06 静电场中的导体和介质
第六章静电场中的导体与电介质
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -
静电场中的导体和电介质
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
静电场中的导体和电介质
静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。
(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。
导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。
定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。
拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。
测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。
库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。
所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。
所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。
以上是库仑平方反比定律验证的发展历史。
见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。
使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。
则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。
孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。
电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。
然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。
静电场中的导体和电解质
Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0
i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi
静电场中的导体和电介质
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
6 大学物理 第06章 静电场中的导体和电介质
E外
16
物理学
第五版
+ + + + + + + + + +
第六章 静电场中的导体和电介质 加上外电场后
E外
17
物理学
第五版
+ + + + + + + + + +
E外
加上外电场后 第六章 静电场中的导体和电介质
18
物理学
第五版
导体达到静平衡
+ + + + + + + + + +
介质电容率 ε ε0 εr
41
- - - - - - - σ
相对电容率 εr 1
第六章 静电场中的导体和电介质
物理学
第五版
+++++++
- - - - - - - σ
σ E0 ε0
ε0
σ
+++++++
- - - - - - - σ
σ E ε
ε
σ
第六章 静电场中的导体和电介质
②用导线连接A、B,再作计算
连接A、B,
Q q
q
( q )
中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
R3
E0
Qq uo Edr Edr 4 0 R3 0 R3
第六章静电场中的导体和电介质jianhua讲解
D dS qi
S
2. 根据电场强度与电位移矢量的关系计算场强。
E
D
注意: (1)D的分布应具有一定的对称性
(2)要选取合适的高斯面
[例 1]已知: 一导体球半径为R1,带电 q0(>0)
外面包有一层均匀各向同性电介质球壳,
r R1 R2 在带电面两侧的场强都发生突变,这是面电荷 分布的电场的一个共同特点(有普遍性)。 普遍结论: 当电介质充满两个等势面之间的空间时, 该空间的场强等于真空时场强的 1/ r 倍。
0
6-3 电容和电容器
孤立导体的电容
导体具有储存电荷的本领 电容:孤立导体所带电量q与 其电势V 的比值。
+ +++
-
-+
+q +
-+
-+
-
有导体存在时静电场的分布与计算
基本依据: (1)利用静电平衡条件 E内 0 或 V c (2)利用电荷守恒 Qi const .
i
qi (3)利用高斯定律 E d s i S
0
(4)利用环路定理(电势、电力线的概念)
L E d l 0
电阻率很大,导电能力很差的物质,即绝缘体。
(常温下电阻率大于107欧·米) 电介质的特点: 分子中的正负电荷束缚的很紧,介质内部几 乎没有自由电荷。 置入电场中会受电场作用;反之,介质会对 电场产生影响。
有介质时的高斯定理
定义电位移矢量: D
介质中的高斯定理: 在静电场中,通过任意封闭曲 面的电位移通量等于该曲面所包围的自由电荷的代 数和。 注意:
6静电场中的导体和电介质
二、第二类导体空腔— [腔内有带电体]
(1)腔内电场不受外电场影响。 (可用高斯定理证明)
QQ q
q
q
(2)空腔导体腔外电场不受导体腔内电场影响。
与腔内电荷分布无关,但与腔内 放置的带电体电量有 关。
QQ q
q
q
- - --q +
+Qq+++++=+0 -
--
+
-+
+ +
2、空腔导体带电荷Q
腔内无电荷:导体的电荷只能分布在外表面。
腔内有电荷q: 导体的内表面电荷-q,外表 面电荷Q+q
二、导体处于静电平衡状态时的场强分布
导体上的电荷分布
3. 火花放电
当高压带电体与导体靠得很近时, 强大的电场会使它们 之间的空气瞬间电离,电荷通过电离的空气形成电流. 由于 电流特别大, 产生大量的热, 使空气发声发光,产生电火花. 这种放电现象叫火花放电.
火花放电在生活中常会遇到. 干燥的冬天,身穿毛衣和化纤 衣服,长时间走路之后,由于摩擦,身体上会积累静电荷. 这时如 果手指靠近金属物品, 你会感到手上有针刺般的疼痛感。这就 是火花放电引起的. 如果事先拿一把钥匙, 让钥匙的尖端靠近其 他金属体, 就会避免疼痛. 在光线较暗的地方试一试,在钥匙尖 端靠近金属体的时候, 不但会听到响声, 还会看到火花.
若 A,B 处出现等量异号电荷(如图),则必有电场线由 A 到 B,则 UA≠UB ,这违背等势体性质。
总结:空腔内无带电体的情况
大学物理-第18章静电场中的导体与电介质
+
O
+- H+ - H+
++
-
++
+
He
H2O
有极分子对外影响等效为一个电偶极子,电矩 Pe ql
事只实不上过lq所在为中为有无从心分分电负 的子子 场电 有中均 时荷 向所可 ,作 线有等 无用 段正效 极中电为 分心荷电 子指的偶 的向代极电正数子偶电和的极作;模矩用型为
综 1)不管是位移极化还是取向极化,其最后的 述:宏观效果都是产生了极化电荷。
2)两种极化都是外场越强,极化越厉害 所产生的分子电矩的矢量和也越大。
三、电介质内的场强、有介质时的高斯定理
1、电介质内的场强
EE0E'
c
E0
E'
a
b
EE0E'
实验发现,在均匀介质中
E
2 3 0 ……(3)
在板内任选一点P,其场强是四个面的场强的叠加,有
EP210220230240
又 EP 0 12340 Q
联立四式得:
……(4) 1 2 3 4
12432Q S
I
II III
P
由于静电平衡时表面面电荷密度与表面附近场强大小成
E0
E
E0
r
r 1
0
++
E0
+ +-
E
+ +-
静电场中的导体和电介质
2.1.1 导体的静电平衡条件 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,则该带电体系达到了静电平衡。 均匀导体的静电平衡条件就是其体内场强处为0。 从导体静电平衡条件还可导出以下推论: (1)导体是个等位体,导体表面是个等位面。 (2)导体以外靠近其表面地方的场强处处与表面垂直。
2.2.3 电容器的并联、串联 (1) 并联 电容器并联时,总电容等于个电容器电容之和。 (2) 串联 电容器串联后,总电容的倒数是各电容器电容的到数之和
2.2.4 电容器储能(电能) 设每一极板上所带电荷量的绝对值为Q,两极板间的电压为U,则电容器储存的电能 从这个意义上说,电容C也是电容器储能本领大小的标志。
(2)极化电荷的分布与极化强度矢量的关系 以位移极化为模型,设想介质极化时,每个分子中的正电“重心”相对负电“重心”有个位移l。用q代表分子中正、负电荷的数量,则分子电矩P分子=ql。设单位体积内有 n个分子,则极化强度矢量P=np分子=nql。
取任意闭合面S,根据电荷守恒定律,P通过整个闭合面S的通量应等于S面内净余的极化电荷∑q′的负值 ,即 这个公式表达了极化强度矢量P与极化电荷分布的一个普遍关系。
(3)库仑平方反比率的精确验证 用实验方法来研究导体内部是否确实没有电荷,可以比库仑扭秤实验远为精确的验证平方反比律。 卡文迪许的验证实验装置见教材中图2-11。实验时,先使连接在一起的球1和壳3带电,然后将导线抽出,将球壳3的两半分开并移去,再用静电计检验球1上的电荷。反复实验结果表明球1上总没有电荷。
(1) 平行板电容器 平行板电容器由两块彼此靠得很近的平行金属极板组成。设两极板A、B的面积为S , 带电量分别为±q , 则电荷的面密度分别为 ±σe =±q/S 根据式(2.1),场强为 E = σe/ε0 , 电位差为 根据电容的定义
静电场中的导体和电介质电磁学
如前所述,导体壳的外表面保护了它所 包围的区域,使之不受导体壳外表面上的 电荷或外界电荷的影响,这个现象称为静 电屏蔽.
图2.12 <a> 腔内无电 荷
图2.12 <b>腔内有电荷
图2.12 <c> 导体腔接
图2.12 <d> c的等效图
地
图2.12 静电屏蔽
〔3〕静电场边值问题的唯一性定理
其中任意两导体之间都有电容,但并不完全取决 于自己的几何形状和相对位置,与周围其他导
§2.4 静电场中的电介质
1、电介质的极化 2、极化强度与退极化场 3、电介质的极化规律
§2.4.1 电介质的极化
1、电介质〔dielectrics〕 是绝缘体,内部大量的束缚电荷. 与导体和静电场的相互作用,既有相似之 处,但也有重要差别.
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2.1 物质的电性质 §2.2 静电场中的导体 §2.3 电容和电容器 §2.4 静电场中的电介质 §2.5 电介质中静电场的基本定理 §2.6 边值关系和有介质存在时的唯一性
定理
§2.1 物质的电性质
1、 导体、绝缘体与半导体 2、 物质的电结构
由于空气中存在离散的自由电荷,永电体 表面上的极化电荷会吸引一些自由电荷 而最终会被中和失去作用.
2、极化率与相对介电常数
设平行板电容器未填充电介质时极板间的场强
为E0<外场>,填充电介质后电场为E,由介质极
化规律知,介质极化强度为: P 0 E
与电容器正极板相对的介质表面有极化电荷面
密度:' P•nP,与负极板相对的介质表
§2.1.1 导体、绝缘体与半导体
6静电场中的导体和电介质
V表面 常量
2. 导体上电荷分布 1)静电平衡时,导体内无净电荷,电荷只分布在导体 外表面上。 证明: (1)导体内无空腔 .p
E内 ds 0 q内 0
(2)导体内有空腔,腔内无其它带电体
可以看成已经达到静电平衡的实心导体,从中 挖出空腔,由于没有挖去净电荷,不会影响电 荷分布,也不影响电场分布。内表面无净电荷。
r
D1 E1 R1 2 r1 2 1r1 r R1 r1 r : E1 21r1 E1 2 r2 E 2 1r1 同理:r r2 R2 : E2 22 r2
R2
r R2 V d r1 dr2 ln ln 21r1 22 r2 21 R1 22 r R r
q
§6—7 静电场中的电介质 电介质 绝缘体(不导电) 1.电介质的电结构 带负电的电子→束缚电子 每个分子 带正电的原子核 正负重心不重合 两类电介质: 正负重心重合 E 2.电极化现象 E外 0 1)有极分子 2)无极分子
所有负电荷负重心 所有正电荷正重心
有极分子 p p 0 无极分子
q q A B
(3)内球与地相接,设内球带电q’:
R1
q q VA dr dr 2 2 R 4 r R2 4 r o o q 1 1 q q 1 ( ) 0 可解出 q 4o R R1 4o R2 q q 1 VB 4o R2
R
o
R
q
q
4 R 4
o
dq
q
o
2R
0
q q R 2R
q 4o R
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
大学物理静电场中的导体和电介质
03
在静电场中,导体和电介质的 性质和行为表现出显著的差异 ,因此了解它们的特性是学习 大学物理静电场的重要基础。
学习目标
01
掌握导体和电介质的定义、性质和分类。
02
理解静电场中导体和电介质的电场分布和电荷分布。
03
掌握导体和电介质在静电场中的行为和相互作用, 以及它们在电路中的作用。
02
导体
导体的定义与性质
感应电荷的产生是由于导体内 部自由电荷受到电场力的作用 而重新分布,这种效应称为静 电感应现象。
静电感应现象在生产和生活中 的应用十分广泛,如静电除尘、 静电喷涂等。
导体的静电平衡状态
当导体放入静电场中并达到稳定状态时,导体内部的自由电荷不再发生定向移动, 此时导体的状态称为静电平衡状态。
在静电平衡状态下,感应电荷在导体内、外表面产生附加电场,该电场与外界电场 相抵消,使得导体内部的总电场为零。
应用
了解电场强度在电介质中 的分布和变化规律,有助 于理解电子设备和器件的 工作原理。
电介质的电位移矢量
01
02
03
04
定义
电位移矢量是指描述电场中电 荷分布情况的物理量。
特点
在静电场中,电位移矢量与电 场强度之间存在线性关系,可
以用介电常数表示。
计算
根据电位移矢量的定义和电场 强度的计算公式,可以计算出
定义
导体是指能够让电流通过的物质。在 静电场中,导体内部自由电荷会受到 电场力的作用而发生移动,从而形成 电流。
性质
导体具有导电性,其导电能力与温度 、光照、化学状态等因素有关。金属 导体是电导率最高的物质之一,而绝 缘体则几乎不导电。
导体的静电感应现象
当导体放入静电场中时,导体 表面会产生感应电荷,感应电 荷的分布与外界电场有关。
第二章 静电场中的导体与电介质
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
静电场中的导体和电介质
平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8
R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:
内
q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布
外
q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。
第6章 静电场中的导体与介质
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 r R1 和 r R2 时:
r
q 2 S E dS E 4 r
E
q 4 0 r
2
0
q 4 0 r 2 (r R1 ) E 0( R1 r R2 ) 2 q 4 0 r (r R2 )
6-1
例1: 点电荷 q 处于导体球壳的中心,球壳不带电, 内、外半径分别为 R1 和 R2 ,求这一带电体系产生 的电场和电荷在空间的分布。 电荷只能分布于球壳的内、 外表面,在导体内作一同心 球面高斯面。
当 R1 r R2 和 r R2 时: 当 r R1 时:
E0
r
R2 q S D dS S ( DdS cos 0 ) S DdS D S dS 2 D 4 r q自 q 0( r R1 ) q D 0 r E E q 2 ( R1 r R2 ) 2 4 r 4 0 r r
q2
q q1 S E dS 0
R1 q1
q R2 q
q1 q
0
r
根据电荷守恒定律: q2
q
6-1
例 2: 点电荷 q 处于导体球壳的中心,球壳接地,内 外半径分别为 R1 和 R2 ,求这一带电体系产生的电 场和电荷在空间的分布。
解:电场方向:沿半径向外。 当 R1 r R2 时: E 当 r R1 时:
导体内电场强度 外电场强度 感应电荷电场强度
6-1
二. 导体处于静电平衡时的特征
2)导体内部没有电荷,电荷只能分布于导体 表面。
证明:假设导体内部某点有电荷,在导体内作一 极小高斯面包围该点,则
q S E dS 0
0
S
另,由于导体内部场强处 处为零,有
S E dS 0
6-2
二. 介质的极化
3. 极化的分类: (1)有极分子的取向极化 电场对电偶极子的取向作 用:电偶极子在均匀电场 中受到的力矩总是力图使 电偶极子的偶极矩转到电 场的方向上去。
F
q
q
E
F
E
无外场时
有外场时的取向极化
取向极化的结果:出现极化电荷(图中为左右两 个侧面。 6-2
q (4 0 r )(r R1 ) E 0( R1 r R2 ) 0(r R ) 2
2
R2 R1 q1
q q
q2
r
电荷只能分布于球壳的内、外表 面。在导体内作一同心球面高斯 面 qq
E dS 0
S
在球壳外作一同心球面高斯面
0
1
S E S 0
E 0
面的电荷面密度 再证大小。如图作一筒状极 小高斯面
E
E内 0
二. 导体处于静电平衡时的特征
4)导体外部距导体表面很近的一点的场强垂直 于导体表面向外,大小为:
E 0
说明 1 :本场强为空间所 有电荷的场强。 说明 2 :对比无限大带电 面的场强:
q内 q自 q束 q自 0 S E dS q自 S E dS 0 0 0 0 , r 1 S ( 0 E ) dS q自 D 0 E
6-3
一. 有介质时的高斯定理
S D dS q自 其中 D 叫做电位移,且 D E 0 r E 其中 叫做绝对电容率,
6-1
E 0
三. 有导体存在时静电场的分析与计算
例1: 点电荷 q 处于导体球壳的中心,球壳不带电, 内、外半径分别为 R1 和 R2 ,求这一带电体系产生 的电场和电荷在空间的分布。 解:电场方向:沿半径向外。 当 R1 r R2 时: E
0
R1
q R2 q
6-1 静电场中导体
一. 静电平衡
1. 定义:导体上的自由电荷不作宏观运动的状态。 例如:静电感应
+
++ + +
感应电荷
6-1
二. 导体处于静电平衡时的特征
1)导体内部场强处处为零。
E0 ' E E 0
+ + + + + + + +
E0
' E E0 E 0
6-1
E内 0
二. 导体处于静电平衡时的特征
4)导体外部距导体表面很近的一点的场强垂直 于导体表面向外,大小为:
E 0 其中 为该点处导体表
E内 0
S E dS S ( EdS cos ) 上底 EdS E 上底 dS
r 0
叫做相对电容率。
6-3
一. 有介质时的高斯定理
S D dS q自
D E 0 r E
其中
r 0
叫做绝对电容率, 叫做相对电容率。
说明 1 :真空可被看成一种特殊介质(其特殊之处 在于非由原子或分子组成,因而不产生束缚电荷), 0 其绝对电容率为 ,相对电容率为 1 。
P1
A
P2
B
6-1
例 3: 两块金属平板 A、B 平行放置,且间距很小, 令两板分别带电 qA 和 qB,求四个板面上的电荷面密 度,设两板面积均为 S 。
1 2 3 4 0 1 2 3 4 0
q A 1S 2 S qB 3 S 4 S
q A qB 1 4 2S 2 3 q A qB 2S
讨论 1 :若
1 2 3 4
q A qB
1 4 0 qA 2 3 S
即电荷只分布在两板内表面。
A
B
6-1
例 3: 两块金属平板 A、B 平行放置,且间距很小, 令两板分别带电 qA 和 qB,求四个板面上的电荷面密 度,设两板面积均为 S 。
q A qB 1 4 2S 2 3 q A qB 2S
讨论 2 :若
1 2 3 4
q A qB
qA 1 4 S 2 3 0
即电荷只分布在两板外表面。
A
B
6-1
例 4: 在一接地的导体球外有一电量为 q 的点电荷,已 知球的半径为 R ,点电荷与球心的距离为 L ,求导体 球的带电。
二. 介质的极化
3. 极化的分类: (1)有极分子的取向极化
(2)无极分子的位移极化
E
无外场时 有外场时的位移极化
位移极化的结果:出现极化电荷(图中为左右 两个侧面。 总结:不论介质在电场中发生取向极化还是位移极 化,都将出现极化电荷(不一定在介质表面)。 6-2
6-3 电位移 有介质时的高斯定理
1 2 3 4 0 1 2 3 4 2 0 2 0 2 0 2 0 1 2 3 4 0 (1)
对 B 板内一点 P2 ,其电场为
1 2 3 4 0 2 0 2 0 2 0 2 0 1 2 3 4 0 (2)
q1 q
q q1 q2 S E dS 0
0
q2 0
即球 壳总 带电 不为 零!
6-1
例 3: 两块金属平板 A、B 平行放置,且间距很小, 令两板分别带电 qA 和 qB,求四个板面上的电荷面密 度,设两板面积均为 S 。 解:对 A 板内一点 P1 ,其电场为(设向右为正)
解:球接地,表明球电势与大 地电势相等,但绝不表明球不 带电!
q L
R
qo
q
dq Vo 0 球面 4 0 L 4 0 R q 1 q q 球面 dq 4 0 L 4 0 R 4 0 L 4 0 R R q q 0 L 6-1 q
E内 0
E 2 0
6-1
二. 导体处于静电平衡时的特征
5)孤立导体(距其它物体足够远的导体)的电荷 面密度随表面曲率的增大而增大(证明略)。
例如:
推论:孤立导体表面附近的电场强度 随表面曲率的增大而增大。
尖端放电:带电导体的尖端附近的电场特别大,可 使尖端附近的空气发生电离,从而产生放电。
一. 有介质时的高斯定理
有介质存在时,高斯 S E dS 定理的形式为:
q内
0
பைடு நூலகம்
q自 q束
0
说明:由于束缚电荷通常不易求出,故有介质时的 高斯定理通常采用以下的等价形式(证明略),在 这一形式中,束缚电荷不再出现。
S D dS q自 其中 D 叫做电位移,且 D E 0 r E 其中 叫做绝对电容率,
r 0
叫做相对电容率。
说明 2 :研究表明:导体除自由电荷之外的部分 不产生束缚电荷,若被看成介质,则其绝对电容 率为 0 ,相对电容率为 1 ,即等同于“真空”。
6-3
例 1: 半径为 R1 、带电为 q 的导体球为一内外半径 分别为 R1 和 R2 、相对电容率为 r 的介质球壳所包 围,求空间的电场和束缚电荷分布。 解:电场方向:沿半径向外。
(1)
(2)
1 2 3 4
另由电量关系: (3) (4)
q A qB 1 4 2 S 2 3 q A qB 2S
A
B
6-1
例 3: 两块金属平板 A、B 平行放置,且间距很小, 令两板分别带电 qA 和 qB,求四个板面上的电荷面密 度,设两板面积均为 S 。
H