汉源县一中2018-2019学年高三上学期11月月考数学试卷含答案
安县一中2018-2019学年高三上学期11月月考数学试卷含答案
安县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .362. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )A. B. C. D.3. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥n D .m ∥α,α∩β=n ,则m ∥n5.已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A.(,+∞) B .(1,) C .(2.+∞) D .(1,2)6. 不等式的解集为( )A .或B .C .或D .7. 设集合M={x|x 2﹣2x ﹣3<0},N={x|log 2x <0},则M ∩N 等于( )A .(﹣1,0)B .(﹣1,1)C .(0,1)D .(1,3)8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}9. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)10.执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .611.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=12.已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}二、填空题13.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .14.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .15.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.16.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 . 17.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .18.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.三、解答题19.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]20.已知平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为,右顶点为D (2,0),设点A (1,). (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程;(3)过原点O 的直线交椭圆于B ,C 两点,求△ABC 面积的最大值,并求此时直线BC 的方程.21.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.22.已知函数f (x )的导函数f ′(x )=x 2+2ax+b (ab ≠0),且f (0)=0.设曲线y=f (x )在原点处的切线l 1的斜率为k 1,过原点的另一条切线l 2的斜率为k 2. (1)若k 1:k 2=4:5,求函数f (x )的单调区间;(2)若k 2=tk 1时,函数f (x )无极值,且存在实数t 使f (b )<f (1﹣2t )成立,求实数a 的取值范围.23.(本小题满分12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,(sin ,5sin 5sin )m B A C =+,(5sin 6sin ,sin sin )n B C C A =--垂直. (1)求sin A 的值;(2)若a =ABC ∆的面积S 的最大值.24.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围.安县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13. 2:1 .14. .15.562716.12 17. 4 .18. 24三、解答题19.(1)最大值为,最小值为32 ;(2. 20.21.22.23.(1)45;(2)4. 24.。
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 使得(3x 2+)n(n ∈N +)的展开式中含有常数项的最小的n=( )A .3B .5C .6D .102. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A. B. C. D.3.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A. B. C. D.4. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.6. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.7. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .11.设f (x )=e x +x ﹣4,则函数f (x )的零点所在区间为( ) A .(﹣1,0)B .(0,1)C .(1,2)D .(2,3)12.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i二、填空题13.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 14.已知数列}{n a 的前n 项和为n S ,且满足11a =-,12n n a S +=(其中*)n ∈N ,则n S = .15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.16.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤20.选修4﹣5:不等式选讲已知f (x )=|ax+1|(a ∈R ),不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. (Ⅰ)求a 的值;(Ⅱ)若恒成立,求k 的取值范围.21.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.23.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n ﹣5r,令2n﹣5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.2.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B3.【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据几何概型的概率公式进行求解.4. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为2221118222PC PA AC PA =+=+,所以由球的体积可得2341243(8)3216PA ππ+=,解得72PA =,故选B .5. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.6. 【答案】C7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 8. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ;当x ∈[0,2]时,f (x )=y=2x 2﹣e x, ∴f ′(x )=4x ﹣e x=0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D9. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法; 故选:C .10.【答案】D【解析】 设的公比为,则,,因为也是等比数列,所以,即,所以 因为,所以,即,所以,故选D答案:D11.【答案】C【解析】解:f (x )=e x+x ﹣4, f (﹣1)=e ﹣1﹣1﹣4<0,f (0)=e 0+0﹣4<0, f (1)=e 1+1﹣4<0, f (2)=e 2+2﹣4>0, f (3)=e 3+3﹣4>0, ∵f (1)•f (2)<0,∴由零点判定定理可知,函数的零点在(1,2). 故选:C .12.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.二、填空题13.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{ 0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 14.【答案】13n --【解析】∵12n n a S +=,∴12n n n S S S +-=, ∴∴13n n S S +=,11133n n n S S --=⋅=. 15.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积. 16.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1. 故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查.17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 18.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键.三、解答题19.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211xx f x exx e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f>,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(3)
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15. .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。
城区民族中学2018-2019学年高三上学期11月月考数学试卷含答案(2)
城区民族中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 命题“若α=,则tan α=1”的逆否命题是()A .若α≠,则tan α≠1B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=2. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( )A .5B .4C .3D .23. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是()A .2mB .2m C .4 m D .6 m4. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为()A .B .C .D .5. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣6. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<b B .a <b <1C .1<a <bD .b <1<a7. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=()A .B .C .2D .38. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知函数关于直线对称 , 且,则的最小值为()sin f x a x x =-6x π=-12()()4f x f x ⋅=-12x x +A 、 B 、C 、D 、6π3π56π23π10.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形11.已知平面向量、满足,,则()a b ||||1==a b (2)⊥-a a b ||+=a b A . B . C .D .022312.已知实数,,则点落在区域 内的概率为( )[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………A.B.C.D.34381418【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.二、填空题13.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.14.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .16.已知函数f (x )=cosxsinx ,给出下列四个结论:①若f (x 1)=﹣f (x 2),则x 1=﹣x 2;②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .17.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .18.已知f (x )=x (e x +a e -x )为偶函数,则a =________.三、解答题19.(本小题满分13分)如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线22:14x C y +=,A B P ,A B ,AP BP 与直线分别交于点,:2l y =-,M N (1)设直线的斜率分别为,求证:为定值;,AP BP 12,k k 12k k ⋅(2)求线段的长的最小值;MN (3)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.P MN【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.20.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.21.已知函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )的图象,若y=g (x )图象的一个对称点为(,0),求θ的最小值.(3)对任意的x ∈[,]时,方程f (x )=m 有两个不等根,求m 的取值范围.22.等差数列{a n} 中,a1=1,前n项和S n满足条件,(Ⅰ)求数列{a n} 的通项公式和S n;(Ⅱ)记b n=a n2n﹣1,求数列{b n}的前n项和T n.23.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.24.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30oA ||PA城区民族中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.2.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.3.【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x2=﹣2py(p>0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x2=﹣4y,设C(x,y)(y>﹣6),则由A(﹣4,﹣6),B(4,﹣6),可得k CA=,k CB=,∴tan∠BCA===,令t=y+6(t>0),则tan∠BCA==≥∴t=2时,位置C对隧道底AB的张角最大,故选:A.【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan∠BCA,正确运用基本不等式是关键.4.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.5.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B6.【答案】A【解析】解:由f(x)=e x+x﹣2=0得e x=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出计算y=e x,y=lnx,y=2﹣x的图象如图:∵函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=e x与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选:A.【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键. 7. 【答案】D 【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b 2﹣8b ﹣3=0,∴解得:b=3或﹣(舍去).故选:D . 8. 【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C 选项.故选:C .【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义. 9. 【答案】D 【解析】:()sin )(tan f x a x x x ϕϕ=-=-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-Q Q 对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=10.【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A ,∴sin (A+B )+sin (B ﹣A )=sin2A ,∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA ,∴2cosA (sinA ﹣sinB )=0,∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形故选:D .【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题. 11.【答案】D【解析】∵,∴,(2)⊥-a a b (2)0⋅-=a a b ∴,21122⋅==a b a∴||+==a b.==12.【答案】B 【解析】二、填空题13.【答案】649π【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.14.【答案】 (1,±2) .【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.15.【答案】= .【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin2B.再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.C=,由a,b,c成等差数列可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.化简可得5ab=3b2,∴=.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.16.【答案】 ③④ .【解析】解:函数f(x)=cosxsinx=sin2x,对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z当k=0时,x∈[﹣,],f(x)是增函数,故③正确;对于④,将x=代入函数f(x)得,f()=﹣为最小值,故f (x )的图象关于直线x=对称,④正确.综上,正确的命题是③④.故答案为:③④. 17.【答案】 4 .【解析】解:由已知可得直线AF 的方程为y=(x ﹣1),联立直线与抛物线方程消元得:3x 2﹣10x+3=0,解之得:x 1=3,x 2=(据题意应舍去),由抛物线定义可得:AF=x 1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题. 18.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立,即(-x )(e -x +a e x )=x (e x +a e -x ),∴a (e x +e -x )=-(e x +e -x ),∴a =-1.答案:-1三、解答题19.【答案】【解析】(1)易知,设,则由题设可知 ,()()0,1,0,1A B -()00,P x y 00x ≠ 直线AP 的斜率,BP 的斜率,又点P 在椭圆上,所以∴0101y k x -=0201y k x +=,,从而有.(4分)20014x y +=()00x ≠200012200011114y y y k k x x x -+-⋅===-20.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分)(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)21.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.22.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.23.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P (X=0)=(1﹣)(1﹣)==;P (X=1)==;P (X=2)==.∴X 的分布列为:X 0 12PEX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用. 24.【答案】(1),;(22cos 3sin x y θθ=⎧⎨=⎩26y x =-+【解析】试题分析:(1)由平方关系和曲线方程写出曲线的参数方程,消去参数作可得直线的普通方程;(2)C C 由曲线的参数方程设曲线上任意一点的坐标,利用点到直线的距离公式求出点直线的距离,利用正C C P P 弦函数求出,利用辅助角公式进行化简,再由正弦函数的性质求出的最大值与最小值.PA PA 试题解析:(1)曲线的参数方程为,(为参数),直线的普通方程为.C 2cos 3sin x y θθ=⎧⎨=⎩26y x =-+(2)曲线上任意一点到的距离为.C (2cos ,3sin )P θθ|4cos 3sin 6|d θθ=+-则,其中为锐角,且,当时,取||5sin()6|sin 30d PA θα==+-oα4tan 3α=sin()1θα+=-||PA当时,sin()1θα+=||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.。
四川省汉源县第一中学高一数学上学期期中考试
汉源一中高一—上半期考试题(必修1、4)数 学(考试时间1,总分150分,请将答案填写在答题卡上.........,只交答题卡.....,不交试卷....) 一、 选择题:每小题5分,共60分1、一次函数y=x+3与y=-2x+6的图象的交点组成的集合正确表示为( ) (A ) {1,4} (B ) {(1,4)} (C ){4,1} (D ) {(4,1)}2、集合A={y|y=x 2-4,x ∈R },则集合A 与下列哪个集合相等( ) (A )R (B ){y|y= -4} (C ){y|y ≤-4} (D ){y|y ≥ -4} 3、下列各式哪一个是不成立的( )(A ){x|x 是等边三角形}⊆{x|x 是等腰三角形} (B )R π∈ (C ) 2{|10}x xφ⊆+= (D ){0,1}N ∈4、已知集合{|36},{|29}A x x B x x =≤<=<<,则()RA B C=( )(A ){|236<9}x x x <<≤或 (B ) R (C ) {|69}x x << (D ){|69}x x ≤< 5、已知集合A={1,2,3},集合B 满足A B={1,2,3},则集合B 有( )个(A )6 (B )7 (C )8 (D )96、设平面内有ABC ∆,且P 表示这个平面内的动点,属于集合{P|PA=PB}{P|PC=PB}的点是ABC ∆的( )(A )内心 (B )外心 (C ) 重心 (D ) 垂心 7、函数2()2,[0,3]f x x x x=-∈,则f(x)的最大值、最小值分别为( )(A )3,0 (B )6,-1 (C )3,-1 (D )4,0 8、552222100.2564(16)log log log log log +-+= ( )(A )-2 (B )-1 (C )0 (D )19、下列函数在其定义域上是奇函数,且在区间(0,)+∞上是增函数的是( ) (A )13y x=- (B )y=x -1 (C )y=x 3 (D )y=2x10、下列不等式成立的是(其中a>0且1a ≠) ( ) (A )5.1 5.9log log aa< (B )0.80.9aa <(C )0.33.11.70.9< (D )30.52.9 2.2log log >11、已知集合2{|(1),1},{|,1},1log()2xA y y x xB y y x A B ==+>==>-=( )(A ){|2}y y < (B )φ (C ){|1}y y > (D ){|12}y y <<12、已知函数4()12xf x a =-+是奇函数,则a 的值为( )(A )0 (B )1 (C )2 (D )4二、 填空题:每小题4分,共16分13、高一年级举办了一次年级运动会,5班有8名同学参赛,又举行了一次球类运动会,这个班有12名同学参赛,两次运动会都参加的有4人,两次运动会中,这个班共有 名同学参赛。
乾县一中2018-2019学年高三上学期11月月考数学试卷含答案
乾县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知正项等差数列{}n a 中,12315a a a ++=,若1232,5,13a a a +++成等比数列,则10a =( ) A .19 B .20 C .21 D .22 2. 有下列关于三角函数的命题P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 23. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.4. 已知函数f (x )=e x +x ,g (x )=lnx+x ,h (x )=x﹣的零点依次为a ,b ,c ,则( )A .c <b <aB .a <b <cC .c <a <bD .b <a <c 5.函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .136. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3A .πB .2πC .3πD .4π班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π8. 在ABC ∆中,b =3c =,30B =,则等于( )A B . C D .2 9. 执行如图所示的程序框图,输出的z 值为( )A .3B .4C .5D .610.已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .11.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值12.设函数f(x)=,则f(1)=()A.0 B.1 C.2 D.3二、填空题13.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.14.已知||=1,||=2,与的夹角为,那么|+||﹣|=.15.在(1+2x)10的展开式中,x2项的系数为(结果用数值表示).16.一根铁丝长为6米,铁丝上有5个节点将铁丝6等分,现从5个节点中随机选一个将铁丝剪断,则所得的两段铁丝长均不小于2的概率为________.17.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.18.已知直线5x+12y+m=0与圆x2﹣2x+y2=0相切,则m=.三、解答题19.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.20.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小。
沂源县一中2018-2019学年高三上学期11月月考数学试卷含答案
沂源县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )=e ln|x|+的大致图象为()A .B .C .D .2. 已知函数,若存在常数使得方程有两个不等的实根211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x (),那么的取值范围为( )12x x <12()x f x ∙A . B . C . D .3[,1)41[831[,1623[,3)83. 不等式恒成立的条件是( )A .m >2B .m <2C .m <0或m >2D .0<m <24. 若关于的不等式的解集为或,则的取值为( )2043x ax x +>++31x -<<-2x >A . B . C . D .1212-2-5. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24256. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁UN )7. 下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台8. 二进制数化为十进制数的结果为( )((210101A .B .C .D .152133419. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1B .﹣=1C .﹣=1D .﹣=1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( )A .(1,5)B .(1,4)C .(0,4)D .(4,0)11.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为()A .B .C .D .12.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( )A .{5}B .{1,2,5}C .{1,2,3,4,5}D .∅二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)14.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .15.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.16.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .17.当时,4x <log a x ,则a 的取值范围 .18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线()()ln R xf x x a a x=+-∈122e e 1x x y +=+(为自然对数的底数)上存在点使得,则实数的取值范围为__________.e ()00,x y ()()00f f y y =a 三、解答题19.设A=,,集合2{x|2x+ax+2=0}2A ∈2{x |x 1}B ==(1)求的值,并写出集合A 的所有子集;a(2)若集合,且,求实数的值。
汉源县一中2018-2019学年上学期高三数学10月月考试题
汉源县一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 记,那么AB C D2. 一个骰子由六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( )1~6A .6B .3C .1D .23. 在中,,那么一定是( )ABC ∆22tan sin tan sin A B B A =AA ABC ∆A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A .36种B .38种C .108种D .114种5. 设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是A4B6C8D106. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)7. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141018. 下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()()2xf x x =-11(,)32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥9. 已知在数轴上0和3之间任取一实数,则使“”的概率为( )2log 1x <A .B .C .D .14182311210.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( )A .0B .1C .2D .311.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .12.命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠0二、填空题13.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .15.已知函数的三个零点成等比数列,则 .5()sin (0)2f x x a x π=-≤≤2log a =16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 . 三、解答题17.等差数列{a n } 中,a 1=1,前n 项和S n 满足条件,(Ⅰ)求数列{a n } 的通项公式和S n ;(Ⅱ)记b n =a n 2n ﹣1,求数列{b n }的前n 项和T n .18.(本题满分14分)已知两点与是直角坐标平面内两定点,过曲线上一点作)1,0(-P )1,0(Q C ),(y x M y轴的垂线,垂足为,点满足,且.N E ME =0=⋅PE QM (1)求曲线的方程;C (2)设直线与曲线交于两点,坐标原点到直线的距离为,求面积的最大值.l C B A ,O l 23AOB ∆【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.19.一块边长为10cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V 与x 的函数关系式,并求出函数的定义域.20.已知函数f (x )=2cosx (sinx+cosx )﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.21.(本小题满分10分)选修44:坐标系与参数方程.在直角坐标系中,曲线C 1:(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐{x =1+3cos αy =2+3sin α)标系,C 2的极坐标方程为ρ=.2sin (θ+π4)(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面3π4积.22.(本小题满分10分)选修4—5:不等式选讲已知函数.3212)(-++=x x x f (I )若,使得不等式成立,求实数的最小值;R x ∈∃0m x f ≤)(0m M (Ⅱ)在(I )的条件下,若正数满足,证明:.,a b 3a b M +=313b a+≥23.已知条件4:11p x ≤--,条件22:q x x a a +<-,且p 是的一个必要不充分条件,求实数的取值范围.汉源县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】【解析1】,所以【解析2】,2. 【答案】A 【解析】试题分析:根据与相邻的数是,而与相邻的数有,所以是相邻的数,故“?”表示的数是,1,4,31,2,51,3,5故选A .考点:几何体的结构特征.3. 【答案】D 【解析】试题分析:在中,,化简得,解得ABC ∆22tan sin tan sin A B B A =A A 22sin sin sin sin cos cos A BB A A B=A ,即,所以或,即sin sin sin cos sin cos cos cos B AA AB B A B=⇒=sin 2sin 2A B =22A B =22A B π=-A B =或,所以三角形为等腰三角形或直角三角形,故选D .2A B π+=考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试sin 2sin 2A B =A B =2A B π+=题的一个难点,属于中档试题.4. 【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.5.【答案】B【解析】本题考查了对数的计算、列举思想a=-时,不符;a=0时,y=log2x过点(,-1),(1,0),此时b=0,b=1符合;a=时,y=log2(x+)过点(0,-1),(,0),此时b=0,b=1符合;a=1时,y=log2(x+1)过点(-,-1),(0,0),(1,1),此时b=-1,b=1符合;共6个6.【答案】A【解析】解:令f(x)=x3﹣,∵f′(x)=3x2﹣ln=3x2+ln2>0,∴f(x)=x3﹣在R上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.7.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题. 8. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.9. 【答案】C 【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.2log 1x <02x <<202303-=-考点:几何概型.10.【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2.故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题. 11.【答案】D【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为,画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,∴△A ′B ′C ′的高为=,∴△A ′B ′C ′的面积S==.故选D .【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 12.【答案】D【解析】解:“且”的否定为“或”,因此其逆否命题为“若a ≠0或b ≠0,则a 2+b 2≠0”;故选D .【点评】此类题型考查四种命题的定义与相互关系,一般较简单,但要注意常见逻辑连接词的运用与其各自的否定方法、形式. 二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的是1,3,5,7,9,11,13,15, 17中不是3的x 倍数的数,所以所有输出值的和.54171311751=+++++14.【答案】【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒==a b +=考点:指对数式运算15.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.16.【答案】 .【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题三、解答题17.【答案】【解析】解:(Ⅰ)设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2﹣a1=2,所以a n=a1+(n﹣1)d=2n﹣1,=(Ⅱ)由b n=a n2n﹣1,得b n=(2n﹣1)2n﹣1.所以T n=1+321+522+…+(2n﹣1)2n﹣1①2T n=2+322+523+…+(2n﹣3)2n﹣1+(2n﹣1)2n②①﹣②得:﹣T n=1+22+222+…+22n﹣1﹣(2n﹣1)2n=2(1+2+22+…+2n﹣1)﹣(2n﹣1)2n﹣1=2×﹣(2n﹣1)2n﹣1=2n(3﹣2n)﹣3.∴T n=(2n﹣3)2n+3.【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.此方法是数列求和部分高考考查的重点及热点.18.【答案】【解析】(1)依题意知,∵,∴),0(y N )0,32()0,(32x x ME -=-==),31(y x E 则, …………2分)1,(-=y x QM )1,31(+=y x PE ∵,∴,即0=⋅PE QM 0)1)(1(31=+-+⋅y y x x 1322=+y x ∴曲线的方程为 …………4分C 1322=+y x19.【答案】【解析】解:如图,设所截等腰三角形的底边边长为xcm,在Rt△EOF中,,∴,∴依题意函数的定义域为{x|0<x<10}【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.20.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.【答案】【解析】解:(1)由C 1:(α为参数){x =1+3cos αy =2+3sin α)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9.即C 1的普通方程为(x -1)2+(y -2)2=9,由C 2:ρ=得2sin (θ+π4)ρ(sin θ+cos θ)=2,即x +y -2=0,即C 2的普通方程为x +y -2=0.(2)由C 1:(x -1)2+(y -2)2=9得x 2+y 2-2x -4y -4=0,其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0,将θ=代入上式得3π4ρ2-ρ-4=0,2ρ1+ρ2=,ρ1ρ2=-4,2∴|MN |=|ρ1-ρ2|==3.(ρ1+ρ2)2-4ρ1ρ22C 3:θ=π(ρ∈R )的直角坐标方程为x +y =0,34∴C 2与C 3是两平行直线,其距离d ==.222∴△PMN 的面积为S =|MN |×d =×3×=3.121222即△PMN 的面积为3.22.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.23.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p 列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦ 综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.。
汉源县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
汉源县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C.D.2. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π3. 若函数f (x )=2sin (ωx+φ)对任意x 都有f(+x )=f (﹣x ),则f()=( )A .2或0B .0C .﹣2或0D .﹣2或24. 已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B.(,,)C.(,,)D.(,,)5. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅6.设函数,则有( )A .f (x)是奇函数,B .f (x)是奇函数, y=b xC .f (x)是偶函数D .f (x)是偶函数,7. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i8. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q10.已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐C 的离心率是( )A B .2 C D 11.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .12.常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .15.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .16.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 17.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.18.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.三、解答题19.已知椭圆:+=1(a >b >0)的一个顶点为A (2,0),且焦距为2,直线l 交椭圆于E 、F 两点(E 、F 与A 点不重合),且满足AE ⊥AF . (Ⅰ)求椭圆的标准方程;(Ⅱ)O 为坐标原点,若点P 满足2=+,求直线AP 的斜率的取值范围.20.已知=(sinx ,cosx ),=(sinx ,sinx ),设函数f (x )=﹣.(1)写出函数f (x )的周期,并求函数f (x )的单调递增区间;(2)求f (x )在区间[π,]上的最大值和最小值.21.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?22.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.23.设函数f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x+2)=﹣f (x ),当x ∈[0,2]时,f (x )=2x ﹣x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值.24.已知函数f (x )=xlnx+ax (a ∈R ). (Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986)汉源县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.4π14.2.15.1-1,3]16.222,02,0x x xyx x x⎧-≥⎪=⎨--<⎪⎩17.必要不充分18.70三、解答题19.20.21.(1)(2)22.23.24.。
汉源县高级中学2018-2019学年上学期高三数学10月月考试题
汉源县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设A ,B 为两个不相等的集合,条件p :x ∈A ∩B ,条件q :x ∈A 或x ∈B ,则p 是q 的( ) A .充分且必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件2. 复数z=的共轭复数在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣14. 若集合,则= ( )ABC D5. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .46. 在ABC ∆中,若60A ∠= ,45B ∠=,BC =AC =( )A .B . C. D 7. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数8. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.9. 已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( )A .A ØB B .A B B =C .()R A B ≠∅ ðD .()R A B R = ð10.若某程序框图如图所示,则该程序运行后输出的值是( ) A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.二、填空题11.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大. 12.函数的定义域为 .13.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .14.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 15.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm.三、解答题17.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.18.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.19f x=sinωx+φω00φ2π(2)求函数g(x)=f(x)+sin2x的单调递增区间.20.已知数列{a n }的前n 项和为S n ,首项为b ,若存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)问是否存在一组非零常数a ,b ,使得{S n }成等比数列?若存在,求出常数a ,b 的值,若不存在,请说明理由.21.(本小题满分14分)设集合12432x A x -⎧⎫=⎨⎬⎩⎭≤≤,{}()222300B x x mx m m =+-<>.(1) 若2m =,求A B ⋂;(2) 若B A ⊇,求实数m 的取值范围.22.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x=5上,圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足?若存在,指出有几个这样的点;若不存在,请说明理由.汉源县高级中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:若x∈A∩B,则x∈A或x∈B成立,若x∈A,且x∉A∩B,满足x∈A或x∈B但x∈A∩B,不成立,故p是q的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键.2.【答案】C【解析】解:∵复数z====﹣+i,∴=﹣﹣i,它在复平面上对应的点为(﹣,﹣),在第三象限,故选C.【点评】本题主要考查复数的基本概念,复数代数形式的乘除运算,复数与复平面内对应点之间的关系,属于基础题.3.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.4.【答案】B【解析】5.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f (x ﹣2)+f (y ﹣2)=2﹣2=0, 即f (x ﹣2)=﹣f (y ﹣2)=f (2﹣y ),∵函数f (t )单调递增 ∴x ﹣2=2﹣y , 即x+y=4, 故选:D . 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f (t )是解决本题的关键,综合考查了函数的性质.6. 【答案】B 【解析】考点:正弦定理的应用. 7. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.8. 【答案】A9. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 10.【答案】A【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A.二、填空题11.【答案】48 【解析】12.【答案】 [﹣2,1)∪(1,2] .【解析】解:要使函数有意义,需满足,解得:﹣2≤x ≤2且x ≠1,所以函数的定义域为:[﹣2,1)∪(1,2]. 故答案为:[﹣2,1)∪(1,2].13.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.14.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键.15.【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义 16.【答案】20 【解析】考点:棱台的表面积的求解.三、解答题17.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,则X 的值可以为0,2,4,6,8,10,12.…………5分而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=;1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=;1111(12)23424P X ==⨯⨯=.…………………9分所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分18.【答案】【解析】设f (x )=x 2﹣ax+2.当x ∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t 取得最小值,此时x=9∴税率t 的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位! 19.【答案】【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f (x )的周期为T=2(﹣0)=π.所以ω==2,由sin (2×0+φ)=1,且0<φ<2π,所以φ=.所以函数的解析式为f (x )=sin (2x+)=cos2x …6分(2)g (x )=f (x )+sin2x=sin2x+cos2x=2sin (2x+),令2k≤2x+≤2k,k ∈Z 则得k π﹣≤x ≤k π+,k ∈Z故函数g (x )=f (x )+sin2x 的单调递增区间是:,k ∈Z …12分【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.20.【答案】【解析】解:(Ⅰ)∵数列{a n }的前n 项和为S n ,首项为b ,存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立,由题意得当n=1时,(1﹣a )b=b ﹣a 2,∴a 2=ab=aa 1, 当n ≥2时,(1﹣a )S n =b ﹣a n+1,(1﹣a )S n+1=b ﹣a n+1, 两式作差,得:a n+2=a •a n+1,n ≥2, ∴{a n }是首项为b ,公比为a 的等比数列,∴.(Ⅱ)当a=1时,S n =na 1=nb ,不合题意,当a ≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a ,b ,使得{S n }成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.21.【答案】(1) {}22x x -<≤ (2) 203m <≤【解析】(2) ()3,B m m =-,,要使A B ⊆ 1只要32253m m m --⎧⇒⎨⎩≤≤≥, ……………………………………………………12分 所以203m <≤综上,知m 的取值范围是:203m <≤……………………………………………14分考点:集合运算【易错点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解. 22.【答案】【解析】解:(1)圆弧 C 1所在圆的方程为 x 2+y 2=169,令x=5,解得M (5,12),N (5,﹣12)…2分则直线AM 的中垂线方程为 y ﹣6=2(x ﹣17), 令y=0,得圆弧 C 2所在圆的圆心为 (14,0), 又圆弧C 2 所在圆的半径为29﹣14=15,所以圆弧C 2 的方程为(x ﹣14)2+y 2=225(5≤x ≤29)…5分(2)假设存在这样的点P (x ,y ),则由PA=PO ,得x 2+y 2+2x ﹣29=0 …8分由,解得x=﹣70 (舍去) 9分由,解得 x=0(舍去),综上知,这样的点P 不存在…10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强.。
汉源县高中2018-2019学年上学期高三数学10月月考试题
汉源县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a2. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .3. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.4. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .35. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 6. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .27. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( ) A .{|2}a a ≤ B .{|1}a a ≤ C .{|1}a a ≥ D .{|2}a a ≥ 8. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( )A .31B .C .35D . 9. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 10.若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.11.下列四组函数中表示同一函数的是( )A .()f x x =,2()g x =B .2()f x x =,2()(1)g x x =+C .()f x =()||g x x =D .()0f x =,()g x =1111]12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).14.在△ABC 中,a=1,B=45°,S △ABC =2,则b= .15.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 . 16.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .三、解答题(本大共6小题,共70分。
汉源县高中2018-2019学年高三下学期第三次月考试卷数学
汉源县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 2. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .643 D .3233. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A. B. C. D.4. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________综合性强,难度大.5.在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.若sinC+sin(B﹣A)=sin2A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所在过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形7.“x>0”是“>0”成立的()A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件8.已知||=3,||=1,与的夹角为,那么|﹣4|等于()A.2 B.C.D.139.若某程序框图如图所示,则该程序运行后输出的值是()A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.10.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣11.已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >二、填空题13.函数的单调递增区间是 .14.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值. 16.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .17.已知复数,则1+z 50+z 100= .18.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 .三、解答题19.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.20.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.21.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.22.己知函数f(x)=lnx﹣ax+1(a>0).(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1<x2)两点,AB中点为C(x0,0),设函数f (x)的导函数为f′(x),求证:f′(x0)<0.23.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.24.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.25.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).(Ⅰ)分别求V与S关于θ的函数表达式;(Ⅱ)求侧面积S的最大值;(Ⅲ)求θ的值,使体积V最大.26.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S 合计汉源县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】考点:二元一次不等式所表示的平面区域.2.【答案】B【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:144432⨯⨯⨯=,故选B.2考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.4.【答案】D第Ⅱ卷(共100分)[.Com]5.【答案】D【解析】解:∵sinC+sin(B﹣A)=sin2A,∴sin(A+B)+sin(B﹣A)=sin2A,∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,∴2cosAsinB=sin2A=2sinAcosA,∴2cosA(sinA﹣sinB)=0,∴cosA=0,或sinA=sinB,∴A=,或a=b,∴△ABC为等腰三角形或直角三角形故选:D.【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.6.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.7.【答案】A【解析】解:当x>0时,x2>0,则>0∴“x>0”是“>0”成立的充分条件;但>0,x2>0,时x>0不一定成立∴“x>0”不是“>0”成立的必要条件;故“x>0”是“>0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p 为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.9.【答案】A【解析】运行该程序,注意到循环终止的条件,有n=10,i=1;n=5,i=2;n=16,i=3;n=8,i=4;n=4,i=5;n=2,i=6;n=1,i=7,到此循环终止,故选A.10.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D11.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],12.【答案】B【解析】解:当a=0时,f(x)=﹣2x+2,符合题意当a≠0时,要使函数f(x)=ax2+2(a﹣1)x+2在区间(﹣∞,4]上为减函数∴⇒0<a≤综上所述0≤a≤故选B【点评】本题主要考查了已知函数再某区间上的单调性求参数a的范围的问题,以及分类讨论的数学思想,属于基础题.二、填空题13.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).14.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.15.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.16.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.17.【答案】 i .【解析】解:复数,所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1.18.【答案】 (﹣∞,3] .【解析】解:f ′(x )=3x 2﹣2ax+3, ∵f (x )在[1,+∞)上是增函数, ∴f ′(x )在[1,+∞)上恒有f ′(x )≥0,即3x 2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f ′(1)=﹣2a+6≥0, ∴a ≤3;实数a 的取值范围是(﹣∞,3].三、解答题19.【答案】(1);(2)01a <<.1111] 【解析】则'()0f x ≥对0x >恒成立,即1()3a x x≥-++对0x >恒成立,而当0x >时,1()3231x x-++≤-+=,∴1a ≥.若函数()f x 在(0,)+∞上递减,则'()0f x ≤对0x >恒成立,即1()3a x x≤-++对0x >恒成立, 这是不可能的. 综上,1a ≥. 的最小值为1. 1(2)由21()()(2)2ln 02f x a x a x x =-+-+=, 得21()(2)2ln 2a x a x x -+-=,即2ln x x a x +=,令2ln ()x x r x x +=,2331(1)2(ln )12ln '()x x x x x x x r x x x+-+--==,得12ln 0x x --=的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 20.【答案】【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=.当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增; 当a >0时,由f ′(x )>0,解得x >a ;由f ′(x )<0,解得0<x <a . 所以f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ). 综上述:a ≤0时,f (x )的单调递增区间是(0,+∞);a >0时,f (x )的单调递减区间是(0,a ),单调递增区间是(a ,+∞). (Ⅱ)(ⅰ)由(Ⅰ)知,当a ≤0时,f (x )无最小值,不合题意; 当a >0时,[f (x )]min =f (a )=1﹣a+lna=0,令g (x )=1﹣x+lnx (x >0),则g ′(x )=﹣1+=,由g ′(x )>0,解得0<x <1;由g ′(x )<0,解得x >1.所以g (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). 故[g (x )]max =g (1)=0,即当且仅当x=1时,g (x )=0. 因此,a=1.(ⅱ)因为f (x )=lnx ﹣1+,所以a n+1=f (a n )+2=1++lna n .由a 1=1得a 2=2于是a 3=+ln2.因为<ln2<1,所以2<a 3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.21.【答案】【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,∴,化简得,∴Q点的轨迹C的方程为.…(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,从而,,…又|AM|=|AN|,∴AP⊥MN.则,即2m=3k2+1,②将②代入①得2m>m2,解得0<m<2,由②得,解得,故所求的m的取值范围是(,2).…(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,解得﹣1<m<1.…综上,当k≠0时,m的取值范围是(,2),当k=0时,m的取值范围是(﹣1,1).…【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.22.【答案】【解析】解:(1),令f'(x)>0,则;令f'(x)<0,则.∴f(x)在x=a时取得最大值,即①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞∴f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;②当,即a=1时,f(x)有1个零点;③当,即a>1时f(x)没有零点;(2)由得(0<x1<x2),=,令,设,t∈(0,1)且h(1)=0则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0即,又,∴f'(x0)=<0.【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求.23.【答案】【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,解方程得z=±i.又∵z的实部和虚部都是整数,∴t=2或t=6,故满足条件的复数共4个:z=1±3i 或z=3±i.24.【答案】【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.25.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cosθ+2sin+1),θ∈(0,),梯形ABCD的面积S ABCD=﹣sinθ=sinθcosθ+sinθ,θ∈(0,),体积V(θ)=10(sinθcosθ+sinθ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD)=10(2+4sin+2cosθ)=20(cos+1),θ∈(0,),设g(θ)=cos+1,g(θ)=﹣2sin2+2sin+2,∴当sin=,θ∈(0,),即θ=时,木梁的侧面积s 最大.所以θ=时,木梁的侧面积s 最大为40m 2.(Ⅲ)V ′(θ)=10(2cos 2θ+cos θ﹣1)=10(2cos θ﹣1)(cos θ+1)令V ′(θ)=0,得cos θ=,或cos θ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cos θ<1,V ′(θ)>0,V (θ)为增函数;当θ∈(,)时,0<cos θ<,V ′(θ)>0,V (θ)为减函数.∴当θ=时,体积V 最大.26.【答案】【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,②中的值为=0.40,③中的值为50×0.2=10,④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;(2)不低于85的概率P=×0.20+0.30=0.40,∴获奖的人数大约为800×0.40=320; (3)该程序的功能是求平均数,S=65×0.10+75×0.40+85×0.20+95×0.30=82, ∴800名学生的平均分为82分。
汉源县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
汉源县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.双曲线的渐近线方程是()A.B.C.D.2.将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是()A.x=πB.C.D.3.已知函数f(x)=31+|x|﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.B.C.(﹣,)D.4.在△ABC中,,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角D.等腰或直角三角形5.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.36.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2}B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2}D.{x|x<﹣lg2}7.已知函数f(x)的图象如图,则它的一个可能的解析式为()A.y=2B.y=log3(x+1)C.y=4﹣D.y=8. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .9. 由两个1,两个2,两个3组成的6位数的个数为( )A .45B .90C .120D .36010.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .11.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④12.已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1(3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A .B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(二、填空题13.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 14.定积分sintcostdt= .15.在△ABC中,已知=2,b=2a,那么cosB的值是 .16.设,则17.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .18.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .三、解答题19.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.20.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.21.(本小题满分10分)已知函数f(x)=|x-a|+|x+b|,(a≥0,b≥0).(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x)≥+.a b22.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由. 24.(本题满分12分)已知数列的前项和为,且,().}{n a n n S 332-=n n a S +∈N n (1)求数列的通项公式;}{n a (2)记,是数列的前项和,求.nn a n b 14+=n T }{n b n n T 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能n 力的考查,属于中档难度.汉源县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x.故选:B.【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题. 2.【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x,再向右平移个单位得到y=cos[(x)],由(x)=kπ,得x=2kπ,即+2kπ,k∈Z,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.3.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.4.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.5.【答案】A【解析】解:由,得3x2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y﹣8=0与抛物线y=﹣x2无交点.设与直线4x+3y﹣8=0平行的直线为4x+3y+m=0联立,得3x2﹣4x﹣m=0.由△=(﹣4)2﹣4×3(﹣m)=16+12m=0,得m=﹣.所以与直线4x+3y﹣8=0平行且与抛物线y=﹣x2相切的直线方程为4x+3y﹣=0.所以抛物线y=﹣x2上的一点到直线4x+3y﹣8=0的距离的最小值是=.故选:A.【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.6.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D7.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.8.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义. 9.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题. 10.【答案】B【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|,则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M ,P ,F 三点共线时,取得最小值,为.故选:B .【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想. 11.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635>人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .12.【答案】A 【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以p 2π=∠APB AB ()()11322=-++y x ,解得,因此,命题是真命题.命题:函数,,121+≤≤-n n 31≤≤n p ()xxx f 3log 4-=()0log 1443<-=f ,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是()0log 34333>-=f ()x f []4,3()x f ()4,3假命题.因此只有为真命题.故选A .)(q p ⌝∧考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆P 2π=∠APB AB P 上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数1)1(3(22=-++y x P是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.x x x f 3log 4)(-=二、填空题13.【答案】 .【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.14.【答案】 .【解析】解: 0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:15.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.16.【答案】9【解析】由柯西不等式可知17.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.18.【答案】 [,1] .【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.三、解答题19.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.20.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.21.【答案】【解析】解:(1)由|x-a|+|x+b|≥|(x-a)-(x+b)|=|a+b|得,当且仅当(x-a)(x+b)≤0,即-b≤x≤a时,f(x)取得最小值,∴当x∈[-b,a]时,f(x)min=|a+b|=a+b.(2)证明:由(1)知a+b=2,(+)2=a+b+2≤2(a+b)=4,a b ab∴+≤2,a b∴f(x)≥a+b=2≥+,a b即f(x)≥+.a b22.【答案】【解析】(1)证明:∵AC=BC=AB,∴△ABC为等腰直角三角形,∵M为AB的中点,∴AM=BM=CM,CM⊥AB,∵EA⊥平面ABC,∴EA⊥AC,设AM=BM=CM=1,则有AC=,AE=AC=,在Rt△AEC中,根据勾股定理得:EC==,在Rt△AEM中,根据勾股定理得:EM==,∴EM2+MC2=EC2,∴CM⊥EM;(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.23.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD ⊥CD ,PD ⊥AD ,∵PD=AD ,F 是PA 的中点,∴DF ⊥PA ,∴∠PDF=45°,∵平面PAD ⊥平面PAE ,平面PAD ∩平面PAE=PA ,DF ⊂平面PAD ,∴DF ⊥平面PAE ,∴DF ⊥PE ,∵PD ⊥CD ,且正方形ABCD 中,AD ⊥CD ,PD ∩AD=D ,∴CD ⊥平面PAD .又DF ⊂平面PAD ,∴DF ⊥CD ,∵PD=2EC ,EC ∥PD ,∴PE 与CD 相交,∴DF ⊥平面PDCE ,∴DF ⊥PD ,这与∠PDF=45°矛盾,∴假设不成立即平面PAD 与平面PAE 不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力. 24.【答案】【解析】(1)当时,;………………1分1=n 323321111=⇒=-=a a a S 当时,,2≥n 332,33211-=-=--n n n n a S a S ∴当时,,整理得.………………3分2≥n n n n n n a a a S S 2)(32211=-=---13-=n n a a ∴数列是以3为首项,公比为3的等比数列.}{n a ∴数列的通项公式为.………………5分}{n a nn a 3=。
汉源县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案
汉源县第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2402. 已知一三棱锥的三视图如图所示,那么它的体积为( ) A .13 B .23C .1D .23. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆 4. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-15. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .26. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.7. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或 D .或8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5B4 C3 D29. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i10.集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 11.设复数z 满足z (1+i )=2,i 为虚数单位,则复数z 的虚部是( )A1 B ﹣1 Ci D ﹣i12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= .14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 15.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .16.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.三、解答题(本大共6小题,共70分。
汉源县实验中学2018-2019学年上学期高三数学10月月考试题
汉源县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④2. 如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有( )111]A .2对B .3对C .4对D .6对3. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直4. 双曲线E 与椭圆C :x 29+y 23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 5. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C. D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 6. 执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .357. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.8. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φω的值为( )A.18 B .14C.12D .19. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .410.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个二、填空题11.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .12.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________. 13.二面角α﹣l ﹣β内一点P:2,则这个二面角的平面角是 度.14.【盐城中学2018lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.15 ①“p ∧q 为真”是“p ∨q 为真”② ③在侧棱长为2,底面边长为3 ④动圆P 过定点A (﹣2,0P 的轨迹为一个椭圆.16.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.三、解答题17.(本小题满分12分)已知()()2,1,0,2A B 且过点()1,1P -的直线与线段AB 有公共点, 求直 线的斜率的取值范围.18.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.19.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长20.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=(2﹣a )(x ﹣1)﹣2lnx ,g (x )=1x xe -.(a ∈R ,e 为自然对数的底数)(Ⅰ)当a=1时,求f (x )的单调区间; (Ⅱ)若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,求a 的最小值; (Ⅲ)若对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.21.如图,四面体ABCD 中,平面ABC ⊥平面BCD ,AC=AB ,CB=CD ,∠DCB=120°,点E 在BD 上,且CE=DE .(Ⅰ)求证:AB ⊥CE ;(Ⅱ)若AC=CE ,求二面角A ﹣CD ﹣B 的余弦值.22.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.汉源县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB=当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D 2. 【答案】B 【解析】试题分析:三棱锥P ABC -中,则PA 与BC 、PC 与AB 、PB 与AC 都是异面直线,所以共有三对,故选B .考点:异面直线的判定. 3. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 4. 【答案】【解析】选C.可设双曲线E 的方程为x 2a 2-y 2b2=1,渐近线方程为y =±bax ,即bx ±ay =0,由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即|6b |b 2+a2=1,又a 2+b 2=6,∴b =1,a =5,∴E 的方程为x 25-y 2=1,故选C.5.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF∆的面积为1||||22222AF y⋅=⨯⨯=,故选B.6.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C7.【答案】B【解析】(2016)(2016)(54031)(1)f f f f e-==⨯+==,故选B.8.【答案】【解析】解析:选B.由图象知函数的周期T=2,∴ω=2π2=π,即f(x)=sin(πx+φ),由f(-14)=0得-π4+φ=kπ,k∈Z,即φ=kπ+π4.又-π2≤φ≤π2,∴当k=0时,φ=π4,则φω=14,故选B.9.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.10.【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]二、填空题11.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.12.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程序结束.13.【答案】 75 度.【解析】解:点P 可能在二面角α﹣l ﹣β内部,也可能在外部,应区别处理.当点P 在二面角α﹣l ﹣β的内部时,如图,A 、C 、B 、P 四点共面,∠ACB 为二面角的平面角,由题设条件,点P 到α,β和棱l 的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75. 【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.14.【答案】-3e 【解析】f ′(x )=1x +2m x =2x m x +,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-me=4,得m =-3e ,符合题意.综上所述,m=-3e.15.【答案】 ①③④【解析】解:①“p ∧q 为真”,则p ,q 同时为真命题,则“p ∨q 为真”,当p 真q 假时,满足p ∨q 为真,但p ∧q 为假,则“p ∧q 为真”是“p ∨q 为真”的充分不必要条件正确,故①正确; ②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故②错误,③设正三棱锥为P﹣ABC,顶点P在底面的射影为O,则O为△ABC的中心,∠PCO为侧棱与底面所成角∵正三棱锥的底面边长为3,∴CO=∵侧棱长为2,∴在直角△POC中,tan∠PCO=∴侧棱与底面所成角的正切值为,即侧棱与底面所成角为30°,故③正确,④如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(﹣2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=6>4=|AB|.∴点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故④正确,故答案为:①③④16.【答案】64 9【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.三、解答题17.【答案】3k ≤-或2k ≥. 【解析】试题分析:根据两点的斜率公式,求得2PA k =,3PB k =-,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,11212PA k --==-,12310PB k --==-- 所以,由图可知,过点()1,1P -的直线与线段AB 有公共点,所以直线的斜率的取值范围是:3k ≤-或2k ≥.考点:直线的斜率公式. 18.【答案】【解析】(1)函数定义域为(0,)+∞2分-22m请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.19.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.20.【答案】(1) f (x )的单调减区间为(0,2],单调增区间为[2,+∞);(2) 函数f (x )在10,2⎛⎫ ⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2;(3)a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦. 【解析】试题分析:(Ⅰ)把a=1代入到f (x )中求出f ′(x ),令f ′(x )>0求出x 的范围即为函数的增区间,令f ′(x )<0求出x 的范围即为函数的减区间; (Ⅱ)f (x )<0时不可能恒成立,所以要使函数在(0,12)上无零点,只需要对x ∈(0,12)时f (x )>0恒成立,列出不等式解出a 大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a 的最小值;试题解析:(1)当a=1时,f (x )=x ﹣1﹣2lnx ,则f ′(x )=1﹣,由f ′(x )>0,得x >2; 由f ′(x )<0,得0<x <2.故f (x )的单调减区间为(0,2],单调增区间为[2,+∞); (2)因为f (x )<0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f (x )>0恒成立,即对恒成立.令,则,再令,则,故m (x )在上为减函数,于是,从而,l (x )>0,于是l (x )在上为增函数,所以,故要使恒成立,只要a ∈[2﹣4ln2,+∞),综上,若函数f (x )在10,2⎛⎫⎪⎝⎭上无零点,则a 的最小值为2﹣4ln2; (3)g ′(x )=e 1﹣x ﹣xe 1﹣x =(1﹣x )e 1﹣x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增; 当x ∈(1,e]时,g ′(x )<0,函数g (x )单调递减. 又因为g (0)=0,g (1)=1,g (e )=e •e 1﹣e >0, 所以,函数g (x )在(0,e]上的值域为(0,1]. 当a=2时,不合题意;当a ≠2时,f ′(x )=,x ∈(0,e]当x=时,f ′(x )=0.由题意得,f (x )在(0,e]上不单调,故,即①此时,当x 变化时,f ′(x ),f (x )的变化情况如下:又因为,当x →0时,2﹣a >0,f (x )→+∞,,所以,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2), 使得f (x i )=g (x 0)成立,当且仅当a 满足下列条件:即令h (a )=,则h,令h ′(a )=0,得a=0或a=2,故当a ∈(﹣∞,0)时,h ′(a )>0,函数h (a )单调递增;当时,h ′(a )<0,函数h (a )单调递减.所以,对任意,有h (a )≤h (0)=0, 即②对任意恒成立. 由③式解得:.④综合①④可知,当a 的范围是3,21e ⎛⎤-∞-⎥-⎝⎦时,对任意给定的x 0∈(0,e],在(0,e]上总存在两个不同的x i (i=1,2),使f (x i )=g (x 0)成立. 21.【答案】【解析】解:(Ⅰ)证明:△BCD 中,CB=CD ,∠BCD=120°, ∴∠CDB=30°,∵EC=DE ,∴∠DCE=30°,∠BCE=90°, ∴EC ⊥BC ,又∵平面ABC ⊥平面BCD ,平面ABC 与平面BCD 的交线为BC , ∴EC ⊥平面ABC ,∴EC ⊥AB .(Ⅱ)解:取BC 的中点O ,BE 中点F ,连结OA ,OF ,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.22.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.。
汉源县高中2018-2019学年上学期高二数学12月月考试题含解析
汉源县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 集合,,,则,{}|42,M x x k k Z ==+∈{}|2,N x x k k Z ==∈{}|42,P x x k k Z ==-∈M ,的关系( )N P A .B .C .D .M P N =⊆N P M =⊆M N P =⊆M P N==2. 圆上的点到直线的距离最大值是( )012222=+--+y x y x 2=-y x A .B .C .D .12+122+122+3. 下列给出的几个关系中:①;②;③;{}{},a b ∅⊆(){}{},,a b a b ={}{},,a b b a ⊆④,正确的有( )个{}0∅⊆A.个 B.个C.个D.个4. 以的焦点为顶点,顶点为焦点的椭圆方程为()A .B .C .D .5. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .6. 函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}7. 抛物线x=﹣4y 2的准线方程为( )A .y=1B .y=C .x=1D .x=8. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015229.设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有数多个,则实数a的值为()A.2B.C.D.310.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13B.6C.79D.3711.与﹣463°终边相同的角可以表示为(k∈Z)()A.k360°+463°B.k360°+103°C.k360°+257°D.k360°﹣257°12.设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}二、填空题13.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.14.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k= .15.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π) .16.曲线y=x+e x在点A(0,1)处的切线方程是 .17.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是 .18.定积分sintcostdt= .三、解答题19.已知函数f(x)=ax2﹣2lnx.(Ⅰ)若f(x)在x=e处取得极值,求a的值;(Ⅱ)若x∈(0,e],求f(x)的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.20.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50 150200女30 170 200合计80320400(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望.X X 参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++21.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C(2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB 22.(本小题满分12分)的内角所对的边分别为,,ABC ∆,,A B C ,,a b c (sin ,5sin 5sin )m B A C =+垂直.(5sin 6sin ,sin sin )n B C C A =--(1)求的值;sin A(2)若,求的面积的最大值.a =ABC ∆S 23.已知函数f (x )=x|x ﹣m|,x ∈R .且f (4)=0(1)求实数m 的值.(2)作出函数f (x )的图象,并根据图象写出f (x )的单调区间(3)若方程f (x )=k 有三个实数解,求实数k 的取值范围.24.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.汉源县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A 【解析】试题分析:通过列举可知,所以.{}{}2,6,0,2,4,6M P N ==±±=±±± M P N =⊆考点:两个集合相等、子集.12. 【答案】B 【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半()()11122=-+-y x 径,,半径为1,所以距离的最大值是,故选B.22211=--=d 12+考点:直线与圆的位置关系 13. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:和是正确的,故选C.{}{},,a b b a ⊆{}0∅⊆考点:集合间的关系.4. 【答案】D 【解析】解:双曲线的顶点为(0,﹣2)和(0,2),焦点为(0,﹣4)和(0,4).∴椭圆的焦点坐标是为(0,﹣2)和(0,2),顶点为(0,﹣4)和(0,4).∴椭圆方程为.故选D .【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质. 5. 【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.6. 【答案】D【解析】解:由题意得:,解得:x ≥﹣1或x ≠3,故选:D .【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题. 7. 【答案】D【解析】解:抛物线x=﹣4y 2即为y 2=﹣x ,可得准线方程为x=.故选:D . 8. 【答案】C 【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =A 201521...T a a a =A ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.9. 【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax ﹣y (a >0)得y=ax ﹣z ,∵a >0,∴目标函数的斜率k=a >0.平移直线y=ax ﹣z ,由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B .10.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.12.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B二、填空题13.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
汉源县一中2018-2019学年上学期高二数学12月月考试题含解析
汉源县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( ) A .B .﹣C .4D .2. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥13. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 4. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5. 与向量=(1,﹣3,2)平行的一个向量的坐标是( ) A .(,1,1) B .(﹣1,﹣3,2) C .(﹣,,﹣1) D .(,﹣3,﹣2)6. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?7. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8. 已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )A .B .C .2D .﹣29. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定10.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.11.不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>012.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )π+πA.4πB.25πC. 5πD. 225【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.二、填空题13.设,则的最小值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉源县一中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3 C .20152
3
D .20152
2
2. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( )
A .1
B .3
C .5
D .9
3. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )
A .35
B
.
C
.
D .53
4. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B = ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤ 【命题意图】本题主要考查集合的概念与运算,属容易题.
5. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )
A .(1,4]
B .(0,1]
C .[﹣1,1]
D .(4,+∞)
6. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( ) A
.
B
.
C
.
D
.
7. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( ) A .{﹣2} B .{2} C .{﹣2,2} D .∅
8. 函数f (x )
=﹣lnx 的零点个数为( ) A .0
B .1
C .2
D .3
9. 若复数z
满足
=i ,其中i 为虚数单位,则z=( )
A .1﹣i
B .1+i
C .﹣1﹣i
D .﹣1+i
10.函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈
(,
),使f (sin φ)=f (cos φ),则实
数m 的取值范围是( ) A
.(
) B
.(
,
]
C
.(
) D
.(
]
11.在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
12.函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.
二、填空题
13.已知A (1,0),
P ,Q 是单位圆上的两动点且满足,则
+
的最大值为 .
14.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .
15.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:
①曲线C 过点(﹣1,1); ②曲线C 关于点(﹣1,1)对称;
③若点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|+|PB|不小于2k ;
④设p 1为曲线C 上任意一点,则点P 1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P 1、P 2、P 3,
则四边形P 0P 1P 2P 3的面积为定值4k 2.
其中,所有正确结论的序号是 .
16.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0. 其中正确命题的序号是 .
17.在(1+x )(x 2+)6的展开式中,x 3的系数是 .
18.当0,1x ∈()时,函数()e 1x
f x =-的图象不在函数2()
g x x ax =-的下方,则实数a 的取值范围是
___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
三、解答题
19.(本小题满分12分) 设函数mx x x x f -+=
ln 2
1)(2
(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;
(3)证明:曲线)(x f y =没有经过原点的切线.
20.已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.
21.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线.
(2)若,求的值.
22.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
23.(本小题满分12分)
如图,在直二面角C AB E --中,四边形ABEF 是矩形,2=AB ,32=AF ,ABC ∆是以A 为直角顶点的等腰直角三角形,点P 是线段BF 上的一点,3=PF . (1)证明:⊥FB 面PAC ;
(2)求异面直线PC 与AB 所成角的余弦值.
24
.已知向量=(x
,
y
),=(1,0
),且(
+
)•
(
﹣
)=0.
(1)求点Q (x ,y )的轨迹C 的方程;
(2)设曲线C 与直线y=kx+m 相交于不同的两点M 、N ,又点A (0,﹣1),当|AM|=|AN|时,求实数m 的取值范围.
P
C
A
B
E
F
汉源县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 C C D B A C A B A A
题号11 12
答案 A D
13..
14.+=1.
15.②③④.
16.①③④.
17.20.
-+∞
18.[2e,)
三、解答题
19.
20.
21.
22.解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,
∴
综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)
23.
24.。