月考9月数学考卷

合集下载

山西省忻州市2025届高三上学期9月月考数学试题(含答案)

山西省忻州市2025届高三上学期9月月考数学试题(含答案)

山西省忻州市2025届高三上学期9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|y =lg(2−x )},B ={x ∈N|y = 4−x 2},则A ∩B =( )A. {0,1,2}B. {0,1}C. (−2,2)D. (0,2)2.已知a ∈R,b ∈R ,且(2+i )(1−ai )=2+bi ,则a +b =( )A. −1B. 0C. 1D. 23.已知命题p:∃x >0,x 2>2x ,则p 的否定为( )A. ∀x >0,x 2≤2xB. ∀x >0,x 2>2xC. ∃x >0,x 2≤2xD. ∃x ≤0,x 2≤2x4.在平行四边形ABCD 中,AP =2PB ,则PD =( )A. 23AB +ADB. −23AB +ADC. 13AB +ADD. −13AB +AD 5.如果随机变量ξ∼B (n,p ),且E (3ξ)=12,D (ξ)=43,则p =( )A. 14 B. 13 C. 12 D. 236.已知x >0,y >0,x +y +2xy =4,则x +y−xy 的最小值为( )A. 32B. 2C. 12D. 17.已知数列{a n }满足a n +1a n +a n +1a n +2=2,且a 2=a 12a 1+1,a 3=17,则3a 100=( )A. 165 B. 167 C. 169 D. 1718.已知a >0,设函数f (x )=e 2x +(2−a )x−ln x−ln a ,若f (x )≥0在(0,+∞)上恒成立,则a 的取值范围是( )A. (0,1e ]B. (0,1]C. (0,e ]D. (0,2e ]二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知a >0,则函数f(x)=a x −2a 的图象可能是( )A. B. C. D.10.已知函数f (x )=2sin(2x +φ)(|φ|<π2),且f (x )≤|f (π6)|,则下列结论正确的是( )A. φ=π6B. f(x)在区间[π2,π]上单调递增C. 若x1,x2为方程f(x)=2的两个解,则|x2−x1|的最小值为2πD. 若关于x的方程f(x)=a在区间[0,π4]上有且仅有一个解,则a的取值范围为[1,3)∪{2}11.已知函数f(x)的定义域为R,设g(x)=f(x+2)−1,若g(x)和f′(x+1)均为奇函数,则( )A. f(2)=1B. f(x)为奇函数C. f′(x)的一个周期为4D. ∑2024k=1f(k)=2024三、填空题:本题共3小题,每小题5分,共15分。

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。

2024-2025学年广东省珠海市上学期9月月考九年级数学试卷(含答案)

2024-2025学年广东省珠海市上学期9月月考九年级数学试卷(含答案)

2024-2025学年广东省珠海市上学期9月月考九年级数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程是一元二次方程的是( )=4A. (x2+3)2=9B. ax2+bx+c=0C. x2+3=0D. x2+1x22.已知点P(a,−1)在二次函数y=x2+2x−1的图象上,则a的值可能为( )A. –3B. –2C. –1D. 13.抛物线y=−x2+bx+3的部分图象如图所示,则一元二次方程−x2+bx+3=0的根为( )A. x1=x2=1B. x1=1,x2=−1C. x1=1,x2=−2D. x1=1,x2=−34.对于抛物线y=(x−1)2−2,下列说法正确的是( )A. 开口向下B. 对称轴是直线x=−1C. 顶点坐标(−1,−2)D. 与x轴有交点=0配方后可化为( )5.一元二次方程y2−y−34A. (y+12)2=1B. (y−12)2=1C. (y+12)2=34D. (y−12)2=346.嘉淇准备解一元二次方程4x2+7x+■=0时,发现常数项被污染,若该方程有实数根,则被污染的数可能是( )A. 3B. 5C. 6D. 87.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x尺,则可列方程为().A. x2+102=(x+1)2B. (x+1)2+102=x2C. x2+102=(x−4)2D. (x−4)2+102=x28.已知点A(−2,a),B(12,b),C(52,c)都在二次函数y=−x2+2x+3的图象上,那么a、b、c的大小是( )A. a<b<cB. b<c<aC. a<c<bD. c<b<a9.已知三角形的三条边为a,b,c,且满足a2−10a+b2−16b+89=0,则这个三角形的最大边c的取值范围是( )A. c>8B. 5<c<8C. 8≤c<13D. 5<c<1310.如图,抛物线y=ax2+bx+c(a≠0)与轴交于点(−3,0),其对称轴为直线x=−12,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程ax2+bx+c=0的两根分别为x1=−3,x2=2;⑤若m,n(m<n)为方程a(x+3)(x−2)+3=0的两个根,则m<−3且n>2,其中正确的结论有()个.A. 2B. 3C. 4D. 5二、填空题:本题共6小题,每小题3分,共18分。

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。

四川省广元市川师大万达中学2025届高三上学期9月月考数学试卷

四川省广元市川师大万达中学2025届高三上学期9月月考数学试卷

四川省广元市川师大万达中学2025届高三上学期9月月考数学试卷一、单选题1.8月20日《黑传说悟空》风靡全球,下列几组对象可以构成集合的是( ) A .游戏中会变身的妖怪B .游戏中长的高的妖怪C .游戏中能力强的妖怪D .游戏中击败后给奖励多的妖怪 2.命题“x ∀∈R ,2210x x ++≥”的否定是( )A .x ∃∈R ,2210x x ++≥B .x ∃∈R ,2210x x ++<C .x ∀∈R ,2210x x ++>D .x ∀∈R ,2210x x ++<3.若{}21A x x =<,(){}2ln 2B x y x x ==-+,则A B =I ( ) A .()1,2- B .[)0,1 C .()0,1 D .()1,0- 4.函数()sin ln f x x x =⋅的部分图象大致为( )A .B .C .D .5.19世纪美国天文学家西蒙·纽康和物理学家本·福特从实际生活得出的大量数据中发现了个现象,以1开头的数出现的频数约为总数的三成,并提出本·福特定律,即在大量10进制随机数据中,以()n n +∈N 开头的数出现的概率为1()lg n P n n+=,如斐波那契数、阶乘数、素数等都比较符合该定律.后来常有数学爱好者用此定律来检验某些经济数据、选举数据等大数据的真实性.若()193333log 8log 2(),19log 2log 5n k P n k k +=-=∈≤+∑N (说明符号()1,,j k i i j k i aa a a k i j ++==+++∈∑N L ),则k 的值为( )A .3B .5C .7D .96.若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为( ). A .()1,+∞ B .()1,8 C .()4,8 D .[)4,87.已知定义在R 上的奇函数()f x ,当0x ≥时,()f x 单调递增,若不等式2(4)(2)f t f mt m ->+对任意实数t 恒成立,则实数m 的取值范围是( )A.(,∞-B.() C .()),0-∞+∞U D.(),-∞+∞U 8.若sin 2cos θθ=-,则sin (sin cos )θθθ+=( )A .65-B .25-C .25D .65二、多选题9.下列各组函数是同一个函数的是( )A .2()21f x x x =--与2()21g t t t =--B .0()f x x =与()1g x =C .1()f x x =与2()x g x x= D.()f x =()g x 10.下列命题为真命题的是( )A .“1a >”是“11a<”的充分不必要条件 B .命题“21,1x x ∀<<”的否定是“21,1x x ∃≥≥”C .若0a b >>,则22ac bc >D .若0,0a b >>,且41a b +=,则11a b+的最小值为9 11.(多选)已知定义域为R 的函数()f x 在(1,0]-上单调递增,(1)(1)f x f x +=-,且图象关于点(2,0)对称,则下列结论正确的是( )A .(0)(2)f f =B .()f x 的最小正周期2T =C .()f x 在(1,2]上单调递减D .(2021)(2022)(2023)f f f >>三、填空题12.已知奇函数()f x 的定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭. 13.已知集合{}22|log ,|14x A x x m B x x -⎧⎫=<=≤⎨⎬-⎩⎭,若“x A ∈”是“x B ∈”的充分不必要条件,则实数m 的取值范围是.14.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,当01x ≤≤时,()2f x x =,则()()()()1232021f f f f ++++=L .四、解答题15.求值:21032148()()29-++; (2)5log 33818185log 8log 9log 2log 9-⋅++.16.n S 为等差数列{}n a 的前n 项和.已知24314,15a a S +==.(1)求{}n a 的通项公式.(2)设11n n n b a a +=,求数列{}n b 的前n 项和. 17.如图,在三棱柱111ABC A B C -中,侧面1111,ABB A BCC B 均为正方形,2AB BC ==,,AB BC D ⊥是AB 的中点.(1)求证:1BC ∥平面1A DC ;(2)求二面角1D AC A --的余弦值.18.(1)设命题p :实数x 满足22430x ax a -+<,其中0a <;命题q :实数x 满足23100x x +->,且q 是p 的必要不充分条件,求实数a 的取值范围.(2)已知不等式210ax bx -->的解集是1123x x ⎧⎫-<<-⎨⎬⎩⎭,求不等式20x bx a --≥的解集. 19.已知函数()21ax b f x x -=+是定义在[]1,1-上的奇函数,且()11f =-. (1)求函数()f x 的解析式;(2)判断并证明()f x 在[]1,1-上的单调性;(3)解不等式()()210f t f t +->.。

重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案

重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]

2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]

九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。

高三9月月考(数学)试题含答案

高三9月月考(数学)试题含答案

高三9月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1、已知集合{}Z x x x A ∈<=,3,{}N x x x B ∈>=,1,则B A ⋂=( )A .φB .}{3,2,2,3-- C.}{2 D .}{2,2-2.(5分)2、若复数,,则的实部为( )A .B .C .D .3.(5分)3、函数4log 3)(21++-=x x f x 的零点所在的区间为( )A .)3,2(B .)4,3(C .)2,1(D .)1,0(4.(5分)4、直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b =( ) A .ln2+1 B .ln2﹣1 C .ln3+1D .ln3﹣15.(5分)5、在ABC ∆中,若满足)2cos()2sin(A B b a -+=ππ,则该三角形的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.(5分)6、函数)82lg()(2--=x x x f 的单调递增区间是( )A .)2,(--∞B .)1,(-∞C .),1(+∞D .),4(+∞7.(5分)7、某数学兴趣小组从商标中抽象出一个函数图象如图,其对应的函数)(x f 可能是( )A .11)(-=x x f B .11)(-=x x f 12z i =-()23z i i =-12z z +1234C .xx f 2tan11)(π-=D .11)(2+=x x f 8.(5分)8)9.(5分)9、已知)(x f 是奇函数,且当时42)(-=x x f ,则不等式0)2(>-x f 的解集为( )A .}{40><x x x 或B .}{420><<x x x 或 C .}{20><x x x 或 D .}{22>-<x x x 或10.(5分)10、已知平面向量a ,b 2=,向量a 与b -a 的夹角为 150的最大值为( ) A .32B .3C .4D .334 11.(5分)11、圣·索菲亚教堂(英语:SAINT SOPHIA CATHEDRAL )坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑.1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美.小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为m )15315(-,在它们之间的地面上的点(D M B ,,三点共线)处测得楼顶,教堂顶C 的仰角分别是15和60,在楼顶处测得塔顶C 的仰角为 30,则小明估算索菲亚教堂的高度为( )0x >M A AA .m 20B .m 30C .m 320D .m 33012.(5分)12、已知在函数x x x f ln )(2+=与函数ax x x g -=22)(的图象上存在关于y 轴对称的点,则实数的取值范围为( )A .⎥⎦⎤ ⎝⎛-∞-e 1, B .⎥⎦⎤ ⎝⎛-∞-21, C .(]e -∞-, D .(]1,-∞-二、 填空题 (本题共计4小题,总分20分) 13.(5分)13,,,的夹角为在方向上的数量投影为__________14.(5分)14、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,A bc C A c b sin )sin()(22=+-,且3π=B ,则C 的大小为________.15.(5分)15,下列说法正确的是①图像关于②的最小正周期为 ③在区间 ④图像关于a 1a =2b =a b a b +a ()f x ()f x 2π()f x ()f x16.(5分)16、当[)+∞∈,1x 时,1ln -≥+x x xae x恒成立,则实数的取值区间..为______.三、 解答题 (本题共计7小题,总分80分)17.(12分)17、已知向量)2,cos 3(),1,(sin x b x a =-=,函数2)()(b a x f +=.(1)求函数)(x f 的最小正周期;(2)若⎥⎦⎤⎢⎣⎡-∈2,4ππx ,求函数)(x f 的值域. 18.(12分)18、已知三棱柱111C B A ABC -中,BC AB ⊥,O 为的中点,⊥O A 1平面ABC ,21===AA BC AB ,M 为11B A 的中点.(1)求证://1O A 平面MBC ; (2)求三棱锥C BB M 1-的体积.19.(12分)19、已知等比数列{}n a 的公比1≠q ,321=a ,且22a 、33a 、成等差数列.(1)求数列{}n a 的通项公式;(2)设n n a b 2log =,求数列{}n b 的前n 项和n T .20.(12分)20、某大型商场举办店庆十周年抽奖答谢活动,凡店庆当日购物满1000元的顾客可从装有4个白球和2个黑球的袋子中任意取出2个球,若取出的都是黑球获奖品a AC 44aA ,若取出的都是白球获奖品B ,若取出的两球异色获奖品C. (1)求某顾客抽奖一次获得奖品B 的概率;(2)若店庆当天有1500人次抽奖,估计有多少人次获得奖品C.21.(12分)21、已知函数)(ln )(R a xax x f ∈+=. (Ⅰ)讨论函数)(x f 的单调性; (Ⅱ)求出函数)(x f 零点的个数.22.(10分)22、在平面直角坐标系xOy 中,点P 是曲线⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x C 11:1(t 为参数)上的动点,以坐标原点O 为极点,X 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若点P 在y 轴右侧,点Q 在曲线2C 上,求PQ 的最小值.23.(10分)23、已知函数b x a x x f -+-=)(,R b a ∈,.(1)当1=b 时,对任意的R m ∈,关于x 的不等式22)(2+-<m m x f 总有解,求实数a 的取值范围.(2)当0,0=>b a 时,求不等式2)(<x f 的解集.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1、【答案】C【解析】分析:直接求得即可.故选:C.2.(5分)2、【答案】C【解析】因为,,所以,则的实部为.3.(5分)3、【答案】C在上为减函数,,,则,因此,函数的零点所在的区间为.故选:C.4.(5分)4、【答案】B【解析】解:求导得:y∵直线y +b 是曲线y =ln x (x >0)的一条切线,x =2,把x =2代入曲线方程得:y =ln2,把切点(2,ln2)代入直线方程得:ln2=1+b , 解得:b =ln2﹣1, 故选:B .5.(5分)5、【答案】D【解析】分析:由题设条件和正弦定理化简得,得到,求得或.A B 12i z =-213z i =+1232i z z +=+12z z +3()0,∞+()110f =>()260f =-<()()120f f ⋅<()f x ()1,2sin cos sin cos A A B B =sin 2sin 2A B =A B =,即,可得, 因为,所以或所以为等腰三角形或直角三角形. 故选:D.6.(5分)6、【答案】D【解析】对于函数,,解得或,所以,函数的定义域为.内层函数在区间上单调递减,在区间上单调递增,外层函数为增函数,因此,函数的单调递增区间为.故选:D.7.(5分)7、【答案】A【解析】选项A :函数的图象的渐近线为 或与原图象相符;选项B :选项C :时,函数无意义与原图不相符; 选项D :故选:A8.(5分)8、【答案】C【解析】由,得,则9.(5分)9、【答案】B【解析】当时 ,又是奇函数,图象关于原点对称,即可画出函数图象如下所示,sin cos sin cos A A B B =sin 2sin 2A B =,(0,)A B π∈A B =ABC ()()2ln 28f x x x =--2280x x -->2x <-4x >()()2ln 28f x x x =--()(),24,-∞-+∞228u x x =--(),2-∞-()4,+∞ln y u =()()2ln 28f x x x =--(4)+∞,1x =1x =-1x =-3x =1x =0x >()24x f x =-()f x要使,结合图象可得或,解得或故不等式的解集为,故选:.10.(5分)10、【答案】C【解析】分析:利用向量的位置关系,利用几何意义,在圆中表示出向量,从而求得最大模长.详解:设,,则,,又向量与的夹角为,则,即C 点的轨迹为优弧上的点, 则圆心角,三角形AOB 为正三角形,圆半径,则当取圆O 的直径向量4.故选:C. 【点睛】方法点睛:利用向量满足的条件,抽象成几何意义,来求得向量模长的最值.11.(5分)11、【答案】D【解析】分析:由正弦得出,再结合正弦定理得到,进而能求. 详解:由题意知:,所以()20f x ->22x ->220x -<-<4x >02x <<{}|024x x x <<>或B a →b AB →→=a AC →→=2AB =b a CB →→→-=a →b a →→-150︒30ACB ∠=AB 60AOB ∠=2OA AB ==a AC →→='AC AM CM CD 45CAM ∠=︒105AMC ∠=︒30ACM ∠=︒在中,在中,由正弦定理得 所以,在中,故选:D12.(5分)12、【答案】D【解析】 由题可得在有解,即在有解,在有解,令所以在单调递减,且,所以当时,,则,单调递增,当时,,则,单调递减,所以,故.故选:D.二、 填空题 (本题共计4小题,总分20分)13.(5分)13、【答案】 2【解析】由已知得,在方向上的数量投影为,,,的夹角为,所以数量投影为2。

贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]

贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]

数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则(){}{}2230,1,2,3,4A x x x B =-->=∣A B ⋂=A.B.C.D.{}1,2{}1,2,3{}3,4{}42.下列函数在其定义域内单调递增的是()A.B.1y x =-2ln y x=C. D.32y x =e xy x =3.已知等差数列满足,则(){}n a 376432,6a a a a +=-=1a =A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为A ()2:20C y px p =>A A x 4,则( )p =A.1或2 B.2或4 C.2或8 D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“()23f x -[]2,3()f x (),21x A f -B ”是“”的( )x A ∈x B ∈A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x 是奇函数,则的最小值为()()h x ()f x A. B.C.D.e2e7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为()51x ⎫+⎪⎭A. B. C. D.253513238.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径221:220C x y x y +--=x y M N 2C为,且与圆相外切,则的最大值为()1C22C M C N ⋅A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )X ,m n X 20242025Pm nA. B.服从两点分布1m n +=X C.D.()20242025E X <<()D X mn=10.已知函数,下列说法正确的是( )()()214log 21f x ax ax =-+A.的定义域为,当且仅当()f x R 01a <<B.的值域为,当且仅当()f x R 1a C.的最大值为2,当且仅当()f x 1516a =D.有极值,当且仅当()f x 1a <11.设定义在上的可导函数和的导函数分别为和,满足R ()f x ()g x ()f x '()g x ',且为奇函数,则下列说法正确的是()()()()()11,3g x f x f x g x --=''=+()1g x +A.B.的图象关于直线对称()00f =()g x 2x =C.的一个周期是4 D.()f x 20251()0k g k ==∑三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.()0,0(0x y a a =>1)a ≠13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩ 123,,x x x 123x x x <<()()()123f x f x f x ==则的最大值为__________.()()()112233x f x x f x x f x ++四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形n n n a 中实心区域的面积为.nb (1)写出数列和的通项公式;{}n a {}n b (2)设,证明.121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,111A B C ABC -111A B C ABC 为线段的中点,为线段上的点.111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC HBC (1)若点为线段的中点,求证:平面;H BC 1A B ∥1C GH (2)若平面分三棱台所成两部分几何体的体积比为,求二面角1C GH 111A B C ABC -2:5的正弦值.11C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点()2222:10,0x y M a b a b -=>>2222:12x y N m m -=M 的焦距为.()2,2,N (1)分别求和的方程;M N (2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D ,,判断l M ,A B N C ABCD=直线与圆的位置关系.l 222:O x y a +=18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分[)[)[)[)[]0,20,20,40,40,60,60,80,80,100布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠22⨯0.01α=产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;P (ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人P 注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.X ()E X ()P X k =k参考公式:(其中为样本容量)()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.3sin33sin 4sinθθθ=-3cos34cos 3cos θθθ=-根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.()323f x x ax a =-+123,,x x x 123x x x <<(i )求的取值范围;a (ii )若,证明:.1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=2.对于A 选项,的定义域为,该函数在和上单调递增,在定义1y x =-()(),00,∞∞-⋃+(),0∞-()0,∞+域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在2ln y x =()(),00,∞∞-⋃+(),0∞-上单调递增,在定义域内不单调;对于C 选项,的定义域为,该函数在定()0,∞+32y x==[)0,∞+义域上单调递增;对于D 选项,的定义域为,当时,;当e x y x =().1e xy x =+'R (),1x ∞∈--0y '<时,,在上单调递减,在上单调递增,因此该函数在定()1,x ∞∈-+0y '>xe y x ∴=(),1∞--()1,∞-+义域内不单调,故选C.3.,故选B.53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= 4.设点,则整理得,解得或,故选C.()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =5.的定义域为.当时,的定义域为,()23f x - []2,323x ()1233,x f x -∴ []1,3即.令,解得的定义域为,即.[]1,3A =1213x- ()12,21x x f ∴- []1,2[]1,2B =“”是“”的必要不充分条件,故选B.,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x x f x -=+,当且仅当,即时,等号成立,()3e2e xxf x -=+3e 2e x x -=12ln 23x =C.min ()f x ∴=7.设的二项展开式的通项公式为,51x ⎫+⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有3,4,50,2,4k =1,3,5k =理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.223326C C 2C 5+=8.由题,,即圆心为,且,为的221:(1)(1)2C x y -+-=()11,1C()()2,0,0,2M N MN 1C 直径.与相外切,由中线关系,有1C 2C 12C C ∴==,当且()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=仅当时,等号成立,所以的最大值为20,故选A.22C M C N=22C M C N⋅二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 对于D 选项,令,则服从两点分布,,2024Y X =-Y ()()1D Y n n mn=-=,正确,故选ACD.()()()2024D X D Y D Y mn∴=+==10.令,对于A 选项,的定义域为或()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R ,故A 错误;对于B 选项,的值域为在定义域内的值域为0,01Δ0a a >⎧⇔<⎨<⎩ ()f x ()g x ⇔R ,故B 正确;对于C 选项,的最大值为在定义域内的最小值()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩ ()f x ()2g x ⇔为,故C 正确;对于D 选项,有极值在定义域内有极值()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔且,故D 选项错误,故选BC.()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠11.对于A 选项,因为为奇函数,所以,又由,可得()1g x +()10g =()()11g x f x --=,故A 错误;对于B 选项,由可得()()()101,01g f f -==-()()3f x g x '=+'为常数,又由,可得,则()()3,f x g x C C=++()()11g x f x --=()()11g x f x --=,令,得,所以,所以()()131g x g x C --+-=1x =-()()221g g C --=1C =-的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,()()()13,g x g x g x -=+2x =()1g x +所以,所以,所以()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=是一个周期为4的周期函数,,()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以()f x ()1g x +,又,又是周期为4的周期函数,所以()()()()10,204g g g g ==-=-()()310g g ==()g x ,故D 正确,故选BCD.20251()(1)0k g k g ===∑三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案e14433e 6-【解析】12.设切点坐标为切线方程为.将代入得,可得(),,ln ,txt a y a a ='∴ ln xy a a x =⋅(),tt a ln t ta a t a ⋅=切点纵坐标为.1log e,ln a t a ==∴elog e t a a a==13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其22A 13C 余元素共有种排法,故共有种不同的方案.44A 214234A C A 144⋅⋅=14.设,由的函数图象知,,又,()()()123f x f x f x t===()f x 23t < 1232,ln x x x t +=-=.令()()()3112233e ,2e t tx x f x x f x x f x t t =∴++=-+在上单调递增,则()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴ (]2,3,的最大值为.()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;{}n a 11133n n n a --=⨯=数列是首项为1,公比为的等比数列,因此,.{}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)证明:由(1)可得1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-因为,2114314411334n n n nn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,所以.413n n c a <43n n na c a < 16.(本小题满分15分)(1)证明:如图1,连接,设,连接,1A C 11A C C G O⋂=1,HO A G三棱台,则,又,111A B C ABC -11A C ∥AC 122CG AC ==四边形为平行四边形,∴11A C CG 则.1CO OA =点是的中点,H BC .1BA ∴∥OH 又平面平面,OH ⊂11,C HG A B ⊄1C HG 平面.1A B ∴∥1C HG (2)解:因为平面分三棱台所成两部分几何体的体积比为,1C GH 111A B C ABC -2:5所以,11127C GHC AB V V B C ABC-=-即,()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅++⋅ 化简得,12GHC ABC S S =此时点与点重合.H B ,1190C CA BCC ∠∠== 且都在平面,则平面,11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC 又为等腰直角三角形,则.ABC BG AC ⊥又由(1)知,则平面,1A G ∥1CC 1A G ⊥ABC 建立如图2所示的坐标系,G xyz -则,()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --设平面的法向量,1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 则令,解得,220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 设平面的法向量,1B GH ()()1,,,1,1,2m a b c GB ==- 则令,解得.20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 设二面角的平面角为,11C GH B --θ,cos cos ,m n m n m n θ⋅=<>=== 所以,sin θ==所以二面角.11C GH B --17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为N =解得,即双曲线.21m =22:12y N x -=因为双曲线与双曲线的离心率相同,M N 不妨设双曲线的方程为,M 222y x λ-=因为双曲线经过点,所以,解得,M ()2,242λ-=2λ=则双曲线的方程为.M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为l l ,()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+联立消去并整理得22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=此时可得,()()222222Δ44220,20,2k t k t t k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <当时,由韦达定理得;2λ=212122224,22kt t x x x x k k --+==--当时,由韦达定理得,1λ=234342222,22kt t x x x x k k --+==--则,ABCD====化简可得,222t k +=由(1)可知圆,22:2O x y +=则圆心到直线的距离,Ol d ====所以直线与圆相切或相交.l O 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);[)0,200.00252020010⨯⨯=在)内有(只);[20,400.006252020025⨯⨯=在)内有(只);[40,600.008752020035⨯⨯=在)内有(只);[60,800.025********⨯⨯=在内有(只)[]80,1000.00752020030⨯⨯=由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),10253570++=所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.0H 根据列联表中数据,得.220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.0.01α=(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”A =B =,事件“小白鼠注射2次疫苗后产生抗体”.C =记事件发生的概率分别为,则,,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====.()1P C =-()()10.20.50.9P A P B =-⨯=所以一只小白鼠注射2次疫苗后产生抗体的概率.0.9P =(ii )由题意,知随机变量,()100,0.9X B ~所以.()1000.990E X np ==⨯=又,设时,最大,()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =所以00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩解得,因为是整数,所以.089.990.9k 0k 090k =19.(本小题满分17分)(1)若选①,证明如下:()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-若选②,证明如下:()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--.()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,()233f x x a =-'当时,恒成立,所以在上单调递增,至多有一个零点;0a ()0f x ' ()f x (),∞∞-+当时,令,得;令,得0a >()0f x '=x =()0f x '<x <<令,得()0f x '>x <x>所以在上单调递减,在上单调递增.()f x ((),,∞∞-+有三个零点,则即解得,()fx (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<当时,,04a <<4a +>且,()()()()32224(4)3445160f a a a a a a a a a+=+-++=++++>所以在上有唯一一个零点,()fx )4a +同理()2220,g a -<-=-=-<所以在上有唯一一个零点.()f x (-又在上有唯一一个零点,所以有三个零点,()f x (()f x 综上可知的取值范围为.a ()0,4(ii )证明:设,()()()()321233f x x ax a x x x x x x =-+=---则.()212301f a x x x ==-=又,所以.04a <<1a =此时,()()()()210,130,110,230f f f f -=-<-=>=-<=>方程的三个根均在内,3310x x -+=()2,2-方程变形为,3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭令,则由三倍角公式.ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=因为,所以.3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==所以222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷(含答案)

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷(含答案)

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线y=1−x tan72∘的倾斜角为( )A. 108∘B. 72∘C. 118∘D. 18∘2.向量a=(1,2,3),b=(−2,−4,−6),|c|=14,若(a+b)⋅c=−7,则a与c的夹角为( )A. 30∘B. 60∘C. 120∘D. 150∘3.已知直线l1:mx+y−1=0,l2:(3m−2)x+my−2=0,若l1//l2,则实数m的值为( )A. 2B. 1C. 1或2D. 0或134.将一枚均匀的骰子抛掷2次,事件A=“没有出现1点”,事件B=“出现一次1点”,事件C=“两次抛出的点数之和是8”,事件D=“两次掷出的点数相等”,则下列结论中正确的是( )A. 事件A与事件B是对立事件B. 事件A与事件D是相互独立事件C. 事件C与事件D是互斥事件D. 事件C包含于事件A5.已知点M是直线y=x+1上一点,A(1,0),B(2,1),则|AM|+|BM|的最小值为( )A. 2B. 22C. 1+2D. 106.已知在矩形ABCD中,AB=1,BC=3,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则|BD|=( )A. 102B. 62C. 52D. 27.在棱长为2的正方体ABCD−A1B1C1D1中,E为AB的中点,则点A1到平面ECC1的距离为( )A. 15B. 55C. 255D. 258.古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上.下底面均为半圆形的柱体.若AA1垂直于半圆柱下底面半圆所在平面,AA1=3,AB=4,CD=2,E为弧A1B1的中点,则直线CE与平面DEB1所成角的正弦值为( )A. 39921B. 27321C. 24221D. 4221二、多选题:本题共3小题,共18分。

2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)

2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)

人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

2024北京交大附中高三9月月考数学(教师版)

2024北京交大附中高三9月月考数学(教师版)

2024北京交大附中高三9月月考数学一、选择题(四个选项中只有一个答案正确)4×10=401.设复数3i z =-,则复数i z ⋅在复平面内对应的点的坐标是()A.()1,3 B.()1,3- C.()3,1 D.()3,1-2.已知集合2{|log (1)}A x y x ==+,2{|0}3xB x N x +=∈≤-,则A B = A.{0,1,2}B.(1,3)- C.{2,3}D.{1,2}3.已知定义域为I 的奇函数()0,f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A.()32f x x= B.()2log f x x= C.()21log 1x f x x+=- D.()1sin f x x=+4.记n S 为等差数列{}n a 的前n 项和.若6724a a =+,848S =,则{}n a 的公差为()A.1B.3C.4D.85.若直线2y x =是曲线()()=-2e xf x x a 的切线,则a =()A.e- B.1- C.1D.e6.设0a >,0b >则“221a b +≥”是“1a b ab +≥+”的条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.已知函数是定义在R 上的偶函数,且在区间[)0,+∞单调递减,若a +∈R ,且满足()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是()A.1,99⎡⎤⎢⎥⎣⎦B.1,9⎛⎤-∞ ⎥⎝⎦ C.1,22⎡⎤⎢⎥⎣⎦D.[)10,9,9⎛⎤+∞ ⎥⎝⎦8.()f x 是定义在R 上的偶函数,()1f x +是奇函数,当[]0,1x ∈时,()22f x x m =-,则112f ⎛⎫=⎪⎝⎭()A.32B.32-C.12D.12-9.已知函数(),0ln ,0x xe x f x x x ⎧≤=⎨>⎩,若()()g x f x ax =-有四个不同的零点,则a 的取值范围为()A.10,e ⎛⎫ ⎪⎝⎭B.1,1e ⎡⎫⎪⎢⎣⎭C.[)1,eD.[),e +∞10.集合论是德国数学家康托尔于十九世纪末创立的,希尔伯特赞誉其为“数学思想的惊人产物,在纯粹理性范畴中人类活动的最美表现之一”.取一条长度为1的线段,将它三等分,去掉中间一段,留下的两段分割三等分,各去掉中间一段,留下更短的四段,……,将这样操作一直继续下去,直至无穷.由于在不断分割舍弃过程中,所形成的线段的数目越来越多,长度越来越小,在极限情况下,得到一个离散的点集,称为康托尔三分集.若在前n 次操作中共去掉的线段长度之和不小于2930,则n 的最小值为()(参考数据:lg 20.3010=,lg 30.4771=)A.9B.8C.7D.6二、填空题(5×5=25)11.在6a x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为12,则a 的值为______.12.在ABC V 中,M 是BC 的中点,4AM =,点P 在AM 上,且满足3AP PM →→=,则PA PB PC →→→⎛⎫⋅+ ⎪⎝⎭的值为___________.13.已知函数21()cos sin 2f x x x x =-+,若将其图象向右平移()0ϕϕ>个单位长度后所得的图象关于原点对称,则ϕ的最小值为___________.14.设函数()21,=3+3,<x x af x x a a x a-≥--⎧⎪⎨⎪⎩,若函数()f x 存在最小值,则a 的一个取值为___________;a 最大值为___________.15.已知数列{}n a 的各项均为正数,{}12,n a a =的前n 项和n S 满足211(1,2,3,)++=+⋅= n n n n n a S a a S n .给出下列四个结论:①{}n a 的第2项小于1;②{}n n a S ⋅为常数列;③{}n a 为递增数列;④{}n a 中存在小于1100的项.其中所有正确结论的序号是____________.三、解答题16.设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =.(1)求角A 的大小;(2)再从以下三组条件中选择一组条件作为已知条件,使三角形存在且唯一确定,并求ABC V 的面积.第①组条件:a =,5c =;第②组条件:AB 边上的高h =,3a =;第③组条件:1cos 3C =,c =.17.如图所示,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 是矩形,M 是线段PC 的中点.已知2PD CD ==,1AD =.(1)求证://PA 平面BDM ;(2)求二面角M BD C --的余弦值;(3)直线BD 上是否存在点N ,使得MN 与PA 垂直?若存在,求MN 的长;若不存在,请说明理由.18.某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:汽车型号ⅠⅡⅢⅣⅤ回访客户(人数)250100200700350满意率0.50.50.60.30.2满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.(1)从所有的回访客户中随机抽取1人,求这个客户满意的概率;(2)若以样本的频率估计概率,从Ⅰ型号和Ⅴ型号汽车的所有客户中各随机抽取1人,设其中满意的人数为ξ,求ξ的分布列和期望;(3)用“11η=”,“21η=”,“31η=”,“41η=”,“51η=”分别表示Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ型号汽车让客户满意,“10η=”,“20η=”,“30η=”,“40η=”,“50η=”分别表示不满意.写出方差1D η,2D η,3D η,4D η,5D η的大小关系.19.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为,12,F F ,若2F 到过椭圆左焦点、斜率为的直线的距离为3,连接椭圆的四个顶点得到的四边形面积为4.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A B 、,过点()1,0M 的直线l 与椭圆C 相交于P Q 、两点,证明:直线AP BQ 、的交点在垂直于x 轴的定直线上.20.已知函数1()ln (1)2f x x a x =--(R a ∈).(1)若2a =-,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若不等式()0f x <对任意(1,)x ∈+∞恒成立.(i)求实数a 的取值范围;(ii )试比较2e a -与e 2a -的大小,并给出证明(e 为自然对数的底数,e 2.71828≈).21.已知无穷数列{}{}{},,n n n x y z 满足:*111,,,n n n n n n n n n x y z y z x z x y n +++=-=-=-∈N .记{}max ,,n n n n u x y z =(max{,,}x y z ,表示3个实数x ,y ,z 中的最大值).(1)若1112,3,4x y z ===,求123,,u u u ;(2)若11232,3,x y u u ===,求1z ;(3)设111,,x y z 是有理数,数列{}{}{},,n n n x y z 中是否一定存在无穷个0?请说明理由.参考答案一、选择题(四个选项中只有一个答案正确)4×10=401.【答案】A【分析】根据复数的乘法运算法则,将i z ⋅求出,即可得该复数在复平面内对应的点的坐标.【详解】解:由题知3i z =-,()i i 3i 13i z ∴⋅=⋅-=+,i z ∴⋅在复平面内对应的点的坐标是()1,3.故选:A 2.【答案】A【分析】求出A 中x 的范围确定出A,求出B 中不等式的解集确定出B,求出两集合的交集即可.【详解】由A 中y=log 2(x+1),得到x +1>0,即x>-1,∴A=(-1,+∞),由B 中不等式变形得:(x﹣3)(x +2)≤0且x 3≠解得:﹣2≤x<3,又x N ∈,{}B 21012∴=--,,,,则A ∩B={}012,,,故选A .【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】C【分析】利用奇偶性的定义逐项判断即可.【详解】对于A ,()32f x x ==A 错误;对于B ,()()2log f x x f x -=-=,为偶函数,故B 错误;对于C ,()21log 1xf x x +=-,故10,111x x x +>-<<-,且()()2211log log 11x x f x f x x x-+-==-=-+-,故()f x 为奇函数,且211log 023f ⎛⎫-=< ⎪⎝⎭,满足条件,故C 正确;对于D ,()010f =≠,故()f x 不是奇函数,故D 错误.故选:C 4.【答案】B【分析】设数列{}n a 的首项为1a ,公差为d ,根据题设条件易得出关于1a 和d 的方程组,解方程组求得公差d 即可.【详解】设数列{}n a 的首项为1a ,公差为d ,由题意得:1121124878482a d a d =⎧⎪⎨⨯+=⎪⎩+,解之得:3d =.故选:B .【点睛】本题考查等差数列基本量的计算问题,考查对基础知识的理解和掌握,考查逻辑思维能力和计算能力,属于常考题.5.【答案】B【分析】利用导数,根据切点及切线的斜率求得正确答案.【详解】()()=-2e xf x x a ,()()212exf x x a '=+-,依题意,直线2y x =是曲线()()=-2e xf x x a 的切线,设切点为(),2t t ,则()()22e 212e 2t tt a t t a ⎧-=⎪⎨+-=⎪⎩,()()22e 212e 2t t t a t t a ⎧=+⎪⎨+=+⎪⎩,通过对比系数可得()212,20,0t t t t t +===,则1a =-.故选:B 6.【答案】B【分析】由于原命题与逆否命题是等价命题,所以问题可以转化为:设>0,0b >则“1a b ab +<+”是“221a b +<”的()条件,这样可以先判断这个命题题设与【详解】由于原命题与逆否命题是等价命题,所以问题可以转化为:设>0,0b >则“1a b ab +<+”是“221a b +<”的()条件,题设:1a b ab +<+10(1)(1)0a b ab a b ⇔+--<⇔-->(>0,0b )>,结论:221a b +<1010a b -<⎧⇔⎨-<⎩(>0,0b )>,显然由题设不一定能推出结论,但是从结论一定能推出题设,故本题选B.【点睛】本题考查了充分条件和必要条件的判断.通过原命题与逆否命题是等价问题,使不等式的问题变得简单.7.【答案】D【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得a 的取值范围.【详解】依题意,()f x 是偶函数,且在区间[)0,+∞单调递减,由()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭得()()()()333log log 2log 22f a f a f a f +-=≤,所以()()3log 2f a f ≤,所以3log 2a ≤-或3log 2a ≥,所以109a <≤或9a ≥,所以a 的取值范围是[)10,9,9⎛⎤+∞ ⎥⎝⎦.故选:D 8.【答案】A【分析】分析可得()10f =,可得出m 的值,求出12f ⎛⎫⎪⎝⎭的值,推导出函数()f x 是以4为周期的周期函数,利用函数()f x 的周期性和对称性可求得112f ⎛⎫ ⎪⎝⎭的值.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+,则()()11f f =-,所以,()120f m =-=,解得2m =,所以,211322222f ⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,又()f x 是偶函数,所以()()11f x f x -+=-,故()()()113f x f x f x +=--=-,则()f x 是以4为周期的周期函数,因此,11313.2222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭故选:A.9.【答案】A【分析】讨论0x ≤、0x >,应用导数研究单调性,要使()0g x =有四个不同的解,即当两个区间均存在两个零点时,求a 的范围即可.【详解】由题意知:()()g x f x ax =-有四个不同的零点,∴,0()ln ,0x xe ax x g x x ax x ⎧-≤=⎨->⎩,则()0g x =有四个不同的解,当0x ≤时,()()0x g x x e a =-=,其零点情况如下:1)当0a ≤或1a =时,有0x =;2)当01a <<或1a >时,0x =或ln x a =;当0x >时,1()g x ax'=-,则有如下情况:1)当0a ≤时()0g x '>,即()g x 单调递增,不可能出现两个零点,不合题意;2)当0a >时,在10x a <<上()0g x '>,()g x 单调递增,在1x a>上()0g x '<,()g x 单调递减,而0x +→有()g x →-∞,x →+∞有()g x →+∞,所以只需1(ln 10g a a =-->,得1a e<时,()g x 必有两个零点.∴综上,有10a e<<时,()g x 在0x ≤、0x >上各有两个零点,即共有四个不同的零点.故选:A.【点睛】关键点点睛:应用分类讨论,利用导数研究函数的单调性,求在满足零点个数的情况下参数范围.10.【答案】A【分析】通过归纳法归纳出每次舍弃的线段的长度,然后由等比数列的前n 项和公式求得前n 次舍弃的线段的和,然后列不等式求解.【详解】第一次操作去掉的线段长度为13,第二次操作去掉的线段长度和为2133⨯,第三次操作去掉的线段长度和为221333⨯⨯,…,第n 操作去掉的线段长度和为121()33n -⋅,由此得121()12121123()1()2333333313nn n --+⨯++⨯==-- ,所以2291(330n-≥,21()330n ≤,2lglg 303n ≤-,lg 301lg 310.47718.4lg 3lg 2lg 3lg 20.47710.3010n ++≥==≈---,所以n 的最小值是9.故选:A .二、填空题(5×5=25)11.【答案】2-【分析】先写出通项公式,即可求出a 的值.【详解】解:因为6a x x ⎛⎫- ⎪⎝⎭的展开式的通项为:616C (1)r r r r r r T x a x --+=-626(1)C r r r ra x-=-,又因为4x 的系数为12,所以当624r -=时,1r =,所以166(1)C (1)C 612rrra a a -=-⋅⋅=-=,解得2a =-故答案为:2-12.【答案】6-【分析】根据向量的加法及线性运算可得23PB PC AP →→→+=,再利用向量数量积的运算性质求解即可.【详解】如图,4AM =Q ,又由点P 在AM 上且满足3APPM →→=,3,1AP PM →→∴==,M 是BC 的中点,223PB PC PM AP →→→→∴+==,2229633PA PB PC AP →→→⎛⎫∴⋅+=-=-⨯=- ⎪⎝⎭ 故答案为:6-.13.【答案】12π【分析】利用二倍角的正弦公式以及两角和的正弦公式将函数()y f x =的解析式化简为()sin 26f x x π⎛⎫+ ⎝=⎪⎭,并求出平移后的函数解析式,利用所得函数图象过原点,求出ϕ的表达式,即可得出正数ϕ的最小值.【详解】2131()cos sin 2cos 2sin 22226f x x x x x x x π⎛⎫=-+=+=+ ⎪⎝⎭Q ,将其图象向右平移()0ϕϕ>个单位长度后所得的图象的函数解析式为()sin 226g x x πϕ⎛⎫=-+ ⎪⎝⎭,由于函数()y g x =的图象关于原点对称,则函数为奇函数,()26k k Z πϕπ∴-=∈,()122k k Z ππϕ∴=-∈,由于0ϕ>,当0k =时,ϕ取得最小值12π.故答案为:12π.【点睛】关键点点睛:本题考查利用三角函数的对称性求参数的最值,同时也考查了三角函数的图象变换,解题的关键就是要结合对称性得出参数的表达式,考查推理能力与计算能力,属于中等题.14.【答案】①.0(答案不唯一)②.4【分析】化简()21,=3+3,<x x af x x a a x a-≥--⎧⎪⎨⎪⎩,分类讨论去掉绝对值符号,继而分类讨论a 的取值范围,确定每类中每段函数的取值范围,根据题意列出相应不等式,即可求得答案.【详解】由题意得()21,=3+3,<x x af x x a a x a -≥--⎧⎪⎨⎪⎩21,=+3+4,<x x a x a x a -≥-⎧⎨⎩,当=0a 时,21,0()=+3,<0x x f x x x -≥-⎧⎨⎩,则0x ≥时,()[)1f x ∈-+∞,,0x <时,()(3)f x ∈+∞,,此时()f x 存在最小值1-,故a 的一个取值为0;②当0a >时,则x a ≥时,()f x 在[)a +∞,上单调递增,2()[1,)f x a ∈-+∞,x a <时,()f x 在(,)a -∞上单调递减,()(33)f x a ∈++∞,,要使()f x 存在最小值,2331a a +≥-,解得14a -≤≤,故04a <≤;③当0a <时,则x a ≥时,2()1f x x =-在[)a +∞,上的最小值为1-,x a <时,()f x 在(,)a -∞上单调递减,()(33)f x a ∈++∞,,要使()f x 存在最小值,33a +≥,即43a ≥-,则403a -≤<;综上所述,a 的取值范围为[44]3-,则a 的一个取值为0;a 最大值为4,故答案为︰0;4.15.【答案】②④【分析】依题意可得11n n n n a S a S ++=,即可得到4n n a S =,从而判断②,再令2n =,求出2a ,即可判断①,证明111n n n na S a S ++=>,即可说明③,利用反证法说明④.【详解】解:因为211(1,2,3,)++=+⋅= n n n n n a S a a S n ,所以()2111111n n n n n n n n n n a S a a S a a S a S ++++++=+⋅+==,又12a =,所以114a S =,则4n n a S =,即{}n n a S ⋅为常数列,故②正确;因为{}n a 的各项均为正数,当2n =时()222124a S a a a =+=,即()2224a a +=,解得211a =->,故①错误;由于4(1,2,3,)n n a S n == ,所以11n n n n a S a S ++=⋅,又数列{}n a 的各项均为正数,所以10n n S S +>>,所以111n n n na S a S ++=>,所以1n n a a +>,故{}n a 为递减数列,故③错误;假设{}n a 中每一项均大于或等于1100,当n 取值变大时,n S 也逐渐增大,当40000n >时,400n S >,又1100n a ≥,所以14004100n n a S ⋅>⨯=,与4n n a S =矛盾,故④正确;故答案为:②④三、解答题16.【答案】(1)π3A =(2)选①不符合题意;选②3322S =;选③S =【分析】(1)利用正弦定理的边角互化即可求解;(2)选①利用余弦定理可求出边b ,可判断不满足题意;选②先利用高h 和角A 列式可求出b ,然后利用余弦定理可求出边c ,进而求出面积;选③先求sin C ,然后利用正弦定理求出边a ,再结合两角和的正弦公式求sin B ,进而可求出面积.【小问1详解】因为sin cos a B A =,所以由正弦定理得sin sin cos A B B A =,又因为(0,π)B ∈,所以sin 0B >,所以sin A A =,显然cos 0A ≠,则tan A =,又因为(0,π)A ∈,所以π3A =.【小问2详解】若选①,由余弦定理得2222cos a b c bc A =+-,即219255b b =+-,即2560b b -+=,解得2b =或3,不符合题意;若选②,因为AB边上的高h =,所以πsin 3b =,则232b ==,由余弦定理得2222cos a b c bc A =+-,即2942c c =+-,即2250c c --=,解得11c c =+=-,故ABC V 唯一,符合题意,此时ABC V的面积113332sin 2(12222S bc A ==创+�;若选③,因为知道角A ,cos C ,边c ,所以ABC V 唯一,符合题意,因为(0,π)C ∈,1cos 3C =,所以22sin 3C =,由正弦定理sin sin a c A C=得sin sin 223c Aa C ===则11sin sin()sin cos cos sin 23236B AC A C A C =+=+=⨯⨯,此时ABC V的面积11223sin 226S ac B ==创.17.【答案】(1)证明见解析;(2)66;(3)存在,MN【分析】(1)连接AC 交BD 于N ,连接MN ,利用线面平行的判定定理即可证得结论.(2)利用线面垂直的性质定理可知PD AD ⊥,PD CD ⊥,以D 为原点,建立空间直角坐标系D xyz -,求出平面BDM 的法向量为n,利用空间向量求二面角的余弦值即可.(3)设(),2,0N λλ,其中R λ∈,通过20MN AP λ⋅=--=uuu r uu u r,求解N 的坐标,再求解MN 的长度即可.【详解】(1)连接AC 交BD 于N ,连接MN .因为底面ABCD 是矩形,所以N 是线段AC 的中点.M 是线段PC 的中点,//PA MN ∴.又PA ⊄平面BDM ,MN ⊂平面BDM ,//PA ∴平面BDM .(2)因为PD ⊥底面ABCD ,AD ⊂底面ABCD ,CD ⊂底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是矩形,所以AD CD ⊥.如图,以D 为原点,,,DA DC DP 分别为,,x y z 轴,建立空间直角坐标系D xyz -,则()0,0,0D ,1,0,0,()0,2,0C ,()0,0,2P ,()1,2,0B .因为M 是线段PC 的中点,故()0,1,1M ,()1,2,0DB ∴= ,()0,1,1DM =.设平面BDM 的法向量为(),,n x y z =,则00n DB n DM ⎧⋅=⎨⋅=⎩,即200x y y z +=⎧⎨+=⎩,令1y =,则2x =-,1z =-,于是()2,1,1n =--.因为PD ⊥底面ABCD ,所以DP为平面BDC 的法向量.又()0,0,2DP =,所以cos ,6DP nDP n DP n ⋅===- .由题知二面角M BD C --是锐角,所以其余弦值为6.(3)因为N 为直线BD 上一点,(),2,0N λλ∴,其中R λ∈,(),21,1MN λλ∴=--.又()1,0,2AP =-,且MN 与PA 垂直20MN AP λ∴⋅=--=uuu r uu u r,解得2λ=-.所以存在点()2,4,0N --,使得MN 与PA 垂直,此时2λ=-,()2,5,1MN =---,MN=.【点睛】方法点睛:本题考查线面平行垂直,线面垂直及面面角的求法,利用空间向量求立体几何常考查的夹角:设直线l m ,的方向向量分别为,a b ,平面,αβ的法向量分别为,u v,则①两直线l m ,所成的角为θ(02πθ<≤),cos a b a b θ⋅= ;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a u θ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u vu vθ⋅= 18.【答案】(1)2364;(2)分布列答案见解析,数学期望:0.7;(3)12345D D D D D ηηηηη=>>>.【分析】(1)设“从所有的回访客户中随机抽1人,这个客户满意”为事件M .求得回访客户的总数,及满意的客户人数,从而求得概率;(2)由题知,0,1,2ξ=,设“从Ⅰ型号汽车所有客户中随机抽取的人满意”为事件A ,“从Ⅴ型号汽车所有客户中随机抽取的人满意”为事件B .根据题意,()P A 估计为0.5,()P B 估计为0.2,A 与B 相互独立.从而求得()0P ξ=、(1)P ξ=、(2)P ξ=,列出分布列,求得期望;(3)分别求得12345,,,,D D D D D ηηηηη,比较大小即可.【详解】(1)设“从所有的回访客户中随机抽1人,这个客户满意”为事件M .由题意知,样本中的回访客户的总数是2501002007003501600++++=,满意的客户人数是2500.51000.52000.67000.33500.2575⨯+⨯+⨯+⨯+⨯=,故所求概率为()57523160064P M ==.(2)0,1,2ξ=.设“从Ⅰ型号汽车所有客户中随机抽取的人满意”为事件A ,“从Ⅴ型号汽车所有客户中随机抽取的人满意”为事件B .根据题意,()P A 估计为0.5,()P B 估计为0.2,A 与B 相互独立.所以(0)()(1())(1())0.50.80.4P P AB P A P B ξ===--=⨯=;(1)()()()(1())(1())()P P AB P AB P A P B P A P B ξ==+=-+-0.50.80.50.20.5=⨯+⨯=;(2)()()()0.50.20.1P P AB P A P B ξ====⨯=.所以ξ的分布列为所以的期望.(3)由题知:10.5(10.5)0.25D η=⨯-=;20.5(10.5)0.25D η=⨯-=;30.6(10.6)0.24D η=⨯-=;40.3(10.3)0.21D η=⨯-=;50.2(10.2)0.16D η=⨯-=故12345D D D D D ηηηηη=>>>19.【答案】(1)2214x y +=(2)见解析【分析】(1)根据椭圆的几何性质列出方程组求出,,a b c ,即可得出椭圆C 的方程;(2)设直线l 的方程为1x my =+,求出直线AP 、BQ 的方程,联立即可求出交点的坐标,从而可知其在定直线上.【小问1详解】的直线倾斜角为60o ,2F3,故1232,sin 60F F c ===连接椭圆的四个顶点得到的四边形为对角线互相垂直的四边形,故面积12242S a b =⨯⨯=,则2ab =,结合c ==解得2,1a b ==,故椭圆C 的方程为:2214xy +=.【小问2详解】由题意知,直线l 的斜率不为0,故设过点()1,0M 的直线l 的方程为:1x my =+,()()1122,,P x y Q x y 、,联立22114x my x y =+⎧⎪⎨+=⎪⎩得:()224230m y my ++-=,故()22Δ41240m m=++>,1221223424y y m m y y m ⎧=-⎪⎪+⎨⎪+=-⎪+⎩,易知()()2,02,0A B -、,故112AP k y x +=,所以直线AP 的方程为:=2,同理可得,直线BQ 的方程为:()2222y y x x --,联立()()11222222y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩得:()()12122222y y x x x x +=-+-,即()()12122231y y x x my my +=-+-,化简得:1211224132my y y my y y x -=-++,因为()121223342m my y y y m =-=++,故()()12112234213232y y y x y y y +-=-+++,即14132x =-+,故4x =,所以直线AP BQ 、的交点在垂直于x 轴的定直线4x =上.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,x y x y 、;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、21x x 的形式;(5)代入韦达定理求解.20.【答案】(1)22y x =-(2)(i )[)2,+∞;(ii )答案见解析.【分析】(1)2a =-时()ln 1f x x x =+-求导,得到在切点(1,0)处切线斜率,代入点斜式即可;(2)(i )求导()22axf x x-'=对a 分情况讨论,讨论函数的单调性,结合题目要求()0f x <对任意(1,)x ∈+∞恒成立即可得到实数a 的取值范围;(ii )比较大小可将两个值看成函数值,然后利用函数的性质求解.【小问1详解】因为2a =-时,()()1ln 11f x x x f x x'=+-⇒=+,所以切点为(1,0),(1)2k f '==,所以2a =-时,曲线()y f x =在点(1,(1))f 处的切线方程22y x =-.【小问2详解】因为()()112ln (1)222a ax f x x a x f x x x-'=--⇒=-=,①当0a ≤时,()(),1,0f x x ∈'∞>+,所以()f x 在(1,)+∞上单调递增,()()10f x f >=,所以0a ≤不合题意.②当2a ≥时,即201a<≤时,()2()2022a x ax a f x x x--'==<在(1,)+∞恒成立,所以()f x 在(1,)+∞上单调递减,有()()10f x f <=,所以2a ≥满足题意.③当02a <<时,即21>a 时,由()0f x '>,可得21x a <<,由()0f x '<,可得2x a>,所以()f x 在2(1,a上单调递增,()f x 在2(,)a+∞上单调递减,所以()2(10f f a>=所以02a <<不合题意,综上所述,实数a 的取值范围是[)2,+∞.(ii )2a ≥时,“比较2e a -与e 2a -的大小”等价于“比较2a -与e 2ln a -的大小”,设()()2e 2ln g x x x =---,(2x ≥),则()()2ee 210x g x x x+--'=-=>,∴()g x 在[)2,+∞上单调递增,因为()e 0g =,当[)2,e x ∈时,()0g x <,即()2e 2ln x x -<-,所以2e 2e x x --<,当()e,x ∈+∞时,()0g x >,即()2e 2ln x x ->-,∴2e 2e x x -->,综上所述,当[)2,e a ∈时,2e 2e a a --<;当e a =时,2e 2e a a --=;当()e,a ∈+∞时,2e 2e a a -->.21.【答案】(1)12342,1,u u u ===;(2)13,2,2z =--或3;(3)证明见解析.【分析】(1)利用已知关系代入特殊值即可求解;(2)利用已知分析出{}{}111max ,,max ,,n n n n n n a b c a b c +++≤,即1n n u u +≤(当且仅当中,,n n n a b c 至少有一项为0时等号成立),再根据已知条件即可求解;(3)利用反证法证明即可.【详解】(1)因为1112,3,4x y z ===,所以2221,2,1x y z =-==-,3331,0,1x y z ===-,所以12342,1,u u u ===;(2)设n n a x =,n n b y =,n n c z =,*n N ∈,0n a ≥,0n b ≥,0n c ≥,由题意知,{}max ,,n n n nu x y z =,1n n na b c +=-,1n n n b c a +=-,1n n n c a b +=-,所以1n a +,r1,{}1max ,,n n n n c a b c +≤,所以{}{}111max ,,max ,,n n n n n n a b c a b c +++≤,即1n n u u +≤(当且仅当中,,n n n a b c 中至少有一项为0时等号成立),因为23u u =,所以222,,a b c 中至少有一项为0,因为112,3x y ==,所以112,3a b ==,所以212123,2,231a c b c c =-=-=-=,所以12c =或3,所以13,2,2z =--或3.(3)数列{}{}{},,n n n x y z 中一定存在无穷个0.设111,,x y z 的最小公分母为p ,将,,n n n x y z 均改为原来的p 倍,则111,,x y z 均为整数,题目的其他条件仍然成立,且问题不变.于是对任意的*n N ∈,,,n n n x y z 均为整数,n a ,n b ,n c ,n u 均为自然数,反证法:假设{}{}{},,n n n x y z 中没有0,或者有有限个0,则存在m N ∈,对任意的k m >,均有k a ,k b ,k c ,1k u ≥,设1n n n d u u +=-(*n N ∈),则1112m n m m m m n u u d d ++++++=+++…+d ,由(2)知,1n n u u +≤,故10n n n d u u +=-≤,假设对任意的k m >,k d 均不为0,则1k d ≤-,11m n m u u n +++≤-,令1m n u +=,则10m n u ++≤与11m n u ++≥矛盾.所以存在0n m >,使得00n d =,即001n n u u +=,由(2)知,000,,n n n a b c 中至少有一项为0,与000,,1n n n a b c ≥矛盾,所以假设不成立,数列{}{}{},,n n n x y z 中一定存在无穷个0.【点睛】关键点点睛:解决本题的关键是利用新定义,对n 合理赋值,结合反证法、特殊与一般、或然与必然的联系,即可得解.。

广东省广州市番禺中学2024-2025学年高二上学期9月月考数学试卷(含答案)

广东省广州市番禺中学2024-2025学年高二上学期9月月考数学试卷(含答案)

高二数学9月月考试题一、单选题(每小题5分)1.已知,则( )A. B.C.D.2.函数)A. B. C. D.3.函数是( )A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.若函数是定义在上的奇函数,,,则( )A.2B.0C.60D.625.已知空间向量,,则在上的投影向量坐标是( )A. B. C. D.6.在正四面体中,过点作平面的垂线,垂足为点,点满足,则( )A. B.C. D.7.在空间直角坐标系中,若直线的方向向量为,平面的法向量为,则( )A B. C.或 D.与斜交8.已知向量,,且平面,平面,若平面与平面的夹角的余弦的值为( )A.或 B.或1 C.或2D.二、多选题(每小题6分)9.三棱锥中,平面与平面的法向量分别为,,若,则二面角2i z =+izz =+3i 4-1i 4-3i4+1i 4+y =[3,4)(,3]-∞[3,)+∞(,4]-∞2π2cos 14y x ⎛⎫=-- ⎪⎝⎭πππ2π2()f x R (2)()f x f x -=(1)2f =(1)(2)(30)f f f ++⋅⋅⋅+=(3,4,0)a =(3,1,4)b =- b a (3,4,0)--34,,055⎛⎫--⎪⎝⎭314,,555⎛⎫--⎪⎝⎭(3,1,4)--P ABC -A PBC H M 34AM AH = PM =131444PA PB PC -+111444PA PB PC ++111424PA PB PC -+113444PA PB PC -+l (1,2,1)a =-α(2,3,4)n =//l αl α⊥l α⊂//l αl α(1,2,1)m =- (,1,)n t t =- m ⊥ αn ⊥βαβt 121-151-12-A BCD -ABD BCD 1n 2n 12π,3n n =的大小可能为( )A. B. C.D.10.随机抽取8位同学对2024年数学新高考|卷的平均分进行预估,得到一组样本数据如下:97,98,99,100,101,103,104,106,则下列关于该样本的说法正确的有( )A.均值为101 B.极差为9C.方差为8D.第60百分位数为10111.已知空间中三点,,,则( )A.与是共线向量B.与向量方向相同的单位向量坐标是C.与D.在三、填空题(每小题5分)12.已知是定义在上的奇函数,当时,,当时,,则_______.13.已知向量,,,若,,共面,则_______.14已知向量,,若与的夹角为钝角,则实数的取值范围是_______.四、解答题(五个大题共77分)15.(本题13分)(2024年新课标全国Ⅱ卷数学真题)记的内角,,的对边分别为,,,已知.(1)求.(2)若,求的周长.16(本题15分)某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.(1)求与的值;(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”A BD C --π6π32π35π6(0,1,0)A (2,2,0)B (1,3,1)C -AB AC AB ⎫⎪⎪⎭AB BC BC AB ()f x R 0x >2()22xxf x -=+0x <()22x x f x m n -=⋅+⋅m n +=(2,3,4)a x = (0,1,2)b = (1,0,0)c =a b c x =(2,,1)a t =--(2,1,1)b = a b t ABC △A B C a b c sin 2A A +=A 2a =sin sin 2C c B =ABC △m 13n 12434m n >m n社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.17.(本题15分)如图,在以,,,,,为顶点的六面体中(其中平面),四边形是正方形,平面,,且平面平面.(1)设为棱的中点,证明:,,,四点共面;(2)若,求六面体的体积.18.(本题17分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间,,,分成5组,得到图所示的频率分布直方图.(1)求图中的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜,进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?(3)在日销售量为苹果中用分层抽样方式随机抽6个苹果,再从这6苹果中随机抽取2个苹果,求抽取2个苹果都来自日销售量在的概率.19(本题17分)(2022年新高考天津数学高考真题)直三棱柱中,,,为的中点,为的中点,为的中点.A B C D E F F ∈EDC ABCD ED ⊥ABCD BF FE =FEB ⊥EDB M EB A C F M 24ED AB ==EFABCD [50,60)[60,70)⋅⋅⋅[90,100]a 85%[70,90]kg [80,90]111ABC A B C -12AA AB AC ===AC AB ⊥D 11A B E 1AA F CD(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.//EF ABC BE 1CC D 1ACD 1CC D高二数学9月月考试题参考答案一、单选题(每小题5分共40分)1.A2.A3.A4.A【详解】由题意,所以的周期为4,且关于直线对称,而,所以.5.B【详解】因为空间向量,,所以,,,则在上的投影向量坐标是:.6.B【详解】在正四面体中,因为平面,所以是的中心,连接,则,所以.7.C【解析】由可得,所以或,即可得正确选项.【详解】直线的方向向量为,平面的法向量为,因为,所以,所以或.8.B【详解】因为,所以,,,因为平面,平面,若平面与平面,,解得或1.二、多选题(每小题6分共18分)9.BC【详解】二面角的大小与法向量的夹角相等或互补,二面角的大小可能为或.10.ABD【详解】A选项,均值为,A正确;(2)()()(2)f x f x f x f x-==--=--()f x()f x1x=(1)(2)(3)(4)(0)(1)(1)(2)(2)(0)0f f f f f f f f f f+++=++-+===(1)(2)(30)(29)(30)(1)(2)(0)(1)022f f f f f f f f f++⋅⋅⋅+=+=+=+=+=(3,4,0)a=(3,1,4)b=-9405a b⋅=-++=-5a==b==ba 5134(3,4,0),,05555a b aa a⋅-⎛⎫⋅=⨯=--⎪⎝⎭P ABC-AH⊥PBC H PBC△PH()()211323PH PB PC PB PC=⨯+=+()33334444PM PA AM PA AH PA PH PA PA PH PA=+=+=+-=+-()3331311144434444PA PH PA PA PB PC PA PA PB PC=+-=+⨯+-=++a n⋅=a n⊥lα⊂//lαl(1,2,1)a=-α(2,3,4)n=(2,3,4)(1,2,1)2640a n⋅=⋅-=-+=a n⊥lα⊂//lα(1,2,1)m=-(,1,)n t t=-22m n t⋅=+m=n=m⊥αn⊥βαβ=25610t t-+=15t=∴A BD C--π3π2ππ33-=9798991001011031041061018+++++++=B 选项,极差为,B 正确;C 选项,方差为,C 错;D 选项,因为,故从小到大,选择第5个数作为第60百分位数,即101.11.BD 【详解】由已知,,,,因此与不共线,A 错;,所以与向量,B 正确;,,,C 错;在上的投影是,D 正确.三、填空题(每小题5分共15分)12.【详解】令,则,所以.因为是定义在上的奇函数,所以,所以,所以,,所以.13.【详解】由题意得,存在,使得,即,故解得,.14.【详解】由,得,解得,又,得,解得,所以与夹角为钝角,实数的取值范围为且.四、解答题(五个大题共77分)15.(本题13分)【解析】(1)由可得,即,由于,故,解得.(2)由题设条件和正弦定理,106979-=222(97101)(98101)(106101)169410492517882-+-+⋅⋅⋅+-+++++++==60%8 4.8⨯=(2,1,0)AB = (1,2,1)AC =- (3,1,1)BC =-1221-≠AB AC AB = AB ⎫=⎪⎪⎭6105AB BC ⋅=-++=- BC = cos ,AB BC AB BC AB BC⋅〈〉===BC AB BC AB AB⋅==5-0x <0x ->2()22xx f x -+-=+()f x R ()()f x f x -=-2()22422xx x x f x +--=--=-⨯-4m =-1n =-5m n +=-23m n a mb nc =+ (2,3,4)(0,1,2)(1,0,0)x m n =+2342nx m m=⎧⎪=⎨⎪=⎩2m =23x =(,1)(1,5)-∞-- 0a b ⋅<(2)2(1)10t -⨯++-⨯<5t <//a b 21211t --==1t =-a b t 5t <1t ≠-67=+sin 2A A +=1sin 12A A +=πsin 13A ⎛⎫+= ⎪⎝⎭ππ4π(0,π),333A A ⎛⎫∈⇒+∈ ⎪⎝⎭ππ32A +=π6A =sin sin 2sin 2sin sin cos C c B B C C B B =⇔=又,,则,进而,于是,,由正弦定理可得,,即,解得,,故的周长为.16.(本题15分)【详解】(1)依题,解得.(2)由题令该新同学在社团方面获得本选修课学分的分数为,获得本选修课学分分数不低于4分为事件A ,则;;.故.17.(本题15分)【详解】(1)连接,由四边形是正方形,故,又平面,平面,故,由,,平面,故平面,又为棱的中点,,故,又平面平面,平面平面,平面,故平面,故,所以,,,四点共面;(2)设与交于点,连接,则,又平面,平面,则平面,又因为六面体,则平面平面,又平面,故,则四边形为矩形,则,且平面,又,故,则.18(本题17分)【详解】(1)由直方图可得,样本落在,,,的频率分别为,,0.2,0.4,0.3,由,解得.B (0,π)C ∈sin sin 0B C ≠cos B =π4B =7π12C A B π=--=sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=sin sin sin a b c A B C ==2ππ7πsin sin sin 6412b c==b =c =+ABC △2++78=+11324131(1)1(1)34mn m n m n ⎧=⎪⎪⎪⎛⎫----=⎨ ⎪⎝⎭⎪⎪>⎪⎩1214m n ⎧=⎪⎪⎨⎪=⎪⎩i X ()4121123412P X =⨯⨯=()5111123424P X =⨯⨯=()6111123424P X =⨯⨯=1111()1224246P A =++=78+AC ABCD AC DB ⊥ED ⊥ABCD AC ⊂ABCD ED AC ⊥DE BD D = DE BD ⊂EDB AC ⊥EDB M EB BF FE =FM EB ⊥FEB ⊥EDB FEB EDB EB =FM ⊂EFB FM ⊥EDB //FM AC A C F M AC BD O OM //OM DE OM ⊂ACFM DE ⊂/ACFM //DE ACFM EFABCD CDEF ACFM CF =DE ⊂CDEF //DE CF OCFM 1CF =CF ⊥ABCD BF FE =122CF DE ==11204422333EFABCD E ABCD B EFC V V V --=+=⨯⨯+⨯⨯=557=++[50,60)[60,70)⋅⋅⋅[90,100]10a 10a 10100.20.40.31a a ++++=0.005a =则样本落在,,,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为:.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进95kg 苹果.(3)由日销售量为,的频率分别为0.2,0.4知,抽取的苹果来自日销售量中的有2个,不妨记为,,来自日销售量为的苹果有4个,不妨记为,,,,任意抽取2个苹果,有,,,,,,,,,,,,,,,共有15个基本事件,其中2个苹果都来自日销售中的有6个基本事件,由古典概型可得.19.(本题17分)【解析】(1)证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.[50,60)[60,70)⋅⋅⋅[90,100]5060607070808090901000.050.050.20.40.383.5(kg)22222+++++⨯+⨯+⨯+⨯+⨯=85%85%10.03100.7-⨯=85%[90,100]85%0.850.7901095(kg)10.7-+⨯=-[70,80)[80,90][70,80)1a 2a [80,90]1b 2b 3b 4b ()12,a a ()11,a b ()12,a b ()13,a b ()14,a b ()21,a b ()22,a b ()23,a b ()24,a b ()12,b b ()13,b b ()14,b b ()23,b b ()24,b b ()34,b b [80,90]62155P ==557++111ABC A B C -1AA ⊥111A B C AC AB ⊥1111A C A B ⊥1A 1A A 11A B 11A C x y z (2,0,0)A (2,2,0)B (2,0,2)C 1(0,0,0)A 1(0,2,0)B 1(0,0,2)C (0,1,0)D (1,0,0)E 11,,12F ⎛⎫⎪⎝⎭10,,12EF ⎛⎫= ⎪⎝⎭ABC (1,0,0)m =0EF m ⋅= EF m ⊥ EF ⊂/ ABC //EF ABC(2),,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.(3),,设平面的法向量为,则,取,可得,则因此,平面与平面.1(2,0,0)C C = 1(0,1,2)C D =- (1,2,0)EB =1CC D ()111,,u x y z = 111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ 12y =(0,2,1)u =4cos ,5EB u EB u EB u ⋅==⋅BE 1CC D 451(2,0,2)AC = 1(0,1,0)A D =1ACD ()222,,v x y z = 122122200v A C x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩ 21x =(1,0,1)v =-cos ,u v u v u v ⋅〈〉===⋅ 1ACD 1CC D。

2024-2025学年上学期9月考-高一数学(试卷)

2024-2025学年上学期9月考-高一数学(试卷)

2024-2025华安正兴高一9月月考卷 (第一章~第二章)(时间:120分钟 满分:150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,4,8,10,12},集合A={1,2,4,8,10},B={2,4,8},则A∩∁U B=( )A.{2}B.{2,4}C.{1,10}D.{1,2,4,8}2.已知命题p:“某班所有的男生都爱踢足球”,则命题綈p为( )A.某班至多有一个男生爱踢足球B.某班至少有一个男生不爱踢足球C.某班所有的男生都不爱踢足球D.某班所有的女生都爱踢足球3.若a≥b>0,则下列不等式成立的是( )A.a≥b≥a+b2≥ab B.a≥a+b2≥b≥abC.a+b2≥a≥ab≥b D.a≥a+b2≥ab≥b4.唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙”,其中后一句“成仙”是“到蓬莱”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知a>b,且ab≠0,c∈R,则下列不等式中一定成立的是( )A.a2>b2B.1a<1bC.a+b2≥ab D.ac2+1>bc2+16.已知a>0,b>0且a+b=1,若不等式1a+1b>m恒成立,m∈N*,则m的最大值为( )A.3B.4C.5D.67.关于x的不等式ax-b>0的解集是{x|x>1},则关于x的不等式(ax+b)(x-3)>0的解集是( )A.{x|x<-1或x>3}B.{x|-1<x<3}C.{x |1<x <3}D.{x |x <1或x >3}8.某商品计划提价两次,有甲、乙、丙三种方案,其中m >n >0,则两次提价后价格最高的方案为( )方案第一次提价(%)第二次提价(%)甲m n 乙n m 丙m +n 2m +n 2A.甲B.乙C.丙D.无法判断二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知集合A ={x |x 2-2x -3<0},集合B ={x |2x -4<0},则下列关系式正确的是( )A.A ∩B ={x |-1<x <2}B.A ∪B ={x |x ≤3}C.A ∪(∁R B )={x |x >-1}D.A ∩(∁R B )={x |2≤x <3}10.已知不等式ax 2+bx +c >0的解集为{x |-12<x <2},则下列结论正确的是( )A.a >0B.b >0C.c >0D.a +b +c >011.下面命题正确的是( )A.命题“任意x ∈R ,x +1>0”的否定是“存在x ∈R ,x +1<0”B.“a >b ”是“ac 2>bc 2”的必要不充分条件C.“a >1”是“1a <1”的充分不必要条件D.若a >b >0,m >0,则b a <b +ma +m 12.下列选项正确的是( )A.若a ≠0,则a +4a 的最小值为4B.若x ∈R ,则x 2+3x 2+2的最小值是2C.若ab<0,则ab+ba的最大值为-2D.若正实数xy满足x+2y=1,则2x+1y的最小值为8三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若非空且互不相等的集合M,N,P满足:M∩N=M,N∪P=P,则M∪P=________.14.已知集合A={x|-1<x<2},B={x|-1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是________.15.在R上定义运算“*”:x*y=x(1-y).若不等式(x-a)*(x+a)<1对任意实数x恒成立,则实数a的取值范围是________.16.当x>0,y>0且1x+2y=1,有2x+y≥k2+k+2恒成立,则实数k的取值范围是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知命题p: 1≤x≤2,x≤a+1,命题q: 1≤x≤2,一次函数y=x+a的图象在x轴下方.(1)若命题p为真命题,求实数a的取值范围;(2)若命题p为真命题,命题q的否定也为真命题,求实数a的取值范围.18.(12分)设全集U=R,集合A={x|-1<x≤2},B={x|2m<x<1}.(1)若m=-1,求B∩∁U A;(2)若B∩∁U A中只有一个整数,求实数m的取值范围.19.(12分)已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b;(2)解关于x的不等式ax2-(ac+b)x+bc<0.20.(12分)设命题p:实数x满足(x-a)(x-3a)<0,其中a>0,命题q:实数x满足|x -3|<1.(1)若a=1,当命题p和q都为真命题时,求实数x的取值范围;(2)若非p是非q的充分不必要条件,求实数a的取值范围.21.(12分)已知m>0,n>0,不等式x2+mx-12<0的解集为{x|-6<x<n}.(1)求实数m,n的值;(2)正实数a,b满足na+2mb=2,求1a+1b的最小值.22.(12分)围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小费用.。

重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题

重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题

重庆市第八中学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列式子中,是分式的是( )A .5x -B .3πx y+ C .4a D .2xy2.在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是( )A .B .C .D .3.反比例函数8y x=的图象一定经过的点是( ) A .()2,4- B .()1,8- C .()4,2 D .()2,4-4.估计的值应该在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间5.如图,ABC V 和DEF V 是以点O 为位似中心的位似图形,:1:2OC CF =,若36DEF S =△,则ABC S V 为( )A .6B .3C .4D .86.如图,已知直线a b ∥,直线l 与直线a b 、分别交于点A B 、,AC AB ⊥交直线b 于点C .若250∠=︒,则1∠的度数为( )A .50︒B .40︒C .60°D .30︒7.如图,直角三角形ABC 中,90C ∠=︒,分别以AB AC BC 、、为直径向上作半圆.若26BC AC ==,则图中阴影部分的面积为( )A .9B .9π2C .27π2D 8.如图,下列图形均是由完全相同的小圆点按照一定规律所组成的,第①个图形中一共有5个小圆点,第②个图形中一共有8个小圆点,第③个图形中一共有11个小圆点,L ,按此规律排列下去,第⑩个图形中小圆点的个数是( )A .30B .31C .32D .339.如图,在正方形ABCD 中6AB =,点E 是对角线AC 上的一点,连结DE ,过点E 作EF ED ⊥,交AB 于点F ,以,DE EF 为邻边作矩形DEFG ,连结AG ,若F 恰为AB 的中点,则AG 的长为( )A .32B .34C .94D 10.有如下的一列等式:23200110221033210T a T a x a T a x a x a T a x a x a x a ==-=-+=-+-,,,,L ,其中n 为正整数,nT的各项系数均不为0.交换任意两项的系数得到的新多项式称为“友好多项式”那么以下说法正确的有( )①多项式3T 有6个不同的“友好多项式”;②求多项式3T 所有不同的“友好多项式”之和,其中3x 的系数为:3212a a a -+; ③若()21nn T x =-,那么n T 的所有系数之和为1;④若()21n n T x =-,那么当2025n =时,20252025202320211132a a a a +++++=L .A .0个B .1个C .2个D .3个二、填空题11.计算:tan60cos60cos30︒⋅︒+︒=.12.已知一个正多边形的内角为140︒,这个多边形的条数为.13.一个不透明的口袋中有2个黄色球和3个红色球,这些球除颜色外其余均相同,从中随机摸出一个球,记下颜色后放回,搅匀后再从中随机摸出一个球,则两次都摸出红球的概率是.14.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.若蓄电池电流为6A 时,电阻为Ω.15.若()2610425mm y m x x -+=-++是关于x 的二次函数,则m 的值为.16.若关于x 的不等式组3532122x x x a x +⎧≤+⎪⎪⎨+⎪+>⎪⎩无解,且关于y 的分式方程53122ay y y --=--有整数解,则满足条件的所有整数a 的和为. 17.如图,四边形ABCD 为矩形,52AB =,BC =,点E 为AB 边上一点,将BCE V 沿CE 翻折,点B 的对应点为点F ,过点F 作FG CE ∥交DC 于点G ,若:1:4DG GC =,则FG 的长为.18.对于一个三位自然数m ,将各个数位上的数字分别乘以3后,取其个位数字,得到三个新的数字,,x y z ,我们对自然数m 规定一个运算:()222F m x y z =++,例如:136m =,其各个数位上的数字分别乘以3后,再取其个位数字分别是:3,9,8,则()222136398154F =++=.则()432F =;若已知两个三位数4,22p a a q b ==(,a b 为整数,且25,25a b ≤≤≤≤),若p q +能被7整除,则()F p q +的最大值是.三、解答题 19.计算(1)()()22x y x x y ++-;(2)22269133a a a a a a ++⎛⎫-÷ ⎪-+⎝⎭. 20.当前,电信网络诈骗犯罪形势严峻,某中学组织了关于防诈安全知识的专题讲座,并进行了防诈安全知识测评,现从该校初中、高中两个学段中各随机抽取20名学生的测试成绩(120分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .090x ≤<,B .90100x ≤<,C .100110x ≤<,D .110120x ≤≤,下面给出了部分信息:初中20名学生的测试成绩是:110,111,100,99,100,89,88,88,87,118,97,96,85,86,106,106,120,112,106,106高中20名学生的测成绩在C 组中的数据是:104,106,107,108,106,109. 初中、高中抽取的学生测试成绩统计表根据上述信息,解答下列问题: (1)直接写出上述图表中a b m 、、的值;(2)该校哪个学段学生掌握防诈安全知识更好?请说明理由.(写出一条理由即可) (3)该校初中4400名学生,高中560名学生,估计两个学段测试成绩优秀()110120x ≤≤的学生共有多少名?21.如图,等腰直角三角形ABC ,90ABC ∠=︒,点D 是AC 的中点,连接BD ,点E 是AC 上的一点,AB AE =.(1)用直尺和圆规完成以下基本操作:过点A 作BAC ∠的角平分线,交BD 和BE 分别于点G 和点F (保留作图痕迹,不写作法) (2)求证:AB GD BD =+.证明:在Rt ABC △中,90ABC AB BC ∠=︒=,,点D 是AC 的中点,AC BD AD DC BD ∴⊥==,,90ADB ∴∠=︒,AB AE AG =Q ,平分BAC ∠,∴_______, 90AFB ∴∠=︒,又AGD BGF ∠=∠Q ,9090AGD BGF ∴︒-∠=︒-∠,∴______________,在ADG △和BDE V 中,________AD BD DAG DBE ⎧⎪=⎨⎪∠=∠⎩,(ASA)ADG BDE ∴V V ≌,DG DE ∴=,GD BD ∴+=_______AE AB ==.22.喷灌和滴灌是目前较常用的两种节水灌溉方式,去年,某专家小组用两块相同大小的试验田分别采用喷灌和滴灌的方式,滴灌总用水2000吨,喷灌总用水3000吨,据测算,喷灌时每亩用水量比滴灌时每亩用水量多10吨. (1)求喷灌和滴灌每亩用水量分别是多少;(2)今年,专家小组计划将滴灌和喷灌试验田面积分别增加%a ,同时,通过改进灌溉输水管道,使喷灌的每亩用水量减少了2%3a ,滴灌的用水量不变,据测算,今年的灌溉用水量比去年的用水量增加了1%2a ,求a 的值.23.如图,在直角梯形ABCD 中,490,tan ,4cm 3B D AB BC ∠=︒===,现有一动点Q 从C点出发沿C D A →→的方向移动到A 点(含端点C 和点A ),当它到A 时停止.设Q 点经过的路程为cm x ,线段,,AQ CQ AC 围成的封闭图形面积为21cm y .(1)直接写出1y 与x 的函数关系式,并注明x 的取值范围;(2)在x 的取值范围内画出1y 的图象,写出函数1y 的一条性质:______________; (3)结合函数图象,当直线212y x m =+与1y 的函数图象有两个交点时,直接写出常数m 的取值范围.(结果保留一位小数,误差不超过0.2).24.如图,四边形ABCD 是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C 的正东方设置了休息区K ,其中休息区K 在景点A 的南偏西30︒方向A 在景点B 的北偏东75︒方向,景点B 和休息区K 两地相距()90ABK ∠<︒,景点D 分别在休息区K 、景点A 的正东方向和正南方向.(参考数据:2.24 2.45)(1)求步道AB 的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C 一起向正东出发,不久到达休息区K ,他们发现有两条路线到达景点A ,于是小宏想比赛看谁先到达景点A .他们分别租了一辆共享单车,两人同时在K 点出发,小明选择①K B A --路线,速度为每分钟320米;小宏选择②K D A --路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A 呢?25.如图,一次函数y =kx +b k ≠0 与反比例函数()0,0my m x x=≠<的图象相交于点()1,A n -,与x 轴交于点B ,与y 轴交于点C ,已知122OB OC ==.(1)求反比例函数与一次函数的解析式;(2)将点B 沿x 轴负半轴平移5个单位长度得到点E ,连接AE ,交反比例函数图象于点D ,连接BD .若在y 轴上有一动点F ,直线BD 上有一动点P .当35A P PB +最小时,求DPF V 周长的最小值以及点F 的坐标;(3)如图2,将线段AD 以D 为圆心,逆时针旋转90︒,得到线段DN ,连接CN ,在反比例函数上是否存在一点Q ,使得90CND QCO ∠+∠=︒?直接写出点Q 的坐标.26.如图,等腰直角三角形中,90,ACB CB CA ∠=︒=,点D 是线段BC 中点,以D 为直角顶点作等腰直角三角形,MDN M 在N 的左侧.(1)如图1,若点M 与点A重合,连接,BN AB =BN 的长度;(2)如图2,若点M 在AC 左侧,且90AMC ∠=︒时,过点D 作DE BC ⊥交AB 于点E ,连接ME CN 、,在线段CN 上取一点F 且满足45NDF DMC ∠=︒-∠,求证:AM CM +=;(3)如图3,若点M 在AC 左侧,且90AMC ∠=︒时,将AMC V 和MCD △分别沿AC CD 、翻折得到AM C 'V 和CM D ''V,连接BN DM '、,若12M DM AMC S S '''=V V ,请直接写出DMBN的值.。

湖北新高考联考协作体2024年高一上学期9月月考数学试题及答案

湖北新高考联考协作体2024年高一上学期9月月考数学试题及答案

2024年湖北省高一9月月考高一数学试卷命制单位:新高考试题研究中心考试时间:2024年9月26日下午14:00-16:00 试卷满分:150分注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“2,10x x x ∃∈+−=R ”的否定为()A.2,10x x x ∃∉+−=RB.2,10x x x ∃∈+−≠RC.2,10x x x ∀∈+−≠RD.2,10x x x ∀∉+−=R 2.已知集合{}{}31,2A x x B x x =−≤≤=≤∣∣,则A B ∩=()A.{}21xx −≤≤∣ B.{}01x x ≤≤∣C.{}32xx −≤≤∣ D.{}12x x ≤≤∣3.下列命题为真命题的是()A.0a b ∀>>,当0m >时,a m a b m b+>+B.集合{}21A x y x ==+∣与集合{}21B y y x ==+∣是相同的集合.C.若0,0b a m <<<,则m m a b>D.所有的素数都是奇数4.已知15,31a b −<<−<<,则以下错误的是()A.155ab −<<B.46a b −<+<C.28a b −<−<D.553a b−<< 5.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:{0Δ2}A x x =<<∣,{}235,03B x x C x x =−≤≤=<<∣,然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x B ∈是x A ∈的必要不充分条件;丙:x C ∈是x A ∈的充分不必要条件.则“Δ”表示的数字是( )A.3或4B.2或3C.1或2D.1或36.已知不等式20ax bx c ++<的解集为{1x x <−∣或3}x >,则下列结论正确的是()A.0a >B.0c <C.0a b c ++<D.20cx bx a −+<的解集为113x x−<<7.已知8m <,则48m m +−的最大值为()A.4 B.6 C.8 D.108.向50名学生调查对A B 、两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对,A B 都不赞成的学生数比对,A B 都赞成的学生数的三分之一多1人.则下列说法错误的是( )A.赞成A 的不赞成B 的有9人B.赞成B 的不赞成A 的有11人C.对,A B 都赞成的有21人D.对,A B 都不赞成的有8人二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错得0分9.巴黎奥运会已经结束,但是中国运动健儿们在赛场上为国拼搏的精神在我们的心中永存.某学校组织了以“奥运赛场上最难忘的瞬间”为主题的作文大赛,甲、乙、丙、丁四人进入了决赛.四人在成绩公布前作出如下预测:甲预测说:我不会获奖,丙获奖:乙预测说:甲和丁中有一人获奖:丙预测说:甲的猜测是对的:丁预测说:获奖者在甲、乙、丙三人中.成绩公布后表明,四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符,已知有两人获奖,则获奖者可能是( ),A.甲和乙B.乙和丙C.甲和丙D.乙和丁10.中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数,三三数之,剩二:五五数之,剩三;七七数之,剩二.问:物几何?”现有如下表示:已知{}*32,A xx n n ==+∈N ∣,{}{}**53,,72,B xx n n C x x n n ==+∈==+∈N N ∣∣,若()x A B C ∈∩∩,则下列选项中符合题意的整数x 为( )A.8 B.23 C.37 D.12811.已知,,a b c ∈R ,则下列结论中正确的有()A.若0ab ≠且a b <,则11a b >B.若22ac bc >,则a b>C.若0a b >>,则11a b a b −>−D.()221222a b a b ++≥−−三、填空题:本题共3小题,每小题5分,共15分.12.已知2x =在不等式()2140k x kx −−−≥的解集中,则实数k 的取值范围是__________.13.已知66M x x=∈∈ −N N ,则集合M 的子集的个数是__________.14.知0x y >>,则()29x y x y +−的最小值为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设R 为全集,集合{}{}2121,22,02A x a x a B y y x x x =+≤≤+==+−≤≤∣∣.(1)若3a =,求(),A B A B ∩∩R ;(2)若A B ⊆,求实数a 的取值范围.16.(本小题满分15分)(1)已知集合{}{}11,13A xa x a B x x =−≤≤+=−≤≤∣∣,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.(2)命题:p m ∈R 且10m +≤,命题2:,10q x x mx ∀∈++≠R ,若p 与q 不同时为真命题,求m 的取值范围.17.(本小题满分15分)已知函数()223f x ax ax =−−.(1)已知0a >,且()0f x ≥在[)3,∞+上恒成立,求a 的取值范围;(2)若关于x 的方程()0f x =有两个不相等的正实数根12,x x ,求2212x x +的取值范围.18.(本小题满分17分)学习了不等式的内容后,老师布置了这样一道题:已知0,0a b >>,且1a b +=,求12y a b=+的最小值. 李雷和韩梅梅两位同学都“巧妙地用了1a b +=”,但结果并不相同.李雷的解法:由于1a b +=,所以1212121111y a b a b a b a b a b=++−=+++−=+++−,而122,a b a b +≥+≥.那么211y ≥+=+则最小值为1+韩梅梅的解法:由于1a b +=,所以()121223b a y a b a b a b a b =+=++=++ ,而2333b a a b ++≥+=+则最小值为3+. (1)你认为哪位同学的解法正确,哪位同学的解法有错误?(错误的需说明理由)(2)为巩固学习效果,老师布置了另外两道题,请你解决:(i )已知0,0,0a b c >>>,且1a b c ++=,求证:1119a b c++≥(ii )已知0,0,21a b a b >>+=,求212b a ab++的最小值19.(本小题满分17分)学习机是一种电子教学类产品,也统指对学习有辅助作用的所有电子教育器材.学习机较其他移动终端更注重学习资源和教学策略的应用,课堂同步辅导、全科辅学功能、多国语言学习、标准专业词典以及内存自由扩充等功能成为学习机的主流竞争手段,越来越多的学习机产品全面兼容网络学习、情境学习、随身学习机外教、单词联想记忆、同步教材讲解、互动全真题库、权威词典、在线图书馆等多种模式,以及大内存和SD/MMC 卡内存自由扩充功能根据市场调查,某学习机公司生产学习机的年固定成本为20万元,每生产1万部还需另投入16万元.设该公司一年内共生产该款学习机x 万部并全部销售完,每万部的销售收入为()R x 万元,且()24,010,5300,10.a x x R x b x xx −<≤ = −> 当该公司一年内共生产该款学习机8万部并全部销售完时,年利润为1196万元;当该公司一年内共生产该款学习机20万部并全部销售完时,年利润为2960万元. (1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款学习机的生产中所获得的利润最大?并求出最大利润.2024年湖北省高一9月月考高一数学答案一、单选题 12 3 4 5 6 7 8 C A C D C D A B二、多选题910 11 AC BD BCD4.【详解】因为15,31a b −<<−<<,所以13b −<−<,对于A ,当05,01a b ≤<≤<时,05ab ≤<;当05,30a b ≤<−<<时,03b <−<,则015ab ≤−<,即150ab −<≤;当10,01a b −<<≤<时,01a <−<,则01ab ≤−<,即10ab −<≤;当10,30a b −<<−<<时,01,03a b <−<<−<,则03ab <<;综上,155ab −<<,故A 正确;对于B ,314156a b −−=−<+<+=,故B 正确;对于C ,112358a b −−=−<−<+=,故C 正确;对于D ,当14,2a b ==时,8a b=,故D 错误, 5.【详解】因为此数为小于5的正整数,所以2{02}0A x x x x =<∆<=<< ∆∣,.因为x B ∈是x A ∈的必要不充分条件,x C ∈是x A ∈的充分不必要条件,所以C 是A 的真子集,A 是B 的真子集,所以25≤∆且223>∆,解得235≤∆<,所以“∆”表示的数字是1或2,故C 正确. 6.【详解】由已知可得2y ax bx c ++开口向下,即0a <;1,3x x =−=是方程20ax bx c ++=的两个根,即1322,313b a b a c a c a−=−+= ⇒=−=− =−× ,显然220;2340;0320c a b c a a a a c bx a ax ax a >++=−−=−>−+<⇒−++<()()21321311013x x x x x ⇒−−=+−<⇒−<<,故D 正确.7.【详解】因为8m <,则80m −<,可得()44888488m m m m−+=−+−≥−=− −− ,即448m m +≤−,当且仅当488m m −=−,即6m =时,等号成立,所以48m m +−的最大值为4. 8.【详解】赞成A 的人数为350305×=,赞成B 的人数为30333+=.记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ,赞成事件B 的学生全体为集合B.如图所示,设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为13x +.赞成A 而不赞成B 的人数为30x −,赞成B 而不赞成A 的人数为33x −.依题意()()30331503x x x x −+−+++=,解得21x =. 所以赞成A 的不赞成B 的有9人,赞成B 的不赞成A 的有12人,对A ,B 都赞成的有21人,对A ,B 都不赞成的有8人.9.【详解】 “甲预测说:我不会获奖,丙获奖”,而“丙预测说:甲的猜测是对的”∴甲和丙的说法要么同时与结果相符,要么同时与结果不符.若甲和丙的说法同时与结果相符,则丁的说法也对,这与“四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符已知有两人获奖”相矛盾,故错误;若甲和丙的说法与结果不符,则乙、丁的预测成立所以甲获奖,丁不获奖;丙或乙获奖.10.【详解】因为23372543732=×+=×+=×+,故()23A B C ∈∩∩;128342252537182=×+=×+=×+,故()128A B C ∈∩∩;因8711=×+,则8;373121C ∉=×+,则37A ∉11.【详解】对A :当0a b <<时,结论不成立,故A 错误;对于B 因为22ac b >,所以20c >,所以,a b >故B 正确;对于()1111:C a b a b a b b a −−−=−+−,因为0a b >>,所以1111,0b a b a >−>,所以()110a b b a −+−> ,即11a b a b −>−,故C 正确;对D :()221222a b a b ++≥−−等价于22(1)(2)0a b −++≥,成立,故D 正确.三、填空题12.4k ≥或[)4,+∞或{}4kk ∣ 13.16 14.1212.【详解】因为2x =在不等式的解集中,把2x =带入不等式得:4(1)240k k −−− ,解得4k 13.【详解】解:因为66x∈−N ,所以61,2,3,6x −=, 又x ∈N ,所以0,3,4,5x =,所以集合{}0,3,4,5M =,所以集合M 的子集个数为4216=个14.【详解】()()2222299362x x x y x y x y x y +≥+=+− +−,当且仅当2x y =的时候取“=”,又223612x x +≥=,当且仅当2x =的时候取“”=.综上,当22x y ==的时候,不等式取“=”条件成立,此时最小值为12四、解答题15.(1)由题意可得{}26B yy =−≤≤∣,当3a =时,{}47Ax x =≤≤∣,所以{}46A B xx ∩=≤≤∣,因为{4A x x =<R ∣ ,或7}x >,所以(){24}A B xx ∩−≤<R ∣ (2)由(1)知,B {}26yy =−≤≤∣,若A =∅,即121a a +>+,解得0a <,此时满足A B ⊆;若A ≠∅,要使A B ⊆,则12112216a a a a +≤+ +≥− +≤ ,解得502a ≤≤, 综上,若A B ⊆,所求实数a 的取值范围为52a a ≤. 16.(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A 真包含于,B 而[]1,1A a a =−+,显然,A B ≠于是1113a a −≥− +≤ ,解得02a ≤≤, 所以a 的取值范围为[]0,2(2)当命题p 为真命题时,1,m ≤−当命题q 为真命题时,240m ∆=−<,即22m −<<,所以p 与q 同时为真命题时有122m m ≤− −<<,解得21,m −<≤− 故p 与q 不同时为真命题时,m 的取值范围是(](),21,−∞−∪−+∞.17.(1)()()[)2223(1)30,3,f x ax ax a x a a x =−−=−−−>∈+∞则二次函数()f x 图象的开口向上,且对称轴为1,x =()f x ∴在[)3,+∞上单调递增,()min ()333,f x f a ∴==−()0f x ≥在[)3,+∞上恒成立,转化为min ()0f x ≥,330a ∴−≥,解得1a ≥,故实数a 的取值范围为[)1,+∞;(2)关于x 的方程()0f x =有两个不相等的正实数根12,x x ,()2121223,0,0,f x ax ax x x x x −−+>>0a ∴≠且2121241202030a a x x x x a ∆=+> +=> ⋅=−>,解得3a <−, ()222121212624,x x x x x x a∴+=+−=+令()64(3)g a a a=+<−,()g a 在(),3−∞−上单调递减,()()()62,0,2,4g a a∴∈−∴∈故2212x x +的取值范围为()2,4.18.(1)韩梅梅的解法正确;李雷的解法错误 在李雷的解法中,12a a+≥,等号成立时1a =;2b b+≥b =,那么取得最小值1+1a b +=这与已知条件1a b +=是相矛盾的.(2)0,0,0a b c >>> ,且1a b c ++=,111a b c a b c a b c a b c a b c++++++∴++=++. 33b a c a c b a b a c b c =++++++≥+++32229=+++=,当且仅当a b c ==时取等号.(3)因为21a b +=,所以12ab −=即21111121111122224224422b a b a a b ab a b ab a b ab a b b a ++−+=++=++=−+++()51151152344442b a a b a b a b a b=+−=++−=++33≥+=+,当且仅当5221b a a b a b = +=,即a b = =时,等号成立.所以2min132b a ab ++=+ 19.解:(1)因为当生产该款学习机8万部并全部销售完时,年利润为1196万元,所以()488208161196a −××−−×=,解得200a =当该公司一年内共生产该款学习机20万部并全部销售完时,年利润为2960万元, 所以253002020201629602020b −×−−×= ,解得40000b =. 当010x <≤时,()()()()2162020041620418420;W xR x x x x x x x =−+=−−+=−+−当10x >时,()()()25300400004000016201620165280W xR x x x x x x x x =−+=−−+=−+ 综上2418420,010,40000165280,10.x x x W x x x −+−< = −−+>(2)①当时2010,4(23)2096x W x <≤=−−+单调递增,所以()max 101420W W ==;.. ②当10x >时,40000165280W x x=−−+,由于40000161600x x += ,当且仅当4000016x x =,即()5010,x =∈+∞时取等号,所以此时W 的最大值为3680综合①②知,当50x =时,W 取得最大值为3680万元..。

安徽省青阳县四中等校2024-2025学年九年级上学期9月月考数学试题

安徽省青阳县四中等校2024-2025学年九年级上学期9月月考数学试题

安徽省青阳县四中等校2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列函数中,是二次函数的是( )A .3y x =B .2y x =-C .()21y x x x =--D .2y x = 2.抛物线y =x 2+3的对称轴是( )A .x 轴B .y 轴C .直线y =xD .直线y =﹣x 3.下列函数中,y 随x 的增大而减小的函数是( )A .21y x =+B .21y x =-+C .1y x =-+D .1y x =+ 4.抛物线244y x x =++与x 轴的交点个数为( )A .0个B .1个C .2个D .3个5.将抛物线向上平移3个单位,再向左平移2个单位,得到的新抛物线的表达式为23y x =,则平移前的抛物线表达式为( )A .()2323y x =--B .()2323y x =-+C .()2323y x =++ D .()2323y x =+- 6.已知二次函数2y ax bx c =++的变量x ,y 的部分对应值如下表:根据表中信息,可得一元二次方程20ax bx c ++=的一个近似解1x 的范围是( )A .132x -<<-B .121x -<<-C .110x -<<D .101x << 7.一个球从地面竖直向上弹起,球距离地面的高度h (单位:米)与经过的时间t (单位:秒)满足函数关系式2515h t t =-+,那么球弹起后又回到地面所经过的时间t 是( ) A .1秒 B .2秒 C .2.4秒 D .3秒8.如图,平面直角坐标系中有两条抛物线,它们的顶点 P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若10AB =,5BC =,6CD =,则PQ 的长度为( )A .7B .8C .9D .109.某小组同学为了研究太阳照射下物体影长的变化规律,某日在学校操场上竖立一根直杆,经研究发现,当日该直杆的影长与时间的关系近似于二次函数,并在12:20,13:00,14:10这三个时刻,测得该直杆的影长分别约为0.49m ,0.35m ,0.44m .根据该小组研究结果,下列关于当日该直杆影长的判断正确的是( )A .12:20前,直杆的影子逐渐变长B .13:00后,直杆的影子逐渐变长C .在13:00到14:10之间,还有某个时刻直杆的影长也为0.35mD .在12:20到13:00之间,会有某个时刻直杆的影长达到当日最短10.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )A .B .C .D .二、填空题11.抛物线23y x =-的开口.(填“向上”或“向下”)12.若二次函数2y ax bx c =++(a 、b 、c 为常数)的图像如图所示,则关于x 的不等式20ax bx c ++<的解集为.13.我们定义:关于x 的函数y =ax 2+bx 与y =bx 2+ax (其中a ≠b )叫做互为交换函数.如y =3x 2+4x与y =4x 2+3x 是互为交换函数.如果函数y =2x 2+bx 与它的交换函数图象顶点关于x 轴对称,那么b =.14.已知二次函数2y x mx n =-++.(1)当2m =,1n =时,该函数图象的顶点坐标为;(2)当0x <时,y 的最大值为7;当0x ≥时,y 的最大值为3,则m n +=.三、解答题15.已知()()221315m m y m x m x +-=++--是y 关于x 的二次函数,求m 的值.16.已知,抛物线的顶点坐标为()2,1,与y 轴交于点()0,3.求这条抛物线的表达式; 17.某工厂的前年生产总值为10万元,去年比前年的年增长率为x ,预计今年比去年的年增长率仍为x ,今年的总产值为y 万元.(1)求y 关于x 的函数关系式;(2)当x =20%时,今年的总产值为多少万元?18.已知关于x 的一元二次方程2240mx mx m -+-=.(1)若2x =是该方程的一个根,求m 值;(2)求出抛物线224y mx mx m =-+-的顶点坐标.19.已知二次函数()20y ax bx c a =++≠的y 与x 的部分对应值如下表:(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x 的取值范围为______时,3y >-.20.已知函数()(23)y x m x m =--- (m 为常数).(1)求证∶不论m 取何值,该函数图象与x 轴总有两个公共点;(2)若该函数图象与x 轴交于点A 、B ,与y 轴交于点C ,若ABC V 的面积为12,求m 的值. 21.某酒店有A B 、两种客房、其中A 种24间,B 种20间.若全部入住,一天营业额为7200元;若A B 、两种客房均有10间入住,一天营业额为3200元.(1)求A B 、两种客房每间定价分别是多少元?(2)酒店对A 种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A 种客房每间定价为多少元时,A 种客房一天的营业额W 最大,最大营业额为多少元?22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y =﹣2x +80,设这种产品每天的销售利润为w 元.(1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 23.为研究某降糖药物的降糖效果,医疗机构对糖尿病患者服用该药物1个小时后的血糖水平进行连续监测,绘制了血糖浓度(单位:mmol/L )波动图象.其中14h :时图象近似满足抛物线231228.62y x x =-+的解析式,4h 后近似满足直线25y x b =+解析式.请结合图象回答下列问题:(1)第4h血糖浓度为多少?(2)若血糖浓度不高于mm6.1ol/L时为正常,求服用该药物的患者血糖浓度控制在正常值的时长.24.如图,反比例函数kyx=和一次函数y ax b=+的图象交于()1,3A和()1.5,B n-两点.(1)求k,n的值:(2)求出关于x的不等式kax bx+≤的解集:(3)在x轴上找出一点M使MA MB+最小,并求点M坐标;在x轴上画出点N,使N A N B-最大,并求点N坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年秋期一年级数学第一次月考试卷
一、数一数,在横线上填数,相信你能成功。

四、瞧瞧我的玩具柜,在( )里填“上”“下”“左”“右”。

二、看数涂色。


的( )面;

的( )面;
在的( )面;在的( )面。

你还能说出什么?
三、比一比,在最多的后面画“ ”,在最少的后面画“ ”。

五、按要求涂色。

1
( )( )( )
1.从左往右数,把第4个 涂成红色。

2
( )
2.从右往左数,把第5个 涂成绿色。

( )( )
3.把左边3个 圈在一起。

3654
六、填一填。

九、在方框里填上合适的数。

( )个
( )个
( )个
十、算一算,相信你能成功!
( )个2+3=2-0=3-2=0+3=
0+4=3-2=4-1=4-0=
七、小朋友排队。

4-4=
5-3=
5-0=
3+1=
小敏小红
十一、看图列算式。

□○□=□
□○□=□
小敏在小红的( )面,小红在小敏的( )面。

从前往后数,小红排第( )。

八、比一比,在○里填上“〉”“〈”或“=”。

□○□=□
□○□=□3○4
5○3
□○□=□
□○□=□
4○4
□○□=□
3
1
5
2
5
3。

相关文档
最新文档