2015年高考理科数学押题密卷及答案

合集下载

2015高考数学真题精准预测密卷 理科(含答案)

2015高考数学真题精准预测密卷 理科(含答案)
绝密★启封并使用完毕前
2015 高考数学真题精准预测密卷 (理科)
(考试时间 120 分钟 满分 150 分) 本试卷分为选择题(共 40 分)和非选择题(共 110 分)两部分
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号 填写在答题卡上. 2.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如 需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内 相应位置上; 如需改动, 先划掉原来的答案, 然后再写上新的答案; 不准使用铅笔和涂改液. 不 按以上要求作答的答案无效. 4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
①曲线 C 关于原点对称; ③曲线 C 围成的面积大于 上述命题中, 真命题的序号为 A.①②③
②曲线 C 关于直线 y x 对称 ④曲线 C 围成的面积小于 ( C.①④ D.①③ )
B.①②④
18、若直线 y kx 1 与曲线 y x ( ).
1 1 x 有四个不同交点,则实数 k 的取值范围是 x x
c
.
0 x , 2sin x, 7、若 f x 2 则方程 f x 1 的所有解之和等于 x 0, x ,
.
8 、 若 数 列
lim a1 a2 an n2
an
为 等 差 数 列 , 且 .
a1 1, a2 a3 a4 21
, 则
n
9、 设 等 比 数 列 an 的 公 比 为 q , 前 n 项 和 为 Sn , 若 Sn 1 , Sn , Sn 2 成 等 差 数 列 , 则

2015年高考最后冲刺押题卷理科数学理科

2015年高考最后冲刺押题卷理科数学理科

2015届高三年级押题卷数 学 试 卷(理)说明:1.测试时间:120分钟 总分:150分;2.客观题涂在答题卡上,主观题答在答题纸的对应位置上第Ⅰ卷(选择题,共 60 分)一. 选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2,0xM y y x ==>,{}lg ,N y y x x M ==∈,则M ∩N 为( )A .(1,)+∞B . (1,2)C .[2,)+∞D .[1,)+∞2.复数满z 足(3)(2)5z i --=(i 为虚数单位),则z 的共轭复数z 为( ) A .2i + B .2i - C 5i - D .5i +3.在 ABC ∆中,2,3AB AC ==, 1=⋅则BC =( ) A .3 B 7 C .22 D .234.设,x y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=( )A. 有最小值2,最大值3B. 有最小值2,无最大值C. 有最大值3,无最小值D. 既无最小值,也无最大值.5.如图是某个四面体的三视图,该四面体的体积为( ) A .72 B . 36 C . 24 D .126.执行右图的程序框图,若输入的 ]2,2[-∈t ,则 输出的S 属于( ) A.]2,6[-- B.]1,5[-- C.]5,4[- D. ]6,3[-7.已知椭圆的两个焦点分别是12,,F F P 是椭圆上的一点,角1260F PF ︒∠=,则椭圆的离心率的范围是( ) A. 102e <≤B. 113e ≤<C. 112e ≤<D. 103e <≤8.为了得到函数sin3cos3y x x =+的图象,则只需将y x =的图象( )A .向右平移4π个长度单位 B . 向右平移12个长度单位 C.向左平移4π个长度单位D . 向左平移12π个长度单位9.不等式221|2||12|2++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围为.( ) A .)(21,1- B .]121-[, C .]21,1[- D . ),(),1--21[∞⋃∞+10.已知圆1)4()3(:22=-+-y x C ,和两点)0)(0,(),0,(>-m m B m A ,若在C 上存在点P ,使得090=∠APB ,则m 的最大值为( )A. 7B. 6C. 5D.411.对于实数a 和b ,定义运算""*,22()()a ab a b a b b ab a b ⎧-<⎪*=⎨->⎪⎩设()(21)(1)f x x x =-*-且关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根,则m 的取值范围是( )A. 104m <<B. 0m <C. 104m ≤≤ D. 14m >12.已知函数)(x f ,)(x g 是定义在R 上的奇函数和偶函数,但时0<x ,()'()()'()0,f x g x f x g x +>且时0)3(=-g ,则不等式0)()(<x g x f 的解集( )A .()() U∞+,,303- B .()() U 300.3-, C .()() U ∞+∞,33-- D . ()() U 303-.-,∞第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.在()7a x +展开式中4x 的系数为35,则实数a 的值为 .14.已知双曲线4422=-y x 及)1,8(M ,过点)1,8(M ,的直线l 交双曲线于B A ,两点,且M 是线段AB 的中点,则直线l 的方程是_ 15.已知数列{}n a 中,12a =,113n n na a a +=+ ()*n N ∈,则=n a16.设R m ∈ , 过定点A 的动直线0=+my x 和过定点B 的动直线03-=+-m y mx 相交于),(y x P ,则 PA PB 的最大值是三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分共l2分);已知等比数列{}n a 中,数列{}n a 的前n 项和n S ,点(,)n n S 在函数xy b r =+的图像上. (1)求r 的值. (2)当 2b =,14n nn b a +=,求数列{}n b 的前n 项和T . 18. (本小题满分12分)如图,在正方体1111ABCD A BC D -中,棱长为2,,E F分别是CD BB 和1的中点,(1)证明:平面F D A ADE 11平面⊥;(2)求直线F A 1与平面E D A 11所成的角的余弦值 (3)求三棱锥E D A F 11-的体积. 19.(本小题满分12分)甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为32, 甲胜丙的概率为41,乙胜丙的概率为51. (1)求甲获第一名且丙获第二名的概率;(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望. 20.(本小题满分12分)椭圆:C 2222=1x y a b +(0)a b >>的左、右焦点分别是12,F F ,离心 率为2,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k .若0k ≠,试证明1211kk kk +为定值,并求 出这个定值. 21.(本小题满分12分)已知函数1ln )(++=x xb a x f .在点(1,(1))f 处的切线方程为2x y +=(1)求a ,b 的值;(2)对于函数定义域内的任意实数x ,都有()mf x x<恒成立,求m 的取值范围. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑. 22.(本小题满分10分) 《选修4—1:几何证明选讲》 在ABC ∆中,AC AB =,过点A 的直线与其外接圆交于点P ,交BC 延长线于点D . (1)求证:BDPDAC PC =; (2)若3AC =,求AD AP ⋅的值.23.(本小题满分10分)《选修4-4:坐标系与参数方程》在平面直角坐标系xoy 中,已知曲线221:1C x y +=,以平面直角坐标系xoy 的原点o 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线:(2sin )6l cos ρθθ-=.(1)将曲线1C 上的所有点的横坐标、2倍后得到曲线2C 试写出直线l 的直角坐标方程和曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值. 24.(本小题满分10分)《选修4-5:不等式选讲》已知函数|-|)(a x x f =,(1)a >(1)当2a =时,求不等式|4|-4)(-≥x x f 的解集 (2)已知关于解集是{}21≤≤x x ,求a 的值.高三数学(理)答案ABCD 1 DC 1A 1B 1EF一、 选择题 (本大题共12小题,每小题5分,满分60分.)13. 1 14. y=2X-15 15. 562-n 16. 5三、 解答题(本大题共6小题,满分70分.)17.解:(1)∵(n,s n )在函数y=b x+r 的图像上。

(全国I卷)2015届高三数学最后一次模拟试卷 理

(全国I卷)2015届高三数学最后一次模拟试卷 理

2015年高考理科数学押题密卷(全国新课标I 卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题. 三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求. (1)已知集合A ={ (x ,y )|x ,y 为实数,且x 2+y 2=4},集合B={(x ,y ) |x ,y 为实数,且y =x -2}, 则A ∩ B 的元素个数为( ) (A )0 (B )1 (C )2(D )3(2)复数z =1-3i1+2i,则(A )|z |=2 (B )z 的实部为1(C )z 的虚部为-i(D )z 的共轭复数为-1+i(3)已知随机变量X 服从正态分布N (1,σ2),若P (X ≤2)=0.72,则P (X ≤0)=(A )0.22 (B )0.28 (C )0.36 (D )0.64 (4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41) (5)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 52,且a 2+a 4= 5 4,则S na n =(A )4n -1 (B )4n-1(C )2n -1 (D )2n -1(6)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原开始 是x ≤81?否 输入x x =2x -1结束k =0输出k k =k +1点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5(D ) 3(7)已知函数f (x )=cos (2x + π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向左平移 π 12 (B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136(B ) 3 (C )533(D )433(9)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )( 73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有(A )24种 (B )36种 (C )48种 (D )60种 (11)函数,其图像的对称中心是(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 1 2 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16上述命题中,真命题的个数是(A )4 (B )3 (C )2 (D )1第Ⅱ卷侧视图俯视图正视图1 12 3二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在(1+x 2)(1- 2 x)5的展开式中,常数项为__________.(14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC |=3, |AB |=4,|BC |=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________. (16)△ABC 的顶点A 在y 2=4x 上,B ,C 两点在直线x -2y+5=0上,若|AB -AC |=2 5 ,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc的最大值.(18)(本小题满分12分)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:甲 乙 9 7 0 7 8 6 3 3 1 1 0 5 7 9 8 3 2 1 3(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小; (Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X 的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面ABB 1A 1为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C .(Ⅰ)求证:平面ABB 1A 1⊥BB 1C 1C ;(Ⅱ)求二面角B -AC -A 1的余弦值.d 1d 2d 3BC APB CB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE ∥AB ;(Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2;(Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考理科数学押题密卷(全国新课标I 卷)ABCD EO一、选择题:CDBCD ABCDD BA 二、填空题:(13)41; (14)100π;(15)[ 125,4];(16)1.三、解答题: (17)解:(Ⅰ)sin A +3cos A =2sin B 即2sin (A + π 3)=2sin B ,则sin (A + π 3)=sin B . (3)分因为0<A ,B <π,又a ≥b 进而A ≥B , 所以A + π 3=π-B ,故A +B =2π3,C = π3.……………………………6分 (Ⅱ)由正弦定理及(Ⅰ)得 a +b c =sin A +sin B sin C =23[sin A +sin (A + π3)]=3sin A +cos A =2sin (A +π6).…10分 当A = π3时,a +b c取最大值2. ……………………………12分(18)解:(Ⅰ)x-甲= 1 8(7+9+11+13+13+16+23+28)=15, x -乙= 1 8(7+8+10+15+17+19+21+23)=15, s 2甲= 1 8[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s 2乙= 1 8[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小). …4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p 1= 38,p 2= 1 2,两人得分均超过15分的概率分别为p 1p 2=316,依题意,X ~B (2,316),P (X =k )=C k 2(316)k(1316)2-k ,k =0,1,2, …7分X 的分布列为X 0 1 2P 169256 78256 9256…10分X 的均值E (X )=2×316=3 8. ……………………………12分(19)解:(Ⅰ)由侧面ABB 1A 1为正方形,知AB ⊥BB 1.又AB ⊥B 1C ,BB 1∩B 1C =B 1,所以AB ⊥平面BB 1C 1C ,又AB ⊂平面ABB 1A 1,所以平面ABB 1A 1⊥BB 1C 1C .…………………………4分(Ⅱ)建立如图所示的坐标系O -xyz .其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0). AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0). …6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0, 即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1). …8分 设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0,即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). (10)分所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B -AC -A 1的余弦值为-77.……………………………12分(20)解:(Ⅰ)由题设,得4a 2+1b2=1,① 且a 2-b 2a =22,②由①、②解得a 2=6,b 2=3,BCB 1BAC 1A 1Axz yO椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得(1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k2. 设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k2.………………………………………………………6分 因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k28k1+2k2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分 (Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k ·(-k )=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2),与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意.故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………4分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: .取,由(Ⅰ)知:当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是.∴ . ……………………………8分 (Ⅲ)由(Ⅱ)知:x 是正整数时,不等式也成立,可以令: x =1,2,3,…,n-1,将所得各不等式两边相加,得:即. ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB .又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =AD CE⇒AD ·CD =AC ·CE⇒ 2AD ·CD =AC ·2CE⇒ 2AD ·CD =AC ·BC . ……………………………10分(23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. (3)分消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解:(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.……………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[ 5 2, 92]. (5)分3 Oxy4 52 9 2-1y =2 y =ax -1y =f (x ) y =ax -1a = 1 2 a =-2E BOA CD(Ⅱ)函数y =ax -1的图象是过点(0,-1)的直线.当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). ………………………10分。

高考专题高考理科数学押题密卷(全国新课标I卷).docx

高考专题高考理科数学押题密卷(全国新课标I卷).docx

2015年高考理科数学押题密卷(全国新课标I卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)已知集合A={ (x,y)|x,y为实数,且x2+y2=4},集合B={(x,y) |x,y为实数,且y=x -2},则A∩ B的元素个数为()(A)0 (B)1(C)2 (D)3(2)复数z=1-3i1+2i,则(A)|z|=2 (B)z的实部为1(C)z的虚部为-i (D)z的共轭复数为-1+i(3)已知随机变量X 服从正态分布N (1,σ2),若P (X ≤2)=0.72,则P (X ≤0)=(A )0.22 (B )0.28(C )0.36 (D )0.64 (4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41)(5)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 52,且a 2+a 4= 5 4,则S n a n=(A )4n -1 (B )4n -1(C )2n -1 (D )2n -1(6)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5 (D ) 3 (7)已知函数f (x )=cos (2x +π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向左平移 π 12 (B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136 (B ) 3(C )533 (D )433(9)已知向量a=(1, 2),b=(2, −3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )(− 73 ,− 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种 (D )60种(11)函数f (x )=2cos 2(x−1)−xx−1,其图像的对称中心是开始 是x ≤81?否 输入x x =2x - 1结束k =0输出k k =k +1 侧视图俯视图正视图11 23(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 12 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16上述命题中,真命题的个数是 (A )4 (B )3 (C )2 (D )1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在(1+x 2)(1-2 x)5的展开式中,常数项为__________. (14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC |=3, |AB |=4,|BC |=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________. (16)△ABC 的顶点A 在y 2=4x 上,B ,C 两点在直线x -2y+5=0上,若|AB -AC |=2 5 ,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc的最大值.(18)(本小题满分12分)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:甲 乙 9 7 0 7 8 6 3 3 1 1 0 5 7 9 8 3 2 1 3(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小;d 1d 2d 3BC AP(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧面ABB1A1为正方形,侧面BB1C1C为菱形,∠CBB1=60 ,AB⊥B1C.(Ⅰ)求证:平面ABB1A1⊥BB1C1C;(Ⅱ)求二面角B-AC-A1的余弦值.BCB1BAC1A1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数f (x )=lnx +a x−1, x 轴是函数图象的一条切线.(Ⅰ)求a ;(Ⅱ)已知x ∈(0,+∞),求证:ln (x+1x)>1x+1;(Ⅲ)已知:n ∈N ,n ≥2,求证:lnn >12+13+14+⋯+1n .请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2;(Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.ABCD EO2015年高考理科数学押题密卷(全国新课标I卷) 一、选择题:CDBCD ABCDD BA二、填空题:(13)41;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c=sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6).…10分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p1=3 8,p2=12,两人得分均超过15分的概率分别为p1p2=316,依题意,X~B(2,316),P(X=k)=C k2(316)k(1316)2-k,k=0,1,2,…7分X的分布列为X 0 1 2P 169256782569256…10分X的均值E(X)=2×316=38.……………………………12分(19)解:(Ⅰ)由侧面ABB 1A 1为正方形,知AB ⊥BB 1.又AB ⊥B 1C ,BB 1∩B 1C =B 1,所以AB ⊥平面BB 1C 1C ,又AB ⊂平面ABB 1A 1,所以平面ABB 1A 1⊥BB 1C 1C .…………………………4分(Ⅱ)建立如图所示的坐标系O -xyz .其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0).AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0).…6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0,即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1). …8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0,即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). …………………10分 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B -AC -A 1的余弦值为-77. ……………………………12分(20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),BCB 1BAC 1A 1Axz yO同理得x 2=-4k 2-4k +21+2k 2.………………………………………………………6分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k 28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分 (Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k ·(-k )=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2), 与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意.故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x ) =1x−ax 2=x−a x 2当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +aa−1=0,可知a =1. ……………………………4分(Ⅱ)令1+1x=t ,由x>0得知t>1,x =1t−1,于是原不等式等价于:1−1t<lnt .取g (t )=lnt +1t −1,由(Ⅰ)知:当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增.∴ g (t )> g (1)=0,也就是1−1t<lnt .∴ ln (x+1x)>1x+1 . ……………………………8分(Ⅲ)由(Ⅱ)知:x 是正整数时,不等式ln (x+1x)>1x+1也成立,可以令:x =1,2,3,…,n-1,将所得各不等式两边相加,得:ln 21+ln 32+ln 43+⋯+ln n n −1>12+13+14+⋯+1n即:lnn >12+13+14+⋯+1n. ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以B DOE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB .又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE ⇒ 2AD ·CD =AC ·2CE ⇒ 2AD ·CD =AC ·BC . ……………………………10分 (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解:(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.……………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ……………………………5分(Ⅱ)函数y =ax -1的图象是过点(0,-1)的直线.当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). ………………………10分3Oxy4 52 9 2-1y =2 y =ax -1y =f (x ) y =ax -1a = 1 2 a =-2。

2015年高考数学(理)押题试卷及答案(word版可打印)

2015年高考数学(理)押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一项是 符合题目要求的.1.已知集合(){}{}2lg 4,3,0=x A x y x B y y x A B ==-==⋂>时, A.{}02x x << B.{}2x x 1<< C.{}12x x ≤≤ D.∅2.若复数12a ii--是纯虚数,则实数a 的值为A.2-B.12-C.2D.25-3.如图给出的是计算11112462014+++⋅⋅⋅的值的程序框图,其中判断框内应填入的是A.2014i ≤B.2014i >C.1007i ≤D.1007i >4.已知随机变量X 服从正态分布()()3,1,150.6826N P X ≤≤=且则()5=P X >A.0.1588B.0.1587C.0.1586D.0.15855.已知命题:ap x≥“a=1是x >0,x+ 2 的充分必要条件”;命题2000:q ∃∈“x R,x +x -2>0”.下列命题正确的是 A.命题“p q ∧”是真命题 B.命题“()p q ⌝∧”是真命题 C.命题“()p q ∧⌝”是真命题 D.命题“()()p q ⌝∧⌝”是真命题6.已知{}n a 是首项为1的等比数列,{}361n n n S a n S a ⎧⎫=⎨⎬⎩⎭是的前项和,且9S ,则数列的前5项和为 A.1558或 B.31516或 C.3116D.1587.或实数x y ,满足不等式组330,230,210,x y x y z x y x y +-≥⎧⎪--≤=+⎨⎪-+≥⎩则的最大值为A.307B.14C.9D. 138.设函数()cos xf x x x=+的图象为9.某运动会某项目参赛领导小组要从甲、乙、丙、丁、戊五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中甲、乙只能从事前三项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A.18种 B.36种 C.48种 D.72种10.已知,A ,B ,C ,D ,E 是函数()sin 2y x πωϕωϕ⎛⎫=+ ⎪⎝⎭>0,0<<一个周期内图象上的五个点,如图所示,,06A π⎛⎫- ⎪⎝⎭,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD 在x 轴上的投影为,,12πωϕ则的值为A.2,6πωϕ== B.2,3πωϕ== C. 1,23πωϕ== D. 1,212πωϕ==11.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为12.定义域内R 的偶函数()()()(),21f x x R f x f x f ∀∈+=-满足对有,且当[]()22,321218x f x x x ∈=-+-时,,若函数()()()log 10,a y f x x =-++∞在上至少有三个零点,则a 的取值范围是A.⎛ ⎝⎭B. ⎛ ⎝⎭C. ⎛ ⎝⎭D. ⎛ ⎝⎭第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2015年组合教育密押三套卷理科(三)理答案

2015年组合教育密押三套卷理科(三)理答案

) -2 2-4- ( -2 所以直线l 与 直 线l '的 距 离 d = =2+ 2, 2 即点 P 到直线l 距离的最大值2+ 2 .
(
)
(
)
(
)
所以 S△ABC = 1 ×1× 3= 3 . 故选 C . 2 2 2 其线段长分别有 9 .B 解析 从 8个顶点中任取两点有 C 2 8种取法 , 8=
( ) π , 1 所以 2 2, 因为θ∈ (0, c o s θ= , s i n θ= 2) 3 3
, , , 每种长度各有 4条 , 其中长度大于 3的有 3 1 2 3 5, 1 0, 1 3, 1 4, 1 2 故两点距离大于 3的概率 P= = 3 . 故选 B × 4 = 1 2条 , . 2 8 7 x 1 3 , , 函数y= 1 0 .D 解析 依题意 , x l n x, s i n x+1 满足 y= y= y=2 2 在定义域上均值为 1 . 故选 D .
π 7 π 所以 3 ( =7 l o 33 = , s i n l o a l o a l o a = . g g g g 3 3 1+ 3 2+ … + 3 7) 3 2 2 解析 ① 当 x<-3 时 , 原不等式化为 1 3 . x x<- 或 x>2 5 x ( ) 解得 x<1 所以 x<-3 x+3 -( 1-2 x) < +1, 0, . 2 1 x ) 原不等式化为 ( ② 当 -3≤x≤ 时 , x+3 -( 1-2 x) < +1, 2 2 解得 x<- 2 , 所以 -3≤x<- 2 . 5 5 1 时, x ( ) ) 当 原不等式化为 ③ x≥ x+3 -( 2 x-1 < +1, 2 2 解得 x>2, 所以 x>2 . 综上可知 , 原不等式的解集为 x x<- 2 或 x>2 . 5 2 2 2 2 2 2 2 ρ =x +y 得 , ( ) , ( ) 解析 由 1 4 . x-4 +y =4 2+ 2 1 x +y c o s θ=x ρ 2 2 , ( ) 8 x+1 2=0 所以圆 C 的直角坐标方程为 x-4 +y =4 . ( ) 直线l 的普通方程为x-y-2=0 2 . 设与直线l 平行的直线l '的方程为x-y+m=0, 4+m 则当直线l '与圆C 相切时 : =2, 2 , 解得 m=-2 2-4 或 m=2 2-4 ( 舍去 )

2015年高考理科数学押题密卷(全国新课标II卷)

2015年高考理科数学押题密卷(全国新课标II卷)

2015年高考理科数学押题密卷(全国新课标II卷)D(A ){x |2≤x ≤3} (B ){x |2≤x<3}(C ){x |2<x ≤3} (D ){x |-1<x <3}(2)1-i (1+i)2+1+i(1-i)2= (A )-1 (B )1 (C )-i (D )i (3)若向量a 、b 满足|a |=|b |=2,a 与b 的夹角为60 ,a ·(a +b )等于(A )4 (B )6 (C )2+ 3 (D )4+2 3(4)等比数列}{na 的前321,2,4,a a a S n n且项和为成等差数列,若a 1=1,则S 4为 (A )7 (B )8 (C )16(D )15(5)空间几何体的三视图如图所示,则该几何体的表面积为正视图侧视图俯视图122(A )8+2 5 (B )6+2 5 (C )8+2 3 (D )6+2 3(6)(x 2- 1 x)6的展开式中的常数项为(A )15 (B )-15 (C )20(D )-20(7)执行右边的程序框图,则输出的S 是(A )5040 (B )4850 (C )2450 (D )2550 (8)已知函数f (x )=⎩⎨⎧x 2+4x +3,x ≤0,3-x ,x >0,则方程f (x )+1=0的实根个数为(A )3 (B )2 (C )1 (D )0(9)若双曲线x 2a 2-y2b2=1(a >0,b >0)一个焦点到一条渐近线的距离等于焦距的 14,则开始 否结束i ≥100? 输出S 是 i =0,S =0 S =S +ii =i +2双曲线的离心率为(A )52 (B )233 (C ) 5(D )32(10)偶函数f (x )的定义域为R ,若f (x +2)为奇函数,且f (1)=1,则f (89)+f (90) 为(A )-2 (B )-1 (C )0(D )1(11)某方便面厂为了促销,制作了3种不同的精美卡片,每袋方便面随机装入一张卡片, 集齐3种卡片可获奖,现购买该方便面5袋,能获奖的概率为(A )3181 (B )3381 (C )4881 (D )5081(12)给出下列命题: ○110.230.51log 32()3<<; ○2函数4()log 2sin f x x x=-有5个零点;○3函数4()612-+-=ln x x f x x 的图像以5(5,)12为对称中心; ○4已知a 、b 、m 、n 、x 、y 均为正数,且a ≠b ,若a 、m 、b 、x 成等差数列,a 、n 、b 、y 成等比数列,则有m > n ,x <y .其中正确命题的个数是(A )1个 (B )2个 (C )3个(D )4个第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)由直线x =1,y =1-x 及曲线y =e x围成的封闭图形的面积为_________. (14)数列{a n }的通项公式a n =n sinn π2+1,前n 项和为S n ,则S 2 015=__________.(15)已知x 、y 满足⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z=ax+y取最大值的点(x,y)有无数个,则a的值等于___________.(16)已知圆O: x2+y2=8,点A(2,0) ,动点M在圆上,则∠OMA的最大值为__________.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分))+2cos2x.已知f(x)=sin(2x-56(Ⅰ)写出f(x)的对称中心的坐标和单增区间;(Ⅱ)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)=0,b+c=2.求a的最小值.(18)(本小题满分12分)某青年教师专项课题进行“学生数学成绩与物理成绩的关系”的课题研究,对于高二年级800名学生上学期期末数学和物理成绩,按优秀和不优秀分类得结果:数学和物理都优秀的有60人,数学成绩优秀但物理不优秀的有140人,物理成绩优秀但数学不优秀的有100人. (Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关系? (Ⅱ)将上述调查所得到的频率视为概率,从全体高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中数学、物理两科成绩至少有一科优秀的次数为X ,求X的分布列和期望E (X ).附:K 2=错误! P (K 2≥k 0) 0.010 0.005 0.001 k 06.6357.879 10.828(19)(本小题满分12分)如图,在三棱柱ABC -A 1B 1C 1中,已知AB ⊥EACBC 1B 1A 1侧面BB 1C 1C ,BC =2 ,AB =BB 1=2,∠BCC 1= π4,点E 在棱BB 1上. (Ⅰ)求证:C 1B ⊥平面ABC ;(Ⅱ)若BE =λBB 1,试确定λ的值,使得二面角A -C 1E -C 的余弦值为55.(20)(本小题满分12分)设抛物线y 2=4m x (m >0)的准线与x 轴交于F 1,焦点为F 2;以F 1 、F 2为焦点,离心率e = 12的椭圆与抛物线的一个交点为226(3E ;自F 1引直线交抛物线于P 、Q 两个不同的点,点P 关于x轴的对称点记为M ,设11F P F Q λ=.(Ⅰ)求抛物线的方程和椭圆的方程;(Ⅱ)若1[,1)2λ∈,求|PQ |的取值范围. (21)(本小题满分12分)已知f (x )=e x(x -a -1)- x22+ax .(Ⅰ)讨论f (x )的单调性;(Ⅱ)若x ≥0时,f (x )+4a ≥0,求正整数a 的值.参考值:e 2≈7.389,e 3≈20.086 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在△ABC 中,∠C =90º,BC =8,AB =10,O 为BC 上一点,以O 为圆心,OB 为半径作半圆与BC 边、AB 边分别交于点D 、E ,连结DE .(Ⅰ)若BD =6,求线段DE 的长;(Ⅱ)过点E 作半圆O 的切线,切线与AC 相交于点F ,证明:AF =EF .(23)(本小题满分10分)选修4-4:坐标系与参数方程C A B EDOF已知椭圆C :x24+y23=1,直线l :⎩⎨⎧x =-3+3t y =23+t(t 为参数). (Ⅰ)写出椭圆C 的参数方程及直线l 的普通方程;(Ⅱ)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -1|.(Ⅰ)解不等式f (x )+f (x +4)≥8;(Ⅱ)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ( ba).理科数学参考答案2015年高考绝密押题,仅限VIP 会员学校使用,版权所有,严禁转载或商业传播,违者必究;一、选择题:CABDA A CBBD DC 二、填空题:(13) e - 32; (14)1007;(15)-1; (16)4π.三、解答题:(17)解:(Ⅰ)化简得:f (x )=cos (2x +π3)+1 ……………………3分 对称中心为:ππ∈+()(,1)212k z k单增区间为:ππππ∈--()2[,]36k z k k ………………………6分(Ⅱ)由(Ⅰ)知:ππ=++=+=-()cos(2)10cos(2)133f A A A 70,2.333A A ππππ<<∴<+<23A ππ∴+=于是:3A π=………………………9分 根据余弦定理:2222cos 3a b c bc π=+-=24343()12b cbc +-≥-= 当且仅当1b c ==时,a 取最小值1. ………………………12分 (18)(Ⅰ)由题意可得列联表:物理优秀 物理不优秀 总计 数学优秀 60 140 160 数学不优秀 100 500 640总计 200 600 800 因为k =800(60×500-140×100)2160×640×200×600=16.667>10.828. ……………………6分 所以能在犯错概率不超过0.001的前提下认为该校学生的数学成绩与物理成绩有关.(Ⅱ)每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的频率0.375.将频率视为概率,即每次抽取1名学生成绩,其中数学物理两科成绩至少一科是优秀的概率为 38.由题意可知X~B(3, 38),从而X的分布列为X 0 1 2 3p 12551222551213551227512E(X)== 98.………………………12分(19)解:(Ⅰ)因为BC=2,CC1=BB1=2,∠BCC1=π4,在△BCC1中,由余弦定理,可求得C1B=2,……………………2分所以C1B2+BC2=CC21,C1B⊥BC.又AB ⊥侧面BCC 1B 1,故AB ⊥BC 1, 又CB ∩AB =B ,所以C 1B ⊥平面ABC . …………………5分(Ⅱ)由(Ⅰ)知,BC BA ,BC 1两两垂直,以B 为空间坐标系的原点,建立如图所示的坐标系, 则B (0,0,0),A (0,20),C (2 ,0,0), C 1A →=(0,2,-2 ),C 1E →=C 1B →+λBB 1→=C 1B →+λCC 1→=(-2 λ,0,2 λ-2 ), 设平面AC 1E 的一个法向量为m =(x ,y ,z ),则有 ⎩⎪⎨⎪⎧m ·C 1A →=0,m ·C 1E →=0,即⎩⎨⎧2y -2 z =0,2 λx +(2 -2 λ)z =0,令z =2 ,取m =(2 (λ-1)λ,1,2 ),………9分又平面C 1EC 的一个法向量为n =(0,1,0),EACBC 11xyz所以cos 〈m ,n 〉=m ·n |m ||n |=1___________√__________2(λ-1)2λ2+3=5 5,解得λ= 12. 所以当λ= 12时,二面角A -C 1E -C 的余弦值为55. ………………………12分(20)解:(Ⅰ)由题设,得:22424199ab+=①a 2-b 2a = 12②由①、②解得a 2=4,b 2=3, 椭圆的方程为22143x y +=易得抛物线的方程是:y 2=4x . …………………………4分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2) 、M (x 1,-y 1) ,由11F P F Q λ=得:y 1=λy 2 ○3 设直线PQ 的方程为y =k (x +1),与抛物线的方程联立,得:2440ky y k -+= ○* y 1 y 2= 4 ○4 y 1+y 2=4k○5 …………………………7分 由○3○4○5消去y 1,y 2得:224(1)k λλ=+ …………………………8分2121||1||PQ y y k=+-由方程○*得:2211616||(1)||k PQ k k-=+化简为:4241616||k PQ k -=,代入λ:4222222(1)(21)||16161(2)16PQ λλλλλλλ+++=-=-=++-∵1[,1)2λ∈,∴15(2,]2λλ+∈ …………………………11分于是:2170||4PQ <≤那么:17||(0,2PQ∈…………………………12分(21)解:(Ⅰ)f'(x)=e x(x-a)-x+a=(x-a)(e x -1),由a>0,得:x∈(-∞,0)时,f'(x)>0,f(x)单增;x∈(0,a)时,f'(x)<0,f(x)单减;x∈(a,+∞)时,f'(x)>0,f(x)单增.所以,f(x)的增区间为(-∞,0),(a,+∞);减区间为(0,a).…………5分(Ⅱ)由(Ⅰ)可知,x≥0时,f min(x)=f(a)=-e a+a2 2,所以f(x)+4a≥0,得e a-a22-4a≤0.…………7分令g(a)=e a-a22-4a,则g'(a)=e a-a-4;令h(a)=e a-a-4,则h'(a)=e a-1>0,所以h(a)在(0,+∞)上是增函数,又h(1)=e-5<0,h(2)=e2-6>0,所以∃a0∈(1,2)使得h(a0)=0,即a∈(0,a0)时,h(a)<0,g'(a)<0;a∈(a0,+∞)时,h(a)>0,g'(a)>0,所以g(a)在(0,a0)上递减,在(a0,+∞)递增.又因为g(1)=e- 12-4<0,g(2)=e2-10<0,g(3)=e3- 92-12>0,所以:a=1或2.…………12分(22)解:(Ⅰ)∵BD是直径,∴∠DEB=90º,∴BEBD=BCAB=45,∵BD=6,∴BE=245,在Rt△BDE 中,DE =BD 2-BE 2= 18 5. …………5分(Ⅱ)连结OE ,∵EF 为切线,∴∠OEF =90º,∴∠AEF +∠OEB =90º,又∵∠C =90º,∴∠A +∠B =90º,又∵OE =OB ,∴∠OEB =∠B ,∴∠AEF =∠A ,∴AE =EF . …………10分(23)解:(Ⅰ)C :⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),l :x -3y +9=0. ……………4分(Ⅱ)设P (2cos θ,3sin θ), C ABED O F则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92. 由|AP |=d 得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ= 3 5,cos θ=- 4 5. 故P (- 8 5, 33 5). ……………10分(24)解:(Ⅰ)f (x )+f (x +4)=|x -1|+|x +3|=⎩⎪⎨⎪⎧-2x -2,x ≤-3,4,-3≤x ≤1,2x +2,x ≥1.当x <-3时,由-2x -2≥8,解得x ≤-5;当-3≤x ≤1时,f (x )≤8不成立; 当x >1时,由2x +2≥8,解得x ≥3.…………4分所以不等式f(x)≤4的解集为{x|x≤-5,或x≥3}.…………5分(Ⅱ)f(ab)>|a|f(ba)即|ab-1|>|a-b|.…………6分因为|a|<1,|b|<1,所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,所以|ab-1|>|a-b|.故所证不等式成立.…………10分。

2015年高考数学押题试卷文理(全国卷)

2015年高考数学押题试卷文理(全国卷)

2015年高考泄露天机数学一、选择题1.(文)已知集合{1,2}A =-,A B =( )(A ){0} (B ){2} (C ){0,1,2} (D )∅ 1.B{}2A B = .(理)若集合{0}A x x =≥,且AB B = ,则集合B 可能是( )(A ){}1,2 (B ){1}x x ≤ (C ){1,0,1}- (D ) R1.A 由A B B = 知B A ⊆,故选A .2.已知复数121,1z i z i =-=+,则12z z i 等于( )(A )2i (B )2i - (C )2i + (D )2i -+2.B 212(1)(1)122z z i i i ii i i i ⋅-+-====-.3.已知命题:p R x ∃∈,2lg x x ->,命题:q R x ∀∈,1xe >,则( )(A )命题p q ∨是假命题 (B )命题p q ∧是真命题 (C )命题()p q ∧⌝是真命题 (D )命题()p q ∨⌝是假命题3.D 因为命题:p R x ∃∈,2lg x x ->是真命题,而命题:q R x ∀∈,1xe >,由复合命题的真值表可知命题()p q ∧⌝是真命题.4.已知122,,,8a a --成等差数列,1232,,,,8b b b --成等比数列,则212a a b -等于( )(A )14 (B )12 (C )12- (D )12或12-4.B 因为122,,,8a a --成等差数列,所以218(2)23a a ----==-.又1232,,,,8b b b --成等比数列,所以2228(2)16,4b b =-⨯-==(舍去),24b =-,所以21221.42a a b --==-5.已知1122log log a b<,则下列不等式一定成立的是( )(A )11()()43a b < (B )11a b > (C )ln()0a b -> (D )31a b -< 5.A 由1122log log a b<得,0a b >>,所以111()()()443a b b<<. 6.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( ) (A )若,,αγβγ⊥⊥则αβ∥ (B )若,,m n αα⊥⊥则m n ∥ (C )若,m n αα∥∥,则m n ∥ (D )若,,m m αβ∥∥则αβ∥6.B A 中,αβ可以是任意关系;B 正确;C 中,m n 平行于同一平面,其位置关系可以为任意.D 中平行于同一直线的平面可以相交或者平行. 7.(文)“0x <”是“ln(1)0x +<”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.B ∵010)1ln(<<-⇔<+x x ,∴“0<x ”是“0)1ln(<+x ”的必要不充分条件.(理)已知m R ∈,“函数21xy m =+-有零点”是“函数log m y x =在0+∞(,)上为减函数”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件7.B 函数21xy m =+-有零点时,10,1m m -<<,不满足01m <<,所以“函数log m y x =在0+∞(,)上为减函数”不成立;反之,如果“函数log m y x =在0+∞(,)上为减函数”,则有01m <<,10,m -<所以,“函数21xy m =+-有零点”成立,故选B .8.函数)sin()(ϕω+=x x f (其中2||πϕ<)的图象如图所示,为了得到sin y x ω=的图象,只需把()y f x =的图象上所有点( )(A )向左平移6π个单位长度 (B )向右平移12π个单位长度 (C )向右平移6π个单位长度 (D )向左平移12π个单位长度8.C 由图可知74123T T πππ=-⇒= 则22πωπ== ,又sin(2)03πϕ⨯+=,结合2||πϕ<可知3πϕ=,即()sin 3(2)f x x π=+,为了得到sin 2y x =的图象,只需把()sin(2)si 3n 26y f x x x ππ⎡⎤⎛⎫==+=+ ⎪⎢⎥⎝⎭⎣⎦的图象上所有点向右平移6π个单位长度. 9.某工厂对一批新产品的长度(单位:m m )进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )(A )20 (B )25 (C )22.5 (D )22.759.C 产品的中位数出现在概率是0.5的地方.自左至右各小矩形面积依次为0.1,0.2,0.4,设中位数是x ,则由0.10.20.08(20)0.5x ++⋅-=得,22.5x =.10. 如图,1F 、2F 分别是双曲线22221(0,0)x y a b a b -=>>的两个焦点,以坐标原点O 为圆心,1FO 为半径的圆与该双曲线左支交于A 、B 两点,若2F AB ∆是等边三角形,则双曲线的离心率为 ( )(A(B )2 (C1 (D110.D依题21AF ,12122c F F AF ==,所以)21121a AF AF AF =-=,1ce a===.11.如图,在66⨯的方格纸中,若起点和终点均在格点的向量,,a b c 满足,(,)c xa ybx y R =+∈,则x y +=( )(A)0 (B )1 (C (D 11.D 设方格边长为单位长1.在直角坐标系内,(1,2),(2,1),(3,4)a b c ==-= ,由,(,)c xa yb x y R =+∈得,(3,4)(1,2)(2,1),(3,4)(2,2),x y x y x y =+-=+-所以2324x y x y +=⎧⎨-=⎩,解得11525x y ⎧=⎪⎪⎨⎪=⎪⎩,选D . 12.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为( )(A )(B ) (C ) (D )312.B 由三视图可知,该几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥的高为1,四边形BCDE是边长为1的正方形,则11111,12222AED ABC ABES S S=⨯⨯===⨯112ACDS=⨯=.13.(文) 在区间[π,π]-内随机取两个数分别记为,a b,则使得函数222()2f x x ax bπ=+-+有零点的概率为()(A)78(B)34(C)12(D)1413.B若使函数有零点,必须222(2)4()0a bπ∆=--+≥,即222a bπ+≥.在坐标轴上将,a b的取值范围标出,如图所示当,a b满足函数有零点时,坐标位于正方形内圆外的部分,因此概率为223144ππ-=.(理)2321(2)xx+-展开式中的常数项为()(A)-8 (B)-12 (C)-20 (D)2013.C ∵236211(2)()x xx x+-=-,∴6621661()(1)r r r r r rrT C x C xx--+=-=-,令620r-=,即3r=,∴常数项为336(1)20C-=-.14. 若程序框图如图示,则该程序运行后输出k的值是()(A)5(B)6(C)7(D)815.已知{}na是首项为32的等比数列,nS是其前n项和,且646536=SS,则数列|}log{|2na前10项和为()(A)58(B)56(C)50(D)4515.A 根据题意3633164S SqS-==,所以14q=,从而有72113224nn na--=?,所以2log72na n=-,所以有2log27nan=-,所以数列的前10项和等于2(51)2(113)5311357911135822+++++++++++=+=.16.若G是ABC∆的重心,a,b,c分别是角CBA,,的对边,若3aG bGA+B+=,则角=A()(A)90 (B)60 (C)45 (D)3016.D 由于G 是ABC ∆的重心,=++∴,()+-=∴,代入得)0aGA bGB GA GB ++=,整理得0a GA b GB ⎛⎛-+= ⎝⎭⎝⎭ ,cb a 33==∴bc a c b A 2cos 222-+=∴2223c ⎫⎫+-⎪⎪=23=,因此030=A .17.(文)函数()2sin 1xf x x =+的图象大致为( )17.A 函数()f x 定义域为R ,又()()()()22sin sin 11x xf x f x x x --==-=-+-+ ,∴函数()f x 为奇函数.其图像关于原点对称.故排除C 、D ,又当0πx <<时,sin 0x >,所以()0f x >可排除B ,故A 正确.(理)如图所示, 医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x 分钟, 瓶内液面与进气管的距离为h 厘米,已知当0x =时,13h =.如果瓶内的药液恰好156分钟滴完. 则函数()h f x =的图像为( )17.C 由题意得,每分钟滴下药液的体积为3cm π当134≤≤h 时,),13(42h x -⋅⋅=ππ即,1613xh -=此时1440≤≤x ;当41<≤h 时,),4(29422h x -⋅⋅+⋅⋅=πππ即,440xh -=此时156144≤<x 所以,函数在[]156,0上单调递减,且156144≤<x 时,递减的速度变快,所以应选(C )18 已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若QF PF 3=,则QF=( )(A ) 25 (B )38(C ) 3 (D ) 618.B 如下图所示,抛物线C :x y 82=的焦点为()2,0F ,准线为:2l x =-,准线与x 轴的交点为()2,0N - ,||4FN =过点Q 作准线的垂线,垂足为M ,由抛物线的定义知||||QM QF = 又因为QF PF 3=,所以,||2||2||PQ QF QM ==所以,28433QMPQQM FNPF =⇒=⨯=所以,83QF QM ==19.已知不等式组0,x y x y ⎧+-≥⎪⎪≤⎨⎪≤⎪⎩表示平面区域Ω,过区域Ω中的任意一个点P ,作圆221x y +=的两条切线且切点分别为,A B ,当APB ∠最大时, PA PB ⋅的值为( ) (A )2 (B )32 (C )52 (D )319.B 如图所示,画出平面区域Ω,当APB ∠最大时,APO ∠最大,故1sin AO APO OP OP ∠==最大,故OP 最小即可,其最小值为点O到直线0x y +-=的距离2d =,故1sin 2APO ∠=,此时0260APB APO ∠=∠=,且PA PB ===3cos 2PA PB PA PB APB ⋅=⋅∠=.120.设函数)(x f 在R 上存在导数)(x f ',R x ∈∀,有2)()(x x f x f =+-,在),0(+∞上x x f <')(,若m m f m f 48)()4(-≥--,则实数m 的取值范围为( )(A ) ]2,2[- (B ) ),2[+∞ (C ) ),0[+∞ (D )(,2][2,)-∞-+∞20.B 设()()212g x f x x =-因为对任意()()2,x R f x f x x ∈-+= ,所以,()()()()()221122g x g x f x x f x x -+=---+-=()()20f x f x x -+-=所以,函数()()212g x f x x=-为奇函数;又因为,在),0(+∞上x x f <')(,所以,当时0x > ,()()0g x f x x ''=-<即函数()()212g x f x x=-在),0(+∞上为减函数, 因为函数()()212g x f x x=-为奇函数且在R 上存在导数, 所以函数()()212g x f x x=-在R 上为减函数,所以,()()()()()221144422g m g m f m m f m m --=----+()()()484f m f m m =----0≥所以,()()442g m g m m m m -≥⇒-≤⇒≥所以,实数m 的取值范围为),2[+∞. 二、填空题21.(文)已知直线3430x y +-=,6140x my ++=平行,则m = . 21.8 由题意得6,834m m ==.(理)已知直线3430x y +-=,6140x my ++=平行,则它们之间的距离是 .21. 2 由题意得6,834m m==,即681403470x y x y++=⇒++=,所以它们之间的距离2=22. 执行如图所示的程序框图,如果输入2-,那么输出的结果是.22.10 若输入2-,则0x>不成立,所以()22313110y--=+=+=,所以输出的值为10.23.(文)采用系统抽样方法从600人中抽取50人做问卷调查,为此将他们随机编号为001,002,,600,分组后在第一组采用简单随机抽样的方法抽得的号码为003,抽到的50人中,编号落入区间[001,300]的人做问卷A,编号落入区间[301,495]的人做问卷B,编号落入区间[496,600]的人做问卷C,则抽到的人中,做问卷C的人数为.23.8 由于1250600=,抽到的号码构成以3为首项,以12为公差的等差数列,因此得等差数列的通项公式为()91211-=-+=ndnaan,落在区间[]600,496的人做问卷C满足600912496≤-≤n,得1295012142≤≤n,由于n是正整数,因此5043≤≤n,人数为8人.(理)2014年11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有种(用排列组合表示).23. 218218A A 先安排美俄两国领导人:中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,所以美俄两国领导人的安排有22A 种不同方法;再安排其余人员,有1818A 种不同方法;所以,共有181822A A 种不同方法.24.函数)12lg()(x a x f ++=为奇函数,则实数=a .24.-1 因为函数)12lg()(x a x f ++=为奇函数,所以()()x f x f -=-,即2221lg()lg()21111a a a x x x a x +=-+⇒+=-+-++2222211(2)11(1)2x a x a a x a x a x +⇒+=⇒-=+-⇒=--++25.已知正实数,,x y z 满足112x x yz y z ⎛⎫++= ⎪⎝⎭,则11x x y z ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为 .由题知112x x yz y z ⎛⎫++= ⎪⎝⎭即22x x yzx y z ++=于是可将给定代数式化简得211112x x yz x x x y z y z yz yz ⎛⎫⎛⎫++=+++=+≥= ⎪⎪⎝⎭⎝⎭当且仅当yz =.26. 如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从M 点测得A点的俯角30NMA ︒∠=,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒已知山高200BC m =,则山高MN = m .26.300 在ABC ∆中, 45,90,200BAC ABC BC ∠=︒∠=︒=200sin 45AC ∴==︒AMC ∆中,75,60,MAC MCA ∠=︒∠=︒45,AMC ∴∠=︒由正弦定理可得,sin sin AM AC ACM AMC =∠∠即sin 60sin 45AM =︒︒解得AM =在Rt AMN ∆中sin MN AM MAN =⋅∠sin 60=︒300()m =.27.(文)如下图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{}n a (n *∈N )的前12项,如下表所示:按如此规律下去,则201320142015a a a ++= .27. 100711a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =, ,这个数列的规律是奇数项为1,1,2,2,3,3,--- 偶数项为1,2,3, ,故201320150a a +=,20141007a =,故2013201420151007a a a ++=.(理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(),N n k (3k ≥),以下列出了部分k 边形数中第n 个数的表达式:三角形数()211,322N n n n =+ 正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =- 六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =.1000()211,312322N n n n n =++++=+ ,()()2,413521N n n n =++++-= ,()()231,51473222N n n n n =++++-=- ()()2,6159432N n n n n =++++-=- ,从中不难发现其中的规律:(),N n k 就是表示以1为首相,()2k -为公差的等差数列前n 项的和,即有()()(),112122N n k k k =++-++⨯-+⎡⎤⎡⎤⎣⎦⎣⎦ ()()112n k ++-⋅-⎡⎤⎣⎦()()11122n n k ++-⋅-⎡⎤⎣⎦=,所以()()()101110124210,2410002N ++-⋅-⎡⎤⎣⎦==.28.已知矩形ABCD 的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为 .28.13π 设正六棱柱的的底面边长为x ,高为y ,则69x y +=,所以302x <<,正六棱柱的体积223()66)V x x y x x ==-,2'())V x x x =-,令2'())0V x x x =->,解得01x <<,令2'())0V x x x =-<得312x <<,即函数()V x 在(0,1)是增函数,在3(1,)2是减函数,所以()V x 在1x =时取得最大值,此时3y =.易知正六棱柱的外接球的球心是其上下中心连线的中点,如图所示,外接球的半径为OE ==所以外接球的表面积为2413.S R ππ==29.我们把离心率215+=e 的双曲线()0,012222>>=-b a b y a x 称为黄金双曲线.如图是双曲线()222222,0,01b a c b a b y a x +=>>=-的图象,给出以下几个说法:①双曲线115222=+-y x 是黄金双曲线; ②若ac b =2,则该双曲线是黄金双曲线;③若21,F F 为左右焦点,21,A A 为左右顶点,1B (0,b ),2B (0,﹣b )且021190=∠A B F ,则该双曲线是黄金双曲线;④若MN 经过右焦点2F 且21F F MN ⊥,090=∠MON ,则该双曲线是黄金双曲线.其中正确命题的序号为 _________ .29.①②③④对于①,215,122+==b a ,则235222+=+=b a c ,2222215235⎪⎪⎭⎫ ⎝⎛+=+==a c e ,215+=∴e ,所以双曲线是黄金双曲线;对于②,ac a c b =-=222,整理得012=--e e解得251+=e ,所以双曲线是黄金双曲线;对于③()2221222212211,,2c a A F a b A B b c B F +=+=+=,由勾股定理得()22222c a a b b c +=+++,整理得ac b =2由②可知251+=e 所以双曲线是黄金双曲线;对于④由于()0,2c F ,把c x =代入双曲线方程得12222=-b y a c ,解得a b y 2±=,a b NF 22=,由对称关系知2ONF ∆为等腰直角三角形,a b c 2=∴,即ac b =2,由①可知251+=e 所以双曲线是黄金双曲线.30.设函数()y f x =的定义域为D ,如果存在非零常数T ,对于任意x D ∈,都有()()f x T T f x +=⋅,则称函数()y f x =是“似周期函数”,非零常数T 为函数()y f x =的“似周期”.现有下面四个关于“似周期函数”的命题:①如果“似周期函数”()y f x =的“似周期”为-1,那么它是周期为2的周期函数; ②函数()f x x =是“似周期函数”;③函数-()2xf x =是“似周期函数”;④如果函数()cos f x x ω=是“似周期函数”,那么“,k k ωπ=∈Z ”. 其中是真命题的序号是 .(写出所有满足条件的命题序号) 30.①③④①如果“似周期函数”()y f x =的“似周期”为-1,则)()1(x f x f -=-,则)()1()2(x f x f x f =--=-,所以它是周期为2的周期函数;②假设函数()f x x =是“似周期函数”,则存在非零常数T ,使)()(x Tf T x f =+对于R x ∈恒成立,即Tx T x =+,即0)1(=--T x T 恒成立,则1=T 且0=T ,显然不成立;③设x T x T -+-⋅=22)(,即T T =-2,易知存在非零常数T ,使T T =-2成立,所以函数-()2x f x =是“似周期函数”;④如果函数()cos f x x ω=是“似周期函数”,则x T T x T x ωωωωcos )cos()(cos =+=+,由诱导公式,得,当1=T 时,Z k k ∈=,2πω,当1-=k 时,Z k k ∈+=,)12(πω,所以“,k k ωπ=∈Z ”;故选①③④. 三、解答题31.设函数π()4cos sin()3f x x x=-+x∈R.(Ⅰ)当π[0,]2x∈时,求函数()f x的值域;(Ⅱ)已知函数()y f x=的图象与直线1y=有交点,求相邻两个交点间的最短距离.解析:(Ⅰ)解:因为1()4cos(sin)2f x x x x=-+ 3cos32cossin22+-=xxxxx2cos32sin-==π2sin(2)3x-,因为π2x≤≤,所以ππ2π2333x--≤≤,所以sin(π2)13x-≤,即()2f x≤,其中当5π12x=时,()f x取到最大值2;当0x=时,()f x取到最小值所以函数()f x的值域为[.(Ⅱ)依题意,得π2sin(2)13x-=,π1sin(2)32x-=,所以ππ22π36x k-=+或π5π22π36x k-=+,所以ππ4x k=+或7ππ12x k=+()k∈Z,所以函数()y f x=的图象与直线1y=的两个相邻交点间的最短距离为π3.32. (文)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为10.8709201012n m 甲组乙组(1)分别求出m ,n 的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差2s 甲和2s 乙,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差2222121=[()()()]n s x x x x x x n -+-+-+ ,其中x 为数据12,,,n x x x 的平均数).解析:(1)根据题意可得:10)10121087(51=+++++=m x 甲,∴3=m ,10)1211109(51=++++=n x 乙,∴8=n ;(2)根据题意可得:2222221[(710)(810)(1010)(1210)(1310)] 5.25s =-+-+-+-+-=甲, 2222221[(810)(910)(1010)(1110)(1210)]25s =-+-+-+-+-=乙,∵乙甲x x =,22乙甲s s <,∴甲乙两组的整体水平相当,乙组更稳定一些; (3)质监部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为),(b a ,则所有的),(b a 有)8,7(,)9,7(,)10,7(,)11,7(,)12,7(,)8,8(,)9,8(,)10,8(,)11,8(,)12,8(,)8,10(,)9,10(,(10,10),(10,11),(10,12),(12,8),(12,9),(12,10),(12,11),(12,12),(138),,(13,9),(13,10),(13,11),(13,12),共计25个,而17a b +≤的基本事件有)8,7(,)9,7(,)10,7(,)8,8(,)9,8(,共计5个基本事件,故满足17a b +>的基本事件共有25520-=,即该车间“质量合格”的基本事件有20个,故该车间“质量合格”的概率为204255=.(理)在科普知识竞赛前的培训活动中,将甲、乙两名学生的6次培训成绩(百分制)制成如图所示的茎叶图:(Ⅰ)若从甲、乙两名学生中选择1人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由;(Ⅱ)若从学生甲的6次培训成绩中随机选择2个,记选到的分数超过87分的个数为ξ,求ξ的分布列和数学期望.解析:(Ⅰ)学生甲的平均成绩687679868895826x +++++==甲,学生乙的平均成绩717582848694826x +++++==乙,又22222221[(6882)(7682)(7982)(8682)(8882)(9582)]776s =-+-+-+-+-+-=甲,22222221167[(7182)(7582)(8282)(8482)(8682)(9482)]63s =-+-+-+-+-+-=乙,则x x =甲乙,22s s >甲乙,说明甲、乙的平均水平一样,但乙的方差小,则乙发挥更稳定,故应选择学生乙参加知识竞赛.(Ⅱ)ξ的所有可能取值为0,1,2,则24262(0)5C P C ξ===,1142268(1)15C C P C ξ===,22261(2)15C P C ξ===,ξ的分布列为所以数学期望()012515153E ξ=⨯+⨯+⨯=. 33.(文) 如图,已知三棱柱111ABC A B C -的侧棱与底面垂直,且90ACB ∠= ,30BAC ∠= ,1BC =,1AA ,点P 、M 、N 分别为1BC 、1CC 、1AB 的中点.(1)求证://PN 平面ABC ; (2)求证:1A M ⊥面11AB C ;(1)证明:连接1CB ,P 是1BC 的中点 ,1CB ∴过点P ,N 为1AB 的中点,//PN AC ∴,又AC ⊂ 面ABC ,PN ⊄面ABC ,//PN ∴平面ABC ; (2)证明:连结1AC ,连接1AC ,在直角ABC ∆中,1BC = ,30BAC ∠= ,11AC AC ∴=,111111CC ACAC MC ==,111~Rt AC M Rt C CA ∴∆∆, 11AMC CAC ∴∠=∠,1111190AC C CAC AC C AMC ∴∠+∠=∠+∠=,即11AC A M ⊥,1111B C C A ⊥ ,111CC B C ⊥,且1111C A CC C = ,11B C ∴⊥平面11AAC C ,111B C A M ∴⊥,又1111AC B C C = ,故1A M ⊥平面11AB C ;(理) 如图,已知四棱锥P ABCD -的底面为菱形,120BCD ∠=,2AB PC ==,AP BP ==(Ⅰ)求证:AB PC ⊥;(Ⅱ)求二面角B PC D --的余弦值.解析:(Ⅰ)证明:取AB 的中点O ,连接,PO CO AC ,. ∵AP BP =,∴PO AB ⊥又四边形ABCD 是菱形,且120BCD ∠=︒, ∴ACB V 是等边三角形,∴CO AB ⊥ 又CO PO O =I ,∴AB PCO ⊥平面, 又PC PCO ⊂平面,∴AB PC ⊥(Ⅱ)由2AB PC ==,AP BP ==,易求得1PO =,OC =∴222OP OC PC +=,OP OC ⊥以O 为坐标原点,以OC ,OB ,OP 分别为x 轴,y 轴,z 轴建立空间直坐标系O xyz -,则(0,1,0)B,C ,(0,0,1)P,2,0)D -,∴1,0)BC =-,1)PC =- ,(0,2,0)DC =ADCBP设平面DCP 的一个法向量为1(1,,)n y z = ,则1n PC ⊥ ,1n DC ⊥ ,∴11020n PC z n DC y ⎧⋅==⎪⎨⋅==⎪⎩,∴z =0y =,∴1(1n = 设平面BCP 的一个法向量为2(1,,)n b c = ,则2n PC ⊥ ,2n BC ⊥ ,∴2200n PC c n BC b ⎧⋅==⎪⎨⋅==⎪⎩,∴c =b =2(1n =∴121212cos ,7||||n n n n n n ⋅<>===⋅,∵二面角B PC D --为钝角,∴二面角B PC D --的余弦值为7-. 34.在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,满足1=c , 且()()0cos sin sin cos =+-+B A B a C B . (1)求角C 的大小;(2)求22b a +的最大值,并求取得最大值时角,A B 的值.解析:(1)由()()0cos sin sin cos =+-+B A B a C B , 可得()0cos sin sin cos =--C B a C B ,即C a A cos sin =,又1=c ,所以C a A c cos sin =, 由正弦定理得C A A C cos sin sin sin =,因为π<<A 0,所以>A sin 0,从而C C cos sin =,即4π=C .(2)由余弦定理222cos 2c C ab b a =-+,得1222=-+ab b a ,又222b a ab +≤,所以()122122≤+⎪⎪⎭⎫ ⎝⎛-b a ,于是2222+≤+b a , 当π83==B A 时,22b a +取到最大值22+.35.如图,1F 、2F 为椭圆2222:1x y C a b +=的左、右焦点,D 、 E 是椭圆的两个顶点,椭圆的离心率e =,21DEF S ∆=.若00(,)M x y 在椭圆C 上,则点00(,)x y N a b 称为点M 的一个“好点”.直线l 与椭圆交于A 、B 两点, A 、B 两点的“好点”分别为P 、Q ,已知以PQ 为直径的圆经过坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)AOB ∆的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.解析:(Ⅰ)由题意得2c e a ==,故2c a =,12b a=.22111()()(112224DEF a S a c b a a ∆=-⨯=⨯==,故24a =,即2a =,所以112b a ==,c =故椭圆的标准方程为:2214x y +=.(Ⅱ)设11(,)A x y 、22(,)B x y ,则11(,)2x P y 、21(,)2xQ y .①当直线AB 的斜率不存在时,即12x x =,12y y =-,由以PQ 为直径的圆经过坐标原点可得OP OQ ⊥,即221211210224x x x y y y ⨯+=-=,解得22114x y =, 又点11(,)A x y 在椭圆上,所以2211414y y +=,解得11|||y x ==所以1121||||12AOB S x y y ∆=⨯-=.②当直线AB 的斜率存在时,设其方程为y kx m =+.由2214y kx m x y =+⎧⎪⎨+=⎪⎩,消y 得,222(41)8440k x kmx m +++-= 由根与系数的关系可得122841kmx x k -+=+,21224441m x x k -=+ 由以PQ 为直径的圆经过坐标原点可得OP OQ ⊥,即1212022x x y y ⋅+⋅=, 即121204x x y y +=.故221212121214()()()44x x k kx m kx m x x km x x m ++++=+++ 222221444844141k m kmmk m k k +--=⨯+⨯+++ 2222821041k m m k =--=+整理得2222(21)(41)80m k k m -+-=,即222410m k --=. 所以22412k m +=.而222212121222844||()4()44141km m x x x x x x k k ---=+-=-⨯++ 222216(41)(41)k m k =+-+故12|||AB x x =-=而点O 到直线AB的距离d =,所以11||22AOBS AB d ∆=⨯=1===.综合①②可知AOB ∆的面积为定值1.36.(文)在四棱锥E ABCD -中,底面ABCD 是正方形,AC 与BD 交于点,O EC ⊥底面ABCD ,F 为BE 的中点.(1)求证://DE 平面ACF ;(2)若AB ,在线段EO 上是否存在点G ,使CG ⊥平面BDE ?若存在,求出EGEO 的值;若不存在,请说明理由.解析:(1)证明:连接OF由四边形ABCD 是正方形可知,点O 为BD 的中点 又F 为BE 的中点,所以//OF DE 又OF ⊂平面ACF ,DE ⊄平面ACF所以//DE 平面ACF (2)解法一:若CG ⊥平面BDE ,则必有CG OE ⊥ 于是作CG OE ⊥于点G由EC ⊥底面ABCD ,所以BD EC ⊥,又底面ABCD 是正方形 所以BD AC ⊥,又EC AC C ⋂=,所以BD ⊥平面ACE 而CG ⊂平面ACE ,所以CG BD ⊥又OE BD O ⊥=,所以CG ⊥平面BDE又AB =,所以CO AB CE ==所以G 为EO 的中点,所以12EG EO =解法二:取EO 的中点G ,连接CG ,在四棱锥E ABCD -中AB =,CO AB CE ==,所以CG EO ⊥又由EC ⊥底面ABCD ,BD ⊂底面ABCD ,所以EC BD ⊥ 由四边形ABCD 是正方形可知,AC BD ⊥ 又AC EC C ⋂=所以BD ⊥平面ACE 而BD ⊂平面BDE所以,平面ACE ⊥平面BDE ,且平面ACE ⋂平面BDE EO =因为CG EO ⊥,CG ⊂平面ACE ,所以CG ⊥平面BDE 故在线段EO 上存在点G ,使CG ⊥平面BDE由G 为EO 的中点,得12EG EO =(理) 已知正四棱柱1111ABCD A BC D -中,12,4==AB AA .(1)求证:1BD AC ⊥;(2)求二面角11--A AC D 的余弦值;(3)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.证明:(1)因为1111ABCD A BC D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形.因为BD ⊂平面ABCD , 所以1,BD AA BD AC ⊥⊥.因为1AA AC A = ,所以BD ⊥平面1A AC .因为1AC ⊂平面1A AC , 所以1BD AC ⊥.(2)如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B 11(0,2,4),(0,0,4)C D所以111(2,0,0),(0,2,4)D A D C ==-uuuu r uuu r. 设平面11A D C 的法向量111(,,)x y z =n .所以 1110,0D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu r n n .即1110,240x y z =⎧⎨-=⎩令11z =,则12y =.所以(0,2,1)=n .由(1)可知平面1AAC 的法向量为(2,2,0)DB =u u u r.所以cos ,DB <>==uu u rn . 因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为. (3)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r.因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r. 所以222222(,2,)(,2,4)x y z x y z λ-=---.即22240,2,1x y z λλ===+.所以4(0,2,)1P λλ+.设平面PBD 的法向量333(,,)x y z =m .因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu u r ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu ur m m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. 令31y =,则3311,2x z λλ+=-=-.所以1(1,1,)2λλ+=--m .若平面11ACD ⊥平面PBD ,则0⋅=m n .即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD .37. 设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x =,(0,)x ∈+∞. (Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值.解析:(Ⅰ)证明:结论:函数()1y f x =-不存在零点.当1n =时,ln ()x f x x =,求导得21ln ()xf x x -'=,令()0f x '=,解得x e =. 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减,则当x e =时,函数()f x 有最大值1()f e e =.所以函数()1y f x =-的最大值为1(e)110e f -=-<,所以函数()1y f x =-不存在零点.(Ⅱ)解:由函数ln ()n x f x x =求导,得 11ln ()n n xf x x +-'=,令()0f x '=,解得1e nx=. 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在1(0,)n e 上单调递增,在1(,)ne +∞上单调递减,则当1nx e =时,函数()f x 有最大值11()nf e ne =;由函数()x n e g x x =,(0,)x ∈+∞求导,得 1e ()()x n x n g x x +-'=, 令 ()0g x '=,解得x n =.当x 变化时,()g x '与()g x 的变化如下表所示:所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值()()neg n n =. 因为*n ∀∈N ,函数()f x 有最大值11(e )1e nf n =<,所以曲线ln n x y x =在直线1l y =:的下方,而曲线xne y x =在直线1l y =:的上方, 所以e()1n n >,解得e n <.所以n 的取值集合为{1,2}.38.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++= ,*n ∈N .(Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线112x y n n -=+上,若不等式1212911122n n nb b b m a a a a +++≥-++++ 对于*n ∈N 恒成立,求实数m 的最大值.解析:(Ⅰ)由1231n n a a a a n a ++++++= , 得12311(2)n n a a a a n a n -+++++-=≥ , 两式相减得121n n a a +=+,所以112(1)n n a a ++=+ (2n ≥),因为10a =,所以111a +=,2111a a =+=,2112(1)a a +=+ 所以{1}n a +是以1为首项,公比为2的等比数列(Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线112x y n n -=+上,所以1112n n T T n n +-=+,故{}n T n 是以111T =为首项,12为公差的等差数列, 则11(1)2n T n n =+-,所以(1)2n n n T +=, 当2n ≥时,1(1)(1)22n n n n n n n b T T n -+-=-=-=,因为11b =满足该式,所以n b n =所以不等式1212911122n n n b b b m a a a a +++≥-++++ ,即为2123912222n n n m -+++≥- ,令21231222n n n R -=+++ ,则23112322222n n nR =+++ ,两式相减得231111112(1)122222222n n n nn n R -+-=++++-=- ,所以1242n n n R -+=-由92n n R m ≥-恒成立,即2542n n m--≥恒成立,又11232527(4)(4)222n n n n n n ++------=,故当3n ≤时,25{4}2n n --单调递减;当3n =时,323531428⨯--=;当4n ≥时,25{4}2n n --单调递增;当4n =时,4245614216⨯--=; 则2542n n --的最小值为6116,所以实数m 的最大值是611639.已知抛物线21:2C y px =上一点()03M y ,到其焦点F 的距离为4;椭圆()2222210y x C a b a b +=>>:的离心率2e =,且过抛物线的焦点F . (I )求抛物线1C 和椭圆2C 的标准方程;(II )过点F 的直线1l 交抛物线1C 于A 、B 两不同点,交y 轴于点N ,已知NA AF NB BF λμ== ,,求证:λμ+为定值.(III )直线2l 交椭圆2C 于P ,Q 两不同点,P ,Q 在x 轴的射影分别为P ',Q ',10OP OQ OP OQ ''⋅+⋅+= ,若点S 满足:OS OP OQ =+,证明:点S 在椭圆2C 上.解析:(Ⅰ)抛物线21:2C y px =上一点0(3,)M y 到其焦点F 的距离为4;抛物线的准线为2p x =-抛物线上点0(3,)M y 到其焦点F 的距离||MF 等于到准线的距离d所以342p d =+=,所以2p =抛物线1C 的方程为24y x = 椭圆22222:1(0)y x C a b a b +=>>的离心率2e =,且过抛物线的焦点(1,0)F所以1b =,22222112c a e a a -===,解得22a = 所以椭圆的标准方程为22121y x +=(Ⅱ)直线1l的斜率必存在,设为k ,设直线l 与椭圆2C 交于1122(,),(,)A x y B x y则直线l 的方程为(1)y k x =-, (0,)N k -联立方程组:24(1)y xy k x ⎧=⎨=-⎩所以2222(24)0k x k x k -++=216160k ∆=+>,所以212212241k x x k x x ⎧++=⎪⎨⎪=⎩ (*)由,NA AF NB BF λμ==得:1122(1),(1)x x x x λλ-=-=得:1212,11x xx x λμ==--所以121221121212121212(1)(1)211(1)(1)1()x x x x x x x x x x x x x x x x x x λμ-+-+-+=+==-----++将(*)代入上式,得12121212211()x x x x x x x x λμ+-+==--++(Ⅲ)设(,),(,)p p Q Q P x y Q x y所以(,)p Q p Q S x x y y ++,则''(,0),(,0)P Q P x Q x由''10OP OQ OP OQ ⋅+⋅+= 得21P Q P Q x x y y +=-(1) 2212P P y x +=,(2) 2212Q Q y x +=(3)(1)+(2)+(3)得:22()()12P Q P Q y y x x +++=即(,)p Q p Q S x x y y ++满足椭圆222:121y x C +=的方程命题得证40.(文)已知函数21()ln (1)(0)2f x a x x a x x =+-+>,其中a 为实数.(1)求函数()f x 的单调区间;(2)若函数()0f x ≥对定义域内的任意x 恒成立,求实数a 的取值范围. (3)证明,对于任意的正整数,m n ,不等式111ln(1)ln(2)ln()()nm m m n m m n ++>++++ 恒成立.解:(1)()(1)()(0)x a x f x x x --'=>当0a ≤时,()f x 在(0,1)上递减,在(1,)+∞上递增当01a <<时,()f x 在(0,)a ,(1,)+∞上递增,在(,1)a 上递减 当1a =时,()f x 在(0,)+∞上递增当1a >时,()f x 在(0,1),(,)a +∞上递增,(1,)a 上递减(2)由(1)知当0a ≤时11()(1)0,22f x f a a ≥=--≥∴≤-当0a >时,1(1)0,()02f a f x =--<∴≥不恒成立综上:12a ≤-(3)由(2)知12a =-时,()0f x ≥恒成立2111ln 0222x x x -+-≥ln (1)x x x ∴≤-当且仅当1x =时以“=”1x ∴>时,11ln (1),ln (1)x x x x x x <->-1111ln(1)(1)1m m m m m ∴>=-+++1111ln(2)(1)(2)12m m m m m >=-+++++……1111ln()()(1)1m n m n m n m n m n >=-+++-+-+ 11111ln(1)ln(2)ln(1)()nm m m m m n m m n ∴+++>-=+++++(理) 设函数2()ln(1)f x x m x =++. (1)若函数()f x 是定义域上的单调函数,求实数m 的取值范围;(2)若1m =-,试比较当(0,)x ∈+∞时,()f x 与3x 的大小;(3)证明:对任意的正整数n ,不等式201429(1)(3)2n n n n e e e e -⨯-⨯-+++++<成立.解析:(1)∵222()211m x x mf x x x x ++'=+=++又函数()f x 在定义域上是单调函数. ∴ ()0f x '≥或()0f x '≤在(1,)-+∞上恒成立若()0f x '≥在(1,)-+∞上恒成立,即函数()f x 是定义域上的单调地增函数,则2211222()22m x x x ≥--=-++在(1,)-+∞上恒成立,由此可得12m ≥; 若()0f x '≤在(1,)-+∞上恒成立,则()201mf x x x '=+≤+在(1,)-+∞上恒成立.即2211222()22m x x x ≤--=-++在(1,)-+∞上恒成立. ∵2112()22x -++在(1,)-+∞上没有最小值 ∴不存在实数m 使()0f x '<在(1,)-+∞上恒成立.综上所述,实数m 的取值范围是1[,)2+∞.(2)当1m =-时,函数2()ln(1)f x x x =-+. 令332()()ln(1)g x f x x x x x =-=-+-+ 则32213(1)()3211x x g x x x x x +-'=-+-=-++显然,当(0,)x ∈+∞时,()0g x '<,所以函数()g x 在(0,)+∞上单调递减又(0)0g =,所以,当(0,)x ∈+∞时,恒有()(0)0g x g <=,即3()0f x x -<恒成立. 故当(0,)x ∈+∞时,有3()f x x <(3)数学归纳法证明:1、当1=n 时,左边=10=e ,右边=2241=⨯,原不等式成立.2、设当k n =时,原不等式成立,即2)3(2)1(92410+<++++⨯-⨯-⨯-k k e e e e k k则当1+=k n 时,左边=222)1()1()11()1(924102)3(=⨯-+⨯--⨯-⨯-⨯-++<+++++k k k k k k e k k e e e e e只需证明2)4()1(2)3(2)1(+⨯+<+++⨯-k k e k k k k即证22)1(+<+⨯-k ek k 即证)2ln()1(2+<+⨯-k k k由(2)知),0(),1ln(32+∞∈+<-x x x x 即),1ln()1(2+<-x x x令1+=k x ,即有)2ln()1(2+<+⨯-k k k 所以当1+=k n 时成立由1、2知,原不等式成立 补充试题1. 平面四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥,将其沿对角线BD折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的体积为 ( )(A(B )3π (C(D )2π1.A 根据题意,如图,可知Rt A BD '∆中,1,AB AD BD ===Rt BCD ∆中,1,BD CD BC ===又因为平面A BD '⊥平面BCD ,所以球心就是BC 的中点,半径为r =,所以球的体积为:343V r π==.2.在直角梯形ABCD 中,//AB CD ,090ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )(A) (B) (C) (D)2.B 由已知条件可得图象如下,在ACD ∆中,2222cos CD AD AC AD AC DAC =+-⨯⨯∠,∴222))2cos a DAC =+-⨯∠,∴cos DAC ∠=.3. 如图是一个空间几何体的三视图,该几何体的外接球的体积记为1V ,俯视图绕底边所在直线旋转一周形成的几何体的体积记为2V ,则12:V V =( )(A)(B)(C)( D)3.D 三视图复原的几何体如图, 它是底面为等腰直角三角形,一条侧棱垂直底面的一个顶点,它的外接球,就是扩展为长方体的外接球,外接球的直径是,该几何体的外接球的体积1V=343π=,2V =21221133ππ⎛⎫⨯⨯⨯⨯= ⎪⎝⎭ ,∴ 12:V V2:3π=D.4. 设函数()f x 的定义域为D ,如果x D y D ,∀∈∃∈,使得()()f x fy =-成立,则称函数()f x 为“Ω函数” 给出下列四个函数:①y x =sin ;②2xy =;③11y x =-;④()ln f x x =, 则其中“Ω函数”共有( )(A )1个 (B )2个 (C )3个 (D )4个4.C x D y D ,∀∈∃∈,使得()()fx fy =-,等价于x D y D ,∀∈∃∈,使得()()0f x f y +=成立①因为sin y x =是奇函数,所以()()f x f x =--,即当y x =-时,()()fx fy =-成立,故sin y x =是“Ω函数”;②因为20x y =>,故()()0f x f y +=不成立,所以2x y =不是“Ω函数”;③11y x =-时,若()()0f x f y +=成立,则11011x y +=--,整理可得()2,1y x x =-≠即当()2,1y x x =-≠时,()()0f x f y +=成立,故11y x =-是“Ω函数”;④()ln f x x=时,若()()0f x f y +=成立,则ln ln 0x y +=,解得1y x =即1y x=时,()()0f x f y +=成立,故()ln f x x=是“Ω函数”5. 设直线)0(03≠=+-m m y x 与双曲线)0,0(12222>>=-b a b y a x 的两条渐近线分别交于点B A ,,若点)0,(m P 满足PBPA =,则该双曲线的离心率是________.。

2015年高考理科数学押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word版可打印)

2015年高考理科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知复数()11,i z i +=为虚数单位,则z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如果{}{}{}0101,3,5,7,2,4,6,8U x x x A B ===是不小于的整数且<,U U C A C B ⋂=A.{}9B.{}0C.{}0,9D.∅ 3.下列判断不正确的是A.1m =-是直线()2110mx m y +-+=和直线330x my ++=垂直的充要条件B.“22am bm <”是“a b <”的充分不必要条件C.“矩形的两条对角线相等”的否定为假D.命题“∅是集合{}1,2的真子集或{}31,2∈为真” 4.画在同一坐标系内的曲线sin cos y x y x ==与的交点坐标是A.2,1,2n n Z ππ⎛⎫+∈ ⎪⎝⎭B.(),1,2n n n Z ππ⎛⎫+-∈ ⎪⎝⎭C.1,4nn n Z ππ⎛⎫-+∈ ⎝ D.(),1,n n Z π∈5.在ABC ∆中,M 是BC 的中点,AM=4,点P 在AM 上且满足()3AP PM PA PB PC =⋅+,则等于A.6B.6-C.649D.649-6.一个多面体的直观图和三视图如图所示,M 是AB 的中点.一只小蜜蜂在几何体ADF —BCE 内自由飞翔,则它飞入几何体F —AMCD 内的概率为A.34B.23C.12D.137.数列1111112123123412n ⋅⋅⋅++++++++⋅⋅⋅+,,,,,的前2013项的和为A.20121007B.20122013C.20131007D.402420138.已知()[)[]211,010,1x x f x x x ⎧+∈-⎪=⎨+∈⎪⎩,则下列函数的图象错误..的是9.一支足球队每场比赛获胜(得3分)的概率为a ,与对手踢平(得1分)的概率为b 负于对手(得0分)的概率为(),,,0,1c a b c ∈.已知该足球队进行一场比赛得分的期望是1,则113ab+的最小值为 A.163B.143C.173D.10310.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK =,则AFK ∆ A.4 B.8 C.16 D.3211.函数()()220,2cos 02x x f x x x π+-≤⎧⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩<的图象与x 轴所围成的封闭图形的面积为A.32B.1C.4D.1212.定义在R 上的函数()y f x =具有下列性质:①()()0f x f x --=;②()()11f x f x +=;③()[]01y f x =在,上为增函数.对于下述命题,正确命题的个数为①()y f x =为周期函数且最小正周期为4②()y f x =的图象关于y 轴对称且对称轴只有一条③()3,4上为减函数=在[]y f xA.0B.1C.2D. 3第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分 13.若()()()()4324123452341111,a x a x a x a x a x a a a -+-+-+-+=-+=则_______.14.将一颗股子连续抛掷三次,它落地时向上的点数依次构成等比数列的概率与构成等差数列的概率之比为_______.15.已知F 是双曲线()22221x y C a a b-=:>0,b >0的左焦点,12B B 是双曲线的虚轴,M 是1OB 的中点,过F 、M 的直线交双曲线C 于A ,且2FM MA =,则双曲线C 的离心率是______. 16.给出下列命题:①在锐角sin cos ABC A B ∆中,有>;②函数sin 23y x π⎛⎫=+ ⎪⎝⎭图象关于点,06π⎛⎫⎪⎝⎭对称; ③在cos cos cos a b c ABC A B C∆==中,若,则ABC ∆必为等边三角形; ④在同一坐标系中,函数sin y x =的图象和函数2xy =的图象有三个公共点.其中正确命题的序号是______(写出所有正确命题的序号). 三、解答题:本大题共6小题,共74分.17.(本小题满分12分)已知向量()()sin ,cos ,cos ,cos a x x b x x ==-,定义()()2f x a b a x R =⋅+∈.(I )求()f x 的最大值及对应的x 值;(II )若在0,2π⎡⎤⎢⎥⎣⎦上,关于x 的方程()f x m =有两个不同的实数解,求实数m 的取值范围.18.(本小题满分12分)已知等差数列{}()n a n N +∈中,12947,232,37n n a a a a aa +=+=>. (I )求数列{}n a 的通项公式;(II )若将数列{}n a 的项重新组合,得到新数列{}n b ,具体方法如下:11223345674891015,,,b a b a a b a a a a b a a a a ==+=+++=+++⋅⋅⋅+,…依此类推,第n 项n b 由相应的{}12n n a -中项的和组成,求数列124n n b ⎧⎫-⨯⎨⎬⎩⎭的前n 项和T n .19.(本小题满分12分)如图,在梯形ABCD 中,//,1,A B C D A D D C C BA B C ===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF=1.(I )求证:BC ⊥平面ACFE ;(II )点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为()90cos θθθ≤,试求的取值范围.20.(本小题满分12分)在某次篮球训练中,规定:在甲投篮点投进一球得2分,在乙投篮点投进一球得1分;得分超过2分即停止投篮,且每人最多投3次。

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)附答案

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)附答案

2015年高考理科数学押题密卷(全国新课标Ⅰ卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)已知集合A={ (x,y)|x,y为实数,且x2+y2=4},集合B={(x,y) |x,y为实数,且y=x -2},则A ∩ B的元素个数为()(A)0 (B)1(C)2 (D)3(2)复数z=1-3i1+2i,则(A)|z|=2 (B)z的实部为1(C)z的虚部为-i (D)z的共轭复数为-1+i(3)已知随机变量X服从正态分布N(1,σ2),若P(X≤2)=0.72,则P(X≤0)=(A)0.22 (B)0.28(C)0.36 (D)0.64(4)执行右面的程序框图,若输出的k=2,则输入x的取值范围是(A)(21,41) (B)[21,41](C)(21,41] (D)[21,41)(5)已知等比数列{a n}的前n项和为S n,a1+a3=52,且a2+a4=54,则S na n=(A)4n-1(B)4n-1 (C)2n-1(D)2n-1(6)过双曲线x2a2-y2b2=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为(A) 2 (B)2 (C) 5 (D) 3(7)已知函数f(x)=cos(2x+π3),g(x)=sin(2x+2π3),将f(x)的图象经过下列哪种变换可以与g(x)的图象重合(A )向左平移 π 12 (B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136 (B ) 3(C )533 (D )433(9)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种 (D )60种(11)函数1)1(cos 2)(f 2---=x x x x ,其图像的对称中心是(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 12 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16上述命题中,真命题的个数是 (A )4 (B )3 (C )2 (D )1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在(1+x 2)(1-2 x)5的展开式中,常数项为__________. (14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC|=3, |AB|=4,|BC|=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________.俯视图(16)△ABC 的顶点A 在y 2=4x 上,B ,C 两点在直线x -2y+5=0上,若|AB -AC |=2 5 ,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc的最大值.(18)(本小题满分12分)(Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X 的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面AB 1B 1A 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C .(Ⅰ)求证:平面AB 1B 1A ⊥BB 1C 1C ; (Ⅱ)求二面角B -AC -A 1的余弦值.BCB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点.(Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2;(Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考理科数学押题密卷(全国新课标Ⅰ卷)参考答案一、选择题:CDBCD ABCDD BA 二、填空题:(13)41;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6). (10)分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p1=38,p2=12,两人得分均超过15分的概率分别为p1p2=316,依题意,X~B(2,316),P(X=k)=C k2(316)k(1316)2-k,k=0,1,2,…7分X的分布列为…10分X的均值E(X)=2×316=38.……………………………12分(19)解:(Ⅰ)由侧面AB1B1A为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AB1B1A,所以平面AB1B1A⊥BB1C1C.…………………………4分(Ⅱ)建立如图所示的坐标系O -xyz .其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0).AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0).…6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0,即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1). …8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0,即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). …………………10分 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B -AC -A 1的余弦值为-77. ……………………………12分(20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………………6分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k 28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分 (Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k ·(-k )=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2),与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意.故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………4分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: .取,由(Ⅰ)知:当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是.∴ . ……………………………8分 (Ⅲ)由(Ⅱ)知:x 是正整数时,不等式也成立,可以令: x =1,2,3,…,n-1,将所得各不等式两边相加,得:即. ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE ⇒ 2AD ·CD =AC ·2CE ⇒ 2AD ·CD =AC ·BC . ……………………………10分 (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解:A(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.……………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ……………………………5分(Ⅱ)函数y =ax -1当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). ………………………10分= 1 2。

2015年高考数学理科押题卷及答案

2015年高考数学理科押题卷及答案

2015年江西省高考押题精粹数学理科本卷共60题,三种题型:选择题、填空题和解答题。

选择题36小题,填空题8小题,解答题18小题。

一、选择题(36个小题)1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为( ) A .MN B .()U M N ðC .()U M N ðD .()()U U M N 痧 答案:B解析:有元素1,2的是,U M N ð,分析选项则只有B 符合。

2. 集合 {}{}{}1,2,3,4,5,1,2,3,|,A B C z z xy x A y B ====∈∈且,则集合C 中的元素个数为( )A .3B .4C .11D .12 答案:C解析:{1,2,3,4,5,6,8,9,10,12,15}C =,故选C 。

3. 设集合{}1,0,1,2,3A =-,{}220B x x x =->,则A B ⋂=( )A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 答案:C解析:集合{}{}22020B x x x x x x =->=><或,{}1,3A B ⋂=-。

4. 若(1)z i i +=(其中i 为虚数单位),则||z 等于( )A .1 B. 32 C. 22D. 12答案:C 解析:化简得i z 2121+=,则||z =22,故选C 。

5. 若复数iia 213++(i R a ,∈为虚数单位)是纯虚数,则实数a 的值为( ) A. 6- B. 2- C. 4 D. 6解析:3(3)(12)63212(12)(12)55a i a i i a a i i i i ++-+-==+++-,所以6320,0,655a aa +-=≠∴=-。

6. 复数21ii -在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限答案:D解析:根据复数的运算可知()()22121215521i i i i i i +==---,所以复数的坐标为21,55⎛⎫- ⎪⎝⎭,所以正确选项为D 。

2015年新课标高考数学(理)押题卷及答案

2015年新课标高考数学(理)押题卷及答案

2015年新课标高考模拟试卷(理科数学)---命题人:毋晓迪第I 卷一、选择题:本大题共1 2小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R ,集合A={1,2,3,4,5},B={|2x x ³},下图中阴影部分所表示的集合为阴影部分所表示的集合为 A .{0,1,2} B .{1,2} C .{1} C .{0,1} 2.复数321iz i i=-+,在复平面上对应的点位于,在复平面上对应的点位于A .第一象限.第一象限B .第二象限.第二象限C .第二象限.第二象限D .第四象限.第四象限3.若13sin cos ,(0,)2a a a p -+=Î,则tan a = ( ) A .3 B .3- C .33 D .33-4.已知命题:,p x R $Î使得12,x x+<命题2:,10q x R x x "Î++>,下列命题为真的是,下列命题为真的是A .p Ù q B .()p q ØÙC .()p q ÙØ D .()()p q ØÙØ5.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为A .43B .83C .123D .2436.已知△ABC 中,C=45°,则sin 2A=sin 2B 一2sinAsinB=( ) A .14 B .12 C .22D .34 7.如图是计算函数ln(),2,0,23,2,3x x x y x x ì-£-ï=-<£íï>î的值的程序框图,在①、②、③ 处分别应填入的是处分别应填入的是A .y=ln (一x ),y=0,y=2x B .y=0,y=2x ,y=In (一x )C .y=ln (一x ),y=2z,y=0 D .y=0,y=ln (一x ),y=2x 8.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足满足 (a-c )·(b 一c )=0,则|c|的最大值是的最大值是A .1 B .22C .2 D .29.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的表面积为(表面积为( )A .16p B .24p C .323p D .48p10.在二项式(3)n x x+的展开式中,各项系数之和为M ,各项二项式系数之和为N ,且M+N=72,则展开式中常数项的值为( ) A .18 B .12 C .9 D .6 11.已知函数()s i n c o s (0)f x x x w ww =+>,如果存在实数x 1,使得对任意的实数x ,都有11()()(2012)f x f x f x ££+成立,则w 的最小值为(的最小值为( )A .12012B .2012pC .14024D .4024p12.过双曲线22221(0,0)x ya b a b -=>>的右顶点A 作斜率为一1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为三点的横坐标成等比数列,则双曲线的离心率为A .3B .5C .10D .13第II 卷二、填空题(每道题5分,共20分)分)13.已知函数490,10,33x y x y x y z x y y +-³ìï--£=-íï£î满足则的最大值是的最大值是。

2015年普通高等学校招生全国统一考试数学理科预测卷及答案(北京卷)

2015年普通高等学校招生全国统一考试数学理科预测卷及答案(北京卷)

2015年普通高等学校招生全国统一考试数学理科预测试题(北京卷)(满分150分,考试时间120分)第Ⅰ卷(选择题 40分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -2y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A .0B .1C .2D .32、下列函数中,既是偶函数又在(-∞,0)上单调递增的是( )A .y =x 2B .y =2|x |C .y =log 21|x |D .y =sin x3、曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、B .11(0,)(,0)52、C .(0,4)(8,0)-、D .5(0,)(8,0)9、 4、程序框图如下图所示,当0.96A =时,输出的k 的值为( )A .20B .22C .24D .255、设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6、设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]否1(1)S S k k =++S A≥开始1,0k S ==k输出结束1k k =+是7、一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 58、定义区间(a ,b ),[a ,b ),(a ,b ],[a ,b ]的长度均为d =b -a ,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d =(2-1)+(5-3)=3.用[x ]表示不超过x 的最大整数,记{x }=x -[x ],其中x ∈R .设f (x )=[x ]·{x },g (x )=x -1,当0≤x ≤k 时,不等式f (x )<g (x )的解集区间的长度为5,则k =( )A .6B .7C .8D .9 第Ⅱ卷二、填空题:(本大题共6小题,每小题5分,共30分.把答案填在答题纸上.) 9、已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为10、已知点M (5,-6)和向量a =(1,-2),若MN =-3a ,则点N 的坐标为________________.11、直线x -2y +2=0过椭圆x 2a 2+y 2b2=1的左焦点F 1和一个顶点B ,则椭圆的方程为________________.12、在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.13、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有________________.14、已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的值域是________.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分13分)已知向量)4cos ,4(cos ),1,4sin 3(2x x n x m ==.记n m x f ⋅=)((I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cos C , 若132f (A )+=,试判断∆ABC 的形状. 16、(本小题满分13分)某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):围棋社 舞蹈社 拳击社 男生 5 10 28女生1530m学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.(1)求拳击社团被抽出的6人中有5人是男生的概率; (2)设拳击社团有X 名女生被抽出,求X 的分布列.17、(本小题满分13分)如图,在四棱锥P ­ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,E ,F 分别为PC ,BC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PAB ⊥平面PDC ;(3)在线段AB 上是否存在点G ,使得二面角C ­PD ­G 的余弦值为13?说明理由.18、(本小题满分13分)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.19、(本小题满分14分)(2015·衡水中学二调)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左、右焦点分别为F 1和F 2,且|F 1F 2|=2,点⎝ ⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的面积为1227,求以F 2为圆心且与直线l 相切的圆的方程.20、(本小题满分13分)设函数F (x )在区间D 上的导函数为F 1(x ),F 1(x )在区间D 上的导函数为F 2(x ),如果当x ∈D 时,F 2(x )≥0,则称F (x )在区间D 上是下凸函数.已知e 是自然对数的底数,f (x )=e x-ax 3+3x -6.(1)若f (x )在[0,+∞)上是下凸函数,求a 的取值范围;(2)设M (x )=f (x )+f (-x )+12,n 是正整数,求证:M (1)M (2)…M (n )>en +1+2n.理科答案选择题1.解析:选C 由题中集合可知,集合A 表示直线x +y =1上的点,集合B 表示直线x-2y =3上的点,联立⎩⎪⎨⎪⎧x +y =1,x -y =3可得A ∩B ={(2,-1)},M 为A ∩B 的子集,可知M 可能为{(2,-1)},∅,所以满足M ⊆(A ∩B )的集合M 的个数是2,故选C.2.解析:选C 函数y =x 2在(-∞,0)上是减函数;函数y =2|x |在(-∞,0)上是减函数;函数y =log 21|x |=-log 2|x |是偶函数,且在(-∞,0)上是增函数;函数y =sin x 不是偶函数.综上所述,选C.3.解析:选B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5; 当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)2选B4.【答案解析】 C 解析 :解:由程序框图可知当k=n 时:()11111223341S n n =++++⨯⨯⨯⨯+ =1111111(1)223341n n ⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭=1111nn n -=++0.96≥,解得24n ≥,所以选C 5.解析:选B M ={x |0<x ≤3},N ={x |0<x ≤2},所以NM ,故a ∈M 是a ∈N 的必要不充分条件.6.解析:选B 如图所示,不等式组表示的平面区域是△ABC 的内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].7.解析:选C 由三视图还原为空间几何体,如图所示,则有OA =OB =1,AB = 2.又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,PA =2+12=3,从而有PA 2+DA 2=PD 2,∴PA ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6.8.选B f (x )=[x ]·{x }=[x ]·(x -[x ])=[x ]x -[x ]2,由f (x )<g (x ),得[x ]x -[x ]2<x -1,即()[x ]-1x <[x ]2-1.当x ∈(0,1)时,[x ]=0,不等式的解为x >1,不符合题意;当x ∈[1,2)时,[x ]=1,不等式可化为0<0,无解,不符合题意;当x ∈[2,+∞)时,[x ]>1,不等式([x ]-1)x <[x ]2-1等价于x <[x ]+1,此时不等式恒成立,所以不等式的解集为[2,k ],因为不等式f (x )<g (x )的解集区间的长度为5,所以k -2=5,即k =7,故选B. 填空题 9. 2i -1()1,2,1,12x x xi yi x y i =-=-∴==+故2i -.10.解析:(2,0) MN =-3a =-3(1,-2)=(-3,6),设N (x ,y ),则MN =(x -5,y +6)=(-3,6),所以⎩⎪⎨⎪⎧x -5=-3,y +6=6,即⎩⎪⎨⎪⎧x =2,y =0,(2,0)11.解析:直线x -2y +2=0与x 轴的交点为(-2,0),即为椭圆的左焦点,故c =2. 直线x -2y +2=0与y 轴的交点为(0,1),即为椭圆的顶点,故b =1. 故a 2=b 2+c 2=5,椭圆方程为x 25+y 2=1.答案:x 25+y 2=112.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎪⎫-1,-78 13.解析:选B 根据题意,由排列可得,从6名志愿者中选出4人分别从事四项不同工作,有A 46=360种不同的情况,其中包含甲从事翻译工作,有A 35=60种,乙从事翻译工作,有A 35=60种,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有360-60-60=240种.14.解析:f (x )=3sin ⎝ ⎛⎭⎪⎫ωx -π6=3cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫ωx -π6=3cos ⎝ ⎛⎭⎪⎫ωx -2π3,易知ω=2,则f (x )=3sin ⎝⎛⎭⎪⎫2x -π6, ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴-π6≤2x -π6≤5π6, ∴-32≤f (x )≤3.答案:⎣⎢⎡⎦⎥⎤-32,3 15.解2311()3sin cos cos sin cos 44422222x x x x x f x =+=++1sin 262x π⎛⎫=++⎪⎝⎭(I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵13()2f A += ∴ 113sin 2622263A A πππ+⎛⎫++=⇒+= ⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………13分16.解:(1)由于按分层抽样的方法从三个社团成员中抽取18人,拳击社被抽出了6人, ∴628+m =1820+40+28+m, ∴m =2.设A 为“拳击社团被抽出的6人中有5人是男生”, 则P (A )=C 528C 12C 630=48145.(2)由题意可知:X =0,1,2,P (X =0)=C 628C 630=92145,P (X =1)=C 528C 12C 630=48145,P (X =2)=C 428C 22C 630=5145=129,X 的分布列为X12P92145 48145 12917.解:(1)证明:如图,连接AC ,交BD 于点F ,底面ABCD 为正方形,F 为AC 中点,E 为PC 中点.所以在△CPA 中,EF ∥PA . 又PA ⊂平面PAD ,EF ⊄平面PAD , 所以EF ∥平面PAD .(2)证明:因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD . 底面ABCD 为正方形,CD ⊥AD ,CD ⊂平面ABCD ,所以CD ⊥平面PAD . 又PA ⊂平面PAD ,所以CD ⊥PA . 又PA =PD =22AD ,所以△PAD 是等腰直角三角形,且∠APD =π2,即PA ⊥PD . 又CD ∩PD =D ,且CD ,PD ⊂平面PDC ,所以PA ⊥平面PDC . 又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .(3)如图,取AD 的中点O ,连接OP ,OF ,因为PA =PD ,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,而O ,F 分别为AD ,BD 的中点,所以OF ∥AB , 又底面ABCD 是正方形,故OF ⊥AD ,以O 为原点,建立空间直角坐标系O ­xyz 如图所示,则有A (1,0,0),C (-1,2,0),F (0,1,0),D (-1,0,0),P (0,0,1),若在AB 上存在点G ,使得二面角C ­PD ­G 的余弦值为13,连接PG ,DG ,设G (1,a,0)(0≤a ≤2),则DP =(1,0,1),GD =(-2,-a,0),由(2)知平面PDC 的一个法向量为PA =(1,0,-1),设平面PGD 的法向量为n =(x ,y ,z ).则⎩⎨⎧n ·DP =0,n ·GD =0,即⎩⎪⎨⎪⎧x +z =0,-2x -ay =0,解得⎩⎪⎨⎪⎧z =a2y ,x =-a2y .令y =-2,得n =(a ,-2,-a ),所以|cos 〈n ,PA 〉|=|n ·PA ||n ||PA |=2a 2×4+2a 2=13, 解得a =12⎝⎛⎭⎪⎫舍去-12.所以,在线段AB 上存在点G ⎝ ⎛⎭⎪⎫1,12,0⎝ ⎛⎭⎪⎫此时AG =14AB ,使得二面角C ­PD ­G 的余弦值为13.18.解:(1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数.∴φ′(x )=-x22m -2x -1xx +12≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞),∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故数m 的取值范围是(-∞,2]. 19.解:(1)由题意知c =1,2a =⎝ ⎛⎭⎪⎫322+ ⎝ ⎛⎭⎪⎫322+22=4, a =2,故椭圆C 的方程为x 24+y 23=1.(2)①当直线l ⊥x 轴时,可取A ⎝ ⎛⎭⎪⎫-1,-32,B ⎝ ⎛⎭⎪⎫-1,32,△AF 2B 的面积为3,不符合题意.②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),代入椭圆方程得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0成立,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,可得|AB |=1+k 2·x 1+x 22-4x 1x 2=12k 2+13+4k2, 又圆F 2的半径r =2|k |1+k2,∴△AF 2B 的面积为12|AB |·r =12|k |k 2+13+4k 2=1227, 代简得:17k 4+k 2-18=0,得k =±1, ∴r =2,圆的方程为(x -1)2+y 2=2.20.解:(1)f ′(x )=e x-3ax 2+3,设F 1(x )=f ′(x ),则F 1′(x )=e x-6ax . ∵f (x )在[0,+∞)上是下凸函数,∴当x ∈[0,+∞)时,F 1′(x )=e x-6ax ≥0.当x =0时,1≥0成立,即F 1′(x )=e x-6ax ≥0成立,此时a ∈R . 当x ∈(0,+∞)时,由F 1′(x )=e x-6ax ≥0得,a ≤ex6x.设H (x )=e x x ,则H ′(x )=x e x -e x x2=exx -1x 2. ∴当x ∈(1,+∞)时,H ′(x )>0,H (x )单调递增; 当x ∈(0,1)时,H ′(x )<0,H (x )单调递减, ∴当x =1时,H (x )取得最小值H (1)=e , ∴a ≤e 6,∴a 的取值范围为⎝ ⎛⎭⎪⎫-∞,e 6. (2)证明:∵f (x )=e x -ax 3+3x -6, ∴M (x )=f (x )+f (-x )+12=e x+e -x>0.∵M (x 1)M (x 2)=e x 1+x 2+e x 1-x 2+e x 2-x 1+e -x 1-x 2>e x 1+x 2+e x 1-x 2+e x 2-x 1, 又e x 1-x 2+e x 2-x 1≥2e x 1-x 2e x 2-x 1=2,∴M (x 1)M (x 2)>e x 1+x 2+2, ∴M (1)M (n )>en +1+2,M (2)M (n -1)>en +1+2,M (3)M (n -2)>e n +1+2,…,M (n )M (1)>e n +1+2,∴[M (1)M (n )][M (2)M (n -1)]· …·[M (n )M (1)]>(e n +1+2)n,∴M (1)M (2)· …·M (n )>en +1+2n.。

【恒心】2015年普通高等学校招生全国统一考试(新课标卷)押题(1)数学(理科)试题及参考答案

【恒心】2015年普通高等学校招生全国统一考试(新课标卷)押题(1)数学(理科)试题及参考答案

理科数学一、选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的.1.已知随机变量ξ服从正态分布2N(0,)σ,(2)0.023P ξ>=,则(22)P ξ-≤≤= A .0.954 B .0.977 C .0.488 D .0.4772.对任意复数),(R y x yi x z ∈+=,i 为虚数单位,则下列结论正确的是( ) .A y z z 2=- .B 222y x z += .C x z z 2≥- .D y x z +≤ 3.已知映射B A f →:,其中R B A ==,对应法则21||:x y x f =→,若对实数B k ∈,在集合A 中不存在元素x 使得k x f →:,则k 的取值范围是( ) A .0≤k B .0>k C .0≥k D . 0<k4.已知函数()()ϕ+=x sin x f 2错误!未找到引用源。

,其中错误!未找到引用源。

为实数,若()⎪⎭⎫⎝⎛≤6πf x f 错误!未找到引用源。

对错误!未找到引用源。

恒成立, 且 ()ππf f >⎪⎭⎫⎝⎛2错误!未找到引用源。

,则错误!未找到引用源。

的单调递增区间是 A.()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡+-63ππππ错误!未找到引用源。

B .()Z k k ,k ∈⎥⎦⎤⎢⎣⎡+,2πππ错误!未找到引用源。

C .错误!未找到引用源。

()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡++326ππππ D .()Z k ,k ,k ∈⎥⎦⎤⎢⎣⎡-πππ2错误!未找到引用源。

5.如图,已知圆22:(3)(3)4M x y -+-=,四边形 ABCD 为圆M 的内接正方形,E F 、分别为边AB AD 、的中点,当正方形ABCD 绕圆心M转动时,ME OF ⋅的取值范围是 ( )yxEF D B CMOAA .[62,62]-B .[6,6]-C .[32,32]-D .[4,4]-6.在区间[1,5]和[2,4]上分别取一个数,记为,a b .则方程22221x y a b+=表示焦点在x 轴上且离心率小于32的椭圆的概率为B A .12B .1532C .1732D .31327、一个四面体的四个顶点在空间直角坐标系xyz O -中的坐标分别是(0,0,0),(1,2,0),(0,2,2),(3,0,1),则该四面体中以yOz 平面为投影面的正视图的面积为( )A .3B .25 C .2 D .278、阅读程序框图,若输入m =4,n =6,,则输出a ,i 分别是( ) A .12,3a i == B .12,4a i == C .8,3a i == D .8,4a i ==9、设数字1,2,3,4,5,6的一个排列为654321,,,,,a a a a a a , 若对任意的)6,5,4,3,2(=ia i 总有)5,4,3,2,1(=<k i k a k ,满足,1||=-k i a a 则这样的排列共有( )A .36B .32C .28D .2010. 过曲线22122:1(0,0)x y C a b a b-=>>的左焦点1F 作曲线2222:C x y a +=的切线,设切点为M ,延长1FM 交曲线23:2(0)C ypx p =>于点N ,其中13C C 、有一个共同的焦点,若1MF MN=,则曲线1C 的离心率为A.5 B.51- C.51+ D.512+ 11、若实数a ,b ,c ,d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为(B ) A .2 B .9 C .8 D .212.已知函数⎪⎩⎪⎨⎧=≠+=0 ,00 ,1)(x x xx x f ,则关于x 的方程0)()(2=++c x bf x f 有5个不同实数解的充要条件是 ( )A .2-<b 且0>cB .2->b 且0<cC .2-<b 且0=cD .2-≥b 且0=c 二、填空题:本大题共4小题,每小题5分,共20分. 13已知nxi x)(2-的展开式中第三项与第五项的系数之比为143-,其中12-=i ,则展开式中常数项是______________.14.当x ,y 满足时,则t=x ﹣2y 的最小值是15.已知12,l l 是曲线1:C y x=的两条互相平行的切线,则1l 与2l 的距离的最大值为_____. 16.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心、AB 为半径的圆弧上的任意一点,设向量AC =λDE +μAP ,则λ+μ的最小值为___.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤 17.18.如图,在三棱柱错误!未找到引用源。

【泄露天机】陕西省2015年高考预测卷数学(理)试题及答案

【泄露天机】陕西省2015年高考预测卷数学(理)试题及答案

C
. 24
D. 4
4
3
3
2 正视图
侧视图
3 俯视图
3 23
4
14. 某几何体的三视图如图所示,图中三个正方形的边长均为
2,则该几何体的体积为(

A. 3 8
B
.8 2
C
.4
3
D
.8 2
3
15. 某几何体的三视图如图所示,则该几何体的体积为(
4
A.
3
5
B

2
7
C

3

5
D

3
x1
16.已知 a 0, x, y 满足约束条件 x y 3 , 若 z 2x y 的最小值为 1, 则 a (

A. 3
B . 2,3
C . 1,3
D . 0,1,2
4. 若 z(1 i ) i (其中 i 为虚数单位) ,则 | z | 等于(
A. 1
B. 3 2
C. 2 2

1
D.
2
5. 若复数 a 3i ( a R,i 为虚数单位)是纯虚数,则实数 a 的值为(

1 2i
A. 6
B. 2
C. 4
D. 6
S 0,n 1
A. 14
B. 15
C. 16
D. 17
n1 S S log2 n 2
21. 执行如图所示的程序框图 , 若输入 n 的值为 22 , 则输出的 s 的值
n n1




S 3?
A. 232
B.
211 C.
210
D.
191

2015年高考冲刺压轴卷数学(理卷二)附答案

2015年高考冲刺压轴卷数学(理卷二)附答案

2015年高考冲刺压轴卷数学(理卷二)本试卷共4页,21小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.不按要求填涂的,答案无效.3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答.漏涂、错涂、多涂的答案无效.5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回. 参考公式:①体积公式:1=,=3V S h V S h ⋅⋅柱体锥体,其中V S h ,,分别是体积,底面积和高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015·广东省佛山市二模·1)集合{}40 <<∈=x N x A 的子集个数为( )A .3B .4C .7D .82.(2015·广东省肇庆市三模·1)设i 为虚数单位,则复数)1(i i z -=对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2015·广东省广州市二模·2)已知0a b >>,则下列不等关系式中正确的是( )A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭4.(2015·广东省惠州市二模·5)在ABC ∆中,2=AB ,3=AC ,3AB AC ⋅=,则=BC ( )ABCD5.(2015·广东省揭阳市二模·4)已知1sin()3πα+=,则cos 2α=( )B.89C.79-D.796.(2015·广东省深圳市二模·4)如图1,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为( )(瓶壁厚度忽略不计)图11正视图侧视图俯视图A .π8+B .π48+C .π16+D .π416+7.(2015·广东省湛江市二模·5)在右图所示的程序框图中,输出的i 和s 的值分别为( ).A .3,21B .3,22C .4,21D .4,228.(2015·广东省汕头市二模·7)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.(2015·广东省佛山市二模·9)不等式112<-x 的解集为 . 10.(2015·广东省肇庆市三模·10)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 种(用数字作答).11.(2015·广东省惠州市二模·9)设0,0a b >>,若1a b +=,则11a b +的最小值为__________.12.(2015·广东省茂名市二模·12)已知直线1y kx =+与曲线b ax x y ++=3相切于点(1,3),则b 的值为 .13.(2015·广东省深圳市二模·12)设等差数列}{n a 的前n 项和为n S ,已知153=S ,1539=S ,则=6S .(二)选做题(14、15题,考生只能从中选做一题) 14.(2015·广东省汕头市二模·14)15.(2015·广东省佛山市二模·15)(几何选讲) 如图1,AB 是圆O 的直径,CD ⊥AB 于D ,且AD =2BD ,E 为AD 的中点,连接CE 并延长交圆O 于F ,若2=CD ,则EF = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(2015·广东省肇庆市三模·16)(本小题满分12分)已知函数x x x x f 2c o s )23s i n ()s i n (3)(-++=ππ.(1)求函数)(x f 的最小正周期; (2)若]0,2[πθ-∈,103)32(=+πθf ,求)42sin(πθ-的值.17.(2015·广东省广州市二模·17)(本小题满分12分)某市为了宣传环保知识,举办了一AB图1次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示.组号年龄分组答对全卷的人数答对全卷的人数占本组的概率1 [20,30) 28 b2 [30,40) 27 0.93 [40,50) 50.5 4[50,60]a0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(2015·广东省惠州市二模·18)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2PA PD AD ===,1BC =,CD .(1)求证:平面PQB ⊥平面PAD ;(2)若二面角M BQ C --为 30,设PM t MC =⋅,试确定 t 的值.19.(2015·广东省揭阳市二模·18)(本小题满分14分)已知等比数列{}n a 满足:0n a >,15a =,n S 为其前n 项和,且13220S S S ,,7成等差数列.(1)求数列{n a }的通项公式; (2)设525452+2log log log n n b a a a =+++,求数列{1nb }的前n 项和n T .MPCABDQ20.(2015·广东省茂名市二模·20)(本小题满分14分)已知中心在原点,焦点在坐标轴上的椭圆2222:1(0)x y E a b a b +=>>过点2P ,离心率为12,过直线4:=x l 上一点M 引椭圆E 的两条切线,切点分别是A 、B .(1)求椭圆E 的方程;(2)是否存在实数λ,使得BC AC BC AC ⋅=+λ恒成立?(点C 为直线AB 恒过的定点)若存在,求出λ的值;若不存在,请说明理由.21.(2015·广东省深圳市二模·21)(本小题满分14分)已知函数xbax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图像在1=x 处切线过点)5,0(-,求a 的值;(2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围.数学(理卷二)参考答案与解析1.D【命题立意】本题旨在考查集合的子集个数.【解析】集合A 的元素是自然数,所以A ={1,2,3},共3个元素,其子集个数为23=8个. 故选:D 2.A【命题立意】本题考查复数的乘法运算法则、考查复数的几何意义.【解析】z=i (1-i )=1+i 所以z 对应的点为(1,1)所以z 对应的点位于第一象限,故选A . 3.D【命题立意】考查不等式的性质,容易题. 【解析】因为2ππ>,则s i n s i n 2ππ<,所以选项A 错误;因为b a >,则22log log a b >,所以选项B 错误;若0a b >>,则1122a b >,所以选项C 错误;若0a b >>,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 4.B【命题立意】本题考查向量的数量积运算及余弦定理. 【解析】13cos 2AB AC A ⋅=⇒=,又由余弦定理知7=BC . 5.D【命题立意】考查诱导公式、二倍角公式,容易题. 【解析】由1sin()3πα+=得31sin -=α,∴97)31(21sin 212cos 22=⨯-=-=αα. 6.C【命题立意】本题考查了三视图和体积公式.【解析】几何体为圆柱体和长方体的组合体,∴24216V ππ=+⨯⨯=+.故选C .7.D【命题立意】本题考查程序框图.【解析】按程序框图的流水方向一步一步推到,或者寻找出规律即可,步骤略. 8.A【命题立意】本题考查的知识点是直方图和茎叶图.【解析】由频率分布直方图可知:第一组的频数为20×0.01×5=1个, [0,5)的频数为20×0.01×5=1个, [5,10)的频数为20×0.01×5=1个, [10,15)频数为20×0.04×5=4个, [15,20)频数为20×0.02×5=2个, [20,25)频数为20×0.04×5=4个, [25,30)频数为20×0.03×5=3个, [30,35)频数为20×0.03×5=3个, [35,40]频数为20×0.02×5=2个, 则对应的茎叶图为A , 故选A 9.()0,1【命题立意】本题旨在考查绝对值不等式的解法. 【解析】211,1211,01x x x -<∴-<-<∴<<,所以不等式的解集为()0,1故答案为:()0,1 10.10【命题立意】本题考查分类计数原理问题,关键是如何分类. 【解析】由题意知本题是一个分类计数问题一是3本集邮册一本画册,让一个人拿本画册就行了4种另一种情况是2本画册2本集邮册,只要选两个人拿画册24C =6种 根据分类计数原理知共10种,故答案为:10 11.4【命题立意】本题考查基本不等式,“1”的代换.【解析】1111()()1b a b a b a b a +=++=+124a b ++≥+=,当且仅当a b =时取等号,所以11a b+的最小值为4. 12.3【命题立意】考查导数的几何意义,容易题.【解析】 b ax x y ++=3,∴a x y +='23, 切点为)3,1(,∴13+=k ,即2=k ,∴2132=+⨯a ,∴1-=a ,∴b +⨯-=11133,所以3b =.13.66【命题立意】本题考查等差数列的前n 项和的计算.【解析】在等差数列中,3S ,63S S -,96S S -也成等差数列,即15,615S -,6153S -成等差数列,则62(15)S -=615315S -+,即666S =.故答案为:66.14.【命题立意】本题旨在考查参极坐标方程. 【解析】.故答案为.15.3【命题立意】本题旨在考查相交弦定理和三角形的相似.【解析】在Rt ABC ∆中,CD ⊥AB 于D ,所以CD 2=AD ·BD =2BD 2=2,∴DB =AE =ED =1∴CE BC ===ACE ∽△FBE ,AE CE EF BE ∴=,故3AE BE EF CE ⨯==.故答案为:316.(1)π(2)-50【命题立意】本题考查的是二倍角公式,辅助角公式以及和差公式进行化简求值. 【解析】(1)x x x x f 2cos cos sin 3)(-= (2分)212cos 2sin 23+-=x x (4分) 21)62sin(--=πx (5分) 所以函数)(x f 的最小正周期ππ==22T . (6分) (2)由(1)得21cos 21)2sin(21]6)32(2sin[)32(-=-+=--+=+θπθππθπθf ,(7分)由10321cos =-θ,得54cos =θ. (8分) 因为]0,2[πθ-∈,所以53sin -=θ. (9分)所以2524cos sin 22sin -==θθθ,2571cos 22cos 2=-=θθ, (11分)所以502314sin2cos 4cos2sin )42sin(-=-=-πθπθπθ. (12分)17.(1)10=a ,8.0=b ,03.0=c ,100=n ;(2)32. 【命题立意】考查频率分布直方图,分层抽样,随机变量的分布列、期望,中等题. 【解析】(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=, 解得0.03c =.第3组人数为105.05=÷,所以1001.010=÷=n . 第1组人数为1000.3535⨯=,所以28350.8b =÷=. 第4组人数为2525.0100=⨯,所以250.410a =⨯=. (2)因为第3,4组答对全卷的人的比为5:101:2=, 所以第3,4组应依次抽取2人,4人. 依题意X 的取值为0,1,2.()022426C C 20C 5P X ===,()112426C C 81C 15P X ===,()202426C C 12C 15P X ===,所以X 的分布列为:X0 1 2P25 815 115所以2812012515153EX =⨯+⨯+⨯=. 18.(Ⅰ)见解析(Ⅱ)3【命题立意】本题考查平面与平面垂直的证明,求实数的取值. 【解析】(Ⅰ)证法一:∵AD ∥BC ,BC=12AD ,Q 为AD 的中点, ∴四边形BCDQ 为平行四边形,∴CD ∥BQ . …………………1分 ∵∠ADC=90°,∴∠AQB=90°,即QB ⊥AD . …………………2分 又∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD=AD ,…………………4分 ∴BQ ⊥平面PAD . …………………5分 ∵BQ ⊂平面PQB ,∴平面PQB ⊥平面PAD . …………………6分证法二:AD ∥BC ,BC=12AD ,Q 为AD 的中点,∴四边形BCDQ 为平行四边形, ∴CD ∥BQ . …………………1分 ∵∠ADC=90°∴∠AQB=90°,即QB ⊥AD . …………………2分 ∵PA=PD ,∴PQ ⊥AD . …………………3分 ∵PQ ∩BQ=Q PBQ 平面、⊂BQ PQ , …………………4分 ∴AD ⊥平面PBQ . …………………5分 ∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD . …………………6分 (Ⅱ)法一:∵PA=PD ,Q 为AD 的中点,∴PQ ⊥AD .∵面PAD ⊥面ABCD ,且面PAD ∩面ABCD=AD ,∴PQ ⊥面ABCD .……………7分 如图,以Q 为原点建立空间直角坐标系.则平面BQC 的法向量为(0,0,1)n =;……8分(0,0,0)Q,P,B,(1C -.设(,,)M x y z ,则(,,PM x y z =,(1,)MC x y z =---……9分 PM t MC =⋅,∴1(1))()1t x t x t x y t y y z t z z t ⎧=-⎪+=--⎧⎪⎪⎪=⇒=⎨⎨⎪⎪-=-⎩⎪=⎪+⎩,………10分 在平面MBQ中,QB =,1t QM t ⎛=- +⎝⎭,∴平面MBQ 法向量为(3,0,)m t =.……12分 ∵二面角M BQ C --为30°,∴cos3023n m n m⋅︒===⋅+3t =……14分 法二:过点M 作MO //PQ 交QC 于点O ,过O 作OE ⊥QB 交于点E ,连接ME , 因为PQ ⊥面ABCD ,所以MO ⊥面ABCD ,由三垂线定理知ME ⊥QB ,则MEO ∠为二面角M BQ C --的平面角。

2015山东高考押题卷数学理

2015山东高考押题卷数学理

2015年普通高等学校招生全国统一考试(山东卷)理 科 数 学(押题卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1、答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上. 2、第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3、第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4、填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A 、B 互斥,那么()()+()P A B P A P B +=; 如果事件A 、B 独立,那么()()()P AB P A P B =⋅. 第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数121iz i+=-(i 是虚数单位)的共轭复数z 表示的点在A .第一象限B . 第二象限C . 第三象限D .2.已知集合{}{}240,2M x x x N x x M N =-<=≤⋃=,则A . ()24-,B . [)24-,C . ()02,D . (]02,3.平面上画了一些彼此相距2a 的平行线,把一枚半径r a <不与任何一条平行线相碰的概率是A .a ra - B .2a ra- C .22a ra- D .2a r a +4.已知函数()f x 的图象如图所示,则()f x 的解析式可能是()31.21A f x x x =-- ()31.21B f x x x =+-()31.21C f x x x =-+ ()31.21D f x x x =--- 5.下列说法不正确的是A .若“p 且q ”为假,则p ,q 至少有一个是假命题B .命题“2,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”C .“2πϕ=”是“()sin 2y x ϕ=+为偶函数”的充要条件D .当0α<时,幂函数()0,y x α=+∞在上单调递减6.执行如图所示的程序框图,输出的T= A .29B .44C .52D .627.将函数()sin 6f x x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得图象的一条对称轴方程可以是 A . 12x π=-B . 12x π=C . 3x π=D . 23x π=8.变量,x y 满足线性约束条件320,2,1,x y y x y x +-≤⎧⎪-≤⎨⎪≥--⎩目标函数z kx y =-仅在点()0,2取得最小值,则k 的取值范围是 A . 3k <-B . 1k >C . 31k -<<D . 11k -<<9.函数y =为该等比数列公比的是 A .34B .C .D .10.已知函数()3111,0,36221,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩,函数()()si n 220,6g x a x a a π⎛⎫=-+>⎪⎝⎭若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是( )A .2,13⎡⎤-⎢⎥⎣⎦B .14,23⎡⎤⎢⎥⎣⎦C .43,32⎡⎤⎢⎥⎣⎦D .1,23⎡⎤⎢⎥⎣⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.如果双曲线()222210,0x y a b a b-=>>的一条渐近线与直线0y -=平行,则双曲线的离心率为 .12.市内某公共汽车站6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是 .13.已知实数,x y 满足102x y x y >>+=,且,则213x y x y++-的最小值为________. 14.在平面直角坐标系xOy 中,设直线2y x =-+与圆()2220x y rr +=>交于A,B 两点,O 为坐标原点,若圆上一点C 满足5344OC OA OB r =+=,则uuu r uu r uu u r______.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A B k k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线x y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上) 三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ABC ∆中,已知()111sin ,cos 2142A B ππ⎛⎫+=-=- ⎪⎝⎭.(I )求sinA 与角B 的值;(II )若角A,B,C 的对边分别为,,5,a b c a b c =,且,求的值.17. (本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球. (I )若左右手各取一球,求两只手中所取的球颜色不同的概率;(II )若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X ,求X 的分布列和数学期望.18. (本小题满分12分)直三棱柱111ABC A B C -中,11AA AB AC ===,E ,F 分别是1,CC BC 的中点,11AE A B D ⊥,为棱11A B 上的点.(I )证明:DF AE ⊥;(II )已知存在一点D ,使得平面DEF 与平面ABC所成锐二面角的余弦值为,请说明点D 的位置.19. (本小题满分12分)已知数列{}n a 的前n 项和为()2,2,n n S S n n n N *=+∈且. (I )求数列{}n a 的通项公式; (II )设集合{}{}22,,2,nA x x n n NB x x a n N **==+∈==∈,等差数列{}nc 的任一项n c A B ∈⋂,其中1c 是A B ⋂中的最小数,10110115c <<,求数列{}n c 的通项公式.20.(本小题满分13分)在平面直角坐标系xOy 中,已知椭圆C:22221(1)x y a b e a b +==>≥的离心率,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A 、B .(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当AB t 的取值范围.21.(本小题满分14分)已知函数()e x f x ax a =--(其中a ∈R ,e 是自然对数的底数,e =2.71828…). (Ⅰ)当e a =时,求函数()f x 的极值;(Ⅱ)若()0f x ≥恒成立,求实数a 的取值范围;(Ⅲ)求证:对任意正整数n ,都有222221212121en n ⨯⨯⨯>+++.2015年普通高等学校招生全国统一考试(山东卷)理 科 数 学(押题卷1)参考答案一.选择题 CBAAC,ADCDB(1)【答案】C ,解:分母实数化乘以它的共扼复数1+i,()()()()12i 1i 12i 13i 13i 1i 1i 1i 222Z +++-+====-+--+,Z ∴的共扼复数为13i 22Z -=--,它表示的点为13,22⎛⎫-- ⎪⎝⎭在第三象限.(2)【答案】B .解:(0,4),[2,2],[2,4)M N MN ==-∴=-.(3)【答案】A .解:抓圆心的位置,圆心到两平行线距离小于r 即可,故选A .(4)【答案】 A ,解:根据定义域排除C 根据1,,2x x y →+∞→(从左侧)的变化趋势分别排除B 、D 选A .(5)【答案】 C 解:A .若“p 且q ”为假,则p 、q 至少有一个是假命题,正确;B .命题“x R ∃∈,210x x --<”的否定是“x R ∀∈,210x x --≥”,正确;C .“2πϕ=”是“sin(2)y x ϕ=+为偶函数”的充分不必要条件,故C 错误;D .0α<时,幂函数y x α=在(0,)+∞上单调递减,正确.故选:C (6)【答案】 A ,解:执行程序框图,有S=3,n=1,T=2, 不满足条件T >2S ,S=6,n=2,T=8, 不满足条件T >2S ,S=9,n=3,T=17, 不满足条件T >2S ,S=12,n=4,T=29,满足条件T >2S ,退出循环,输出T 的值为29.故选:A .(7)【答案】 D ,解:将函数()πsin 6f x x ⎛⎫=+ ⎪⎝⎭的图象上各点的纵坐标不变,横坐标扩大到原来的2倍得函数()1πs i n 26f x x ⎛⎫=+ ⎪⎝⎭,其对称轴方程为1ππ2ππ,2π()2623x k x k k +=+∴=+∈Z , 故选D .(8)【答案】C ,解:作出不等式对应的平面区域,由z =k x -y 得y =k x -z , 要使目标函数z =k x -y 仅在点A (0,2)处 取得最小值,则阴影部分区域在直线y =k x -z 的下方,∴目标函数的斜率k 满足-3<k <1.(9)【答案】D ,解:函数等价为0,9)5(22≥=+-y y x ,表示为圆心在)0,5(半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比q 应有228q =,即2,42==q q ,最小的公比应满足282q =,所以21,412==q q ,所以公比的取值范围为221≤≤q ,所以选D . (10)【答案】 B 解析:因为当1,12x ⎛⎤∈ ⎥⎝⎦时,()()32246'01x x f x x +=>+,所以此时函数单调递增,其值域为1,16⎛⎤⎥⎝⎦,当x 10,2⎡⎤∈⎢⎥⎣⎦时,值域为10,6⎡⎤⎢⎥⎣⎦,所以函数f (x )在其定义域上的值域为,又函数g (x )在区间上的值域为,若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则3202221a a ⎧-+≥⎪⎨⎪-+≤⎩解得1423a ≤≤,所以选B .二、填空题(11) 2.e =(12)72.(13)223.(1415)②③. (11)答案 2.e =解:由题意知ba= 2.c e a ==(12)答案72.根据题意,先把3名乘客进行全排列,有336A =种排法,排好后,有4个空位,再将1个空位和余下的2个连续的空位插入4个空位中,有2412A =种排法,则共有61272⨯=种候车方式.(13)答案21212()3()[(3)()]33333x y x yx y x y x y x y x y x y x y x y-++=+++-=++≥++-+-+- (14)答案.解:22225325539244164416OC OA OB OA OA OB OB ⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:222225159+c o s 16816r r r A O B r =∠+,整理化简得:3cos 5AOB ∠=-,过点O 作AB 的垂线交AB 于D ,则23cos 2cos 15AOB AOD ∠=∠-=-,得21cos 5AOD ∠=,又圆心到直线的1x距离为OD ==222212cos 5OD AOD r r ∠===,所以210r =,r =.(15)答案②③.解:①错:(1,1),(2,5),|||7,A B A B AB k k -=(,)A B ϕ∴=<②对:如1y =; ③对;(,)2A Bϕ==≤;④错;1212(,)x x x xA Bϕ==1211,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤. (16)解:(Ⅰ)πsin()cos 2A A +=Q ,11cos 14A ∴=,又0πA <<Q ,sin A ∴= 1cos(π)cos 2B B -=-=-Q ,且0πB <<,π3B ∴=.………………………………………………………………………………………6分(Ⅱ)由正弦定理得sin sin a bA B =,sin 7sin a B b A ⋅∴==, 另由2222cos b a c ac B =+-得249255c c =+-,解得8c =或3c =-(舍去),7b ∴=,8c =.…………………………………………………12分(17)解:(Ⅰ)设事件A 为“两手所取的球不同色”, 则32993433321)(=⨯⨯+⨯+⨯-=A P . ………5分(Ⅱ)依题意,X 的可能取值为0,1,2.左手所取的两球颜色相同的概率为18529242322=++C C C C , 右手所取的两球颜色相同的概率为4129232323=++C C C C , ………7分 24134318134111851)0(=⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-==X P , 18741)1851()411(185)1(=⨯-+-⨯==X P , 72541185)2(=⨯==X P , ………10分 所以X的分布列为:36197252187124130)(=⨯+⨯+⨯=X E . ………………… ……12分 (18)(Ⅰ)证明:11AE A B ⊥ ,11A B ∥AB , AB AE ∴⊥, 又1AB AA ⊥, 1A E A AA⋂=, AB ∴⊥面11A ACC , 又AC ⊂面11A ACC ,A B A C ∴⊥,以A 为原点建立如图所示的空间直角坐标系 A xyz -, 则()0,0,0A ,10,1,2E ⎛⎫ ⎪⎝⎭,11,,022F ⎛⎫ ⎪⎝⎭,1(0,0,1)A ,1(1,0,1)B ,设(),,D x y z ,111A D A B λ= ,且[0,1]λ∈,即:()(),,11,0,0x y z λ-=,(),0,1D λ∴ ,11,,122DF λ⎛⎫∴=-- ⎪⎝⎭, 10,1,2AE ⎛⎫∴= ⎪⎝⎭,∴11022DF AE =-=, DF AE ∴⊥. 分(Ⅱ)设面DEF 的法向量为 (),,n x y z = ,则 00n FE n DF ⎧⋅=⎨⋅=⎩,111,,222FE ⎛⎫=- ⎪⎝⎭, 11,,122DF λ⎛⎫=-- ⎪⎝⎭,B 1111022211022x y z x y z λ⎧-++=⎪⎪∴⎨⎛⎫⎪-+-= ⎪⎪⎝⎭⎩, 即:()()3211221x z y z λλλ⎧=⎪-⎪⎨+⎪=⎪-⎩, 令()21z λ=-, ()()3,12,21n λλ∴=+- .由题可知面ABC 的法向量()0,0,1m = , ………9分平面DEF 与平面ABC所成锐二面的余弦值为14. ()14cos ,14m nm n m n ⋅∴==14=, 12λ∴=或74λ=. 又[0,1]λ∈,∴74λ=舍去.∴ 点D 为11A B 中点. ………12分(19)解 (Ⅰ)∵2*2,(N )n S n n n =+∈.当2n ≥时,121n n n a S S n -=-=+,当1n =时,113a S ==满足上式,所以数列{}n a 的通项公式为21n a n =+. …… ……5分 (Ⅱ)∵*{|22,N }A x x n n ==+∈,*{|42,N }B x x n n ==+∈,∴A B B =.又∵n c ∈AB ,其中1c 是A B 中的最小数,∴16c =,∵{}n c 的公差是4的倍数,∴*1046(N )c m m =+∈. 又∵10110115c <<,∴*11046115,N ,m m <+<⎧⎨∈⎩, 解得27m =,所以10114c =,设等差数列的公差为d , 则1011146121019c cd --===-,∴6(1)12126n c n n =+-=-,所以{}n c 的通项公式为126n c n =-. ………………… ……12分(20)解:(Ⅰ)∵2222223,4c a b e a a -=== ∴224,a b =…………………………(1分) 则椭圆方程为22221,4x y b b+=即22244.x y b +=设(,),N x y 则 2)3)N Q =……………………(2分) 12=+当1y =-时,NQ 有最大值为4,=…………………………(3分)解得21,b =∴24a =,椭圆方程是2214x y +=……………………(4分)(Ⅱ)设1122(,),(,),(,),A x y B x y P x y AB 方程为(3),y k x =-由22(3),1,4y k x x y =-⎧⎪⎨+=⎪⎩整理得2222(14)243640k x k x k +-+-=.………………………………(5分) 由24222416(91)(14)0k k k ∆=--+>,得215k <.2212122224364,.1414k k x x x x k k-+=⋅=++………………………………………(6分) ∴1212(,)(,),OA OB x x y y t x y +=++=则2122124()(14)k x x x t t k =+=+, []12122116()()6.(14)k y y y k x x k t t t k -=+=+-=+………………………(7分) 由点P 在椭圆上,得222222222(24)1444,(14)(14)k k t k t k +=++ 化简得22236(14)k t k =+①………………………………………………(8分)又由12AB x =-即221212(1)()43,k x x x x ⎡⎤++-⎣⎦<将12x x +,12x x 代入得2422222244(364)(1)3,(14)14k k k k k ⎡⎤-+-⎢⎥++⎣⎦<…………………………………(9分) 化简,得22(81)(1613)0,k k -+> 则221810,8k k ->>,………………………………………………………(11分) ∴21185k <<②由①,得22223699,1414k t k k ==-++联立②,解得234,t <<∴2t -<<或 2.t <………………(13分)(21)解:(Ⅰ) 当e a =时,()e e e x f x x =--,()e e x f x '=-,当1x <时,()0f x '<;当1x >时,()0f x '>.所以函数()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增,所以函数()f x 在1x =处取得极小值(1)e f =-,函数()f x 无极大值. ··············· 4分 (Ⅱ)由()e x f x ax a =--,()e x f x a '=-,若0a <,则()0f x '>,函数()f x 单调递增,当x 趋近于负无穷大时,()f x 趋近于负无穷大;当x 趋近于正无穷大时,()f x 趋近于正无穷大,故函数()f x 存在唯一零点0x ,当0x x <时,()0f x <;当0x x >时,()0f x >.故0a <不满足条件.···································· 6分 若0a =,()e 0x f x =≥恒成立,满足条件.·············································· 7分若0a >,由()0f x '=,得ln x a =,当ln x a <时,()0f x '<;当ln x a >时,()0f x '>,所以函数()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,所以函数()f x 在ln x a =处取得极小值(ln )f a ln e ln ln a a a a a a =-⋅-=-⋅,由(ln )0f a ≥得ln 0a a -⋅≥,解得01a <≤.综上,满足()0f x ≥恒成立时实数a 的取值范围是[0,1]. ····························· 9分(Ⅲ)由(Ⅱ)知,当1a =时,()0f x ≥恒成立,所以()e 10x f x x =--≥恒成立,即e 1x x ≥+,所以ln(1)x x +≤,令12n x =(*n ∈N ),得11ln(1)22n n +<,············ 10分则有2111ln(1)ln(1)ln(1)222n ++++++211[1()]1111221()11222212n n n -<+++==-<-, ··································································································· 12分所以2111(1)(1)(1)e 222n ++⋅⋅+<,所以211111e(1)(1)(1)222n >++⋅⋅+, 即222221212121e nn ⨯⨯⨯>+++.···························································· 14分。

2015新课标II高考压轴卷 理科数学 Word版含答案

2015新课标II高考压轴卷 理科数学 Word版含答案

2015年高考考前押题试卷 (全国新课标II 卷)理 科 数 学第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1.设全集{}1,2,3,4,5U =,集合{1,2,4}A =,{4,5}B =,则图中的阴影部分表示的集合为A .{}5B .{}4C .{}1,2D .{}3,52.已知非零向量a 、b 满足a b =,那么向量a b +与向量a b -的夹角为A .6π B .3π C .2π D .23π 3.61()2x x-的展开式中第三项的系数是 A .154-B .154C .15D .52-4.圆22420x y x +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为A .250x y --=B .210x y --=C .20x y --=D .40x y +-=5.某单位员工按年龄分为A ,B ,C 三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是1,45则该单位员工总数为A .110B .100C .90D .806.右边程序框图的程序执行后输出的结果是A .24B .25C .34D .357.设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y += 8.直线cos140sin 400x y ︒+︒=的倾斜角是A .40°B .50°C .130°D .140°9. 若n S 为等差数列{}n a 的前n 项和,369-=S ,10413-=S ,则5a 与7a 的等比中项为A .24B .22±C .24±D .3210.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确命题的序号是 A .①②③ B .②③④ C .①③ D .②④11. 已知函数()f x =(3)5, 1.2,13a x x a x -+≤⎧⎪⎨>⎪⎩是(,)-∞+∞上的减函数。

2015.5安徽高考理科数学押题试题 (部分原创题)第一卷

2015.5安徽高考理科数学押题试题 (部分原创题)第一卷

2015高考理科数学押题------1第一部分考点:集合与复数,函数与导数,三角函数,平面向量,数列,解三角形,不等式 一、集合与复数 1. 已知两个集合错误!未找到引用源。

,错误!未找到引用源。

则错误!未找到引用源。

BA.错误!未找到引用源。

B . 错误!未找到引用源。

C .错误!未找到引用源。

D . 错误!未找到引用源。

2.复数1iiz +=(i 为虚数单位)在复平面上对应的点到原点的距离为_____C_____. 3.设错误!未找到引用源。

,则 A. 错误!未找到引用源。

B. 错误!未找到引用源。

C. 错误!未找到引用源。

D. 错误!未找到引用源。

二、函数与导数4. 已知函数错误!未找到引用源。

,则关于错误!未找到引用源。

的方程错误!未找到引用源。

的实根个数不可能...为( ) A.错误!未找到引用源。

个 B.错误!未找到引用源。

个 C.错误!未找到引用源。

个 D.错误!未找到引用源。

个答案:A解析:因为错误!未找到引用源。

时,错误!未找到引用源。

=1或错误!未找到引用源。

=3或错误!未找到引用源。

=错误!未找到引用源。

或错误!未找到引用源。

=-4,则当a=1时错误!未找到引用源。

或1或3或-4,又因为错误!未找到引用源。

,则当错误!未找到引用源。

时只有一个错误!未找到引用源。

=-2与之对应其它情况都有两个错误!未找到引用源。

值与之对应,所以此时所求方程有7个根,当1<a <2时因为函数错误!未找到引用源。

与y=a 有4个交点,每个交点对应两个错误!未找到引用源。

,则此时所求方程有8个解,当a=2时函数错误!未找到引用源。

与y=a 有3个交点,每个交点对应两个错误!未找到引用源。

,则此时所求方程有6个解,所以B,C,D 都有可能,则选A 。

5. 已知函数错误!未找到引用源。

,则函数错误!未找到引用源。

的大致图像为( )答案:A6.如图,矩形ABCD 的四个顶点()(),()0,1,1,,10,1(),A B C D ππ--,正弦曲线()f x sinx =和余弦曲线()g x cosx =在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是A .π21+B .π221+C .π1D .π21【答案】B【知识点】定积分 几何概型【解析】根据题意,可得曲线y sinx =与y cosx =围成的区域,其面积为44|2211222sinx cosx dx cosx sinx ππππ-=--=---=+⎰()()();又矩形ABCD 的面积为2π,由几何概型概率公式 得该点落在阴影区域内的概率是:122π+.所以选B. 【思路点拨】利用定积分计算公式,算出曲线y sinx = 与y cosx =围成的区域包含在区域D 内的图形面积 为2S π=,再由定积分求出阴影部分的面积,利用几 何概型公式加以计算即可得到所求概率.7.已知函数错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考理科数学押题密卷说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将答案擦干净后,再涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求. (1)已知集合A ={ (x ,y )|x ,y 为实数,且x 2+y 2=4},集合B={(x ,y ) |x ,y 为实数,且y =x-2}, 则A ∩ B 的元素个数为( ) (A )0 (B )1 (C )2(D )3(2)复数z =1-3i1+2i,则(A )|z |=2 (B )z 的实部为1(C )z 的虚部为-i(D )z 的共轭复数为-1+i(3)已知随机变量X 服从正态分布N (1,σ2),若P (X ≤2)=0.72,则P (X ≤0)= (A )0.22 (B )0.28 (C )0.36 (D )0.64 (4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41) (5)已知等比数列{a n }的前n 项和为S n , a 1+a 3=52,且a 2+a 4= 5 4,则S n a n=(A )4n -1 (B )4n -1(C )2n -1 (D )2n -1(6)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为开始 是x ≤81?否 输入x x =2x -1结束k =0输出k k =k +1原点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5 (D ) 3(7)已知函数f (x )=cos (2x +π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向左平移 π 12 (B )向右平移 π12(C )向左平移 π 6 (D )向右平移 π6(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136 (B ) 3(C )533 (D )433(9)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(10)4名研究生到三家单位应聘,每名研究生至多被一家单位录用,则每家单位至少录用一名研究生的情况有 (A )24种 (B )36种 (C )48种 (D )60种(11)函数,其图像的对称中心是(A )(-1,1) (B )(1,-1) (C )(0,1)(D )(0,-1)(12)关于曲线C :x 12 +y 12 =1,给出下列四个命题:①曲线C 有且仅有一条对称轴; ②曲线C 的长度l 满足l >2;③曲线C 上的点到原点距离的最小值为24 ;④曲线C 与两坐标轴所围成图形的面积是 16上述命题中,真命题的个数是 (A )4 (B )3 (C )2 (D )1第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.侧视图俯视图正视图11 23(13)在(1+x 2)(1-2 x)5的展开式中,常数项为__________.(14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.(15)点P 在△ABC 内部(包含边界),|AC |=3, |AB |=4,|BC |=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________. (16)△ABC 的顶点A 在y 2=4x 上,B ,C 两点在直线x -2y+5=0上,若|AB -AC |=2 5 ,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc的最大值.(18)(本小题满分12分)某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:甲 乙 9 7 0 7 8 6 3 3 1 1 0 5 7 9 8 3 2 1 3(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小; (Ⅱ)以上述数据统计甲、乙两名队员得分超过..15分的频率作为概率,假设甲、乙两名队员在同一场比赛中得分多少互不影响,预测在本赛季剩余的2场比赛中甲、乙两名队员得分均超过...15分次数X 的分布列和均值.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面ABB 1A 1为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C . (Ⅰ)求证:平面ABB 1A 1⊥BB 1C 1C ; (Ⅱ)求二面角B -AC -A 1的余弦值.d 1d 2d 3BC APBCB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程; (Ⅱ)证明:直线PQ 的斜率为定值,并求这个定值; (Ⅲ)∠PMQ 能否为直角?证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线.(Ⅰ)求a ; (Ⅱ)已知;(Ⅲ)已知:请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点. (Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2; (Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考理科数学押题密卷(全国360题库网I 卷)ABCD EO一、选择题:CDBCD ABCDD BA二、填空题:(13)41;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c=sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6).…10分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)根据统计结果,在一场比赛中,甲、乙得分超过15分的概率分别为p1=3 8,p2=12,两人得分均超过15分的概率分别为p1p2=316,依题意,X~B(2,316),P(X=k)=C k2(316)k(1316)2-k,k=0,1,2,…7分X的分布列为X 0 1 2P 169256782569256…10分X的均值E(X)=2×316=38.……………………………12分(19)解:(Ⅰ)由侧面ABB1A1为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB ⊂平面ABB 1A 1,所以平面ABB 1A 1⊥BB 1C 1C .…………………………4分(Ⅱ)建立如图所示的坐标系O -xyz . 其中O 是BB 1的中点,Ox ∥AB ,OB 1为y 轴,OC 为z 轴.设AB =2,则A (2,-1,0),B (0,-1,0),C (0,0,3),A 1(2,1,0).AB →=(-2,0,0),AC →=(-2,1,3),AA 1→=(0,2,0).…6分设n 1=(x 1,y 1,z 1)为面ABC 的法向量,则n 1·AB →=0,n 1·AC →=0,即⎩⎨⎧-2x 1=0,-2x 1+y 1+3z 1=0.取z 1=-1,得n 1=(0,3,-1).…8分设n 2=(x 2,y 2,z 2)为面ACA 1的法向量,则n 2·AA 1→=0,n 2·AC →=0,即⎩⎨⎧2y 2=0,-2x 2+y 2+3z 2=0.取x 2=3,得n 2=(3,0,2). …………………10分 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-77.因此二面角B -AC -A 1的余弦值为-77. ……………………………12分(20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1. …………………………………………………3分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………………6分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),BCB 1BAC 1A 1Axz yO故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………………9分 (Ⅲ)设直线MP 的斜率为k ,则直线MQ 的斜率为-k , 假设∠PMQ 为直角,则k ·(-k )=-1,k =±1. 若k =1,则直线MQ 方程y +1=-(x +2), 与椭圆C 方程联立,得x 2+4x +4=0,该方程有两个相等的实数根-2,不合题意; 同理,若k =-1也不合题意. 故∠PMQ 不可能为直角.…………………………………………………………12分(21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………4分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: .取,由(Ⅰ)知: 当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是. ∴ . ……………………………8分 (Ⅲ)由(Ⅱ)知:x 是正整数时,不等式也成立,可以令: x =1,2,3,…,n-1,将所得各不等式两边相加,得:即. ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线.因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB . ………………………… …5分(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD .E B O A CD⇒AC CD =ADCE ⇒AD ·CD =AC ·CE ⇒ 2AD ·CD =AC ·2CE ⇒ 2AD ·CD =AC ·BC . ……………………………10分 (23)解: (Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ……………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ……………………………7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ……………………………10分(24)解:(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.……………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ……………………………5分(Ⅱ)函数y =ax -1的图象是过点(0,-1)的直线.当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). ………………………10分360题库网系列资料 www.360题库网3Oxy4 52 9 2-1y =2 y =ax -1y =f (x ) y =ax -1a = 1 2 a =-2。

相关文档
最新文档