试论光电直读光谱仪的工作原理及误差
光电直读光谱仪的工作原理及特点 光电直读光谱仪工作原理
光电直读光谱仪的工作原理及特点光电直读光谱仪工作原理光电直读光谱仪是分析黑色金属及有色金属成份的快速定量分析仪器。
广泛应用于冶金、机械及其他工业部门,进行冶炼炉前的在线分析以及中心试验室的产品检验,是掌控产品质量的有效手段之一、可以用于多种基体分析:Al,Pb,Mg,Zn,Sn,Fe,Co,Ni,Ti,Cu 等,共五十多种元素。
一、光电直读光谱仪工作原理:基本原理:任何物质都是由元素构成的,而元素又都是由原子构成的,原子是由原子核和电子构成,每个电子都处在确定的能级上,具有确定的能量,在正常状态下,原子处在稳定状态,它的能量最低,这种状态称基态。
当物质受到外界能量(电能和热能)的作用时,核外电子就跃迁到高能级,处于高能态(激发态)电子是不稳定的,激发态原子可存在的时间约10—8秒,它从高能态跃迁到基态,或较低能态时,把多余的能量以光的形式释放出来。
仪器工作原理:构成物质的各种元素被光源激发,会发射出各个元素特征光谱。
光谱的谱线强度与所属元素的含量有确定的函数关系,如测出各元素谱线的强度值,就可以计算出该元素在物质中的含量。
二、光电直读光谱仪的特点:1、仪器的核心部件全部进口,提高了仪器的稳定性和牢靠性。
2、仪器接受国外先进的激发光源技术,自行设计出高能量、高稳定的激发光源,充分超高含量及痕量的分析。
3、仪器接受整体出射狭缝技术,便于选择通道和调整。
4、仪器光电倍增管高压由计算机直接掌控,软件调整,提高了通道的利用率。
5、仪器设有自动恒温系统,解决了环境温度变化对光学系统的影响。
6、仪器多国语言的操作软件、快捷的配置,使仪器更具有人性化的理念。
光电直读光谱仪的4个模块是啥?光电直读光谱仪为发射光谱仪,紧要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。
目前无论国内还是国外的光电直读光谱仪,基本可依照功能分为4个模块,即:1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。
光电直读光谱仪原理
光电直读光谱仪原理、简介分类、维护及故障排除:一、原理简介:光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。
目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即:1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。
2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。
3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。
控制整个仪器正常运作4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。
二、光电直读光谱仪4个模块的种类和特点:1、激发系统:(1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响(2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定(3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力(4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。
(5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。
把各元素的激发状态按照试验情况进行分类讨论)2、光学系统:(1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。
(2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。
3、测控系统:(一)测量系统:(1)光电倍增管+积分电路+模数转化电路:一般作为帕邢-龙格光学系统或C-T光学系统的光谱采集器,一个光电倍增管加上之后的电路只能采集一根谱线的强度。
光电直读光谱仪的工作原理及误差分析
( ) 样 的缺 陷 、 孔 、 2试 气 裂纹 、 眼 等 。 砂 ( ) 样 纹路 交 叉 、 样 研 磨 过热 、 样磨 面 放 置时 3磨 试 试
间 太长 和压 上指 纹 等 因素
积分器 模 数 计 算 机 打 印 机 转 换
( ) 减少 偶 然 误差 。 要精 心 取 样 , 4要 就 消除 试样 的不
( ) 样 和试 样 中 的 含 量 和 化 学 组 成 不 完 全 相 同 1标
时 。 能 引 起基 体 线 和分 析线 的 强 度 改 变 . 而 引 入误 可 从
差。
() 2 标样 和试 样 的物 理 性 能 不 完 全 相 同 时 , 发 的 激 特 征谱 线会 有 差别 从 而产 生 系统 误 差
一
、
工 作 原 理
光 电直 读 光谱 仪 采 用 的是 原 子发 射 光谱 分 析 法 . 工 作 原 理 是用 电火 花 的 高温 使 样 品 中 各元 素从 固态 直 接 气 化 并被 激 发而 发射 出 各元 素 的特 征 谱 线 . 每种 元 素 的 发 射光 谱谱 线 强度 正 比于样 品 中该 元 素 的含 量 . 用光 栅 分 光后 . 为 按 波 长 排 列 的 光谱 . 成 这些 元 素 的特 征光 谱 线 通 过 出射 狭 缝 . 入 各 自的 光 电倍 增 管 . 信 号 变 成 射 光 电信 号 . 仪 器 的控 制测 量 系统 将 电 信 号积 分并 进 行模 经 数转 换 . 后 由计 算 机处 理 . 打 印 出各 元 素 的 百 分 含 然 并
量 。工作 原 理 图如 图 l 示 。 所
() 4 未知元 素谱线 的重叠干扰 。如熔炼 过程 中加入脱 氧剂 、 除硫磷 剂时 , 入未知合金元 素而引入系统误差 。 混
直读光谱仪工作原理
直读光谱仪工作原理
直读光谱仪是一种用于分析物质的仪器,它的工作原理基于光的色散性质和光谱的特征。
当白光通过光谱仪时,它会被分散成不同波长的光束。
这个过程是通过光栅或晶体等光学元件来实现的。
光栅是光谱仪中常用的光学元件之一。
它由许多平行间隔的凹槽构成,当入射光线通过光栅时,不同波长的光线会以不同的角度被衍射出来。
这样,光谱仪就可以将入射光分解成不同波长的光束,在光栅后面的检测器上形成一个光谱。
检测器是光谱仪中另一个重要的组成部分。
它通常是一个光敏元件,例如光电二极管或光电倍增管。
当光束通过样品后,检测器会测量光的强度,并将其转换成电信号。
这个电信号可以被处理和记录,从而得到样品的光谱信息。
光谱仪的工作原理可以用以下步骤来总结:
1. 白光通过光栅或其他光学元件分散成不同波长的光束。
2. 光束通过样品后,被检测器转换成电信号。
3. 电信号可以通过处理和记录,得到样品的光谱信息。
通过以上工作原理,直读光谱仪可以用于分析样品的化学成分、物理性质等。
利用光谱信息,可以确定样品的成分、浓度、纯度等重要参数,广泛应用于科学研究、工业生产、环境监测等领域。
试论光电直读光谱仪的工作原理及误差分析
试论光电直读光谱仪的工作原理及误差分析随着我国材料技术的日益发展,一些工业企业对材料化学成分的控制要求也越来越高,事实上,以传统化学分析方法具有速度慢、分析范围小等缺陷,极大地限制了材料科学技术的发展和进步,而今年来,工业企业里使用的光电直读光谱仪具有分析速度快、准确度高、操作简单方便、分析范围广等优点,它具有传统化学分析方法无法比拟的。
在应用过程中,逐渐受到广大工业企业的欢迎。
1.光电直读光谱仪的工作原理光电直读光谱仪采用的是原子发射光谱分析法,光谱分析法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。
光电直读光谱仪的基本工作原理是金属试样(电极)与电极之间进行电弧、电火花放电,对由此产生的辉线光谱进行光电测定,进行所含元素的定量方法。
分析试样使用光源电源激发,这时产生的光通过聚光透镜由入口狭缝进入,导向凹面衍射光栅上,只读取在凹面衍射光栅上分光的光中所需的光谱线,使用仪器上的光电倍增管将光转化成电流。
经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元素的百分含量。
2.光电直读光谱仪的特点光电直读光谱仪是一种以标椎物质为基础的较为快速的分析方法,有以下特点:(1)分析速度快。
(2)分析误差小,准确度高。
(3)操作简单,自动化程度高。
(4)重复性和稳定性好。
(5)分析范围广(6)可用用于多种基体分析:Al,Fe,Pb,Mg,Zn,Sn,Co,Ni,Ti,Cu等基体。
3.光电直读光谱仪的误差分类及误差分析3.1光电直读光谱仪的误差分析应用光电直读光谱仪分析方法测定试样中元素含量时,所测得结果与真实含量通常是不一致的,总是存在着一定的误差和偏差。
这里所讲的误差是指每次测量的数值与真值之间的差值,而偏差是指每次测得的数值与多次测量平均值之差。
并且受诸多因素的影响,有的材料本身含量就很低。
下面就误差的种类、来源及如何避免误差进行分析。
根据误差的性质及产生原因,误差主要分以下几种:(1)系统误差;(2)偶然误差;(3)过失误差;(4)其他误差。
直读光谱仪原理
GLMY
棱镜Байду номын сангаас光系统
GLMY
平面光栅分光系统
GLMY
凹面光栅分光系统
凹面光栅既是色散元件, 又是成像系统,构成的光学 系统更简单,在光谱仪中应 用也更为广泛。
光学系统主要由照明系统、准光系统、色散系统和投影系统组 成。数据处理系统主要用于釆集数据的处理。
GLMY
三、光电直读光谱仪基础
光电直读光谱仪,即火花源原子发 射光谱仪的“别名”。
光谱仪主体由激发光源系统、分光 系统、信号测量转换系统等三大功 能部分组成。
此外,在仪器化和使用性能方面, 衍生出一系列相关配套技术、部件、 控制技术和软件等。
THANK YOU
THANK YOU
GLMY
二、光谱仪波长
不同的原子产生不同波长的电磁辐射,利用棱镜或光栅对产 生的辐射进行分光便可获得某一元素的光谱谱线。
原子发射光谱分析技术就是诵过识别不同元素的特征光谱的 波长,鉴别出某一元素的存在并依据特征光谱强度来鉴别某一元 素的含量。
GLMY
二、光谱仪组成
光电直读光谱仪主要由光源、光学系统和数据处理系统三部分 组成。光源的主要作用是提供被测试样蒸发和激发跃迁所需要的 能量,使之产生光谱。
GLMY
直读光谱仪原理
无锡创想分析有限公司-CHXYQ
01
定义(1)
光电直读光谱仪利用原子发射光谱分析法进行成分分 析。
02
定义(2)
原子发射光谱分析是一种通过测量物质发射光谱的波 长和强度来进行定性和定量分析的方法。
光电直读光谱仪原理
光电直读光谱仪原理、简介分类、维护及故障排除:一、原理简介:光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。
目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为 4 个模块,即:1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。
2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。
3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。
控制整个仪器正常运作4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。
二、光电直读光谱仪 4 个模块的种类和特点:1、激发系统:(1)高能预燃低压火花激发光源+ 高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响(2 )高压火花激发光源+高纯氩气激发气氛:采集光强不稳定(3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力(4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。
(5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。
把各元素的激发状态按照试验情况进行分类讨论)2、光学系统:(1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列)光学系统结构稳定,笨重,体积大。
2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。
3、测控系统:(一)测量系统:(1)光电倍增管+积分电路+模数转化电路:一般作为帕邢-龙格光学系统或C-T光学系统的光谱采集器,一个光电倍增管加上之后的电路只能采集一根谱线的强度。
SPECTROLAB光电直读光谱仪的应用及误差解析总结计划要点总结计划
SPECTROLAB光电直读光谱仪的应用及偏差剖析昆明冶金高等专科学校工业剖析与查验专业谢稳指导老师姜浩纲要因为SPECTROLAB操作简单、方便,优化了火花台冲洗和校准过程,操作者能够将更多的精力投入到样品剖析中,大大节俭了准备时间。
本文介绍了德国斯派克公司SPECTROLAB光电直读光谱仪的构造、特色、原理及师傅和自己的实验。
论述了光电直读光谱仪比传统的剖析模式的进步,经过一段时间生产查核、数据统计和详细的实验总结了偏差的要素及减少偏差的方法。
为提升产质量量作出了必定的成就。
重点字光电直读光谱仪精细度检出限种类标准化单点校订光谱仪(Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可丈量物体表面反射的光芒,。
阳光中的七色光是肉眼能分的部分(可见光),但若经过光谱仪将阳光分解,按波长摆列,可见光只占光谱中很小的范围,其余都是肉眼没法分辨的光谱,如红外线、微波、紫外线、X射线等等。
经过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和剖析,进而测知物件中含有何种元素。
这类技术被宽泛的应用于空气污染、水污染、食品卫生、金属工业等的检测中。
SPECTROLAB光电直读光谱仪主要用于铝合金、纯铜等有色金属中痕量杂质的剖析。
它将光导纤维应用在光谱剖析领域,把光谱仪改成多光路系统,使它拥有剖析结果稳固,自动化程度高,选择性好,正确度高,测量范围宽,检出限低,速度快,操作方便,多元素同时测定,校准曲线范围宽,在某些条件下可测定元素存在形式等特色。
同时该光学系统会合了传统光电管光学系统和CCD全谱光学系统的所有长处。
该仪器的软件程序设计合理,宽灵巧调用仪器定置的任一元素通道。
同时优化的氩气流可有效防止火花台污染。
独立的ICAL智能逻辑校订系统同时实现智能逻辑描迹和标准化。
我厂主要生产不一样型号的铝合金和纯铜,依据产品的详细要求,知足产品的技术要求。
光电直读光谱仪分析的误差探讨
光电直读光谱仪分析的误差探讨1概述从上世纪30年代用照相板作检测器的火花发射光谱分析技术,到后来采用光电倍增管检测器(PMT)、电荷藕合固体检测器(CCD)、电荷注人式固体检测器(CID)的直读光谱仪分析技术。
以及近代光电技术和计算机技术的高速发展,大大提高了光谱分析速度,使直读光谱仪广泛应用于钢铁和有色冶金行业炉前快速分析,也成为分析各种常见固体金属材料的一种普及的标准分析方法。
定量分析的任务是准确测定试样中组分的含量。
因此必须使分析结果具有一定的准确度,不准确的分析结果可以导致生产上的损失、资源的浪费和错误结论。
在光谱定量分析中,由于受到人员、环境、仪器性能等方面的影响,使测得结果不可能和真实含量完全一致,并且对同一样品进行多次测量其结果也不完全一样。
这说明客观上存在着难以避免的误差,因此在进行定量测定时不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查并分析产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
2误差的性质及其产生的原因应用光电直读光谱分析方法测定试样中元素含量时,所得结果与真实含量通常是不一致,总是存在着一定的误差。
这里所讲的误差是指每次测量的数因,误差可分为:系统误差、偶然误差和过失误差3种。
(1)系统误差也叫可测误差,它是由于分析过程中某些经常发生的比较固定的原因所造成的,它是可以通过测量而确定的误差。
通常系统误差偏向一方,或偏高,或偏低。
例如光谱标样,经过足够多次测量,发现分析结果平均值与该标样证书上的含量值始终有一差距,这就产生一个固定误差即系统误差,系统误差可以看作是对测定值的校正值,它决定了测定结果的准确度。
(2)偶然误差是一种无规律性的误差,又称不可测误差,或随机误差,它是由于某些偶然的因素(如测定环境的温度、湿度、振动、灰尘、油污、噪音、仪器性能等的微小的随机波动)所引起的,其性质是有时大,有时小,有时正,有时负,难以察觉,难以控制。
直读光谱仪的基本原理解读
直读光谱仪分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪等等,广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位,接下来为您解读直读光谱仪的相关原理。
每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成,这种方法叫做光谱分析。
据了解,当某种元素在物质中的含量达5-10克,就可以从光谱中发现它的特征谱线,从而把它检查出来。
研究人员在做光谱分析时,可以利用发射光谱或吸收光谱,使检测过程更加灵敏、迅速。
首先我们先看下直读光谱仪基本原理:金属试样与电之间进行电弧。
由于被测分析试样激发后产生的光通过聚光透镜由入口狭缝进入,导向凹面衍射光栅上,只读取在凹面光栅上分光的光中所需的光谱线,使用仪器上的光电倍增管或CCD将光转化成电流。
由此产生的光谱进行光电测定,进行需测元素的定量方法。
由此看出,被测样在规定条件内可一次性快速检测出欲知的所有元素百分比含量,而且通过可靠可控的物理方法(光电转换)实行快速、精准之亮点!适用于较宽的波长范围;光电倍增管对信号放大能力强,对强弱不同谱线可用不同的放大倍率,相差可达10000倍,因此它可用同一分析条件对样品中多种含量范围差别很大的元素同时进行分析;线性范围宽,更可做高含量分析,所以检测范围宽广。
直读光谱仪原理
直读光谱仪原理
直读光谱仪是一种用于分析光谱的仪器。
其原理基于光的干涉和衍射现象。
直读光谱仪首先将入射光束分散成连续的波长范围,通常通过光栅或棱镜来实现。
这样,在光谱仪的接收端就可以同时获取到不同波长的光信号。
接下来,这些光信号经过光电传感器的接收和转换,转化为电信号。
光电传感器通常采用光电二极管、光电倍增管或光电探测器等。
随后,电信号被放大并转换为数字信号,然后通过数据处理和分析,得到光谱的各项参数。
这些参数可以包括波长、强度和光谱图形等信息。
由于直读光谱仪在光学和电子技术方面的优势,它可以广泛应用于物质成分分析、光谱分析、光源分析等领域。
例如,在化学实验室中,直读光谱仪可用于分析和鉴定样品中的化合物或元素。
在环境监测中,它可以用于检测大气中的污染物。
在光学研究中,直读光谱仪则可以用来研究光的行为和特性。
总而言之,直读光谱仪的原理基于光的干涉和衍射,通过分散和转换光信号,并经过数据处理和分析,实现对光谱的测量和分析。
直读光谱仪工作原理
直读光谱仪工作原理
直读光谱仪是一种用于分析物质成分的仪器。
它基于光的色散原理,通过将光分成不同波长的组分并测量其强度来确定样品的化学成分。
光谱仪的工作原理可以分为以下几个步骤:
1. 光源发射:光谱仪通常使用白炽灯或者氘灯等作为光源。
光源发出的光波覆盖了广泛的频率范围。
2. 光的分散:光通过进入光栅或者棱镜等光分散元件进行分散。
这些元件可以使不同波长的光发生不同的折射或者反射,从而将光分成不同的波长。
3. 光的选择:分散后的光通过狭缝选择一定波长范围的光线。
这个狭缝可以根据需要调整,以选择所需的波长范围。
4. 光的检测:选定的波长范围的光线进入光电探测器。
光电探测器可以是光电二极管、光电倍增管或者CCD等。
它会将光
能转化为电信号,并产生与光的强度成比例的电压。
5. 数据处理:电压信号经过放大、滤波等处理后,传送给数据采集系统进行数字化处理。
数据采集系统会将信号处理为光强度随波长的关系曲线,即光谱。
通过对光谱仪测得的光谱进行分析,可以判断样品中存在的元素、化合物或者其他物质的种类和含量。
直读光谱仪工作原理
直读光谱仪工作原理
直读光谱仪是一种用于分析物质成分和结构的仪器,它通过测量样品对不同波
长的光的吸收或发射来获取样品的光谱信息。
直读光谱仪的工作原理主要包括光源、样品、光路和检测器四个部分。
首先,光源发出一束宽谱光,经过准直和分光装置后,被分成不同波长的光线。
这些光线经过样品后,会根据样品的成分和结构发生吸收或发射现象,形成特定的光谱图案。
然后,这些光线通过光路系统聚焦到检测器上,检测器会将不同波长的光信号转换成电信号,再经过信号处理系统处理后,得到样品的光谱信息。
直读光谱仪的工作原理可以简单总结为,光源发出光线,样品与光线相互作用,检测器接收光信号并转换成电信号,最终得到样品的光谱信息。
在实际应用中,直读光谱仪可以用于分析化学物质的成分、测定样品的浓度、检测样品的纯度等。
除了上述基本原理外,直读光谱仪的工作还受到一些因素的影响,如光源的稳
定性、样品的制备和处理、光路的精度和检测器的灵敏度等。
因此,在使用直读光谱仪进行样品分析时,需要对这些因素进行严格控制,以确保获得准确和可靠的分析结果。
总的来说,直读光谱仪作为一种重要的分析仪器,其工作原理简单清晰,通过
测量样品对不同波长光的吸收或发射来获取样品的光谱信息。
在实际应用中,它可以广泛用于化学、生物、环境等领域的样品分析,为科研和生产提供了重要的技术支持。
光电直读光谱仪分析的误差分析
光电直读光谱仪分析的误差分析摘要:随着计算机科学和光电的推广和支持,直读光谱仪由于其使用方便、精度高、分析范围广、速度快等特点,材料分析化学成分逐渐成为主要方法。
但在实践中,它容易受到设备、环境和人员的干扰,导致结果测量与材料的成分或多个不一致的结果测量。
因此,有必要对分析误差进行有效的调查和处理,以提高分析结果的准确性。
在讨论直读光谱仪的误差分析时,指出结果分析准确性影响的原因,以及误差的类型和来源。
关键词:光电直读光谱仪;误差;探讨随着发展材料技术,工业企业对控制材料的化学成分要求越来越高。
然而,传统的化学分析方法的缓慢和狭窄的范围对材料技术的发展极大地限制。
直接读取光伏光谱仪的优点,是化学分析方法中无与伦比的。
因此,在大多数用户逐渐受到欢迎。
其测量误差取决于许多因素,在这里,我们简要介绍了它的工作原理,然后详细分析了测量误差,以便大多数用户可以通过直接读取更准确,更有效地使用光谱仪。
一、工作原理光伏直读光谱仪使用原子发射光谱学,它基于在高温下每个元素特征线的电火花。
每个发射强度元素成正比的是样品中元素的数量,当光被一个网格分开时,它变成一个波长的光谱。
这些元素的特征被引入到相应的光电倍增管的输出层。
将光信号转换为电信号,由仪器的控制和测量系统集成,然后将其转换为模拟和数字信号,然后由计算机处理,以打印每个组件的百分比。
二、误差的性质及其产生的原因使用其进行测试时,磨样与测试结果之间存在多个连接,这可能会导致错误。
如果没有误差,则系统和意外误差的总和将决定光谱分析准确性。
分析的准确性通常通过准确性和可重复性来检查。
精度是测试结果与理论结果之间的差异。
重复性是指在多次分析后存在明显的误差。
如果随机误差较小,检测的重复性较高,则光电直读光谱过程由采样到数据分析的多个操作键组成,每个操作键产生一定的误差。
在没有误差的情况下,总误差主要是系统和随机误差之和光电直读光谱,即分析光电直读光谱的精度,分析的准确性有两个方面:准确性和可重复性。
直读光谱仪原理
直读光谱仪原理
直读光谱仪是一种能够将光分解为不同波长的光谱组分并测量其强度的仪器。
其工作原理可以简要描述如下:
1. 光源发出连续的宽频谱光,比如白炽灯或者氘灯等。
2. 进入光谱仪之前,通过入口狭缝将光束限制为一个特定的角度和宽度。
3. 光束进入色散系统,通常是一个棱镜或光栅。
色散系统会将不同波长的光分散开来,使各个波长的光能够分别聚焦到不同位置。
4. 不同波长的光经过聚焦透镜后落在光敏元件上。
5. 光敏元件可以是光电二极管或者光电倍增管等,它们能够将光信号转化为电信号。
6. 通过分析和处理电信号,可以得到不同波长光的强度信息。
直读光谱仪的主要优点是高分辨率、反应快速、灵敏度高,适用于多种光谱分析领域,比如化学分析、材料研究、生物科学等。
光电直读光谱仪的工作原理是怎样的 光电直读光谱仪解决方案
光电直读光谱仪的工作原理是怎样的光电直读光谱仪解决方案光电直读光谱仪又被称为火花源原子发射光谱仪,所采用的原理是用火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”。
这些元素的特征光谱线通过出射狭缝,照射在对应的光电倍增管光阴极上,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,计算出各元素的百分含量。
其核心部件主要包括光源、分光系统、检测器等。
如今,光电直读光谱分析已成为一项成熟的分析技术,具有样品处理简单、分析速度快、分析精度高、多元素同时分析等特点,几乎所有的钢铁企业、有色金属企业、铸造及机械加工企业,以及其他采用金属及其合金进行加工利用的行业都采用光电直读光谱仪进行生产过程及产品质量控制。
光电直读光谱仪在铸造行业的应用中,具有以下优点:1)定量范围广、准确性及稳定性高等特点光电直读光谱仪定量分析范围可从ppm几十%,非常适于微量、痕量分析。
当元素含量在0.1-1%或更低时,光电直读光谱分析法其准确度更优于化学分析。
另外,光电直读光谱仪器分析,不存在人为误差,稳定性方面得到很大提高。
2)多功能、自动化和智能化特点分析仪器正向智能化方向发展,发展趋势主要表现是:基于微电子技术和计算机技术的应用实现分析仪器的自动化,通过计算机控制器和数字模型进行数据采集、运算、统计、处理,提高分析仪器数据处理能力,数字图像处理系统实现了分析仪器数字图像处理功能的发展。
光电直读光谱仪已从传统的经典化学精密机械电子学结构、实验室内人工操作应用模式,转化为光、机、电、算(计算机)一体化、自动化的结构,并正向更名副其实的智能系统发展(带有自诊断、自控、自调、自行判断决策等高智能功能)。
多用途可扩展的配置方式及多功能计算机软硬件技术包括的模块有:数据处理,曲线拟合,综合计算,数据分析,自动控制,自诊断与报警,通信,联网,定性分析、半定量分析等。
光电直读光谱仪的工作原理及误差分析
光电直读光谱仪的工作原理及误差分析摘要:伴随着我国现代工业的快速发展,对于材料成分分析技术的要求也在不断提升,传统的材料分析方法效率较低,准确度也有所不足,因此非常不利于我国现代工业的顺畅发展。
在这种形势下,光电直读光谱仪的应用能够有效的弥补这一不足,因此其得到了广泛的运用,然而与此同时也有多种因素对其产生不同程度的影响造成误差。
本文对光电直读光谱仪在使用过程中出现的误差进行了分析,并提出了一些控制措施。
关键词:光电直读光谱仪;工作原理;误差分析在计算机、光电技术等的推动和支持下,光电直读光谱仪分析凭借其操作简单、准确度高、分析面广、速度较快等优势逐渐成为分析材料化学成分的主要方法。
可是在具体实践中,其易受仪器、环境、人为等干扰致使测量结果与材料实际成分不一致,或者多次测量结果不一致,因此研究其分析误差并予以有效解决,以提高分析结果的准确性十分必要。
1、光电直读光谱仪的工作原理当光照射到材料上的时候,就会使材料的基础分子结构中的电子发生变化,从而改变材料对于光的反应变化,而光谱仪能够有效的检测到这种变化。
光谱仪能够把复色光的不同波长进行分离处理,通过一些别的仪器来获得光谱中的波长及其强度。
目前这种光谱的分析在很多方面都被广泛应用,极大的提高了材料分析的效率。
对于不同类型的光谱,比如拉曼光谱、荧光光谱等,都可以进行光谱分析。
当前的单色仪的光谱范围比较宽并且分辨率也比较高,并且可以利用电脑进行波长的自动扫描,这样就可以利用相应的设备来做一些对性能要求比较高的检测,在进行光谱分析的时候一般都通过电脑来扫描单色仪。
当光线透过入射狭缝的时候,一般都要用光学准直镜将复合光转换为平行光,这些平行光通过衍射光栅后就会呈现出不同的波长,利用聚焦反射镜将这些不同的波长成像为出射狭缝,并且可以利用电脑来控制出射的波长。
由于金属材料与电极之间会产生放电现象并且产生辉线光谱,这样就能利用光电直读光谱仪进行测定,来确定金属材料当中所含有的元素数量。
光电直读光谱仪原理
光电直读光谱仪原理光电直读光谱仪的核心部分是一个光电倍增管(Photomultiplier Tube,简称PMT)。
PMT是一种具有较高增益的光电转换器件,可以将光信号转换为电信号。
它由一个光敏阴极、多个二次电子倍增极以及一个阳极组成。
在光电直读光谱仪中,首先将入射光束通过一个狭缝进行准直。
然后,光线经过一个光栅或其他分光装置进行波长分解,使不同波长的光线沿不同方向传播。
这种分解后的光线称为光谱。
分光后的光谱进入PMT中的光敏阴极,并通过光电效应产生光电子。
这些光电子经过二次电子倍增极倍增,并最终聚集到阳极上,形成一个电流信号。
该电流信号的大小与PMT所接收的光信号强度成正比。
PMT产生的电流信号经过放大和处理电路,然后由光电直读光谱仪的显示屏或计算机进行处理和显示。
通过量化测量电流信号的强度,就可以确定物质对不同波长的光的吸收强度。
光电直读光谱仪的波长分辨率主要由光栅或其他分光装置的性能决定。
光栅是一种通过多个平行凸面或凹面的直线刻槽构成的光学元件,可以将光束分散成不同波长的光谱。
光栅的刻槽数目越多,刻槽的宽度越窄,光谱的波长分辨率就越高。
在实际应用中,光电直读光谱仪通常需要进行基线校准和样品校准。
基线校准是指在测量前将仪器的输出信号调整到零点。
样品校准是使用已知浓度的标准物质进行测量,以建立吸光度和浓度之间的关系。
通过基线校准和样品校准,可以使测量结果更加准确和可靠。
总结起来,光电直读光谱仪通过将入射光束分解成各个波长的光线,并测量物质对不同波长光线的吸收强度,来获取物质的吸收光谱。
它的工作原理是利用光电倍增管将光信号转换为电信号,并通过放大和处理电路进行处理,最终得到吸收光谱的结果。
光电直读光谱仪是一种常用的光谱分析仪器,广泛应用于化学、生物、物理等领域的研究和实验。
直读光谱仪原理
直读光谱仪原理
直读光谱仪是一种用于测量物质光谱的仪器,它可以通过分析物质发出或吸收的光来确定其组成和性质。
直读光谱仪的原理基于光的色散和检测,下面我们将详细介绍直读光谱仪的原理及其工作过程。
首先,直读光谱仪利用光的色散原理,将进入光谱仪的光线分散成不同波长的光。
这是通过光栅或棱镜来实现的,光栅或棱镜会使不同波长的光线按照一定的规律分开,形成光谱。
接下来,这些分散后的光线会被投射到检测器上进行检测。
其次,检测器是直读光谱仪的关键部件,它能够将光信号转换成电信号。
常见的检测器包括光电二极管(photodiode)和光电倍增管(photomultiplier tube)。
当光线照射到检测器上时,检测器会产生相应的电信号,这些信号随着波长的变化而变化。
通过测量这些电信号的强度,就可以得到样品的光谱信息。
最后,直读光谱仪通过收集并处理检测器输出的电信号,可以得到样品的光谱图。
光谱图通常以波长为横坐标,光强度为纵坐标,展现出样品在不同波长下的光谱特征。
通过分析光谱图,可以确定样品的组成、结构和性质,从而实现对样品的分析和鉴定。
总之,直读光谱仪的原理是基于光的色散和检测,通过将进入光谱仪的光线分散成不同波长的光,再经过检测器的检测和信号处理,最终得到样品的光谱信息。
这种仪器在化学分析、光谱学研究、材料表征等领域有着广泛的应用,对于研究和生产实践具有重要意义。
希望本文的介绍能够帮助大家更好地理解直读光谱仪的原理和工作过程。
光电直读光谱仪使用中的误差分析_1
光电直读光谱仪使用中的误差分析发布时间:2022-01-19T08:45:46.351Z 来源:《防护工程》2021年30期作者:赵梦娜[导读] 光电直读光谱分析由于精度高、检出限低、分析迅速,在冶金、地质、机械、化工等领域都有极其广泛的用途,特别是在钢铁及有色金属的冶炼控制中具有极其重要的地位。
中国航发哈尔滨东安发动机有限公司黑龙江哈尔滨 150066摘要:近年来,随着科技的快速发展,我国的材料技术不断进行着革新和进步。
企业对材料化学的控制要求不断提高。
光电直读光谱仪能够快速、准确的进行分析和处理信息,成为当前研究的热点。
光电直读光谱仪是目前在国内外钢铁企业中应用最多精密分析仪器,它能实现产品或半成品化学成分的快速分析,重复性及稳定性好、可以用于多种基体分析、线性范围宽。
随着对分析结果质量控制要求的提高,仪器分析准确度和精确度问题日显突出。
本文就光电直读光谱仪在使用中产生误差的原因及控制措施展开探讨。
关键词:光电直读光谱仪;误差;措施引言光电直读光谱分析由于精度高、检出限低、分析迅速,在冶金、地质、机械、化工等领域都有极其广泛的用途,特别是在钢铁及有色金属的冶炼控制中具有极其重要的地位。
为了有效提高光谱分析工作的能力和水平,切实保证所分析产品的质量,有必要对光电直读光谱仪在检测中产生的误差原因进行分析,这将有利于掌握设备运转情况、控制标样、校准参数等对日常光谱分析的影响程度。
1工作原理光在与物质相互作用的过程中会导致物质内部原子和分子出现能级电子跃迁,这就使得物质对光的吸收、发射等在波长和强度上出现变化,利用此原理能够对物质进行检测分析。
光电直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征谱线,每种元素的发射光谱谱线强度正比于样品中该元素的含量,用光栅分光后,成为按波长排列的光谱,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元素的百分含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试论光电直读光谱仪的工作原理及误差
作者:高增爱
来源:《科学与财富》2018年第18期
摘要:近年来,经济随着社会的进步得到的快速发展,我国的材料技术不断进行着革新和进步。
企业对材料化学的控制要求不断提高。
光电直读光谱仪能够快速、准确的进行分析和处理信息,成为当前研究的热点。
本文将对光电直读光谱仪的工作原理进行阐述,并对光电直读光谱仪的误差进行分析。
关键词:光电直读;光谱仪;工作原理;误差
引言
由于我国材料技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢、分析范围小,极大地制约了材料技术的发展,而光电直读光谱仪具有速度快、准确度高、操作简单、分析范围广等优点,是化学分析方法无法比拟的。
因此,逐渐受到广大用户的欢迎。
1光电直读光谱仪概述
1.1光电直读光谱仪的工作原理
在对物质的成分进行检测的过程中,由于在不同的物质当中,存在有不同的属性,在这样的情况下,物质当中的不同组成成分,在一定条件下发射的光谱特征不同,人们就可以利用这样的属性,来对不同的物质进行区别。
光具有一定的波动性质,光的颜色不同,所产生的波长也就不同,按照波长的不同,可以将其进行相应的排列,这样的光就是所谓的光谱,而相应的物质能够对光谱进行发射,并且不同的物质能够对光进行相应的吸收和散射,根据这样的情况,可以对物质所发出的光谱用分光仪器进行检测,以此来对其中的组成成分进行确定。
从目前的情况来看,利用光电直读光谱仪来对物质成分进行检测的过程中,其自动化程度较高,同时分析的速度较快,能够满足人们目前的检测需要,另外,利用光电光谱法可以在同一条件下来对不同含量的元素进行同时检测,而且检测的结果精度较高,使用的成本较高,根据以上使用优势,利用光电直读光谱仪来对物质中的成分进行检测,已经普遍被人们所接受,并且进行应用,其主要应用范围包括金属机械加工、建筑材料、电池和石油化工等行业。
1.2光电直读光谱仪的特点
光电直读光谱仪是一种以标准物质为基础的较为快速的分析方法,有以下特点:(1)操作简单、自动化程度高;(2)分析范围广、速度快;(3)分析误差小、灵敏度高。
分析铅成分时只需单人操作,几十种元素的化验结果需由打印机打印出化验报告,整个过程几乎全部由机器来完成。
化验结果可存储于计算机内成百上千套,便于日后整理查询,尤其适用于配制合
金时炉前快速分析,及时调整合金的成分。
使用前首先应确定直读光谱仪的基体,根据不通需求可安装不同的基体如铁基、铜基、铅基,如化验铅成份即采用铅基。
其次是需要化验的元素在直读光谱仪是否有通道,通道一般在选定供货商后,第一满足当前元素及含量使用的范围,第二是满足准备近期开发新产品可能化验的元素和含量的范围,最后再根据国内外行业的最新发展动态,确定未来发展趋势所使用元素及含量的范围,根据以上三个方面来确定所化验的元素及其含量的范围通道既能满足当前任务的需用,同时也为企业以后的发展打下良好的基础。
光电直读光谱仪根据波长范围不同可分为真空型和非真空型,非真空型仪器工作波长范围一般为紫外区和可见区,而真空型仪器则可应用于更短波长范围,按通道分为单通道光谱仪和多通道光谱仪,蓄电池行业一般多采用真空型多通道光谱仪。
2光电直读光谱仪的误差分析
2.1系统误差的来源
(1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。
(2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。
(3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。
(4)未知元素谱线的重叠干扰。
如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统误差。
(5)要消除系统误差,必须严格按照标准样品制备规定要求。
为了检查系统误差,就需要采用化学分析方法分析多次校对结果。
2.2光电直读光谱仪偶然误差分析
通过对偶然误差的产生原因的分析能够找到减少误差的方法,提高分析准确度,光电直读光谱仪偶然误差的主要来源有:(1)与样品成分不均匀有关的误差σ1。
因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织结构的不均匀性,导致不同部位的分析结果不同。
不均匀性的主要原因是:钢冶炼过程中带人夹杂物、在样品熔炼过程中产生的偏析,试样加工过程中夹入的砂粒和金属元素,试样研磨过热、试样磨面放置时间太长和压上指纹等因素、试样在取样冷却过程中的缺陷、气孔、裂纹、砂眼造成激发室气体纯度不高;(2)与激发试样的光源不稳定的误差σ2产生的主要原因是:电源电压的波动,光源参数的偶然变化、激发光点不稳,电极激发次数多造成长尖现象,改变分析间隙的距离、激发氩气电极架的污物清理等;(3)与测光有关的误差σ3。
产生的主要原因是:与电源电压的波动有关,与倍增管的高压电源稳压有关,与放大器的稳定有关。
与元素的积分电容、元素通道的稳定有关。
综合上述用测光精度指标来衡量。
最好达到≤0.2%,与选择的分析条件有密切关系。
氩气的纯度和流量压力的瞬时变动。
予燃、冲洗、积分时间的选择,电学参数的选择等。
由此可知,光电光谱分析总误差中包含着:样品不均匀误差、测光误差、和光源误差三个大部分。
除此以外应用电子计算机处理数据以后,计算误差可以忽略不计。
特别应该强调的是:在制作光谱分析标准样品时,用化学分析的结果当作标准值,也同样存在着系统误差问题,所以在制定光电直读分析的总误差时,也包含着化学分析的误差。
为了降低分析误差,往往采取重复多次分析的办法来达到。
当误差曲线是正态分布时,重复K次的平均结果的误差式中σ为单次分析误差。
3光电直读光谱仪检测的误差消除对策
3.1提高操作人员的检测水平
在检测的过程中,工作人员是其中的主导者,操作人员的专业水平和操作能力直接决定了检测的准确程度,在这样的情况下,需要保证操作人员对样品和分析方法有着足够深的认识,另外,也需要保证操作人员的整体操作熟练程度;同时,也需要检测人员需要较深的质量控制意识;最后,由于分析过程所用的时间较长,这就需要检测人员的身体素质和心理素质达到相应的标准,才能专心的来完成整个检测工作。
3.2样品和检测环境
在对样品进行检测之前,需要根据相关的规定,来对样品的代表性、热处理状态和组织结构状态进行分析,另外需要对样品成分的均匀性进行及时控制,保证组成结构的统一性,在对样品进行磨制的过程中,需要根据样品的性质来采取合适的方法;另外,需要对进行样品检测环境的温度、湿度照明和电磁干扰等条件进行严格控制,以此来保证仪器的整体稳定性。
综上所述,对光电直读光谱仪的工作原理、测量误差进行了分析,指出了影响分析结果准确性的原因及误差的性质和来源,希望能更好地指导企业生产,进而推广使用光电直读光谱仪。
参考文献:
[1]葛晶晶.光电直读光谱误差产生的原因及分析[J].化工管理,2016(17)
[2]李震夏.世界有色金属材料成分与性能手册[M].冶金工业出版社,2011.
作者简介:高增爱,身份证号码:622201************.。