ,求实数λ的值.82.已知数列{}n a 的前n 项和为n S ,若n n S na =,且246601860S S S S ++++= ,求1a .83.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:()221n n n S S S n N *++<∈;(3)对任意的正整数n ,设()21132,,,,n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.84.在数列{}n a 中,()*112,21n n a a a n n +==-+∈N ,数列{}n a 的前n 项和为n S .(1)证明:数列{}n a n -是等比数列,并求数列{}n a 的通项公式;(2)求n S .85.设数列{}n a 的前n 项和为n S ,若对任意的正整数n ,都有23n n S a n =-.(1)求{}n a 的通项公式;(2)求数列{(1)}n n a +⋅的前n 项和n T .86.已知数列{}n a 是等差数列,{}n b 是等比数列,且111a b ==,322b b =,441a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的n *∈N 恒成立,求实数λ的取值范围.87.甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.88.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项.(1)求,n n a b ;(2)设22121n n n n n c b a a ++=+⋅,求{}n c 的前n 项和n S .89.治理垃圾是改善环境的重要举措.A 地在未进行垃圾分类前每年需要焚烧垃圾量为200万吨,当地政府从2020年开始推进垃圾分类工作,通过对分类垃圾进行环保处理等一系列措施,预计从2020年开始的连续5年,每年需要焚烧垃圾量比上一年减少20万吨,从第6年开始,每年需要焚烧垃圾量为上一年的75%(记2020年为第1年).(1)写出A 地每年需要焚烧垃圾量与治理年数()*n n N∈的表达式;(2)设n A 为从2020年开始n 年内需要焚烧垃圾量的年平均值....,证明数列{}n A 为递减数列.90.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列111a b ==,22a b =,3342a b a +=.(1)求{}n a 和{}n b 的通项公式;(2)记,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .91.已知{}n a 是递增的等差数列,13a =,且13a ,4a ,1a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:11156n T ≤<.92.设等差数列{}n a 的前n 项和为n S ,且126a =-,1215S S =.(1)求{}n a 的通项公式;(2)求数列{}2nn a -的前n 项和n T .93.设数列{}n a 是等比数列,其前n 项和为n S .(1)从下面两个条件中任选一个作为已知条件,求{}n a 的通项公式;①{}11,2n a S =-是等比数列;②233421,61S a S a =+=+.(2)在(1)的条件下,若31n n b a -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别作答,按第一个解答计分.94.已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=.(1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.95.已知数列{}n a 的通项公式为2n a n n λ=+,若数列{}n a 为递增数列,求λ的取值范围.96.设{}{}n n a b 、是两个数列,()()12122n n n n M A a B n n -⎛⎫⎪⎝⎭,,,,,为直角坐标平面上的点.对*N n n n M A B ∈,、、三点共线.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:1122212log n nn na b a b a b c a a a +++=+++ ,其中{}n c 是第三项为8,公比为4的等比数列.求证:点列()()()11221,2,,n n P b P b P n b 、、、在同一条直线上;(3)记数列{}{}n n a b 、的前m 项和分别为m A 和m B ,对任意自然数n ,是否总存在与n 相关的自然数m ,使得n m n m a B b A =若存在,求出m 与n 的关系,若不存在,请说明理由.97.已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .98.在等差数列{}n a 中,已知1210a a +=,34530a a a ++=.(1)求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n S .五、双空题99.“一尺之棰,日取其半,万世不竭”出自我国古代典籍《庄子·天下》,其中蕴含着等比数列的相关知识.已知长度为4的线段AB ,取AB 的中点C ,以AC 为边作等边三角形(如图①),该等边三角形的面积为1S ,在图①中取CB 的中点1C ,以1CC 为边作等边三角形(如图②),图②中所有的等边三角形的面积之和为2S ,以此类推,则3S =___________;1nii iS==∑___________.100.已知[]x 表示不超过x 的最大整数,例如:[]2.32=,[]1.72-=-.在数列{}n a 中,[]lg n a n =,记n S 为数列{}n a 的前n 项和,则2022a =______;2022S =______.参考答案:1.A 【解析】【分析】先由正弦定理得到2sin b B =,02b <≤2211122a b =+-,由向量数量积的几何意义,得22122b AC OC AC =⋅= ,22122CB OC CB a ⋅=-=- ,进而计算出3m =,再使用构造法求解通项公式【详解】设BC a =,AC b =,AB c =,则在ABC 中,由正弦定理sin sin c bC B=及c 45C =︒,得2sin b B =,∵0180B ︒<<︒,∴0sin 1B <≤,∴02b <≤.在ABC 中,由余弦定理及2222cos c a b ab C =+-及c =45C =︒,2211122a b =+-.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得22122b AC OC AC =⋅=,22122CBOC CB a ⋅=-=- ,()OC AB CA CB OC AC CB CA CB OC AC OC CB CA CB⋅+⋅=⋅++⋅=⋅+⋅+⋅ 222222211111111222222b a b a a b b =-+=-++-=-.∵02b <≤,∴2113b -<-≤,所以OC AB CA CB ⋅+⋅的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 【点睛】构造法求解数列的通项公式,是经常考查的知识点,要结合递推数列的结构特点,选择合适的方法进行构造,常见的构造类型有()11n n a pa q p +=+≠和()11nn n a pa q p +=+≠等.2.A 【解析】【分析】由已知求得等比数列的首项和公比,以及等差数列的首项,再求得数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,运用分组求和的方法可求得答案.【详解】解:由已知得11b =,12a =,2331214b c S c c ==--=,等比数列{}n b 的公比14q =.令21122221nn n T -=++++=- ,则663T =,7127T =,8255T =所以数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,故()()20012181292S b b b a a a =+++++++ 1933841176112472172123214⎛⎫- ⎪⎡⎤⨯⎛⎫⎝⎭=++⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-⨯.故选:A .3.A 【解析】【分析】设AC b =,AB c =,由正余弦定理可得2sin b B =,结合三角形外心性质、向量数量积的几何意义求得21OC AC ⋅-的最大值为3,进而可得()1131n n a a ++=+,利用等比数列的定义写出通项公式.【详解】设AC b =,AB c =,在ABC 中,由sin sin c bC B=及c =45C =︒,得2sin b B =,∵0180B ︒<<︒,则0sin 1B <≤,∴02b <≤.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得222111OC AC AC b ⋅-=-=- ,而2113b -<-≤,所以21OC AC ⋅-的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 4.D 【解析】【分析】分别取43n k =-,42k -,41k -和4k ,*k N ∈,可验证出43424148k k k k a a a a ---+++=,利用周期性可验算得到结果.【详解】当43n k =-,*N k ∈时,cos 02n π=,431k a -=;当42n k =-,*N k ∈时,1os 2c n π=-,()()4224211186k a k k -=⨯--⨯-+=-+⎡⎤⎣⎦;当41n k =-,*N k ∈时,cos 02n π=,411k a -=;当4n k =,*N k ∈时,cos12n π=,424118k a k k =⨯-+=.()4342414186188k k k k a a a a k k ---∴+++=+-+++=,12012082404S ∴=⨯=.故选:D 5.B 【解析】【分析】根据给定条件,利用等差数列的前n 项和结合等差数列性质,求出异号的相邻两项即可作答.【详解】等差数列{}n a 的前n 项和为n S ,则1191910191902a a S a +=⨯=>,有100a >,1202010112010()02a a S a a +=⨯=+<,有11100a a <-<,显然数列{}n a 是递减的,且10110a a ⋅<,因10m m a a +⋅<,所以10m =.故选:B 6.C 【解析】【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a .【详解】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= ,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C.【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列.7.B 【解析】【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.8.B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m n m n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B 9.A 【解析】【分析】根据()2*1n n na S n N a +=∈求出1a 的值,判断数列{}2n S 是等差数列,求出n S 的通项公式,再求出n a ,然后逐个分析判断即可【详解】因为数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,所以当1n =时,()211*112a S n N a +=∈,解得11a =或11a =-,当2n ≥时,()2111112n n n n n n n n n a S a S S a a S S --+==+=-+-,整理得2211n n S S --=,所以数列{}2nS 是以1为公差的等差数列,当11a =±时,21(1)n S n n =+-=,所以=n S 或n S=所以1-=-=n n n a S S 11a =满足此式,或1n n n a S S -=-=11a =-满足此式,所以2022a =或2022a =,所以CD 错误,当=n a20212022a a ⋅=1<,当n a =20212022a a ⋅=1<,所以A 正确,B 错误,故选:A 10.B 【解析】【分析】先利用累加法求得数列{}n a 的通项公式,再利用裂项相消法去求122015111a a a +++ 的值.【详解】由11a =,11n n a a a n +=++,可得11n n a a n +-=+则2n ≥时,()()11232211()()n n n n n a a a a a a a a a a ---=-+-++-+-+ ()1321(1)2nn n n =+-++++=+ 又11122a ==⨯,则数列{}n a 的通项公式为(1)2n n a n =+则()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则122015111a a a +++ 1111111201522112232015201620161008⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎣=⎭⎦ 故选:B 11.D 【解析】【分析】分n 为奇数和n 为偶数两种情况讨论,再利用分组求和法及等差数列前n 项和的公式,即可得出答案.【详解】解:当n 为奇数时,20n n a a +-=,所以数列{}n a 的奇数项是以0为公差的等差数列,当n 为偶数时,22n n a a +-=,所以数列{}n a 的偶数项是以2为公差的等差数列,所以2,,n n a n n ⎧=⎨⎩为奇数为偶数,所以()()10050210025024610010026502S +=⨯+++++=+=L .故选:D.12.C 【解析】【分析】由条件可得玲珑塔的灯盏数从首层到顶层为等比数列,由条件列方程求玲珑塔的顶层灯的盏数.【详解】由题意可得玲珑塔的灯盏数从首层到顶层为等比数列,设其首层为1a ,公比q ,顶层为n a ,前n 项和为n S 由已知可得13a =,2q =,381n S =,由等比数列的前n 项和公式可得132********n nn a a q a a q --==-=--,所以192n a =.故玲珑塔的顶层灯的盏数为192,故选:C.13.C 【解析】【分析】对AB ,举公比为负数的反例判断即可对CD ,设等比数列{}n a 公比为q ,分0q >和0q <两种情况讨论,再得出结论即可【详解】对AB ,当公比为12-时,2311,,2a a =-=此时12332,1,2S S S ===,此时{}n S 既不是递增也不是递减数列;对CD ,设等比数列{}n a 公比为q ,当0q >时,因为22a <,故22q <,故01q <<,此时()2122111n nn q q S qq q-==----,易得n S 随n 的增大而增大,故{}n S 存在最小项1S ,不存在最大项;当0q <时,因为22a <,故22q -<,故10q -<<,2211nn q S q q =---,因为1q <,故当n 为偶数时,2211nn q S q q =---,随着n 的增大而增大,此时222111nn q S q q q =-<---无最大值,当2n =时有最小值222S q =+;当n 为奇数时,2211nn q S q q=+--,随着n 的增大而减小,故222111nn q S q q q=+>---无最小值,有最大值12S =.综上,当0q <时,因为22221q q +<<-,故当2n =时有最小值222S q =+,当1n =时有最大值12S =综上所述,数列{}n S 存在最小项,不一定有最大项,故C 正确;D 错误故选:C 14.A 【解析】【分析】先求出公差,再由等差数列求和公式求解即可.【详解】设公差为d ,则312d =-=,则1010910121002S ⨯=⨯+=.故选:A.15.D 【解析】【分析】由等差数列求和公式求出35a =,由等比数列通项公式基本量计算得到公比,进而求出6714b b q ==,从而求出结果.【详解】由题意得:()155355252a a S a +===,解得:35a =,设等比数列{}n b 的公比是q ,因为1132,8b b ==,所以1228q =,解得:124q =,显然60q >,所以62q =,所以6714b b q ==,所以3754a b =故选:D 16.D 【解析】【分析】利用“1n =时,11a S =;当2n时,1n n n a S S -=-”即可得到n a ,进而得到数列2{}n a 是等比数列,求出公比和首项,再利用等比数列的前n 项和公式即可得出.【详解】设等比数列{}n a 的公比为q ,1221n n n S a a a =++⋯+=- ,∴当2n 时,1112121n n n S a a a ---=++⋯+=-,111222n n n n n n a S S ---∴=-=-=.∴2122221(2)4(2)n n n n a a ---==,当1n =时,11211a =-=,21221a a +=-,解得22a =,22214a a =.也符合2214n n a a -=,∴数列2{}n a 是等比数列,首项为1,公比为4.∴22212411(41)413n n na a a -++⋯+==--.故选:D 17.C 【解析】【分析】设等比数列{}n a 的公比为(0)q q >,根据题意得到2673339q a a qa +=+,结合基本不等式,即可求解.【详解】设等比数列{}n a 的公比为(0)q q >,因为23784581a a a a a ==,所以53a =,又因为235553326739,a a a a a q a q q q q===⋅=,所以3267339q a a q a +=+≥=当且仅当3339q q =时,即613q =时,等号成立,所以267a a a +的最小值为.故选:C.18.C 【解析】【分析】利用已知等式可求得等差数列的公差d 和首项1a ,由等差数列求和公式可求得结果.【详解】设等差数列{}n a 公差为d ,13512a a a ++= ,10111224a a a ++=,()1011121352412a a a a a a d ∴++-++==,解得:12d =,135********a a a a d a ∴++=+=+=,解得:13a =,{}n a ∴的前13项的和为11312131213397824a d ⨯⨯+=+=.故选:C.19.C 【解析】【分析】设{}n a n -的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果.【详解】设{}n a n -的公比为q ,则2121123141a q a --===--,所以111(1)(41)33n n n n a n a q---=-⋅=-⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=.故选:C 20.A 【解析】【分析】根据规律可得数列通项,再求其中的项即可.【详解】通过观察可知该数列的通项公式为()1112n n n a +--=,所以()11109112512a -==-.故选:A 21.A 【解析】【分析】利用裂项相消法求和即可;【详解】解:由题可知,第2行的前100项和10011111261210012010S +++++⨯= 1111111100122334100101101=-+-+-++-= .故选:A 22.B 【解析】【分析】根据三点共线可得120201a a +=,结合等差数列的前n 项和公式求解.∵,,A B C 三点共线且12020OA a OB a OC =+,则120201a a +=∴()120202020202010102a a S +==故选:B .23.C 【解析】【分析】根据规律求得正确答案.【详解】根据规律可知,第四个点阵表示的三角形数为:123410+++=.故选:C 24.C 【解析】【分析】根据规律可得结果.【详解】将1111,,,25811可以写成1111,,,311321331341⨯-⨯-⨯-⨯-,所以{}n a 的通项公式为131n -;故选:C 25.B 【解析】【分析】由数列的前几项可得数列的一个通项公式,再代入计算可得;【详解】解:依题意可得该数列的通项公式可以为()()1121n n a n +=-⋅-,所以1019a =-.故选:B 26.D 【解析】根据等差数列的下标和性质即可解出.【详解】因为4710771110222a a a a a +=+=+,解得:74a =,所以311728a a a +==.故选:D .27.B 【解析】【分析】根据等差数列的性质直接计算即可.【详解】由等差数列的性质可知:51444212a a d =+=+⨯=;故选:B.28.BD 【解析】【分析】连AC 交BD 于E ,根据面积关系推出2AE EC =,根据平面向量知识推出BE = 1233BA BC +,结合()()1122n n n n BD a BA a BC --=-++ ,推出1122(2)n n n n a a --+=-,11222nn n n a a ---=-,求出232nn a n =-+,(23)2n n a n =-+⋅,根据等比数列的定义可判断A ;根据等差数列的定义可判断C ,根据数列的单调性可判断B ;利用错位相减法求出n S ,可判断D.【详解】如图,连AC 交BD 于E ,则1sin 21sin 2ABD BD AE AEB S S BD EC CED ⋅⋅=⋅⋅△△BCD ÐÐ=2AEEC=,即2AE EC =,所以2AE EC =,所以()2BE BA BC BE -=- ,所以BE = 1233BA BC +,设BD tBE =(1)t >,因为当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,所以()()111122n nn n BE a BA a BC t t--=-++ ,()()1111231223n n n na t a t--⎧-=⎪⎪⎨⎪+=⎪⎩,所以当2n ≥时,恒有1122(2)n n n n a a --+=-,所以11222n n n n a a --=-,即11222n n n n a a ---=-,又12a =,所以112a =,所以12(1)232nn a n n =--=-+,所以(23)2n n a n =-+⋅,因为11(21)242(23)223n n n n a n n a n n ++-+⋅-+==-+⋅-+不是常数,所以{}n a 不为等比数列,故A 不正确;因为11(21)(23)2022n n n n a a n n ++-=-+--+=-<,即1122n n n n a a ++<,所以2n n a ⎧⎫⎨⎬⎩⎭为递减数列,故B 正确;因为1n n a a +-=1(21)2(23)2n n n n +-+⋅--+⋅=(21)2n n --⋅不是常数,所以{}n a 不为等差数列,故C 不正确;因为12312(1)2(3)2(23)2nn S n =⨯+-⋅+-⋅++-+⋅ ,所以2341212(1)2(3)2(23)2n n S n +=⨯+-⋅+-⋅++-+⋅ ,所以12341122(2222)(23)2n n n S n +-=⨯-++++--+⋅ ,所以114(12)22(23)212n n n S n -+--=-⨯--+⋅-110(52)2n n +=--⋅,所以1(52)210n n S n +=-⋅-,故D 正确.故选:BD 29.BCD【解析】【分析】由题知121n n a a +=+,进而得数列{1}n a +是首项为2,公比为2的等比数列,再结合通项公式和裂项求和求解即可.【详解】由121n n n S S a +=++得1121n n n n a S S a ++=-=+,即121n n a a +=+所以112(1)n n a a ++=+,由111S a ==,所以数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;所以12nn a +=,即21n n a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,所以22311111111111212*********n n n n T ++=-+-+⋯+-=-<------,故D 正确.故选:BCD 30.AD 【解析】【分析】对AB ,根据通项n a 与n S 的关系可得100a <,110a >即可判断;对CD ,根据等差数列前n 项和的公式,结合等差数列的性质判断即可【详解】因为109S S <,1011S S <,所以109100S S a -=<,1110110a S S =>-,故等差数列首项为负,公差为正,所以0d >,10a <,故A 正确,B 错误;由911S S <,可知11910110S S a a -=+>,所以()()20120101110100S a a a a =+=+>,故C 错误;因为110a >,所以2111210S a =>,故D 正确.故选:AD 31.BCD 【解析】【分析】设等差数列{}n a 的公差为d ,再根据n S 与n a 的公式可得d ,进而求得n S 与n a 的通项公式,再逐个判定即可【详解】设等差数列{}n a 的公差为d ,则11224614a d a d +=⎧⎨+=⎩,解得183a d =⎧⎨=-⎩,故311n a n =-+,()()311819232n n n S n n ==-+-.故{}n a 是递减数列,A 错误;18a =,B 正确;()535191250S -⨯==,235210a a =⨯=,故C 正确;()1932n n n S =-,当1,2,3...6n =时,()1932n n n S -=,因为函数()193y x x =-的对称轴为196x =,开口向下,故当6n =时,n S 取得最小值()66193632S -⨯==;当7,8,9...n =时,()3192n n n S -=,函数()319y x x =-的对称轴为196x =,开口向上,故当7n =时,nS 取得最小值()77371972S ⨯-==,综上有n S 的最小值为3,故D 正确;故选:BCD 32.AD 【解析】【分析】由递推公式可得数列为周期数列,即得答案.【详解】解:因为13a =,()1*11N n na n a +=∈-,所以23412,,323a a a =-==,所以数列{}n a 是周期为3的数列,所以132(N )n a a n *-=∈,故122283a a a ===.故选:AD.33.AD 【解析】【分析】根据等差数列和等比数列的定义逐一判断可得选项.【详解】。
(完整版)《数列》练习题及答案
欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。
数列练习题及答案
数列练习题及答案一、选择题1. 已知数列{an}的前n项和为Sn,若a1=1,a2=3,且满足an+1 = an + 2n,求S5的值。
A. 25B. 28B. 30D. 312. 对于数列{bn},若b1=2,且bn+1 = 2bn + 1,求b4的值。
A. 17B. 15C. 13D. 113. 已知数列{cn}是等差数列,其公差为3,且c5=23,求c1的值。
A. 2B. 5C. 8D. 114. 数列{dn}的通项公式为dn = 2n - 1,求d10的值。
A. 19B. 17C. 15D. 135. 若数列{en}满足en = 3en-1 - 2,e1 = 1,求e3的值。
B. 5C. 3D. 1二、填空题6. 已知数列{fn}的前n项和为Sn,且满足Sn = n^2,求f3的值。
7. 对于数列{gn},若g1=4,且满足gn+1 = 3gn - 2,求g3的值。
8. 已知等比数列{hn}的首项为h1=8,公比为2,求h5的值。
9. 若数列{in}满足in = 2^n - 1,求i5的值。
10. 对于数列{jn},若j1=1,且满足jn+1 = jn^2,求j4的值。
三、解答题11. 某工厂生产的产品数量构成一个等差数列,第一年生产了100件,每年生产量比上一年多20件。
求第5年的产量,并求这5年的总产量。
12. 某公司的股票价格构成一个等比数列,第一年价格为10元,每年价格是上一年的2倍。
求第3年的股票价格,并求这3年的平均价格。
13. 已知数列{kn}的前n项和为Sn,且满足Sn = 2n^2 + n,求k5的值。
14. 对于数列{ln},若l1=1,且满足ln+1 = ln + ln-1,l2=3,求l4的值。
15. 某数列{mn}的通项公式为mn = 3^n - 2^n,求m5的值。
1. B2. A3. D4. A5. A6. 67. 108. 1289. 3110. 25511. 第5年产量为180件,5年总产量为700件。
数列的概念练习题(有答案)
一、数列的概念选择题1.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .62.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .503.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项4.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+5.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .116.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .27.已知数列{}n a 的首项为2,且数列{}n a 满足111n n n a a a +-=+,数列{}n a 的前n 项的和为n S ,则1008S 等于( )A .504B .294C .294-D .504-8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .1609.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .373210.历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用.比如意大利数学家列昂纳多—斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233…即121a a ==,当n ≥3时,12n n n a a a --=+,此数列在现代物理及化学等领域有着广泛的应用.若此数列的各项依次被4整除后的余数构成一个新的数列{}n b ,记数列{}n b 的前n 项和为n S ,则20S 的值为( ) A .24B .26C .28D .3011.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .17613.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1014.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则645a ,等于( )12345678910A .2019B .2020C .2021D .202215.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),()*3n n N≥∈,,此数列在现代物理及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3B .2C .1D .016.数列{}n a 满足:12a =,111nn na a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-B .16-C .16D .617.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23D .21118.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .17219.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-20.若数列{a n }满足1112,1nn na a a a ++==-,则2020a 的值为( ) A .2B .-3C .12-D .13二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 24.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值25.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.26.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 27.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S > D .若67S S >则56S S >.28.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列29.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1230.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为n S 的最大值31.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <33.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <35.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
高中数列精选大题50题(带详细答案)
高中数列精选大题50题(带详细答案)1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值.3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由. 8 .已知数列),3,2(1335,}{11 =-+==-n a a a a n n n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
数列专题训练(含答案)
数列专题训练1.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 014的值是A .8B .6C .4D .2 2.(合肥市2014年第一次教学质量检测)已知数列}{n a 的前n 项和为n S ,并满足:n n n a a a -=++122,354a a -=,则=7S ( )A .7B .12C .14D .21 3.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =( ) A .24 B .48 C .66D .1324. 设n S 是等差数列{}n a 的前n 项和,若4540,||a a a <>,则使0n S >成立的最小正整数n 为A .6B .7C .8D .95. (南昌一中、南昌十中2014届高三两校上学期联考)设n S 是等差数列{}n a 的前n 项和,( ) A .1B .-1C . 2D .6.设n S 为等差数列{}n a 的前n 项和,且20101-=a ,32008201120082011=-S S ,则2a =( ) A .2008- B .2012- C .2008 D .2012 7.(2013·江西高考)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .248.(成都七中高2014届一诊模拟数学试卷)已知正项等比数列{}n a 满足7652a a a =+。
若存在两项,m n a a14a =,则19m n+的最小值为( ) A 83B 114C 145D 1769.[江苏省苏北四市(徐、淮、连、宿)2012届高三10月抽测试卷]已知一个等比数列的前三项的积为3,后三项的积为9,且所有项的积为243,则该数列的项数为 。
10.(宁夏银川一中2014届高三年级月考)数列{}n a 的通项为(1)sin 12n n n a n π=-⋅⋅+ 前n项和为n S , 则100S =_________.11.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.12.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明数列{b n }是等比数列.(2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .13.数列{}n a 满足11a =,1122n nn nn a a a ++=+(n N +∈). (Ⅰ)证明:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)求数列{}n a 的通项公式n a ;(Ⅲ)设(1)n n b n n a =+,求数列{}n b 的前n 项和n S .14. 设等差数列{a n }的前n 项和为S n ,且S n =12na n +a n -c (c 是常数,n ∈N *),a 2=6.(1)求c 的值及数列{a n }的通项公式;(2)证明1a 1a 2+1a 2a 3+…+1a n a n +1<18.15. 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且3a 2是a 1+3和a 3+4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =a n (a n +1)(a n +1+1),数列{b n }的前n 项和为T n ,求证:T n <12.16. 已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *. (1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围.17. 已知数列{}n a 的前项n 和为n S ,11a =,n S 与13n S +-的等差中项是2()3n N *-∈.(1)证明数列23n S ⎧⎫-⎨⎬⎩⎭为等比数列; (2)求数列{}n a 的通项公式; (3)若对任意正整数n ,不等式n k S ≤恒成立,求实数k 的最大值. 18. 已知数列{}n a 中11=a ,121+=+n n n a a a (+∈N n ). ⑴求证:数列⎭⎬⎫⎩⎨⎧n a 1为等差数列; ⑵设1+⋅=n n n a a b (+∈N n ),数列{}n b 的前n 项和为n S ,求满足20121005>n S 的最小正整数n .19. 设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足222223457,7a a a a S +=+=.(1)求数列{}n a 的通项公式及前n 项和n S ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项. 20.已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根. (Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,……,第.n a 项,……删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.21.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.参考答案:1.【解析】 a 1a 2=2×7=14,所以a 3=4,4×7=28,所以a 4=8,4×8=32,所以a 5=2,2×8=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,a n 成周期排列,周期数为6,2 013=335×6+3,所以a 2 014=a 4=8,故选C.2.【答案】C 由n n n a a a -=++122知数列}{n a 为等差数列,由354a a -=得53174a a a a +==+,所以()1777142a a S +== 3.【答案】 D 由题意可得6613(6)62a d a d +=++,得612a =,又11111611()111322a a S a +===(作为选择题,可以用常数列求解)4.【答案】C 由题意知()()184********=70,0,022a a a a S a a a S ++<+>\==> 5.【答案】A ()()1116111995111111921999112a a a S a a S a +===?+6.【答案】A 【解析】设等差数列{}n a 的公差为d ,由1()2n n n a a S +=得12n n S a a n +=,又32008201120082011=-S S ,所以1201012008322a a a a++-=,得201020086a a -=,所以26d =,解得3d =,所以21201022008a a d =+=-+=-7. A8.【答案】A 【解析】设数列的公比为q ,由7652a a a =+得25552a q a q a =+,解得2(1舍)q q ==-14a =得221124m n a a +-=,所以6m n +=,所以19m n+19199586666633m n m n m n n m +⎛⎫=+=+++≥+= ⎪⎝⎭ 9.【解析】由已知得1233a a a =,129n n n a a a --=,两式相乘得12132()()()27n n n a a a a a a --= 所以由等比数列的性质得12132n n n a a a a a a --==,所以13n a a =.记121n n x a a a a -=gL g ,则121n n x a a a a -=g L g ,两式相乘得 21211211()()()()()n n n n n n x a a a a a a a a a a --==g L g所以由题意可得22433n=,解得10n =.10.【答案】150 【解析】由数列的通项公式得(0141)(4181)n S =++++-++++K ,四项为一组,每组的和都是6,所以100256150S =⨯=11.【解】 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.3分所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.5分(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;6分 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.7分故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.9分记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;10分 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.12分综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.13分 12. (1)证明:由a 1=1,及S n +1=4a n +2,有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3.由S n +1=4a n +2 ① 知当n ≥2时,有S n =4a n -1+2② ①-②得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1)又∵b n =a n +1-2a n ,∴b n =2b n -1,∴{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14,a n =(3n -1)·2n -2. 13.(Ⅰ)由已知可得1122n n n n n a a a ++=+,即11221n n n n a a ++=+,即11221n nn na a ++-=∴ 数列2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列……5分(Ⅱ)由(Ⅰ)知122(1)11n n n n a a =+-⨯=+,∴ 21n n a n =+ ……8分 (Ⅲ)由(Ⅱ)知2nn b n =⋅,231222322n n S n =⋅+⋅+⋅++⋅L23121222(1)22n n n S n n +=⋅+⋅++-⋅+⋅L ……10分相减得:231122222222212n nn n n S n n ++-⋅-=++++-⋅=-⋅-L11222n n n ++=--⋅ ………12分∴ 1(1)22n n S n +=-⋅+………13分14.(1)解 因为S n =12na n +a n -c ,所以当n =1时,S 1=12a 1+a 1-c ,解得a 1=2c ,……(2分)当n =2时,S 2=a 2+a 2-c ,即a 1+a 2=2a 2-c ,解得a 2=3c ,……(3分) 所以3c =6,解得c =2;……(4分)则a 1=4,数列{a n }的公差d =a 2-a 1=2,所以a n =a 1+(n -1)d =2n +2.……(6分) (2)证明 因为1a 1a 2+1a 2a 3+…+1a n a n +1=14×6+16×8+…+1(2n +2)(2n +4)=12(14-16)+12(16-18)+…+12(12n +2-12n +4)=12[(14-16)+(16-18)+…+(12n +2-12n +4)]……(8分) =12(14-12n +4)=18-14(n +2).…(10分) 因为n ∈N *,所以1a 1a 2+1a 2a 3+…+1a n a n +1<18.……(12分)15.解:(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3+a 3+42=3a 2.解得a 2=2.设数列{a n }的公比为q ,则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q +2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2.∴a 1=1.故数列{a n }的通项公式为a 2=2n -1.(2)证明:∵b n =a n (a n +1)(a n +1+1)=2n -1(2n -1+1)(2n+1)=12n -1+1-12n +1,∴T n =⎝⎛⎭⎫120+1-121+1+⎝⎛⎭⎫121+1-122+1+122+1-123+1+…+⎝⎛⎭⎫12n -1+1-12n +1=11+1-12n +1=12-12n +1<12. 16.解:(1)设等比数列{a n }的公比为q ,∵a n +1+a n =9·2n -1,n ∈N *,∴a 2+a 1=9,a 3+a 2=18,∴q =a 3+a 2a 2+a 1=189=2,∴2a 1+a 1=9,∴a 1=3.∴a n =3·2n -1,n ∈N *,经验证,满足题意.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1.令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53.∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. 17.解:(1)因为n S 和13+-n S 的等差中项是23-, 所以331-=-+n n S S (*N n ∈),即1311+=+n n S S , …………2分 由此得)23(31213123)131(231-=-=-+=-+n n n n S S S S (*N n ∈),………3分即3123231=--+n n S S (*N n ∈), ……………4分 又21232311-=-=-a S , 所以数列}23{-n S 是以21-为首项,31为公比的等比数列. ……………5分(2)由(1)得1)31(2123-⨯-=-n n S ,即1)31(2123--=n n S (*N n ∈),………6分所以,当2≥n 时,121131])31(2123[])31(2123[----=---=-=n n n n n n S S a ,…8分 又1=n 时,11=a 也适合上式,所以)(31*1N n a n n ∈=-. ……………9分 (3)要使不等式n k S ≤对任意正整数n 恒成立,即k 小于或等于n S 的所有值.又因为1)31(2123--=n n S 是单调递增数列, ……………10分且当1=n 时,n S 取得最小值1)31(2123111=-=-S , ……………11分要使k 小于或等于n S 的所有值,即1≤k , ……………13分所以实数k 的最大值为1. ……………14分18.证明与求解:⑴由11=a 与121+=+n nn a a a 得0≠n a ……1分,nn n n a a a a 121211+=+=+……3分, 所以+∈∀N n ,2111=-+nn a a 为常数,⎭⎬⎫⎩⎨⎧n a 1为等差数列……5分 ⑵由⑴得12)1(2111-=-+=n n a a n ……7分 )121121(21)12)(12(11+--=+-=⋅=+n n n n a a b n n n ……8分所以1211111111(1)()()2323522121n n S b b b n n =+++=-+-++--+L L …9分,)1211(21+-=n ……10分,12+=n n……11分, 由20121005>n S 即2012100512>+n n 得2150221005=>n ……13分, 所以满足20121005>n S 的最小正整数503=n ……14分.19.【解析】(1)设公差为d ,则22222543a a a a -=-, 由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,(3分)又由77S =得176772a d ⨯+=,解得15a =-,2d =,所以数列{}n a 的通项公式27n a n =-,前n 项和26n S n n =-.(2)方法一12m m m a a a ++=(27)(25)23m m m ---,设23m t -=,则12m m m a a a ++=(4)(2)86t t t t t--=+-, 所以t 为8的约数,因为t 是奇数,所以t 可取的值为1±,当1,2t m ==时,863,2573t t +-=⨯-=,是数列{}n a 中的项;当1,2t m =-=时,8615,t t+-=-,是数列{}n a 中的最小项是5-,不符合;所以满足条件的正整数2m =.(12分)方法二 因为1222222(4)(2)86m m m m m m m m a a a a a a a a +++++++--==-+为数列{}n a 中的项, 故28m a +为整数,又由(1)知:2m a +为奇数,所以2231,1,2m a m m +=-=±=即 经检验,符合题意的正整数只有2m =..20.【解析】:(Ⅰ)3(1)2n n d +-=Q ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== ……………………………………………3分因为42,b b 为方程064202=+-x x 的两个不相等的实数根.所以2042=+b b ,6442=⋅b b ……………………………………………………………4分解得:42=b ,164=b ,所以:nn b 2=……………………………………………………6分(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项……删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8 …………9分201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- ………………………………12分 21.【解】 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧ a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.3分所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.5分(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;6分 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.7分故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.9分记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;10分当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.12分综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.13分。
数列综合经典练习题(含详细答案)
数列综合经典练习题(含详解答案)一、选择题1.已知等差数列{}n a 中79416,1,a a a +==则12a 的值是( ) A .15B .30C .31D .642.如果等差数列{}n a 中,,34515a a a ++=,那么127a a a +++=( )A.14B.21C.28D.353.已知首项为正数的等差数列{}n a 满足:20052006200520060,.0a a a a +><.则使0n S >成立的最大自然数n 是 ( )A. 4009B.4010C. 4011D.4012 4.在等差数列{}n a 中, n S 为其前n 项和,若34825a a a ++=,则9S = ( ) A.60 B.75 C.90 D.1055.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S 的值为( ) A.27B.21C.14D.56.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=( ) A.12B.8C.20D.167.若数列{}n a 的首项112a =,且*1(1)(N )n n n a a a n +=+∈,则200300a a =( )A.32B.23 C.201301D.3012018.古时有如下问题:今有肖司差夫一丁八万六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,每个修筑堤坝的人每天分发到3升大米.在该问题中第三天共发了大米( ) A. 234升B.405升C. 639升D.894升9.一个有限项的等差数列,前4项的和为40,最后4项的和是80,所有项的和是210,则此数列的项数为( ) A.12B.14C.16D.1810.已知等差数列{}n a 的前n 项和为n S ,且112,0,3,2m m m S S S m -+=-==≥,则n nS 的最小值为( ) A.-3B.-5C.-6D.-911.在等比数列{}n a 中,已知151,20192019a a ==,则3a =( ) A.1B.3C.±1D.±312.设{}n a 是首项为1a ,公差为2-的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A.2B.-2C.1D.-113.已知等比数列{}n a 的前n 项和为n S ,103010,130S S ==,则40S =( ) A.-510B.400C.400或-510D.30或4014.已知数列{}n a 是等比数列,2511,8a a ==,则*12231...(N )n n a a a a a a n ++++∈的最小值为( ) A.83B.1C.2D.315.已知数列{}n a 的前n 项和为n S ,若*1111,(N )3n n a S a n +==∈,则7a =( ) A. 74B. 534⨯C.634⨯D. 641+16.已知等比数列{}n a 中,2346781,64a a a a a a ==,则5a =( ) A .2±B .2C .2-D .417.已知等比数列{}n a 中,公比1q >,且168a a +=,3412a a =,则20192014a a = ( ) A .2 B .3 C .6 D .3或618.已知正项等比数列{}n a 满足7652a a a -=.若存在两项,m n a a14a =,则9n mmn +的最小值为( )A .83 B .114 C .145 D .17619.2+2的等比中项是( ) A .1 B .2 C .1± D .2±20.中国古代数学名著《九章算术》中有这样一个问題:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、“马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟、羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半,“打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还( )升粟? A.253 B. 503 C. 507D. 100721.若1既是2a 与2b 的等比中项,又是1a 与1b 的等差中项,则22a ba b++的值是( ) A .1或12B .1或12-C .1或13D .1或13-22.如果等差数列{}n a 中34512a a a ++=,那么7S =( ) A.28 B.21 C.35D.14二、填空题23.在等比数列{}n a 中,若7944,1a a a ⋅==,则12a 的值是 . 24.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋅⋅⋅的最大值为__________.25.已知等比数{}n a 中, 171,2727a a ==,求n a = 26.设数列{}n a 的前n 项和为n S ,且11a =,13n n a S +=,*N n ∈,则n a =_____________. 27.设数列{}n a 满足121,3a a ==,且112(1)(1)(2)n n n na n a n a n -+=-++≥,则20a 的值为___________.28.已知n S 为数列{}n a 的前n 项和,且*2log (1)1(N )n S n n +=+∈,则数列{}n a 的通项公式为___________.29.等比数列{}n a 的公比大于1,514215,6a a a a -=-=,则3a =_______. 三、解答题30.已知数列{}n a 是等差数列,且1212,()a a a a <分别为方程2650x x -+=的两个根. 1.求数列{}n a 的前n 项和n S ; 2.在1中,设n n S b n c =+,求证:当12c =-时,数列{}n b 是等差数列.31.已知等差数列{}n a 中,1242,16a a a =+=. 1.设2n an b =,求证:数列{}n b 是等比数列; 2.求{}n n a b +的前n 项和.32.已知等比数列{}n a 的前n 项和为n S ,满足443321,21S a S a =-=-. 1.求{}n a 的通项公式; 2.记161n n b S =+,求12...n b b b +++的最大值. 参考答案一、选择题1.答案:A 解析:2.答案:D 解析:3.答案:B解析:由题意知:等差数列中,从第1项到第2005项是正数,且从第2006项开始为负数, 则()()40101401020052006200520050S a a a a =+=+>,14011401120064011()401102a a S a +==<故n 的最大值为4010. 故选B 4.答案:B解析:因为等差数列{}n a 中, n S 为其前n 项和, 348153(4)325a a a a d a ++=+==,所以131225a d +=,所以512543a a d =+=,所以()9195925997523S a a a =+==⨯=.故选B. 5.答案:B解析:因为{}n a 为等比数列,所以23211,a aq q a a ==,故原方程可以化为220x q x q -+=.又该方程有两个相等的实数根,故440q q -=,解得0q =(舍)或34q =,所以9933116421114S q S q --===--,故选B. 6.答案:C解析:∵4841281612,,,S S S S S S S ---成等差数列,∴由4848,12S S S =-=,得128161216,20S S S S -=-=,即1314151620a a a a +++=.故选C.7.答案:D解析:由1(1)n n n a a a +=+,得11n n n n a a a a ++-=且0n a ≠,所以1111n n a a +-=,即1{}na 是以2为首项,1为公差的等差数列,所以11nn a =+,所以20030011201,301a a ==,从而200300301201a a =. 8.答案:C解析:根据题意设每天派出的人数组成数列{}n a ,它是首项164a =,公差为7的等差数列,则第二天派出的人数为2a ,且264771a =+=,第三天派出的人数为3a ,且3642778a =+⨯=.又每人每天分发到3升大米,则第三天共分发大米(647178)3639++⨯=(升),故选C.9.答案:B解析:设等差数列共有n 项,记该数列为{}n a , 则123440a a a a +++=,12380n n n n a a a a ---+++=, 相加得14()120n a a +=,所以130n a a +=.1()152102n n n a a S n +===,解得14n =.故选B. 10.答案:D解析:由112,0,3,2m m m S S S m -+=-==≥,后式减前式知12,3m m a a +==.设等差数列{}n a 的公差为d,则1d =.∵0m S =,∴12m a a =-=-,则3n a n =-,(5)2n n n S -=,2(5)2n n n nS -=.设22(5)3(),0,'()5,022x x f x x f x x x x -=>=->, 则当1003x <<时, ()f x 单调递减,当103x >时, ()f x 单调递增, ∴()f x 的极小值点为103x =,在此处()f x 取得最小值. 又(3)9,(4)8f f =-=-,∴n nS 的最小值为-9,故选D. 11.答案:A解析:由等比数列的性质可得23151201912019a a a ==⨯=,解得31a =±.又2310a a q =>,所以31a =.故选A.解析:由题意得111212(1),,22n a a n S a S a =--==-,41412S a =-.∵124,,S S S 成等比数列,∴2111(22)(412)a a a -==-,解得11a =-.故选D.13.答案:B解析:设等比数列{}n a 公比为q,∵等比数列{}n a 的前n 项和为n S ,∴10201030204030,,,S S S S S S S ---也成等比数列,∴21030202010()()S S S S S -=-,即2202010(130)(10)S S -=-,解得2040S =或2030S =-.∵10100S =>,10201030203,90S S q S S =+=-=,4030270S S -=,∴40400S =.故选B.14.答案:C解析:由已知得数列{}n a 的公比满足35218a q a ==,解得12q =,∴1312,2a a ==,∴数列1{}n n a a +是以2为首项,公比为231214a a a a =的等比数列.由于数列1{}n n a a +各项均为正,∴12231...n n a a a a a a ++++的最小值为122a a =.故选C.15.答案:B 解析:由113n n S a +=,可得11,23n n S a n -=≥,两式相减可得111,233n n n a a a n +=-≥,即14,2n n a a n +=≥.又113n n S a +=,所以2133a S ==,所以数列{}n a 是从第2项起的等比数列,公比为4.所以72572434a a -==⨯,故选B.16.答案:B 解析: 17.答案:B 解析: 18.答案:B 解析: 19.答案:C 解析: 20.答案:D 解析: 21.答案:D 解析:解析:二、填空题 23.答案:4解析:24.答案:64 解析:25.答案:43n n a -=或()43.n n a -=--解析: 26.答案:21,134,2n n n a n -=⎧=⎨⨯≥⎩解析:当1n =时,211333a S a ===. 当2n ≥时,∵13n n a S +=,∴13n n a S -=,两式相减得113()3n n n n n a a S S a +--=-=,即14n n a a +=,当2n ≥时,{}n a 是以3为首项,4为公比的等比数列,得234n n a -=⨯.综上,21,134,2n n n a n -=⎧⎨⨯≥⎩. 27.答案:245解析:因为112(1)(1)(2)n n n na n a n a n -+=-++≥,所以数列{}n na 为等差数列,首项为1,公差为2125a a -=.所以1(1)554n na n n =+-⨯=-,则204245,54205n n a a =-=-=. 28.答案:3,12,2n n n a n =⎧=⎨≥⎩解析:由2log (1)1n S n +=+,得112n n S ++=.当1n =时, 113a S ==;当2n ≥时,12n n n n a S S -=-=.则数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨≥⎩.29.答案:4 解析:三、解答题30.答案:1.解方程2650x x -+=得其两个根分别为1和5, ∵1212,()a a a a <分别为方程2650x x -+=的两个根,∴121,5a a ==,∴等差数列{}n a 的公差为4, ∴2(1)1422n n n S n n n -=⋅+⋅=-. 2.当12c =-时, 22212n n S n n b n n c n -===+-, ∴112(1)22,2n n b b n n b +-=+-==, ∴{}n b 是首项为2,公差为2的等差数列. 解析:31.答案:1.设等差数列{}n a 的公差为d .由2416a a +=可得11()(3)16a d a d +++=,即12416a d +=. 又12a =,可得3d =.故1(1)2(1)331n a a n d n n =+-=+-⨯=-. 依题意, 312n n b -=,因为3231312282n n n n b b ++-===(常数),所以{}n b 是首项为4,公比为8的等比数列. 2.因为{}n a 的前n 项和为1()(31)22n n a a n n ++=, {}n b 的前n 项和为313324221421877n n -+-⋅=⋅--.所以{}n n a b +的前n 项和为32(31)142277n n n +++⋅-. 解析:32.答案:1.设等比数列{}n a 的公比为q , 由434S S a -=得43422a a a -=, 所以432a a =,所以2q =. 又因为3321S a =-,所以11112481a a a a ++=-,所以11a =.所以12n n a -=.2.由1知122112nn n S -==--,所以416()2821n n n b n S -===-+,所以12n n b b +-=-,所以{}n b 是首项为6,公差为-2的等差数列, 所以12346,4,2,0b b b b ====,当5n ≥时, 0n b <,所以当3n =或4n =时, 12...n b b b +++有最大值,且最大值为12. 解析:。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鉴赏:1、正项数列{}n a 的前n 项和n S 满足:222(1)()0n n S n n S n n -+--+=.
(1)求数列{}n a 的通项公式n a ;
(2)令221(2)n n
n b n a +=+,数列{}n b 的前n 项和为n T ,证明:对于任意的*n N ∈,都有564
n T <. (1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦. ………2分
由于{}n a 是正项数列,所以20,n n S S n n >=+. …………3分
于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. ………5分 综上,数列{}n a 的通项2n a n =. …………………6分
(2)证明:由于2212,(2)n n n
n a n b n a +==+. …………7分 则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦
. …………9分 222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦
… ……11分
])
2n (1)1n (1211[161222+-+-+=645)211(1612=+<. …………12分 2、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增
加4万元,
每年捕鱼收益50万元.
(1)问第几年开始获利;
(2)若干年后,有两种处理方案:
方案一:年平均获利最大时,以26万元出售该渔船;
方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算?
答案:(1)由题意知,每年的费用是以12为首项,4为公差的等差数列.
设纯收入与年数n 的关系为f (n ),
则++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .
由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<<n . ∵n ∈N ,∴n=3,4,5,…,17.即第3年开始获利.
(2)方案一:年平均收入)49(240)(n
n n n f +-==. 由于1449249=⋅≥+
n n n n ,当且仅当n =7时取“=”号. ∴ 1214240)(=⨯-≤n
n f (万元). 即前7年年平均收益最大,此时总收益为12×7+26=110(万元).
方案二:f (n )=2
2n -+40n-98=-22)10(-n +102.
当n =10时,f (n )取最大值102,此时总收益为102+8=110(万元).
比较如上两种方案,总收益均为110万元,而方案一中n =7,故选方案一.
3、甲、乙两人用农药治虫,由于计算错误,在A 、B 两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A 、B 两个喷雾器中分别取1千克的药水,将A 中取得的倒入B 中,B 中取得的倒入A 中,这样操作进行了n 次后,A 喷雾器中药水的浓度为%n a ,B 喷雾器中药水的浓度为%n
b 。
(1)证明:n n a b +是一个常数; (2)求n a 与1n a -的关系式; (3)求n
a 的表达式。
解析:(1)开始时,A 中含有1012%⨯=1.2千克的农药,B 中含有106%⨯=0.6千克的农药,n 次操作后,A 中含有10%0.1n n a a ⨯=千克的农药,B 中含有10%0.1n n
b b ⨯=千克的农药,它们的和应与开始时农药的重量和相等,从而不0.10.1 1.20.6,18n n n n
a b a b +=+∴+=(常数)。
(2)第n 次操作后,A 中10千克的药水中农药的重量具有关系式:119110n n n
a b a --⨯+⨯=由(1)知1118n n b a --=-,代入化简得14955
n n a a -=+ ① (3)令14()5n n a a λλ-+=+,利用待定系数法可求出λ=—9,所以149(9)5n n a a --=-,可知数列{}9n a -是以19a -为首项,45
为公比的等比数列。
由①,104949571255555
a a =+=⨯+= 由等比数列的通项公式知:111412449(9)()()3()5555n n n n a a ---=-==,所以43()95
n n a =+。