2018成都树德中学数学自主招生考试真题_201906012149321

合集下载

2018成都名校自主招生数学模拟试题一

2018成都名校自主招生数学模拟试题一

4
8
D 为线段 AB 下方抛物线上一点,直线 AD、BD 分别与直线 y 2 交于 F、E 两点,若
ABE CFE ,则直线 BE 的解析式为____________________.
23、(原创)如图,平行四边形 ABCD 中,点 E、F 分别在边 AB、BC 上,若 ADE 、BEF 、 CDF 的面积分别为 5 、3 、 4 , DEF 的面积为 S ,则 S 5 x 2 3x S 的最大值为 ______.
99 99 1 99
S 1 _____________. 99!
07、(原创)若正数
x、y
满足
x2

y2

x y3

x2 y xy2 x3 y3
1 的最大值为______.
08、已知 ABC 的三边长分别为 AB 2 a2 576 ,BC a2 14a 625 ,AC a2 14a 625 , 其中 a 7 .则 ABC 的面积为________.
外接圆与 AOB 的外接圆相交于 A、E 两点.求证: OE EC 。
27、已知方程 x3 1 2 3m x2 5n 2 3m x 5n 0 .
(1)若 n m 0 ,求方程的根; (2)找出一组正整数 n、m ,使得方程的三个根均为整数; (3)证明:只有一组正整数 n、m ,使得方程的三个根均为整数。
,则 abc 的值为___________. 433
14、已知实数 a、b、c、d 互不相等,并且满足 a 1 b 1 c 1 d 1 x ,则 x 的值为
bcd
a
__________.

【考试必备】2018-2019年最新成都市树德中学初升高自主招生考试数学模拟精品试卷【含解析】【

【考试必备】2018-2019年最新成都市树德中学初升高自主招生考试数学模拟精品试卷【含解析】【
方向,则从 C岛看 A、B两岛的视角∠ACB=________.
17.若一次函数 y=(2m-1)x+3-2m 的图象经过 一、二、四 象限,则 m 的取值范围是________.
18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察, 第 n个图形有________个小圆.(用含 n的代数式表示) 三、解答题(本大题 7个小题,共 90分)
1.下列事件中,必然事件是( ) A.掷一枚硬币,正面朝上 B.a是实数,|a|≥0 C.某运动员跳高的最好成绩是 20.1米 D.从车间刚生产的产品中任意抽取一个,是次品
2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是 ()
A.平移变换 B.轴对称变换 C.旋转变换 D.相似变 换
3.如果□×3ab=3a2b,则□内应填的代数式( )
照 2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被
录取,应该录取谁?
22.(本题 12分)如图,已知直线 AB与 x轴交于点 C,与双曲 线 y=kx交于 A(3,230)、B(-5,a)两点.AD⊥x轴于点 D,BE∥x 轴且与 y轴交于点 E.
(1)求点 B的坐标及直线 AB的解析式; (2)判断四边形 CBED的形状,并说明理由.
不可割,则与圆周合体而无所失矣”。试用这个方法解决问题:如图,
⊙的内接多边形周长为 3 ,⊙ 的外切多边形周长为 3.4,则下列各
数中与此圆的周长最接近的是( )
A.
B.
C.
D.
6、今年 5月,我校举行“庆五 四”歌咏比赛,有 17位同学参加选 拔赛,所得分数互不相同,按成绩取前 8名进入决赛,若知道某同学 分数,要判断他能否进入决赛,只需知道 17位同学分数的( )

2018-2019学年成都市青羊区树德中学八年级(上)期末数学试卷(含解析)

2018-2019学年成都市青羊区树德中学八年级(上)期末数学试卷(含解析)

2018-2019学年成都市青羊区树德中学八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.3的平方根是()A.﹣1.732 B.1.732 C.D.±2.如果点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,则m=()A.4 B.﹣4 C.5 D.﹣53.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、64.下列命题是真命题的是()A.同位角相等B.三角形的一个外角等于它的两个内角之和C.相等的角都是对顶角D.如果a∥b,b∥c,那么a∥c5.一次函数y=1﹣x的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁11.1 11.1 10.9 10.9平均数(米)方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.估计的大小在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间8.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△DEF≌△ABC B.∠F=∠ACB C.AC=DF D.BE=EC9.已知函数y=ax﹣3和y=kx的图象交于点P(2,﹣1),则关于x,y的二元一次方程组的解是()A.B.C.D.10.如图,表示甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶的路程是()A.0.5千米B.1千米C.1.5千米D.2千米二、填空题(每小题4分,共16分)11.36的算术平方根为;的相反数为.12.在平面直角坐标系中,点N(﹣5,a)在直线y=2x+1上,则a=.13.若x≤3,化简=.14.(4分)等腰三角形底边长为10,底边上的中线为3,则它的腰长为.三、解答题(共54分)15.(12分)(1)计算:.(2)解方程组.16.(6分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调査,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(2)整理描述数据按如下分数段整理、描述这两组样本数据:50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x<100 成绩x人数班级甲班 1 3 3 2 1乙班 2 1 m 2 n在表中:m=,n=;(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:班级平均数中位数众数甲班75 x 75乙班73 70 y在表中:x=,y=;②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.17.(8分)2台大型收割机和5台小型收割机均工作2小时共收割小麦3.6公顷,3台大型收割机和2台小型收割机均工作5小时共收割小麦8公顷.1台大型收割机和一台小型收割机每小时各收割小麦多少公顷?18.(8分)如图:已知△ABC在直角坐标系中的位置.(1)写出△ABC各顶点的坐标;(2)若把△ABC向上平移3个单位再向右平移2个单位得到△A′B′C′,画出△A′B′C′,并写出A′,B′,C′的坐标;(3)求出△ABC的面积.19.(10分)如图,在长方形ABCD中,AB=8,BC=4,将长方形ABCD沿AC折叠,得到△ACD′,CD′与AB交于点F.(1)求AF的长;(2)重叠部分△AFC的面积为多少?20.(10分)如图,一次函数y=﹣x+5的图象l1分别与x轴,y轴交于A、B两点,正比例函数的图象l2与l1交于点C(m,).(1)求m的值及l2的解析式;(2)求得S△AOC﹣S△BOC的值为;(3)一次函数y=kx+1的图象为l3且l1,l2,l3可以围成三角形,直接写出k的取值范围.B卷(50分)一、填空题(每小题4分,共20分)21.若实数x,y满足y=++3,则x+y=.22.若关于x,y的二元一次方程组的解也是二元一次方程x+2y=8的解,则k的值为k=.23.用⊕表示一种运算,它的含义是:A⊕B=.如果3⊕4=,则x=;3⊕5=.24.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x 轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.25.如图,∠AOB=45°,点M、点C在射线OA上,点P、点D在射线OB上,且OC=2,OD=3,则CP+PM+DM 的最小值是.二、解答题(共30分)26.(8分)已知:x=,y=(1)求x2+y2﹣2xy的值(2)若x的整数部分是m,y的小数部分是n,求5m2+(x﹣n)2﹣y的值.27.(10分)如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲.乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲.乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h.(2)已知最终乙车比甲车早到B地0.5h,求甲车出发1.5h后直至到达B地的过程中,S与x的函数关系式及x的取值范围,并在图2中补全函数图象.28.(12分)如图,在平面直角坐标系中,直线l1:y=x+和直线l2:y=﹣x+b相交于y轴上的点B,且分别交x轴于点A和点C.(1)求△ABC的面积;(2)点E坐标为(5,0),点F为直线l1上一个动点,点P为y轴上一个动点,求当EF+CF最小时,点F 的坐标,并求出此时PF+OP的最小值;(3)将△OBC沿直线l1平移,平移后记为△O1B1C1,直线O1B1交l2于点M,直线B1C1交x轴于点N,当△B1MN 为等腰三角形时,请直接写出点C1的横坐标.参考答案与试题解析一、选择题1.【解答】解:∵,∴3的平方根是.故选:D.2.【解答】解:∵点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,∴m﹣1=﹣5,解得m=﹣4.故选:B.3.【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.4.【解答】解:A、两直线平行,同位角相等,本说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角之和,本说法是假命题;C、相等的角不一定都是对顶角,本说法是假命题;D、如果a∥b,b∥c,那么a∥c,是真命题;故选:D.5.【解答】解:∵一次函数y=1﹣x=﹣x+1,∴该函数图象经过第一、二、四象限,不经过第三象限,故选:C.6.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.7.【解答】解:∵3<<4,∴在3到4之间,故选:B.8.【解答】解:由平移的性质可知:△ABC≌△DEF,∴∠F=∠ACB,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,故选:D.9.【解答】解:函数y=ax﹣3和y=kx的图象交于点P(2,﹣1),则关于x,y的二元一次方程组的解是,故选:B.10.【解答】解:由甲的图象可知甲的速度为:12÷24=0.5千米/分,由乙的图象可知乙的速度为:12÷(18﹣6)=1千米/分,所以每分钟乙比甲多行驶的路程是0.5千米.故选:A.二、填空题11.【解答】解:36的算术平方根为6;的相反数为.故答案为:6;﹣.12.【解答】解:当x=﹣5时,a=2×(﹣5)+1=﹣9.故答案为:﹣9.13.【解答】解:由题意可知:x﹣3≤0,∴原式=|x﹣3|=3﹣x,故答案为:3﹣x14.【解答】解:如图所示:AB=AC,AD为BC边的中线,AD=3,BC=10,∴BD=CD=5,AD⊥BC,在Rt△ABD中,BD=5,AD=3,根据勾股定理得:AB===,则等腰三角形的腰长为.故答案为:.三、解答题15.【解答】解:(1)原式=9﹣1﹣(3﹣2)=8﹣1=7;(2),②×2+①得6x=9,解得x=,把x=代入②得﹣y=1,解得y=,所以方程组的解为.16.【解答】解:(2)由收集的数据得知:m=3,n=2,故答案为:3,2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70,故答案为:75,70;②估计乙班50名学生中身体素质为优秀的学生有50×=20(人);故答案为:20.17.【解答】解:设1台大型收割机和1台小型收割机工作1小时各收割小麦x公顷和y公顷,根据题意可得,解得.答:1台大型收割机工作1小时收割小麦0.4公顷,1台小型收割机工作1小时收割小麦0.2公顷.18.【解答】解:(1)A(﹣2,﹣2),B(4,1),C(0,3);(2)如图所示:△A′B′C′,即为所求,A′(0,1),B′(6,4),C′(2,6);(3)△ABC的面积为:6×5﹣×6×3﹣×4×2﹣×2×5=12.19.【解答】解:(1)由折叠可得,∠ACF=∠ACD,∵四边形ABCD是矩形,∴CD∥AB,∠B=90°,∴∠CAF=∠ACD,∴∠ACF=∠CAF,∴AF=CF,设BF=x,则AF=CF=8﹣x,∵∠B=90°,∴在Rt△BCF中,BF2+CB2=CF2,即42+x2=(8﹣x)2,解得:x=3,∴AF=8﹣3=5;(2)∵AF=5,BC=4,CB⊥AF,∴S△AFC=AF×BC=×5×4=10.20.【解答】解:(1)把C(m,)代入一次函数y=﹣x+5,可得,=﹣m+5,解得m=,∴C(,).设l2的解析式为y=ax,将点C(,)代入,得=a,解得a=,∴l2的解析式为y=x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=,CE=,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×﹣×5×=.故答案为;(3)一次函数y=kx+1的图象为l3,如果l1,l2,l3不能围成三角形,那么可分三种情况:①l3经过点C(,)时,k+1=,解得k=;②l2,l3平行时,k=;③l1,l3平行时,k=﹣;故l1,l2,l3可以围成三角形时,k的取值范围是k≠且 k≠且 k≠﹣.一、填空题21.【解答】解:根据题意得,5﹣x≥0且x﹣5≥0,解得x≤5且x≥5,∴x=5,y=3,∴x+y=5+3=8.故答案为:8.22.【解答】解:根据题意,得由(1)+(2),得2x=4k即x=2k (4)由(1)﹣(2),得2y=2k即y=k (5)将(4)、(5)代入(3),得2k+2k=8,解得k=223.【解答】解:∵A⊕B=,3⊕4=,∴,解得,x=8,∴3⊕5==,故答案为:8;.24.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n∁n D n的面积=()n﹣1,故答案为:()n﹣1.25.【解答】解:如图,作点C关于OB的对称点C′,作点D关于OA的对称点D′,连接OC′,PC′,D′M,OD′,C′D′,则OC′=OC=2,OD′=OD=3,CP=C′P,DM=D′M,∠C′OD=∠COD=∠COD′=45°,∴CP+PM+MD=C′P+PM+D′M≥C′D′,当仅当C′,P,M,D′三点共线时,CP+PM+MD最小为C′D′,作C′T⊥D′O于点T,则C′T=OT=,∴D′T=4,∴C′D′=,∴CP+PM+DM的最小值是.故答案为:.二、解答题26.【解答】解:(1)∵x==2﹣,y==2+,∴x+y=4,xy=1,∴x2+y2﹣2xy=(x+y)2﹣4xy=42﹣4×1=12;(2)∵1<<2,∴0<2﹣<1,3<2+<4,∵x的整数部分为m,y的小数部分为n,∴m=0,n=2+﹣3=﹣1,∴5m2+(x﹣n)2﹣y=5×02+[(2﹣)﹣(﹣1)]2﹣(2+)=19﹣13.27.【解答】解:(1)∵乙在A地用1h配货,∴0.5小时~1.5小时为甲独自行驶,∴甲的速度=(100﹣60)÷(1.5﹣0.5)=40km/h,乙的速度为:60÷0.5﹣40=80km/h;故答案为:40,80;(2)设从1.5小时后两车相遇的时间为t小时,由题意得,80t﹣40t=100,解得t=2.5,1.5+2.5=4,此过程中,S=40(x﹣1.5)+100﹣80(x﹣1.5)=﹣40x+160(1.5≤x≤4),设甲车到达B地的时间为m,由题意得,80(m﹣0.5)﹣100=40m,解得m=3.5,3.5+1.5=5小时,5﹣0.5=4.5小时,乙车到达B地前,S=80(x﹣4)﹣40(x﹣4)=40x﹣160(4<x≤4.5),乙车到达B地后,S=40(5﹣x)=﹣40x+200(4.5<x≤5),综上所述,S=,补全函数图形如图所示.28.【解答】解:(1)由题意知:b=∴直线l2:y=﹣x+当y=0时,x=1∴C(1,0)∵直线l1:y=∴当y=0时,=0,∴x=﹣3∴A(﹣3,0)∴S△ABC=×[1﹣(﹣3)]×=2;(2)在Rt△ABO中,AB2=AO2+BO2=32+()2=12在Rt△BOC中,BC2=OC2+OB2=12+()2=4∵在△ABC中,AB2+BC2=12+4=16=AC2∴△ABC是直角三角形,∴AB⊥BC作C点关于直线AB的对称点C′(﹣1,2),连接C'E交直线l1于F,∵C'(﹣1,2) E(5,0)∴直线C'E:y=﹣x+解得:∴F(1,)作二、四象限的角平分线l3,过点P作PQ⊥l3于Q,则PQ=OP,∴PF+OP=FP+PQ,当F,P,Q三点共线时最小,即过F作PQ⊥l3于Q交y轴于P,作FG∥OB交直线l3于G.此时△FQG为等腰直角三角形,斜边FG=,∴PF+OP的最小值为:FQ=FG=+(3)①如图2中,当B1M=B1N时,∵点C1中直线y=x﹣上运动,设C1(m,m﹣),B1O1交x轴于E,则EB1=+m﹣=+m,OE==+m,MB1=NB1=2OE=+m,∴M(m﹣1,+m++m),把点M坐标代入直线y=﹣x+,得到:+m++m=﹣(m﹣1)+,解得m=.②如图3中当MN=MB1时,同法可得M(m﹣1,+m),把点M代入y=﹣x+得到,+m=﹣(m﹣1)+,解得,m=.③如图4中,当B1M=B1N时,同法可得M(m﹣1,﹣+m﹣m),把点M代入y=﹣x+得到,﹣+m﹣m=﹣(m﹣1)+,解得m=.④如图5中,当NM=NB1时,同法可得M(m﹣1,+m),把点M代入y=﹣x+得到,﹣(+m)=﹣(m﹣1)+,解得m=4,综上所述,C1的横坐标为:或或或4。

成都树德中学小升初选拔考试数学试卷word版附详细解答

成都树德中学小升初选拔考试数学试卷word版附详细解答

成都树德中学小升初选拔考试数学试卷姓名_________考试日期_________一、选择题1.甲数是10的35,乙数的27是2,丙数是5个53,则( ).A.甲数>乙数>丙数B.乙数>丙数>甲数C.甲数>丙数>乙数D.丙数>乙数>甲数2.某学校合唱队与舞蹈队的人数之比为3︰2,如果将合唱队队员10人调到舞蹈队,则人数之比为7︰8,合唱队原有( )人.A.40B.48C.44D.45 3.下午4点10分,钟面上时针和分针所形成的锐角是( ). A.55° B.60° C.65° D.64.5° 4.一件商品先降价15%,又涨价15%,则( ).A.现价比原价低B.现价比原价高C.一样高D.无法判断5.2018年小明把1000元钱按年利率3.15%存入银行,计算他两年后所得的利息,列式应该是().A.1000×3.15%×2+1000B.(1000×3.15%+1000)×2C.1000×3.15%×2D.1000×3.15%6.定义新运算“⊕”为:A ⊕B=2A+4B ,如果4⊕m=15,那么m 的值为( ). A.1 B.3 C.34D.747.一部滑动的电梯从一楼到二楼要23分钟,一个人步行从一楼到二楼要34分钟.如果这个人在运行的电梯上从一楼步行到二楼,则需要( )分钟A.12B.112C.1712D.6178.在含盐10%的90克盐水中加入10克盐,这时盐的质量占盐水质量的( ). A.21.1% B.19% C.20% D.23.5%二、填空题9.2小时15分钟的15是________分钟;6.02公顷=________平方米.10.一个三角形的最小的度数是50°,那么它最大的一个角的度数应该不超过______度,这是一个________三角形.(按角分类三角形)11.有一个分数,如果分子加2,这个分数等于12,如果分母加1,这个分数就等于37,这个分数是________.12.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要________天完成.13.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次;如果两人速度不变,其中一人改成按逆时针方向跑,每4分钟相遇一次.两人中速度较慢的跑一圈需要________分钟.14.图中每个小圆的半径是1厘米,阴影部分的周长是________厘米.(π取3.14)15.如图,三角形ABC 的面积是48平方厘米,D 、E 、F 分别是BC 、AC 、CD 的中点,则三角形DEF 的面积是________平方厘米. 三、计算题 16.直接写出得数3−125= 5+72%= (67+56+35)÷1210=3.6×(14−29)=211×58+611×58=17.简便计算AECD FB15题图14题图(2)[(514−4.25)×58]+38+3.3÷156(3)33×(11×3+13×5+15×7+…+131×33)(4)(12+14+16+18) −(13+16+19+112) +(14+18+112+116)−(15+110+115+120)四、解答题18.小明看一本书,第一天看了全书的35%,第二天比第一天少看56页,这时还有一半没看,这本书共有多少页?19.如图,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影部分的面积.FE C20.按照国家相关规定,个人工资收入3500元以内免个人所得税,3500元至5000元收3%的个人所得税,5000元至8000元收10%的个人所得税,刘叔叔上个月缴了175元的个人所得税,刘叔叔上个月的工资是多少元?21.大超市和小超市出售同一种商品,大超市的进价比小超市的进价便宜10%,大超市按30%的利润率定价,小超市按28%的利润率定价,大超市的定价比小超市的定价便宜22元.请问:(1)大超市这种商品的进价是多少元?(2)大超市每件商品赚多少元?小超市每件商品赚多少元?22.某蓄水池有甲、丙两根进水管和乙、丁两个出水管.要灌满一池水,单开甲管需要3个小时,单开丙管需要5个小时.要排一池水,单开乙管需要4个小时,单开丁管需的水,如果按照甲、乙、丙、丁的顺序,循环开各水管,每要6个小时.现在池中有16次每管开1个小时,则多长时间后水开始溢出水池?成都树德中学小升初选拔考试数学试卷姓名_________考试日期_________一、选择题1.甲数是10的35,乙数的27是2,丙数是5个53,则( ).A.甲数>乙数>丙数B.乙数>丙数>甲数C.甲数>丙数>乙数D.丙数>乙数>甲数1.解:【分数计算】甲=10×35=6,乙=2÷27=7,丙=53×5=253>7,故丙数>乙数>甲数,选D .2.某学校合唱队与舞蹈队的人数之比为3︰2,如果将合唱队队员10人调到舞蹈队,则人数之比为7︰8,合唱队原有( )人.A.40B.48C.44D.45 2.解:【比的应用】总人数=10÷(35−715)=75人,合唱队人数=75×35=45人,故选D .3.下午4点10分,钟面上时针和分针所形成的锐角是( ). A.55° B.60° C.65° D.64.5°3.解:【时钟夹角】时针每分钟旋转0.5度,分针每分钟旋转6度,0.5×(4×60+10) −6×10=65°,故选C .4.一件商品先降价15%,又涨价15%,则( ).A.现价比原价低B.现价比原价高C.一样高D.无法判断4.解:【百分率】令原价为1,则最终价格为1×(1−15%)(1+15%)=0.9775,比原价低,故选A .5.2018年小明把1000元钱按年利率3.15%存入银行,计算他两年后所得的利息,列式应该是().A.1000×3.15%×2+1000B.(1000×3.15%+1000)×2C.1000×3.15%×2D.1000×3.15%6.定义新运算“⊕”为:A ⊕B=2A+4B ,如果4⊕m=15,那么m 的值为( ). A.1 B.3 C.34D.746.解:【定义新运算】4⊕m=2×4+4m=15,解得m=74,故选D .7.一部滑动的电梯从一楼到二楼要23分钟,一个人步行从一楼到二楼要34分钟.如果这个人在运行的电梯上从一楼步行到二楼,则需要( )分钟A.12B.112C.1712D.6177.解:【扶梯问题】令一二楼间距为1,则电梯速度为1÷23=32,步行速度为1÷34=43,故需时1÷(32+43)=617分钟,选D .8.在含盐10%的90克盐水中加入10克盐,这时盐的质量占盐水质量的( ). A.21.1% B.19% C.20% D.23.5% 8.解:【浓度问题】(90×10%+10)÷(90+10)×100%=19%,故选B . 二、填空题9.2小时15分钟的15是________分钟;6.02公顷=________平方米.9.解:【单位换算】2小时15分钟=135分钟,135×15=27分钟;1公顷=10000平方米,6.02公顷=60200平方米.10.一个三角形的最小的度数是50°,那么它最大的一个角的度数应该不超过________度,这是一个________三角形.(按角分类三角形)10.解:【三角形内角和】最大的一个角的度数应该不超过180−50×2=80度,这是一个锐角三角形.11.有一个分数,如果分子加2,这个分数等于12,如果分母加1,这个分数就等于37,这个分数是________.11.解:【分数】设这个分数为ba,则有12a=b+2,b=37(a+1),联立两等式可解得a=34,b=15,故这个分数是1534.12.一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要________天完成. 12.解:【工程问题】乙工效=112−121=128,1÷128=28天,即乙单独做需要28天完成.13.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次;如果两人速度不变,其中一人改成按逆时针方向跑,每4分钟相遇一次.两人中速度较慢的跑一圈需要________分钟.13.解:【环形跑道】令环形跑道的长度为1,两人的速度分别为a 、b(a >b),依题意有12(a −b)=1,4(a +b)=1,解得a=16,b=112,1÷112=12分钟,故两人中速度较慢的跑一圈需要12分钟.14.图中每个小圆的半径是1厘米,阴影部分的周长是________厘米.(π取3.14)14.解:【园的周长】大圆直径=1×6=6厘米,故阴影部分的周长=6π+2π×1×7=20π=62.8厘米.15.如图,三角形ABC 的面积是48平方厘米,D 、E 、F 分别是BC 、AC 、CD 的中点,则三角形DEF 的面积是________平方厘米.15.解:【底高模型】∵D 、E 、F 分别是BC 、AC 、CD 的中点,∴S △DEF =12S △DEC =14S △ACD =18S △ABC=6平方厘米.三、计算题 16.直接写出得数3−125=1355+72%=5.72 (67+56+35)÷1210=4811225655AECD FB15题图14题图17.简便计算(1)0.125×64×0.25×0.5(1)原式=0.125×8×4×2×0.25×0.5=0.125×8×0.25×4×0.5×2=1×1×1=1 (2)[(514−4.25)×58]+38+3.3÷156(2)原式=[(514−414)×58]+38+3310×611=58+38+95=245(3)33×(11×3+13×5+15×7+…+131×33)(3)原式=332×(21×3+23×5+25×7+…+231×33)=332×(11−13+13−15+15−17+…+131−133)=332×(11−133)=16(4)(12+14+16+18) −(13+16+19+112) +(14+18+112+116)−(15+110+115+120)(4)令a=1+12+13+14=1+612+412+312=2512原式=12a −13a +14a −15a=3060a −2060a +1560a −1260a=1360a =1360×2512=65144四、解答题18.小明看一本书,第一天看了全书的35%,第二天比第一天少看56页,这时还有一半没看,这本书共有多少页? 18.解:【分数应用】第二天看了全书的1−35%−12=15%答:这本书共有280页.19.如图,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影部分的面积.19.解:【组合图形面积】 【底高模型法】过I 作△EFI 的高IN ,过I 作△BEI 的高IM ,则IN=IM ∴S △BEI ∶S △EFI =BE ∶EF=(12+8)∶12=5∶3 ∴S △EFI =25S △BEF =38×12×(8+12)×12=45(平方厘米)【相似三角形法】∵FG ∥CE ,∴△FGI ∽△EBI ,∴GI EI =FGBE =128+12=35∴S △EFI =58S △GEF =58×12×12×12=45(平方厘米) 答:图中阴影部分的面积为45平方厘米.20.按照国家相关规定,个人工资收入3500元以内免个人所得税,3500元至5000元收3%的个人所得税,5000元至8000元收10%的个人所得税,刘叔叔上个月缴了175元的个人所得税,刘叔叔上个月的工资是多少元? 20.解:【阶梯计税】∵(5000-3500)×3%=45<175,∴工资收入超过5000元 (175−45)÷10%=1300FECN答:刘叔叔上个月的工资是6300元.21.大超市和小超市出售同一种商品,大超市的进价比小超市的进价便宜10%,大超市按30%的利润率定价,小超市按28%的利润率定价,大超市的定价比小超市的定价便宜22元.请问:(1)大超市这种商品的进价是多少元?(2)大超市每件商品赚多少元?小超市每件商品赚多少元? 21.解:【商品利润】 (1)设小超市的进价为x 元x ×(1−10%)(1+30%)+22=x ×(1+28%) 解得x =200x ×(1−10%)=200×90%=180(元) 答:大超市这种商品的进价是180元. (2)180×30%=54(元),200×28%=56(元)答:大超市每件商品赚54元;小超市每件商品赚56元.22.某蓄水池有甲、丙两根进水管和乙、丁两个出水管.要灌满一池水,单开甲管需要3个小时,单开丙管需要5个小时.要排一池水,单开乙管需要4个小时,单开丁管需要6个小时.现在池中有16的水,如果按照甲、乙、丙、丁的顺序,循环开各水管,每次每管开1个小时,则多长时间后水开始溢出水池? 22.解:【周期性工程问题】甲注水工效=1÷3=13,丙注水工效=1÷5=15乙排水工效=1÷4=14,丁排水工效=1÷6=16甲、乙、丙、丁依次各开1小时注水:13−14+15−16=7601173025个周期即4×5=20小时后还需要注水量=1−16−760×5=14 14÷13=0.75小时,即5个周期后,甲管再开0.75小时就可注满水池 20+0.75=20.75(小时)答:20.75小时后水开始溢出水池.。

四川省成都市树德中学2018届高三上学期10月段考数学试卷理科 含解析

四川省成都市树德中学2018届高三上学期10月段考数学试卷理科 含解析

2018-2018学年四川省成都市树德中学高三(上)10月段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=Z,集合A={1,6},A∪B={2,0,1,6},那么(∁U A)∩B=()A.∅B.{3,4,5}C.{2,0}D.{1,6}2.复数Z=(i为虚数单位)所对应复平面内的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知a,b是平面α内的两条不同直线,直线l在平面α外,则l⊥a,l⊥b是l⊥α的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若[x]表示不超过x的最大整数,如[2,6]=2,[﹣2,6]=﹣3,执行如图所示的程序框图,记输出的值为S0,则=()A.﹣1 B.0 C.1 D.25.函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后关于原点对称,则φ等于()A.B.﹣C.D.﹣6.若等差数列{a n}的公差d≠0,前n项和为S n,若∀n∈N*,都有S n≤S10,则()A.∀n∈N*,都有a n<a nB.a9•a10>0﹣1C.S2>S17D.S19≥07.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有()A.20 B.22 C.24 D.368.已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.[﹣,0)B.(﹣,0)C.(﹣,+∞)D.(﹣∞,﹣)∪(0,+∞)9.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为()A.B.C.D.10.已知函数f(x)=,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A. B.C.D.11.设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足||=||,则的值为()A.B.2 C.D.112.在锐角△ABC中,A,B,C所对边分别为a,b,c,且b2﹣a2=ac,则﹣的取值范围为()A.(1,+∞)B.(1,)C.(1,)D.(,)二.填空题(每小题5分,共20分)13.二项式(ax﹣1)5(a>0)的展开式的第四项的系数为﹣40,则a的值为.14.已知正数x,y满足x+y﹣xy=0,则3x+2y的最小值为.15.过直线y=x上的一点作圆(x﹣5)2+(y﹣1)2=2的两条切线l1、l2,当直线l1、l2关于y=x对称时,l1、l2所成的角为.16.已知函数f(x)=x2﹣2tx﹣4t﹣4,g(x)=﹣(t+2)2,两个函数图象的公切线恰为3条,则实数t的取值范围为.三.解答题(共70分)17.已知数列{a n}的前n项和S n满足2S n=3a n﹣1,其中n∈N*.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a n b n=,求数列{b n}的前n项和为T n.18.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调50“”对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4K2=.19.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.(Ⅰ)求证:CE∥平面PAD;(Ⅱ)求PD与平面PCE所成角的正弦值;(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求的值;如果不存在,说明理由.20.已知椭圆C的中心在原点O,焦点在x轴上,离心率为,椭圆C上的点到右焦点的最大距离为3.(1)求椭圆C的标准方程;(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2+|=|2﹣|,求直线在y轴上截距的取值范围.21.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.(1)求常数b的值;(2)当a=1时,讨论函数f(x)的单调性;(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.[选修4-1:几何证明选讲]22.如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+)=,曲线C的参数方程为:(1)写出直线l和曲线C的普通方程;(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA|•|PB|的值.[选修4-5:不等式选讲]24.已知不等式|x﹣2|>3的解集与关于x的不等式x2﹣ax﹣b>0的解集相同.(1)求实数a,b的值;(2)求函数f(x)=a+b的最大值.2018-2018学年四川省成都市树德中学高三(上)10月段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=Z,集合A={1,6},A∪B={2,0,1,6},那么(∁U A)∩B=()A.∅B.{3,4,5}C.{2,0}D.{1,6}【考点】交、并、补集的混合运算.【分析】直接利用补集和交集的运算进行求解即可得到答案【解答】解:全集U=Z,集合A={1,6},A∪B={2,0,1,6},∴集合B⊆A∪B,并且一定有0,2,∴∁U A也一定有0,2,∴(∁U A)∩B={0,2}.故选:C.2.复数Z=(i为虚数单位)所对应复平面内的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简求得Z所对应点的坐标得答案.【解答】解:由Z==,得复数Z=所对应复平面内的点的坐标为(),在第三象限.故选:C.3.已知a,b是平面α内的两条不同直线,直线l在平面α外,则l⊥a,l⊥b是l⊥α的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系;必要条件、充分条件与充要条件的判断;空间中直线与平面之间的位置关系.【分析】根据空间线面垂直的判定定理和定义,结合充要条件的定义,可得结论.【解答】解:若l⊥α,则l⊥a,l⊥b,故l⊥a,l⊥b是l⊥α的必要条件;但l⊥a,l⊥b时,l⊥a不一定成立,故l⊥a,l⊥b是l⊥α的不充分条件;综上可得:l⊥a,l⊥b是l⊥α的必要不充分条件,故选:B4.若[x]表示不超过x的最大整数,如[2,6]=2,[﹣2,6]=﹣3,执行如图所示的程序框图,记输出的值为S0,则=()A.﹣1 B.0 C.1 D.2【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,直到满足条件n>4,计算输出S的值,即可得出结论.【解答】解:由程序框图知:第一次运行S=1+[]=1,n=1+1=2;第二次运行S=1+[]=1,n=2+1=3;第三次运行S=1+[]=2,n=3+1=4;第四次运行S=2+[]=3,n=4+1=5.满足条件n>4,退出循环,输出S=3.∴=﹣1.故选:A.5.函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后关于原点对称,则φ等于()A.B.﹣C.D.﹣【考点】函数的图象;函数y=Asin(ωx+φ)的图象变换.【分析】函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的解析式g(x),由于平移后的图象关于原点对称,故g(0)=0,解得答案.【解答】解:函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到g(x)=sin(2x++φ)(|φ|<)的图象,由于平移后的图象关于原点对称,故g(0)=sin(+φ)=0,由|φ|<得:φ=﹣,故选:D6.若等差数列{a n}的公差d≠0,前n项和为S n,若∀n∈N*,都有S n≤S10,则()B.a9•a10>0A.∀n∈N*,都有a n<a n﹣1C.S2>S17D.S19≥0【考点】等差数列的前n项和;数列的函数特性.【分析】由∀n∈N*,都有S n≤S10,a10≥0,a11≤0,再根据等差数列的性质即可判断.【解答】解:∵∀n∈N*,都有S n≤S10,∴a10≥0,a11≤0,∴a9+a11≥0,∴S2≥S17,S19≥0,故选:D.7.某公司庆祝活动需从甲、乙、丙等5名志愿者中选2名担任翻译,2名担任向导,还有1名机动人员,为来参加活动的外事人员提供服务,并且翻译和向导都必须有一人选自甲、乙、丙,则不同的选法有()A.20 B.22 C.24 D.36【考点】计数原理的应用.【分析】翻译和向导都必须有一人选自甲、乙、丙,甲、乙、丙全排,即可得出结论.【解答】解:∵翻译和向导都必须有一人选自甲、乙、丙,∴有A33A22=24种方法,故选C.8.已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.[﹣,0)B.(﹣,0)C.(﹣,+∞)D.(﹣∞,﹣)∪(0,+∞)【考点】直线的斜率.【分析】由题意可得,线段PQ的中点为M(x0,y0)到两直线的距离相等,利用,可得x0+3y0+2=0.又y0<x0+2,设=k OM,分类讨论:当点位于线段AB(不包括端点)时,当点位于射线BM(不包括端点B)时,即可得出.【解答】解:∵点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M (x0,y0),∴,化为x0+3y0+2=0.又y0<x0+2,设=k OM,当点位于线段AB(不包括端点)时,则k OM>0,当点位于射线BM(不包括端点B)时,k OM<﹣.∴的取值范围是(﹣∞,﹣)∪(0,+∞).故选:D.9.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是棱长为1的正方体中的三棱锥,画出该三棱锥的直观图,求出它的体积.【解答】解:根据几何体的三视图,得;该几何体是棱长为1的正方体中一三棱锥P﹣ABC,如图所示;∴该三棱锥的体积为××12×1=.故选:A.10.已知函数f(x)=,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A. B.C.D.【考点】其他不等式的解法.【分析】根据函数的表达式求出f(x)的单调性和奇偶性,通过讨论x的符号,从而求出x 的范围即可.【解答】解:∵函数f(x)=,∴x>0时,f(x)=﹣,和随着x的增大而减小,故x>0时,f(x)是减函数,而f(x)在R是偶函数,故x<0时,f(x)是增函数,若f(x)>f(2x﹣1)成立,则|x|<|2x﹣1|,解得:x>1或x<,又1+≠0,解得x≠﹣1,故选:D.11.设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足||=||,则的值为()A.B.2 C.D.1【考点】圆锥曲线的共同特征.【分析】利用||=||,可知∠F1PF2=90°,设|PF1|=m,|PF2|=n,|F1F2|=2c,不妨设m>n,可得m2+n2=4c2,求出,,再求出平方倒数的和,即可得到结论.【解答】解:设|PF1|=m,|PF2|=n,|F1F2|=2c,不妨设m>n,由||=||,可知∠F1PF2=90°∴m2+n2=4c2,∵,∴∴=故选A.12.在锐角△ABC中,A,B,C所对边分别为a,b,c,且b2﹣a2=ac,则﹣的取值范围为()A.(1,+∞)B.(1,)C.(1,)D.(,)【考点】余弦定理.【分析】根据正弦定理化简已知式子,由二倍角的余弦公式变形、和差化积公式和诱导公式化简后,由内角的范围和正弦函数的性质求出A与B关系,由锐角三角形的条件求出B的范围,利用商得关系、两角差的正弦公式化简所求的式子,由正弦函数的性质求出所求式子的取值范围.【解答】解:∵b2﹣a2=ac,∴由正弦定理得,sin2B﹣sin2A=sinAsinC,=sinAsinC,可得:=sinAsinC,由和差化积公式得cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B),代入上式得,﹣sin(A+B)sin(A﹣B)=sinAsinC,∵sin(A+B)=sinC≠0,∴﹣sin(A﹣B)=sinA,即sin(B﹣A)=sinA,在△ABC中,B﹣A=A,得B=2A,则C=π﹣3A,∵△ABC为锐角三角形,∴,解得,则<B<,∴﹣===,由<B<,得,sinB∈(,1),则∈(1,),∴﹣取值范围是(1,),故选:B.二.填空题(每小题5分,共20分)13.二项式(ax﹣1)5(a>0)的展开式的第四项的系数为﹣40,则a的值为2.【考点】二项式系数的性质.【分析】根据二项式展开式的通项公式,令r=3,求出第四项的系数,列出方程求a的值.【解答】解:二项式(ax﹣1)5 的通项公式为:T r=•(ax)5﹣r•(﹣1)r,+1故第四项为﹣•(ax)2=﹣10a2x2,令﹣10a2=﹣40,解得a=±2,又a>0,故取a=2.故答案为:2.14.已知正数x,y满足x+y﹣xy=0,则3x+2y的最小值为5+2.【考点】基本不等式.【分析】得到+﹣=1,根据基本不等式的性质求出3x+2y的最小值即可.【解答】解:∵x+y﹣xy=0,∴+﹣=1,故3x+2y=(3x+2y)(+)=++5≥2+5=5+2,当且仅当=时“=”成立,故答案为:5+2.15.过直线y=x上的一点作圆(x﹣5)2+(y﹣1)2=2的两条切线l1、l2,当直线l1、l2关于y=x对称时,l1、l2所成的角为60°.【考点】圆的切线方程.【分析】过圆心M作直线l:y=x的垂线交于N点,过N点作圆的切线能够满足条件,不难求出夹角.【解答】解:圆(x﹣5)2+(y﹣1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程:x+y﹣6=0,它与y=x的交点N(3,3),N到(5,1)距离是2,两条切线l1,l2,它们之间的夹角为60°.故答案为:60°.16.已知函数f(x)=x2﹣2tx﹣4t﹣4,g(x)=﹣(t+2)2,两个函数图象的公切线恰为3条,则实数t的取值范围为(,+∞).【考点】利用导数研究曲线上某点切线方程.【分析】设切点为(x1,f(x1)),(x2,g(x2)),分别求出f(x),g(x)导数,可得切线的方程,由同一直线可得即可化为﹣+=0,即8x23﹣4tx22+1=0有3个非零实根,令h(x)=8x3﹣4tx2+1,有3个非零零点,h(0)=1,求出h(x)导数,对t讨论,分t=0,t>0,t<0,求出单调区间和极值,即可得到所求范围.【解答】解:设切点为(x1,f(x1)),(x2,g(x2)),则f′(x1)=2x1﹣2t,g′(x2)=﹣,切线方程为y﹣f(x1)=f′(x1)(x﹣x1),即y=(2x1﹣2t)x﹣x12﹣4t﹣4;y﹣g(x2)=g′(x2)(x﹣x2),即y=﹣x+﹣t2﹣4t﹣4.即2x1﹣2t=﹣,且﹣x12﹣4t﹣4=﹣t2﹣4t﹣4.即有x1=t﹣,x12=t2﹣,即可化为﹣+=0,即8x 23﹣4tx 22+1=0有3个非零实根,令h (x )=8x 3﹣4tx 2+1,有3个非零零点,h (0)=1,h ′(x )=24x 2﹣8tx=24x (x ﹣),当t=0时,h ′(x )=24x 2>0,h (x )递增,不符合条件;当t >0,当x <0或x >时,h ′(x )>0,h (x )递增,0<x <时,h ′(x )<0,h (x )递减,h (x )极大值为为h (0)=1>0,h (x )极小值为h ()=1﹣t 3,由1﹣t 3<0,解得t >,若t <0,则当x >0或x <时,h ′(x )>0,h (x )递增,<x <0时,h ′(x )<0,h (x )递减,h (x )极大值为为h (0)=1>0,h (x )极小值为h ()=1﹣t 3>0,不符要求.故t >,故答案为:(,+∞).三.解答题(共70分)17.已知数列{a n }的前n 项和S n 满足2S n =3a n ﹣1,其中n ∈N *. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设a n b n =,求数列{b n }的前n 项和为T n .【考点】数列的求和;数列递推式. 【分析】( I )分n=1与n ≥2讨论,从而判断出{a n }是等比数列,从而求通项公式;( II )化简可得=3(﹣),利用裂项求和法求解.【解答】解:( I )∵,①当n=1时,a 1=a 1﹣,∴a 1=1,当n ≥2时,∵S n ﹣1=a n ﹣1﹣,② ①﹣②得:a n=a n﹣a n,﹣1即:a n=3a n(n≥2),﹣1又∵a1=1,a2=3,∴对n∈N*都成立,故{a n}是等比数列,∴.(II)∵,∴=3(﹣),∴,∴,即T n=.18.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调()由以上统计数据填下面乘列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异:(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取两人进行调查,记选中的4K2=.【考点】独立性检验的应用.【分析】(Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;(Ⅱ)ξ的可能取值有0,1,2,3,求出相应的概率,可得ξ的分布列及数学期望.22<6.635…所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.…(Ⅱ)ξ所有可能取值有0,1,2,3,…,,,,…ξ所以ξ的期望值是.…19.在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.(Ⅰ)求证:CE∥平面PAD;(Ⅱ)求PD与平面PCE所成角的正弦值;(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求的值;如果不存在,说明理由.【考点】点、线、面间的距离计算;直线与平面平行的判定;直线与平面所成的角.【分析】(Ⅰ)设PA中点为G,连结EG,DG,可证四边形BEGA为平行四边形,又正方形ABCD,可证四边形CDGE为平行四边形,得CE∥DG,由DG⊂平面PAD,CE⊄平面PAD,即证明CE∥平面PAD.(Ⅱ)如图建立空间坐标系,设平面PCE的一个法向量为=(x,y,z),由,令x=1,则可得=(1,1,2),设PD与平面PCE所成角为a,由向量的夹角公式即可得解.(Ⅲ)设平面DEF的一个法向量为=(x,y,z),由,可得,由•=0,可解a,然后求得的值.【解答】(本小题共14分)解:(Ⅰ)设PA中点为G,连结EG,DG.因为PA∥BE,且PA=4,BE=2,所以BE∥AG且BE=AG,所以四边形BEGA为平行四边形.所以EG∥AB,且EG=AB.因为正方形ABCD,所以CD∥AB,CD=AB,所以EG∥CD,且EG=CD.所以四边形CDGE为平行四边形.所以CE∥DG.因为DG⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.…(Ⅱ)如图建立空间坐标系,则B(4,0,0),C(4,4,0),E(4,0,2),P(0,0,4),D(0,4,0),所以=(4,4,﹣4),=(4,0,﹣2),=(0,4,﹣4).设平面PCE的一个法向量为=(x,y,z),所以,可得.令x=1,则,所以=(1,1,2).设PD与平面PCE所成角为a,则sinα=|cos<,>|=|=||=..所以PD与平面PCE所成角的正弦值是.…(Ⅲ)依题意,可设F(a,0,0),则,=(4,﹣4,2).设平面DEF的一个法向量为=(x,y,z),则.令x=2,则,所以=(2,,a﹣4).因为平面DEF⊥平面PCE,所以•=0,即2++2a﹣8=0,所以a=<4,点.所以.…20.已知椭圆C的中心在原点O,焦点在x轴上,离心率为,椭圆C上的点到右焦点的最大距离为3.(1)求椭圆C的标准方程;(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2+|=|2﹣|,求直线在y轴上截距的取值范围.【考点】椭圆的简单性质.【分析】(1)设椭圆C的方程为: +=1(a>b>0),半焦距为c.依题意e==,a+c=3,b2=a2﹣c2,解出即可得出.(2)设直线l的方程为y=kx+m,与椭圆方程联立化为:(3+4k2)x2+8kmx+4m2﹣12=0,△>0,设A(x1,y1),B(x2,y2).由|2+|=|2﹣|,可得=0.x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,把根与系数的关系代入化简与△>0联立解出即可得出.【解答】解:(1)设椭圆C的方程为: +=1(a>b>0),半焦距为c.依题意e==,由椭圆C上的点到右焦点的最大距离3,得a+c=3,解得c=1,a=2,∴b2=a2﹣c2=3,∴椭圆C的标准方程是+=1.(2)设直线l的方程为y=kx+m,联立,化为:(3+4k2)x2+8kmx+4m2﹣12=0,△=64k2m2﹣4(3+4k2)(4m2﹣12)>0,化简得3+4k2>m2.设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1•x2=,∵|2+|=|2﹣|,∴=0.∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,化为km(x1+x2)+(1+k2)x1•x2+m2=0,∴km(﹣)+(1+k2)×+m2=0,化简得7m2=12+12k2.将k2=﹣1代入3+4k2>m2.可得m2,又由7m2=12+12k2≥12.从而∴m2,解得m≥,或m≤﹣,.所以实数m的取值范围是∪.21.设函数f(x)=(1﹣ax)ln(x+1)﹣bx,其中a和b是实数,曲线y=f(x)恒与x轴相切于坐标原点.(1)求常数b的值;(2)当a=1时,讨论函数f(x)的单调性;(3)当0≤x≤1时关于x的不等式f(x)≥0恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)对f(x)求导,根据条件知f'(0)=0,所以1﹣b=0;(2)当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞);令f'(x)=0,则导函数零点x+1=1,故x=0;当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减;(3)因为f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1,对a进行分类讨论根据函数的单调性求得参数a使得不等式f(x)≥0;【解答】解:(1)对f(x)求导得:f'(x)=﹣aln(x+1)+根据条件知f'(0)=0,所以1﹣b=0,故b=1.(2)当a=1时,f(x)=(1﹣x)ln(x+1)﹣x,f(x)的定义域为(﹣1,+∞)f'(x)=﹣ln(x+1)+﹣1=﹣ln(x+1)+﹣2令f'(x)=0,则导函数零点x+1=1,故x=0;当x∈(﹣1,0),f'(x)>0,f(x)在(﹣1,0)上单调递增;当x∈(0,+∞)上,f'(x)<0,f(x)在(0,+∞)上单调递减;(3)由(1)知,f(x)=(1﹣ax)ln(x+1)﹣x,0≤x≤1f'(x)=﹣aln(x+1)+﹣1f''(x)=﹣①当a时,因为0≤x≤1,有f''(x)≥0,于是f'(x)在[0,1]上单调递增,从而f'(x)≥f'(0)=0,因此f(x)在[0,1]上单调递增,即f(x)≥f(0)而且仅有f(0)=0;②当a≥0时,因为0≤x≤1,有f''(x)<0,于是f'(x)在[0,1]上单调递减,从而f'(x)≤f'(0)=0,因此f(x)在[0,1]上单调递减,即f(x)≤f(0)=0而且仅有f(0)=0;③当﹣<a<0时,令m=min{1,﹣ },当0≤x≤m时,f''(x)<0,于是f'(x)在[0,m]上单调递减,从而f'(x)≤f'(0)=0因此f(x)在[0,m]上单调递减,即f(x)≤f(0)而且仅有f(0)=0;综上:所求实数a的取值范围是(﹣∞,﹣].[选修4-1:几何证明选讲]22.如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】圆的切线的判定定理的证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D 四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+)=,曲线C的参数方程为:(1)写出直线l和曲线C的普通方程;(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA|•|PB|的值.【考点】参数方程化成普通方程.【分析】(1)直线l的极坐标方程为:ρsin(θ+)=,展开可得:ρ(sinθ+cosθ)=,利用互化公式可得直角坐标方程.曲线C的参数方程为:,可得x2=4(1+sin2t)=y,x∈.(2)直线l的参数方程为:,代入曲线C的方程可得:t﹣2=0,可得|AB|=|t1﹣t2|=,|PA|•|PB|=|t1t2|.【解答】解:(1)直线l的极坐标方程为:ρsin(θ+)=,展开可得:ρ(sinθ+cosθ)=,可得直角坐标方程:x+y﹣1=0.曲线C的参数方程为:,x2=4(1+sin2t)=y,x∈.(2)直线l的参数方程为:,代入曲线C的方程可得:t﹣2=0,∴t1+t2=﹣,t1•t2=﹣2.∴|AB|=|t1﹣t2|===,|PA|•|PB|=|t1t2|=2.[选修4-5:不等式选讲]24.已知不等式|x﹣2|>3的解集与关于x的不等式x2﹣ax﹣b>0的解集相同.(1)求实数a,b的值;(2)求函数f(x)=a+b的最大值.【考点】一般形式的柯西不等式;一元二次不等式的解法.【分析】(1)求出不等式|x﹣2|>3的解集,即得不等式x2﹣ax+b>0的解集,利用一元二次方程根与系数的关系求出a和b的值,(2)根据柯西不等式即可求出最大值.【解答】解:(1)不等式|x﹣2|>3的解集为{x|x<﹣1或x>5},所以不等式x2﹣ax﹣b >0的解集为{x|x<﹣1或x>5},所以﹣1,5是方程x2﹣ax﹣b=0的两根,所以,解得a=4,b=5.(2)函数f(x)=a+b的定义域为[3,44],由柯西不等式得:[f(x)]2=(4+5)2≤[(16+25)(x﹣3+44﹣x)]2,.又因为f(x)≥0,所以f(x)≤4,当且仅当5=4时等号成立,即x=时,f(x)=41.所以函数f(x)的最大值为41.2018年1月11日。

四川省成都市成都树德中学2018-2019学年七年级下学期数学期中考试试卷及参考答案

四川省成都市成都树德中学2018-2019学年七年级下学期数学期中考试试卷及参考答案

22. 23. 24. 25.
26.;(2b-4)2=0.
23. 如图,点D在AB上,点E在AC上,AD=AE,∠B=∠C,
求证:AB=AC.
24. 如图,已知AB∥CD,Ð1=Ð2,试说明:ÐE=ÐF.
25. 如图,DACB和DDCE均为等腰直角三角形,且ÐACB=ÐDCE=90°,点A,D,E在同一直线上,CM为DDCE中DE 边上的高,连接BE.
(1) 求证:AM=AB; (2) 判断EB与EH的数量关系并加以证明; (3) 如图2,过点H作HG⊥AD于点G,连接BH.若AB=4,当点E在何位置时,梯形ABHG的面积等于 ? 参考答案
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
15. 如图, AD 是△ ABC 的高, AE是中线, 若 AD=5, CE=4, 则△AEB 的面积为________.
16. 若4x2﹣kxy+9y2是一个完全平方式,则k=________. 17. 若a2+b2+c2-ab-bc-ac=0,且a+3b+4c=16,则a+b+c的值为________. 18. 如图,在矩形ABCD中,将四边形ABFE沿EF折叠得到四边形HGFE.已知∠CFG=40°,则∠DEF=________.
3. 花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为( )
A.
毫克 B .
毫克 C .
毫克 D .
毫克
4. 在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是( )

成都树德中学(原成都九中)2018-2019学年高三上学期第三次月考试卷数学含答案

成都树德中学(原成都九中)2018-2019学年高三上学期第三次月考试卷数学含答案

成都树德中学(原成都九中)2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 2. ABC ∆中,“A B >”是“cos 2cos 2B A >”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 3. 已知函数()xF x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 4. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直5. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=846. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( )A .1B .2C .3D .4 8. 如右图,在长方体中,=11,=7,=12,一质点从顶点A 射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD9.图1是由哪个平面图形旋转得到的()A.B.C.D.10.函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 11.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.12.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想. 14.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 15.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.16.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力.三、解答题(本大共6小题,共70分。

四川省成都市树德中学自主招生考试数学试卷

四川省成都市树德中学自主招生考试数学试卷

四川省成都市树德中学自主招生考试数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中有且只有一个是正确的.1.(5分)2x3+x2﹣13x+6的因式是()A.2x﹣1B.x+2C.x﹣3D.x2+12.(5分)计算1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012=()A.0B.﹣1C.2012D.﹣20123.(5分)简化,所得结果正确的是()A.=1++B.=1﹣+C.=1+﹣D.=1﹣﹣4.(5分)设b<a<0,,则等于()A.B.﹣C.﹣3D.35.(5分)如图,AD是圆内接△ABC的边BC上的高,AE是圆的直径,AB=,AC=1,则AE•AD=()A.B.C.2D.6.(5分)关于x的方程:k(k+1)(k﹣2)x2﹣2(k+1)(k+2)x+k+2=0只有一个实数解(两个相同的也只算一个),则实数k可取不同值的个数为()A.2B.3C.4D.57.(5分)a、b都是自然数,且123456789=(11111+a)(11111﹣b),则()A.a﹣b是奇数B.a﹣b是4的倍数C.a﹣b是2的倍数,但不一定是4的倍数D.a﹣b是2的倍数,但不是4的倍数8.(5分)已知abc≠0,而且,那么直线y=px+p一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限9.(5分)如图,在等腰直角△ABC中,CA=CB=3,D是BC上一点,且=,点M是斜边AB上一动点,则△CMD的周长的最小值是()A.1+B.1+C.1+2D.1+10.(5分)如果对于某一特定范围内的x的任意允许值,P=|10﹣2x|+|10﹣3x|+|10﹣4x|+|10﹣5x|+…+|10﹣10x|为定值,则此定值是()A.20B.30C.40D.5011.(5分)二次函数y=ax2+bx+c的图象如图所示,现有以下结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b≥m(am+b).其中正确的结论有()A.4个B.3个C.2个D.1个12.(5分)已知方程:x3﹣3x2+(m+2)x﹣m=0的三个互不相等的实数根为一个三角形三边的长,则实数m的取值范围是()A.0<m<1B.m>C.<m<1D.1<m<二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)由小到大排列各分数:,,,,,是.14.(4分)记[x]为不超过实数x的最大整数,例如,[2]=2,[1.5]=1,[﹣0.3]=﹣1.则[]=.15.(4分)已知△ABC三内角A、B、C满足:A≥B≥C,且A=2C,则角B的取值范围是.16.(4分)已知x1、x2、x3、x4、x5、x6、x7、x8、x9、x10都是正整数,且x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=24,若x12+x22+x32+x42+x52+x62+x72+x82+x92+x102的最大值与最小值的和是.三、解答题:本大题共7小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(9分)设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.18.(9分)计算下列各题(1)(1﹣)0+()﹣2++2|sin60°﹣1|;(2)++++(3)+++…+.19.(8分)n为大于2的正整数,大家知道:1+2+3+…+n=,请看下面的计算:∵(n+1)3﹣n3=3n2+3n+1∴n=1时,23﹣13=3×12+3×1+1n=2时,33﹣23=3×22+3×2+1n=3时,43﹣33=3×32+3×3+1…n=n时,(n+1)3﹣n3=3n2+3n+1把以上的n个等式相加得:(n+1)3﹣1=3(12+22+32+…+n2)+3(1+2+3+…+n)+n所以,3(12+22+32+…+n2)=(n+1)3﹣(n+1)﹣3,即12+22+32+…+n2=n(n+1)(2n+1)类比上述方法,求13+23+33…+n3.20.(12分)如图,在边长为2的正△ABC内有一点P,它到三边BC、AB、AC的距离分别是PD、PE、PF.求:(1)PD+PE+PF的值;(2)PD2+PE2+PF2的最小值;(3)△DEF面积的最大值.21.(12分)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式;(2)求∠ACO的度数;(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.22.(12分)如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长.(2)试问线段AB上是否存在一点P,使PC2+PD2=4?如果存在,问这样的P点有几个并求出PB的值;如果不存在,说明理由.(3)当点P在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少;或PC、PD具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与⊙B的位置关系,证明你的结论.23.(12分)通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用y表示学生掌握和接受概念的能力,x表示提出概念和讲授概念的时间(单位:分),可有以下的关系式:y=(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?(2)一个数学难题,需要55(或以上)的接受能力,上课开始30分钟内,求能达到该接受能力要求的时间共有多少分钟?(3)如果每隔5分钟测量一次学生的接受能力,填写下表:参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中有且只有一个是正确的.1.A;2.D;3.C;4.C;5.A;6.C;7.B;8.B;9.D;10.B;11.B;12.C;二、填空题:本大题共4小题,每小题4分,共16分.13.<<<<<;14.﹣1;15.45°≤B≤72°;16.300;三、解答题:本大题共7小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.;18.;19.n2(n+1)2.;20.(1).(2)1.(3).;21.;22.;23.53.5;59;59;47;32;17。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(9)2018 数学自招真题
一、选择题(每小题5 分,共30 分)
1、在△ABC 中,若,则△ABC 是()
A.直角三角形
B.顶角为锐角的等腰三角形
C.等边三角形
D.含有60°的任意三角形
2、的值为()
A.是正数
B.是负数
C.是非负数
D.可为正也可为负
3、若,则的值为()
A.2017
B.2018
C.2019
D.2020
4、已知n 是奇数,m 是偶数,方程有整数解。

则()
A. 均为偶数
B. 均为奇数
C. 是偶数是奇数
D. 是奇数是偶数
5、如图Rt△ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点处,两条折痕与斜边AB 分别交于点E、F,则△的面积为()
A. B. C. D.
6、不超过的最大整数是()
B.2701
C.2702
D.2703
A.2700
二、填空题
7、设x,y 都是有理数,且满足方程,那么x-y 的值是
.
8、已知实数,满足= .
9、如图,设点P 在函数的图像上,PC⊥x 轴于点C,交函数的图像于点A,PD⊥y轴于点D,交函数
的图像于点B,若四边形PAOB 的面积为4,则m-n= .
10、已知有理数x 满足:的最小值为.
11、若69,90,125 除以正整数n 有相同的余数,则正整数n 为.
12、已知关于x 的方程的根都是整数,那么符合条件的所有整数a 的和为.
13、在△ABC 中,BC=2,高AD=2,点P、E、F 分别在边BC、AC、AB 上,四边形PEAF 是平行四边形,则
的最大值为.
14、已知抛物线与x 轴交于B、C 两点,A 点在抛物线上,且以BC 为直径的圆经过点A,A 在x 轴上方,则点A 的横坐标为.
15、如图,一段抛物线:,记为,它与x 轴交于点O,,将绕点旋转180°得,交x 轴于点;将绕点旋转180°得,交x 轴于点;…如此进行下去。

若P(2018,m)在抛物线上,则m+n= .
16、某学习小组由教师和学生组成,以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数得两倍多于男学生人数,该小组人数得最小值为
.
17、对于任意的实数m、n 定义符号max 的含义为:,如max(3,2)=3,max(1,2)=2,则
的最小值为.
18、在四边形ABCD 中,AD=DC=2,∠DAB=∠DCB=90°,BC,AD 的延长线交于P,求的最小值.
三、解答题(共4 个小题,19、20 各10 分,21、22 各14 分,共48 分)
19、解下列方程组
(1)(2)
20、一次函数y=x-1 与函数的图像交于点A,一次函数y=x-1 与x 坐标轴分别交于B 两点,连结AO,若。

(1)求m;
(2)直线过A 点,分别与x、y 的正半轴交于M、N。

当直线与函数相切时,△MON 的面积。

21、已知二次函数
(1)若二次函数与x 轴交于不同的两点,且交点的横坐标分别为,满足,求解有序实数对(a,b)。

(2)当时,若恒成立,求解有序实数对(a,b)。

22、已知一列数如下规律排列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,再接下来的三象是,依此类推.
(1)第10 个1 是这列数的第几项;
(2)该列数的第2018 项为多少?
(3 )求满足如下条件的最小整数N :N>100 且该列数的前N 项和为 2 的整数幂。

(参考公式:
)。

相关文档
最新文档