AM-8703中文资料
TDA8706AMC3,518;TDA8706AMC3,118;TDA8706AMC3,112;中文规格书,Datasheet资料
GREEN 9 GREEN input
BLUE
10 BLUE input
VCLPR VCLPB VCLPG VSSO D0
11 RED clamping voltage level input 12 BLUE clamping voltage level input 13 GREEN clamping voltage level input 14 output stage ground 15 digital voltage output; bit 0 (LSB)
123
SR SG SB select inputs
REGULATOR 6
VRB
20 D5
19 D4
CMOS OUTPUTS
18 D3 17 D2
digital voltage outputs
16 D1
15 D0
7 VSSA
14 VSSO
MGD133
Fig.1 Block diagram.
2003 Jul 21
SYMBOL VDDA VDDD ∆VDD
VI IO Tstg Tamb Tj
PARAMETER
analog supply voltage digital supply voltage supply voltage difference
VDDA − VDDD VDDA − VDDO VDDD − VDDO input voltage output current storage temperature operating ambient temperature junction temperature
/
Philips Semiconductors
6-bit analog-to-digital converter with multiplexer and clamp
Z23S2407N中文资料(AEROVOX)中文数据手册「EasyDatasheet - 矽搜」
芯片中文手册,看全文,戳
Aerovox公司 ®
SuperMet & ZeMax TM 技术指标
特征
Aerovox路线SuperMet和ZEMAX
TM 电容器
•可根据金属外壳(铝合金外壳
利用最先进金属化聚丙烯薄膜技术状态.这款最新设
请求 - 请联系工厂)SuperMet
计材料结合领先设计技术,具有40多年电容经验.
咨询厂家
电气特性
应用
• 窗式空调 • 单元式空调 • 电动汽车 • 风扇与鼓风机 • Pumps • 洗衣房设备 • 除湿机 • 压缩机 •炉
• 温度范围:-40〜+ 70℃. • 电容范围3至80μF. • 电容公差±10%. • 电压范围240至440 VAC,60赫兹. • 损耗因数0.1%以下@ 60赫兹和25℃. • 绝缘电阻1000MΩ每μF.
芯片中文手册,看全文,戳
Aerovox公司 ®
交流电动机运行电容器
ZeMax TM - 铝合金外壳
AEROMET II - 塑料盒
美国制造
SuperMet - 金属外壳
芯片中文手册,看全文,戳
Aerovox公司 ®
目录
AEROMET II规格(系列M型).......................................... .................................... 3 SuperMet & ZeMax TM 规格(系列Z型)............................................ .................. 4 部分编号系统.............................................................................................................五 AEROMET II评分表(单台容量)系列M型....................................... ........... 6 AEROMET II评分表(双功能)系列型号M ....................................... ............. 8 SuperMet评分表(单台容量)系列Z型........................................ ............... 9 SuperMet评分表(双容量)系列Z型........................................ .............. 11 ZeMax TM 评分表(单台容量)系列Z型......................................... ........... 13 AEROMET II机械尺寸.............................................. .......................................... 15 SuperMet机械尺寸............................................... ........................................... 16 ZeMax TM 机械Dimensions............................................................................................17 附件 - 安装硬件.............................................. ............................................ 18
上海艾为电子技术 高效率自适应电荷泵、超大音量、超低 EMI、K3 音响功率放大器 产品手册
AW8733 器件标识
(TOPSIDE MARK)
20 GND 19 CN 18 PVDD 17 PVDD 1 6 NC
SHDN 1 NC 2 CP 3
VDD 4 NC 5
INN 6 INP 7 VDD 8 FS 9 NC 10
15 VOP 14 GND
13
VON
12 PVDD
11
——————
SHDN ,VDD=5.5V,VI=-0.3V A weighting,gain=4V/V No weighting, gain=24V/V
最小 典型 最大 单位
2.8
5.5
V
3.5
5
mA
0.1
1u
μA
1.2
VDD
V
0
0.35
V
100
μA
5
μA
25 uVrms
40
150
℃
20
℃
VDD=3V to 5.5V
VDD=2.8V to 5.5V COUT=10μF
6.3
V
1A
480 600 720 KHz
0.5
ms
空载
状态 1 和状态 2
状态 3 和状态 4
VDD=2.8V to 5.5V
240
VDD=3.6V,Vpp_sin=200mV,f=217Hz
VDD=3.6V,Vpp_sin=200mV,f=1KHz
图 2 AW8733 差分输入方式应用图
工作温度范围 -40℃~85℃
封装形式 3mmX3mm 20-Pin TQFN
器件标记 AW8733
发货形式 卷带包装 3000 片/盘
ACFA-450中文资料
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
元器件交易网
CFA
AM CERAMIC FILTERபைடு நூலகம் Description
• Unique structure single element AM IF filter • Center frequency range: 450 — 470kHz • Bandwidth at 6dB: 13±3kHz
TOKO America, Inc. 1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864 Web:
S4204中文资料
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10
1000
KMPDB0135EC
s Dark current vs. reverse voltage
1 nA
(Typ. Ta=25 ˚C)
s Terminal capacitance vs. reverse voltage
100 pF
(Typ. Ta=25 ˚C, f=1 MHz)
DARK CURRENT
Element gap
(µm) 5 30 20
Absolute maximum ratings
Reverse
Operating
Storage
voltage
temperature temperature
VR Max.
Topr
Tstg
(V)
(°C)
(°C)
20
-25 to +85
-40 to +100
s Electrical and optical characteristics (Typ. Ta=25 °C, unless otherwise noted, per 1 element)
Features
l High sensitivity l Uniform element sensitivity l Low cross-talk l Low noise
A3M中文资料
Previous Page | Return to Index | Next PageQ-G® CORD PLUG CONNECTORS1. A(*)F CORD PLUG2. A(*)FD CORD PLUG3. A(*)M CORD PLUGClick above to download drawings (you will need to have Adobe Acrobat installed onyour system to do this).A(*)F CORD PLUGStraight female cord plug with standard latchlock. Available in 3-7 pin versions.A(*)FD CORD PLUGStraight female cord plug with FAS-DIS-CONNECT detent.A(*)M CORD PLUGStraight male cord plug.*Number of insert contacts or pins must be specified to complete part number. PART NUMBERS - FEMALE CORD PLUGSStandard Q-C® Cord Plugs, Series A(*)F and QGPSatin NickelFinishBlack Finish Fas-Dis-ConnectLarge FlexRelief2QCP Series Insert Contacts Silver1Gold1A3F A3FB A3FBAU¤A3FD A3FL QGP3223 A3FS3-----3 A4F A4FB A4FBAU¤A4FD A4FL-4 A5F A5FB A5FBAU¤A5FD¤A5FL-5 A6F A6FB A6FBAU---6 A7F A7FB A7FBAU---71 Contact plating.2 Accepts cables from .25 inch (6.35 mm) to .328 inch (8.33 mm) diameter3 Accepts cables from .105 inch (2.7 mm) to .205 inch (5.2 mm)¤Available on special order only; contact Switchcraft for price and delivery. PART NUMBERS - MALE CORD PLUGSStandard Q-C® Cord Plugs, Series A(*)F and QGPSatin NickelFinishBlack FinishLarge Flex Relief QCP Series Insert Contacts Silver GoldA3M A3MB A3MBAU A3ML QGP3233A3MS3----3A4M A4MB A4MBAU A4ML-4A5M A5MB A5MBAU¤A5ML-5A6M-A6MBAU--6A7M-A7MBAU--7All above part numbers have black flex relief installed. Contact Switchcraft for color flex relief.¤Available on special order only; contact Switchcraft for price and delivery.Previous Page | Return to Index | Next PageTo search a category please click on the corresponding icon:| Connectors | Jacks and Plugs || Patch Panels, Patch Kits & Jackfields | Cable Assemblies and Patch Cords | Switches | All products shown are covered by Switchcraft's limited lifetime warranty.| Switchcraft home |About Us | Products | What's New | Search | Contact Us。
AMCS小功率精编W双声道D类音频功放电路图0001
PAM8403CS8403 小功率3W 双声道D 类音频功放电路图PAM8403/CS8403小功率3W双声道D类音频功率放大IC应用电路原理图说明及设计注意事项左手665收藏时间:2016年1月15日10:15PAM8403/CS8403是一款3W,立体声D类音频功率放大器,能够以D 类放大器的效率提供AB类功率放大器的性能。
采用D类结构,PAM8403/CS8403能够以高于85%的效率提供3W功率。
新型的无滤波器结构可以省去传统的D类放大器输出低通滤波器,从而节省了系统成本和PCB空间,是便携式应用的理想选择。
采用DIP-16和SOP-16封装。
本文就该芯片的功能特点,应用原理及注意事项进行说明主要特点I无滤波的D类放大器,低静态电流和低EMII在4Q 负载和5V电源条件下,提供高达3W输出功率I高达90%效率I低THD低噪声I短路电流保护I热保护I极少外部元器件,节省空间和成本应用ILCD电视机、监视器引出端排列USB5V线控功放板双声道3WSP8403[升级功放板2.0迷你小音响功放线控功放板输入电压:2.0V-5.5V 宽电源输出功率:3W+3W输出阻抗:3欧效率:90% 声道数:双声道频率响应:150HZ-20KHZ尺寸:15mmX39m厚度(max)11mm此款2.0音响功放采用两片8403 音频放大器精心设计。
实现双声道输出完全独立,质量更稳定可靠!最大输出功率为3W最小输出为1.5W. 工作电压为2-5.5V,因此非常适合于电池或USB供电的低电压电子产品作为功率放大器节省了传统功放的自举电路及消振电路。
因此只要极少的外围元件(最少为只要四个元件)便可工作,节省了线路板空间,降低生产成本及设计成本。
特有的关断功能(高电平有效)可节省功耗,延长电池使用时间。
主要特性:1、输出功率:3欧负载/5V( 3.0W);4欧负载/5V2.5W); 2、关断电流:1uA3、工作电压:2.0-5.5V4、最大失真度:0.5%封装采用无铅封装SOP-8应用领域1、手提电脑2、台式电脑3、多媒体MINI 音箱4、游戏机、学习机5、收录机音频放大器等经过测试适用于百分之九十九的音响和喇叭,音质都相当的好!用移动电源和苹果4S 手机测试喇叭的喇叭几乎都是旧的(喇叭这东西新旧区别不是很大,区别最大的就是一个新一个旧)典型应用电路图采用原装龙鼎微PAM8403数字功放芯片(市面上大多是国产芯片),电路简单,工作可靠。
ADI电路笔记 CN-0359说明书
电路笔记CN-0359Circuits from the Lab® reference designs are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit /CN0359.连接/参考器件AD825310 MHz、20 V/μs、G = 1、10、100、1000、i CMOS可编程增益仪表放大器ADuCM360集成双通道Σ-Δ型ADC和ARM Cortex-M3的低功耗精密模拟微控制器ADA4627-1 30 V、高速、低噪声、低偏置电流JFET运算放大器AD8542CMOS轨到轨通用放大器ADA4000-1 低成本、精密JFET输入运算放大器ADP2300 1.2 A、20 V、700 kHz/1.4 MHz异步降压型稳压器ADA4638-1 30 V、零漂移、轨到轨输出精密放大器ADP1613 650 kHz/1.3 MHz升压PWM DC-DC开关转换器ADA4528-2 精密、超低噪声、RRIO、双通道、零漂移运算放大器ADG1211低电容、低电荷注入、±15 V/+12 V iCMOS四通道单刀单掷开关ADA4077-2 4 MHz、7 nV/√Hz、低失调和漂移、高精度放大器ADG1419 2.1 Ω导通电阻、±15 V/+12 V/±5 V、iCMOS单刀双掷开关AD8592 CMOS、单电源、轨到轨输入/输出运算放大器,具有关断功能ADM3483 3.3 V限摆率、半双工、RS-485/RS-422收发器全自动高性能电导率测量系统Rev. 0Circuits from the Lab® reference designs from Analog Devices have been designed and built by AnalogDevices engineers. Standard engineering practices have been employed in the design andconstruction of each circuit, and their function and performance have been tested and veri ed in a labenvironment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2015 Analog Devices, Inc. All rights reserved.评估和设计支持电路评估板CN-0359电路评估板(EVAL-CN0359-EB1Z)设计和集成文件原理图、源代码、布局文件、物料清单电路功能与优势图1中的电路是一个完全独立自足、微处理器控制的高精度电导率测量系统,适用于测量液体的离子含量、水质分析、工业质量控制以及化学分析。
219388542_AM103S-Ⅱ型中波发射机A
采样脉冲作为 A / D 转换器的启动信号,取自射
频激励器,一个脉冲启动一个转换周期,去启动每一
个 A / D 转换周期。 A / D 转换器输出的数字信号送到
调制编码板,再由调制编码板给功放提供开关信号。
为了避免功放开关时出现高频电流冲击,选择激励信
号正负峰交叉过零来开 / 关功放,所以,对采样脉冲在
“ Q” 端保持不变。 当采样脉冲频率过低或者根本没
有,N14A“ Q” 端输出故障低电平信号 [3] 。
2. 3. 3 电源复位电路
电源复位电路由施密特反相器 N12A,N12F 及定
时元件 R16,VD13,C41 组成,用于监视 A / D 转换器
的 + 5 V DC 供电电压。 当低压开关合上时, + 5 V DC
压器 N18 稳压后得到 - 15 V DC 电压; + 8 V 经 N16 和
晶体管 V1 稳压后得到 + 5 V DC 电压; - 8 V 经 N19 稳
压后得到 - 5 V 电压。
3 结语
以上是对 AM103S - Ⅱ型 DAM 中波发射 A / D 转
2. 3. 2 采样信号检测电路
采样信号检测电路用于监视采样脉冲频率,由
N14A 及外围元件组成。 采样脉冲由分频电路送来,在
XJ6 上可用频率计测到,脉冲信号频率在 400 kHz ~
830 kHz。 该信号脉冲的上升沿触发 N14A,使 N14A
“ Q” 端输出高电平,在下一个采样脉冲到来时,N14A
相位上有严格的要求。
2. 1. 3 电平转换电路
电平转换电路由 VD14,VD15 及 N12C 组成,其
LM4863中文资料
LM4863Dual 2.2W Audio Amplifier Plus Stereo Headphone FunctionGeneral DescriptionThe LM4863is a dual bridge-connected audio power ampli-fier which,when connected to a 5V supply,will deliver 2.2W to a 4Ωload (Note 1)or 2.5W to a 3Ωload (Note 2)with less than 1.0%THD+N.In addition,the headphone input pin al-lows the amplifiers to operate in single-ended mode to drive stereo headphones.Boomer audio power amplifiers were designed specifically to provide high quality output power from a surface mount package while requiring few external components.To sim-plify audio system design,the LM4863combines dual bridge speaker amplifiers and stereo headphone amplifiers on one chip.The LM4863features an externally controlled,low-power consumption shutdown mode,a stereo headphone amplifier mode,and thermal shutdown protection.It also utilizes cir-cuitry to reduce “clicks and pops”during device turn-on.Note 1:An LM4863MTE which has been properly mounted to the circuit board will deliver 2.2W into 4Ω.The other package options for the LM4863will deliver 1.1W into 8Ω.See the Application Information section for LM4863MTE usage information.Note 2:An LM4863MTE which has been properly mounted to the circuit board and forced-air cooled will deliver 2.5W into 3Ω.Key Specificationsn P O at 1%THD+Ninto 3Ω(LM4863MTE) 2.5W(typ)into 4Ω(LM4863MTE) 2.2W(typ)into 8Ω(LM4863)1.1W(typ)n Single-ended mode -THD+N at 75mW into 32Ω0.5%(max)n Shutdown current0.7µA(typ)Featuresn Stereo headphone amplifier mode n “Click and pop”suppression circuitry n Unity-gain stablen Thermal shutdown protection circuitrynExposed-DAP TSSOP ,TSSOP ,SOIC and DIP packaging availableApplicationsn Multimedia monitorsn Portable and desktop computers n Portable televisionsTypical ApplicationBoomer ®is a registered trademark of National Semiconductor Corporation.DS012881-1*Refer to the section Proper Selection of External Components,for a detailed discussion of C B size.FIGURE 1.Typical Audio Amplifier Application CircuitOctober 1999LM4863Dual 2.2W Audio Amplifier Plus Stereo Headphone Function©1999National Semiconductor Corporation Connection DiagramsDS012881-28Top ViewOrder Number LM4863M,LM4863N See NS Package Number M16B for SO See NS Package Number N16A for DIPDS012881-2Top ViewOrder Number LM4863MTESee NS Package Number MXA20A for Exposed-DAP TSSOPL M 4863 2Absolute Maximum Ratings(Note4)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage 6.0V Storage Temperature−65˚C to+150˚C Input Voltage−0.3V to V DD+0.3V Power Dissipation(Note10)Internally limited ESD Susceptibility(Note11)2000V ESD Susceptibility(Note12)200V Junction Temperature150˚C Solder InformationSmall Outline PackageVapor Phase(60sec.)215˚C Infrared(15sec.)220˚C See AN-450“Surface Mounting and their Effects onProduct Reliablilty”for other methods of soldering surfacemount devices.Thermal ResistanceθJC(typ)—M16B20˚C/W θJA(typ)—M16B80˚C/W θJC(typ)—N16A20˚C/W θJA(typ)—N16A63˚C/W θJC(typ)—MTC2020˚C/W θJA(typ)—MTC2080˚C/W θJC(typ)—MXA20A2˚C/W θJA(typ)—MXA20A41˚C/W(Note7)θJA(typ)—MXA20A51˚C/W(Note5)θJA(typ)—MXA20A90˚C/W(Note6) Operating RatingsTemperature RangeT MIN≤T A≤T MAX−40˚C≤T A≤85˚C Supply Voltage 2.0V≤V DD≤5.5VElectrical Characteristics for Entire IC(Notes3,4)The following specifications apply for V DD=5V unless otherwise noted.Limits apply for T A=25˚C.Symbol Parameter Conditions LM4863Units(Limits)Typical Limit(Note13)(Note14)V DD Supply Voltage2V(min)5.5V(max)I DD Quiescent Power Supply Current V IN=0V,I O=0A(Note15),HP-IN=0V11.520mA(max)6mA(min)V IN=0V,I O=0A(Note15),HP-IN=4V 5.8mAI SD Shutdown Current V PIN1=V DD0.72µA(min) V IH Headphone High Input Voltage4V(min) V IL Headphone Low Input Voltage0.8V(max)Electrical Characteristics for Bridged-Mode Operation(Notes3,4)The following specifications apply for V DD=5V unless otherwise specified.Limits apply for T A=25˚C.Symbol Parameter Conditions LM4863Units(Limits)Typical Limit(Note 13)(Note 14)V OS Output Offset Voltage V IN=0V550mV(max) P O Output Power(Note9)THD=1%,f=1kHzLM4863MTE,R L=3Ω(Note7)2.5WLM4863MTE,R L=4Ω(Note8) 2.2WLM4863,R L=8Ω 1.1 1.0W(min)THD+N=10%,f=1kHzLM4863MTE,R L=3Ω(Note7) 3.2WLM4863MTE,R L=4Ω(Note8) 2.7LM4863,R L=8Ω 1.5WTHD+N=1%,f=1kHz,R L=32Ω0.34W THD+N Total Harmonic Distortion+Noise20Hz≤f≤20kHz,A VD=2LM4863MTE,R L=4Ω,P O=2W0.3LM4863,R L=8Ω,P O=1W0.3%PSRR Power Supply Rejection Ratio V DD=5V,V RIPPLE=200mV RMS,R L=8Ω,C B=1.0µF 67dBLM48633Electrical Characteristics for Bridged-Mode Operation (Notes 3,4)(Continued)The following specifications apply for V DD =5V unless otherwise specified.Limits apply for T A =25˚C.SymbolParameterConditionsLM4863Units (Limits)Typical Limit (Note 13)(Note 14)X TALK Channel Separation f =1kHz,C B =1.0µF90dB SNRSignal To Noise Ratio V DD =5V,P O =1.1W,R L =8Ω98dBElectrical Characteristics for Single-Ended Operation (Notes 3,4)The following specifications apply for V DD =5V unless otherwise specified.Limits apply for T A =25˚C.SymbolParameterConditionsLM4863Units (Limits)Typical Limit (Note 13)(Note 14)V OS Output Offset Voltage V IN =0V550mV (max)P OOutput PowerTHD =0.5%,f =1kHz,R L =32Ω8575mW (min)THD+N =1%,f =1kHz,R L =8Ω340mW THD+N =10%,f =1kHz,R L =8Ω440mW THD+N Total Harmonic Distortion+Noise A V =−1,P O =75mW,20Hz ≤f ≤20kHz,R L =32Ω0.2%PSRR Power Supply Rejection Ratio C B =1.0µF,V RIPPLE =200mV RMS ,f =1kHz52dB X TALK Channel Separation f =1kHz,C B =1.0µF60dB SNRSignal To Noise RatioV DD =5V,P O =340mW,R L =8Ω95dB Note 3:All voltages are measured with respect to the ground pins,2,7,and 15,unless otherwise specified.Note 4:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is func-tional,but do not guarantee specific performance limits.Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guar-antee specific performance limits.This assumes that the device is within the Operating Ratings.Specifications are not guaranteed for parameters where no limit is given,however,the typical value is a good indication of device performance.Note 5:The θJA given is for an MXA20A package whose exposed-DAP is soldered to an exposed 2in 2piece of 1ounce printed circuit board copper.Note 6:The θJA given is for an MXA20A package whose exposed-DAP is not soldered to any copper.Note 7:When driving 3Ωloads from a 5V supply,the LM4863MTE must be mounted to the circuit board and forced-air cooled (450linear-feet per minute).Note 8:When driving 4Ωloads from a 5V supply,the LM4863MTE must be mounted to the circuit board.Note 9:Output power is measured at the device terminals.Note 10:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX ,θJA ,and the ambient temperature T A .The maximum allowable power dissipation is P DMAX =(T JMAX −T A )/θJA .For the LM4863,T JMAX =150˚C.For the θJA s for different packages,please see the Application Informa-tion section or the Absolute Maximum Ratings section.Note 11:Human body model,100pF discharged through a 1.5k Ωresistor.Note 12:Machine model,220pF–240pF discharged through all pins.Note 13:Typicals are measured at 25˚C and represent the parametric norm.Note 14:Limits are guaranteed to National’s AOQL (Average Outgoing Quality Level).Note 15:The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.Truth Table for Logic InputsSHUTDOWNHP-IN LM4863MODELow Low Bridged Low High Single-Ended High Low LM4863Shutdown HighHighLM4863ShutdownL M 4863 4External Components Description(Figure 1)Components Functional Description1.R i Inverting input resistance which sets the closed-loop gain in conjunction with R f .This resistor also forms a high pass filter with C i at f c =1/(2πR i C i ).2.C iInput coupling capacitor which blocks the DC voltage at the amplifier’s input terminals.Also creates ahighpass filter with R i at f c =1/(2πR i C i ).Refer to the section,Proper Selection of External Components ,for an explanation of how to determine the value of C i .3.R f Feedback resistance which sets the closed-loop gain in conjunction with R i .4.C s Supply bypass capacitor which provides power supply filtering.Refer to the Power Supply Bypassing section for information concerning proper placement and selection of the supply bypass capacitor.5.C BBypass pin capacitor which provides half-supply filtering.Refer to the section,Proper Selection of External Components ,for information concerning proper placement and selection of C B .Typical Performance Characteristics MTE Specific CharacteristicsNote 16:These curves show the thermal dissipation ability of the LM4863MTE at different ambient temperatures given these conditions:500LFPM +JEDEC board:The part is soldered to a 1S2P 20-lead exposed-DAP TSSOP test board with 500linear feet per minute of forced-air flow across it.Board information -copper dimensions:74x74mm,copper coverage:100%(buried layer)and 12%(top/bottom layers),16vias under the exposed-DAP .500LFPM +2.5in 2:The part is soldered to a 2.5in 2,1oz.copper plane with 500linear feet per minute of forced-air flow across it.2.5in 2:The part is soldered to a 2.5in 2,1oz.copper plane.Not Attached:The part is not soldered down and is not forced-air cooled.LM4863MTETHD+N vs Output PowerDS012881-97LM4863MTETHD+N vs FrequencyDS012881-99LM4863MTETHD+N vs Output PowerDS012881-96LM4863MTETHD+N vs FrequencyDS012881-98LM4863MTEPower Dissipation vs Power OutputDS012881-90LM4863MTE (Note 16)Power Derating CurveDS012881-95LM48635Non-MTE Specific CharacteristicsTHD+N vs FrequencyDS012881-3THD+N vs FrequencyDS012881-4THD+N vs FrequencyDS012881-5THD+N vs Output Power DS012881-6THD+N vs Output Power DS012881-7THD+N vs Output PowerDS012881-8THD+N vs Output Power DS012881-87THD+N vs Frequency DS012881-89THD+N vs Output PowerDS012881-88Output Power vs Load ResistanceDS012881-84Power Dissipation vs Supply VoltageDS012881-85L M 4863 6Non-MTE Specific Characteristics(Continued)Output Power vs Supply VoltageDS012881-9Output Power vs Supply VoltageDS012881-10Output Power vs Supply VoltageDS012881-11Output Power vs Load Resistance DS012881-12Output Power vs Load Resistance DS012881-13Power Dissipation vs Output PowerDS012881-14Dropout Voltage vs Supply VoltageDS012881-15Power Derating CurveDS012881-16Power Dissipation vs Output PowerDS012881-17Noise Floor DS012881-18Channel Separation DS012881-19Channel SeparationDS012881-20LM48637Non-MTE Specific Characteristics(Continued)Application InformationEXPOSED-DAP MOUNTING CONSIDERATIONSThe exposed-DAP must be connected to ground.The exposed-DAP package of the LM4863MTE requires special attention to thermal design.If thermal design issues are not properly addressed,an LM4863MTE driving 4Ωwill go into thermal shutdown.The exposed-DAP on the bottom of the LM4863MTE should be soldered down to a copper pad on the circuit board.Heat is conducted away from the exposed-DAP by a copper plane.If the copper plane is not on the top surface of the cir-cuit board,8to 10vias of 0.013inches or smaller in diameter should be used to thermally couple the exposed-DAP to the plane.For good thermal conduction,the vias must be plated-through and solder-filled.The copper plane used to conduct heat away from the exposed-DAP should be as large as pratical.If the plane is on the same side of the circuit board as the exposed-DAP ,2.5in 2is the minimum for 5V operation into 4Ω.If the heat sink plane is buried or not on the same side as the exposed-DAP ,5in 2is the minimum for 5V operation into 4Ω.If the am-bient temperature is higher than 25˚C,a larger copper plane or forced-air cooling will be required to keep the LM4863MTE junction temperature below the thermal shut-down temperature (150˚C).See the power derating curve for the LM4863MTE for derating information.The LM4863MTE requires forced-air cooling when operating into 3Ω.With the part attached to 2.5in 2of exposed copper,with a 3Ωload,and with an ambient temperature of 25˚C,450linear-feet per minute kept the part out of thermal shut-down.In higher ambient temperatures,higher airflow rates and/or larger copper areas will be required to keep the part out of thermal shutdown.See DEMOBOARD CIRCUIT LAYOUT for an example of an exposed-DAP TSSOP circuit board layout.3Ω&4ΩLAYOUT CONSIDERATIONSWith low impedance loads,the output power at the loads is heavily dependent on trace resistance from the output pins of the LM4863.Traces from the output of the LM4863MTE to the load or load connectors should be as wide as practical.Any resistance in the output traces will reduce the power de-livered to the load.For example,with a 4Ωload and 0.1Ωof trace resistance in each output,output power at the load drops from 2.2W to 2.0WOutput power is also dependent on supply regulation.To keep the supply voltage from sagging under full output power conditions,the supply traces should be as wide as practical.BRIDGE CONFIGURATION EXPLANATIONAs shown in Figure 1,the LM4863has two pairs of opera-tional amplifiers internally,allowing for a few different ampli-fier configurations.The first amplifier’s gain is externally con-figurable,while the second amplifier is internally fixed in a unity-gain,inverting configuration.The closed-loop gain of the first amplifier is set by selecting the ratio of R f to R i while the second amplifier’s gain is fixed by the two internal 20k Ωresistors.Figure 1shows that the output of amplifier one serves as the input to amplifier two which results in both am-plifiers producing signals identical in magnitude,but out of phase 180˚.Consequently,the differential gain for each channel of the IC isA VD =2*(R f /R i )By driving the load differentially through outputs +OutA and −OutA or +OutB and −OutB,an amplifier configuration com-monly referred to as “bridged mode”is established.Bridged mode operation is different from the classical single-ended amplifier configuration where one side of its load is con-nected to ground.A bridge amplifier design has a few distinct advantages over the single-ended configuration,as it provides differential drive to the load,thus doubling the output swing for a speci-fied supply voltage.Four times the output power is possible as compared to a single-ended amplifier under the same conditions.This increase in attainable output power as-sumes that the amplifier is not current limited or clipped.In order to choose an amplifier’s closed-loop gain without caus-ing excessive clipping,please refer to the Audio Power Am-plifier Design section.A bridge configuration,such as the one used in LM4863,also creates a second advantage over single-ended amplifi-ers.Since the differential outputs,+OutA,−OutA,+OutB,and −OutB,are biased at half-supply,no net DC voltage ex-ists across the load.This eliminates the need for an output coupling capacitor which is required in a single supply,single-ended amplifier configuration.If an output coupling capacitor is not used in a single-ended configuration,the half-supply bias across the load would result in both in-creased internal IC power dissipation as well as permanent loudspeaker damage.Power Supply Rejection RatioDS012881-21Open LoopFrequency ResponseDS012881-22Supply Current vs Supply Voltage 8Application Information(Continued)POWER DISSIPATIONWhether the power amplifier is bridged or single-ended, power dissipation is a major concern when designing the amplifier.Equation1states the maximum power dissipation point for a single-ended amplifier operating at a given supply voltage and driving a specified load.P DMAX=(V DD)2/(2π2R L):Single-Ended(1) However,a direct consequence of the increased power de-livered to the load by a bridge amplifier is an increase in in-ternal power dissipation.Equation2states the maximum power dissipation point for a bridge amplifier operating at the same given conditions.P DMAX=4*(V DD)2/(2π2R L):Bridge Mode(2) Since the LM4863is a dual channel power amplifier,the maximum internal power dissipation is2times that of Equa-tion1or Equation2depending on the mode of operation. Even with this substantial increase in power dissipation,the LM4863does not require heatsinking.The power dissipation from Equation2,assuming a5V power supply and an8Ωload,must not be greater than the power dissipation that re-sults from Equation3:P DMAX=(T JMAX−T A)/θJA(3) For packages M16A and MTA20,θJA=80˚C/W,and for package N16A,θJA=63˚C/W.T JMAX=150˚C for the LM4863.Depending on the ambient temperature,T A,of the system surroundings,Equation3can be used to find the maximum internal power dissipation supported by the IC packaging.If the result of Equation2is greater than that of Equation3,then either the supply voltage must be de-creased,the load impedance increased,or the ambient tem-perature reduced.For the typical application of a5V power supply,with an8Ωbridged load,the maximum ambient tem-perature possible without violating the maximum junction temperature is approximately48˚C provided that device op-eration is around the maximum power dissipation point and assuming surface mount packaging.Internal power dissipa-tion is a function of output power.If typical operation is not around the maximum power dissipation point,the ambient temperature can be increased.Refer to the Typical Perfor-mance Characteristics curves for power dissipation infor-mation for different output powers.POWER SUPPLY BYPASSINGAs with any power amplifier,proper supply bypassing is criti-cal for low noise performance and high power supply rejec-tion.The capacitor location on both the bypass and power supply pins should be as close to the device as possible.The effect of a larger half supply bypass capacitor is improved PSRR due to increased half-supply stability.Typical applica-tions employ a5V regulator with10µF and a0.1µF bypass capacitors which aid in supply filtering.This does not elimi-nate the need for bypassing the supply nodes of the LM4863.The selection of bypass capacitors,especially C B, is thus dependent upon desired PSRR requirements,click and pop performance as explained in the section,Proper Selection of External Components,system cost,and size constraints.SHUTDOWN FUNCTIONIn order to reduce power consumption while not in use,the LM4863contains a shutdown pin to externally turn off the amplifier’s bias circuitry.This shutdown feature turns the am-plifier off when a logic high is placed on the shutdown pin.The trigger point between a logic low and logic high level istypically half supply.It is best to switch between ground andthe supply V DD to provide maximum device performance.Byswitching the shutdown pin to V DD,the LM4863supply cur-rent draw will be minimized in idle mode.While the devicewill be disabled with shutdown pin voltages less than V DD,the idle current may be greater than the typical value of0.7µA.In either case,the shutdown pin should be tied to adefinite voltage to avoid unwanted state changes.In many applications,a microcontroller or microprocessoroutput is used to control the shutdown circuitry which pro-vides a quick,smooth transition into shutdown.Another solu-tion is to use a single-pole,single-throw switch in conjunctionwith an external pull-up resistor.When the switch is closed,the shutdown pin is connected to ground and enables theamplifier.If the switch is open,then the external pull-up re-sistor will disable the LM4863.This scheme guarantees thatthe shutdown pin will not float,thus preventing unwantedstate changes.HP-IN FUNCTIONThe LM4863possesses a headphone control pin that turnsoff the amplifiers which drive+OutA and+OutB so thatsingle-ended operation can occur and a bridged connectedload is muted.Quiescent current consumption is reducedwhen the IC is in this single-ended mode.Figure2shows the implementation of the LM4863’s head-phone control function using a single-supply headphone am-plifier.The voltage divider of R1and R2sets the voltage atthe HP-IN pin(pin16)to be approximately50mV when thereare no headphones plugged into the system.This logic-lowvoltage at the HP-IN pin enables the LM4863and places it inbridged mode operation.Resistor R4limits the amount ofcurrent flowing out of the HP-IN pin when the voltage at thatpin goes below ground resulting from the music coming fromthe headphone amplifier.The output coupling capacitors pro-tect the headphones by blocking the amplifier’s half supplyDC voltage.When there are no headphones plugged into the system andthe IC is in bridged mode configuration,both loads are es-sentially at a0V DC potential.Since the HP-IN threshold isset at4V,even in an ideal situation,the output swing cannotcause a false single-ended trigger.When a set of headphones are plugged into the system,thecontact pin of the headphone jack is disconnected from thesignal pin,interrupting the voltage divider set up by resistorsR1and R2.Resistor R1then pulls up the HP-IN pin,en-abling the headphone function.This disables the secondside of the amplifier thus muting the bridged speakers.Theamplifier then drives the headphones,whose impedance isin parallel with resistors R2and R3.Resistors R2and R3have negligible effect on output drive capability since thetypical impedance of headphones are32Ω.Also shown inFigure2are the electrical connections for the headphonejack and plug.A3-wire plug consists of a Tip,Ring andSleave,where the Tip and Ring are signal carrying conduc-tors and the Sleave is the common ground return.One con-trol pin contact for each headphone jack is sufficient to indi-cate to control inputs that the user has inserted a plug into ajack and that another mode of operation is desired.The LM4863can be used to drive both a pair of bridged8Ωspeakers and a pair of32Ωheadphones without using theHP-IN pin.In this case the HP-IN would not be connected tothe headphone jack but to a microprocessor or a switch.Byenabling the HP-IN pin,the8Ωspeakers can be muted.LM48639Application Information(Continued)PROPER SELECTION OF EXTERNAL COMPONENTS Proper selection of external components in applications us-ing integrated power amplifiers is critical to optimize device and system performance.While the LM4863is tolerant to avariety of external component combinations,consideration to component values must be used to maximize overall sys-tem quality.The LM4863is unity-gain stable,giving the designer maxi-mum system performance.The LM4863should be used in low gain configurations to minimize THD+N values,and maximize the signal to noise ratio.Low gain configurations require large input signals to obtain a given output power.In-put signals equal to or greater than 1Vrms are available from sources such as audio codecs.Please refer to the sec-tion,Audio Power Amplifier Design ,for a more complete explanation of proper gain selection.Besides gain,one of the major considerations is the closed-loop bandwidth of the amplifier.To a large extent,the bandwidth is dictated by the choice of external components shown in Figure 1.The input coupling capacitor,C i ,forms a first order high pass filter which limits low frequency re-sponse.This value should be chosen based on needed fre-quency response for a few distinct reasons.CLICK AND POP CIRCUITRYThe LM4863contains circuitry to minimize turn-on transients or “clicks and pops”.In this case,turn-on refers to either power supply turn-on or the device coming out of shutdown mode.When the device is turning on,the amplifiers are inter-nally configured as unity gain buffers.An internal current source ramps up the voltage of the bypass pin.Both the in-puts and outputs ideally track the voltage at the bypass pin.The device will remain in buffer mode until the bypass pin has reached its half supply voltage,1/2V DD .As soon as the bypass node is stable,the device will become fully opera-tional,where the gain is set by the external resistors.Although the bypass pin current source cannot be modified,the size of C B can be changed to alter the device turn-on time and the amount of “clicks and pops”.By increasing amount of turn-on pop can be reduced.However,the tradeoff for using a larger bypass capacitor is an increase in turn-on time for this device.There is a linear relationship be-tween the size of C B and the turn-on time.Here are some typical turn-on times for a given C B :C B T ON 0.01µF 20ms 0.1µF 200ms 0.22µF 420ms 0.47µF 840ms 1.0µF2SecIn order eliminate “clicks and pops”,all capacitors must be discharged before turn-on.Rapid on/off switching of the de-vice or the shutdown function may cause the “click and pop”circuitry to not operate fully,resulting in increased “click and pop”noise.In a single-ended configuration,the output cou-pling capacitor,C O ,is of particular concern.This capacitor discharges through the internal 20k Ωresistors.Depending on the size of C O ,the time constant can be relatively large.To reduce transients in single-ended mode,an external 1k Ω–5k Ωresistor can be placed in parallel with the internal 20k Ωresistor.The tradeoff for using this resistor is an in-crease in quiescent current.The value of C I will also reflect turn-on pops.Clearly,a cer-tain size for C I is needed to couple in low frequencies without excessive attenuation.But in many cases,the speakers used in portable systems,whether integral or external,have little ability to reproduce signals below 100Hz to 150Hz.In this case,using a large input and output capacitor may not increase system performance.In most cases,choosing a small value of C I in the range of 0.1µF to 0.33µF),along with C B equal to 1.0µF should produce a virtually clickless and popless turn-on.In cases where C I is larger than 0.33µF,it may be advantageous to increase the value of C B .Again,it should be understood that increasing the value of C B will reduce the “clicks and pops”at the expense of a longer device turn-on time.DS012881-24FIGURE 2.Headphone CircuitL M 486310Application Information(Continued)NO-LOAD DESIGN CONSIDERATIONSIf the outputs of the LM4863have a load higher than10kΩ,the LM4863may show a small oscillation at high output lev-els.To prevent this oscillation,place5kΩresistors from thepower outputs to ground.AUDIO POWER AMPLIFIER DESIGNDesign a1W/8ΩBridged Audio AmplifierGiven:Power Output:1WrmsLoad Impedance:8ΩInput Level:1VrmsInput Impedance:20kΩBandwidth:100Hz−20kHz±0.25dBA designer must first determine the minimum supply rail toobtain the specified output power.By extrapolating from theOutput Power vs Supply Voltage graphs in the Typical Per-formance Characteristics section,the supply rail can beeasily found.A second way to determine the minimum sup-ply rail is to calculate the required V opeak using Equation3and add the dropout ing this method,the mini-mum supply voltage would be(V opeak+(2*V od)),where V odis extrapolated from the Dropout Voltage vs Supply Voltagecurve in the Typical Performance Characteristics section.(4)Using the Output Power vs Supply Voltage graph for an8Ωload,the minimum supply rail is3.9V.But since5V is a stan-dard supply voltage in most applications,it is chosen for thesupply rail.Extra supply voltage creates headroom that al-lows the LM4863to reproduce peaks in excess of1W with-out producing audible distortion.At this time,the designermust make sure that the power supply choice along with theoutput impedance does not violate the conditions explainedin the Power Dissipation section.Once the power dissipation equations have been addressed,the required differential gain can be determined from Equa-tion4.(5)R f/R i=A VD/2(6)From equation4,the minimum A VD is2.83;use A VD=3Since the desired input impedance was20kΩ,and with aA VD of3,a ratio of1.5:1of R f to R i results in an allocation ofR i=20kΩand R f=30kΩ.The final design step is to ad-dress the bandwidth requirements which must be stated as apair of−3dB frequency points.Five times away from a polegives0.17dB down from passband response,which is betterthan the required±0.25dB specified.f L=100Hz/5=20Hzf H=20kHz x5=100kHzAs stated in the External Components section,R i in con-junction with C i create a highpass filter.C i≥1/(2π*20kΩ*20Hz)=0.397µF;use0.33µFThe high frequency pole is determined by the product of thedesired high frequency pole,f H,and the differential gain,AVD.With a A VD=3and f H=100kHz,the resulting GBWP=150kHz which is much smaller than the LM4863GBWP of3.5MHz.This figure displays that if a designer has a need todesign an amplifier with a higher differential gain,theLM4863can still be used without running into bandwidthproblems.DEMOBOARD CIRCUIT LAYOUTThe demoboard circuit layout is provided here as an ex-ample of a circuit using the LM4863.If an LM4863MTE isused with this layout,the exposed-DAP is soldered down tothe copper pad beneath the part.Heat is conducted awayfrom the part by the two large copper pads in the upper cor-ners of the demoboard.This demoboard provides enough heat dissipation ability toallow an LM4863MTE to output2.2W into4Ωat25˚C.DS012881-94All LayersDS012881-93Silk Screen LayerLM486311。
芯片资料 遥控器AS1213
图 14
M34280 数据格式
如上图所示:一帧完整的发射码有引导码、用户编码和键数据码三部分组成。引导码由一个 8.44ms 的高电平脉冲及 4.22ms 的低电平脉冲组成;八位用户编码与八位的键数据码之间有一 4.22ms 的低电平间隔。在连续发射波形时,重复码波形与第一次发射的波形相同。
M32480 码型的输出波形如下图 15 所示:
202002-12-19
第 8 页 共 16 页
深圳市爱思科微电子有限公司 Shenzhen ASIC Micro-electronics Ltd.
LC 7461T 的输出波形如图 12,图 13 所示:
AS1213
图 12 LC 7461T 的第一次传送波形 图 13 LC 7461T 的第二次传送波形(重复码波形)
AS1213
2,PT2222 码型: PT2222 所发射的一帧码含有一个引导码,8 位的用户编码(C7~C0=14H)及其反码,8 位的键
数据码及其反码。下图给出了这一帧码的结构。
图 6 PT2222 数据格式 如上图 6 所示,引导码由一个 9ms 的载波波形和 4.5ms 的关断时间构成,它作为随后发射的码 的引导。在发重复码时,引导码由一个 9ms 的载波波形和 2.25ms 的关断时间构成。每次 8 位的码被 传送的同时,它们的反码也被传送。编码采用脉冲位置调制方式(PPM),利用之间的时间间隔来区 分“0”和“1”,其波形同图 4。发射端输出高电平时按图 5的载波波形发送。
202002-12-19
第 1 页 共 16 页
深圳市爱思科微电子有限公司 Shenzhen ASIC Micro-electronics Ltd.
AS1213
目录
PS8703中文资料
UNITS
MINLeabharlann VµApF
nA
µA
V
µA
µA
TYP
MAX
1.2
1.5
10
30
7
500
100
0.1
0.4
0.01
1
150
800
Detector
Coupled
CTR
Current Transfer Ratio (IC/IF)1, IF = 16 mA, VCC = 4.5 V, VO = 0.4 V
元器件交易网
TYPICAL PERFORMANCE CURVES (TA = 25 °C unless otherwise specified)
PS8703
Diode Power Dissipation, PD (mW)
DIODE POWER DISSIPATION vs. AMBIENT TEMPERATURE
0.1
-25
0
25
50
75
100
Ambient Temperature, TA (°C)
NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE
1.6
Normalized to 1.0
1.4
at TA = 25°C, IF = 16 mA,
VCC = 4.5 V, VO = 0.4 V
• HIGH ISOLATION VOLTAGE: BV: 2500 Vr.m.s.
• HIGH-SPEED RESPONSE: tPHL, tPLH = 5 µs MAX (@RL = 4.1 kΩ)
MAX8702-MAX8703_cn
________________________________概述MAX8702/MAX8703双相、同相MOSFET驱动器,用于配合PWM控制器IC工作,如MAX8705/MAX8707,适用于笔记本电脑CPU核供电或其他多相调节器。
设计中可以直接从电池电压降压,产生核电压;也可以从一个低电压系统电源降压。
一次变换方案能够获得极高的转换效率;而二次变换方案能够工作在更高的开关频率,获得最小的物理尺寸。
每一路MOSFET驱动器能够驱动3nF的容性负载,传输延时仅19ns,上升、下降时间典型值为8ns。
也可以驱动更大的容性负载,但会导致更长的传输延时和跳变时间。
自适应死区时间控制可避免贯通电流,并可进一步提高转换器效率。
MAX8702/MAX8703在每个通道都有过零比较器。
启用时,这些比较器允许驱动器以脉冲跳频方式工作,节省了轻载下的功耗。
器件还有单独的关断控制,可以关闭所有电路,使静态电流降低至2µA,并将DH置为低电平、DL置为高电平。
MAX8702集成了电阻可设置的温度传感器。
当芯片温度超过设置温度门限时,漏极开路输出(DRHOT)将向系统发出报警信号。
MAX8702/MAX8703采用热增强型20引脚、薄型QFN封装。
________________________________应用多相、大电流电源2至4节Li+电池为CPU核供电笔记本电脑与台式计算机服务器与工作站________________________________特性♦双相MOSFET驱动器♦0.35Ω(典型值)导通电阻与5A (典型值)驱动电流♦驱动大的同步整流MOSFET♦集成温度传感器(仅对MAX8702)可由电阻设定门限漏极开路输出的驱动器过热指示器(DRHOT)♦自适应死区时间防止贯通♦可选择的脉冲跳频模式♦4.5V至28V输入电压范围♦热增强型、小尺寸、薄型QFN封装MAX8702/MAX8703带有温度传感器的双相MOSFET驱动器_________________________最简工作电路____________________________定购信息19-3357; Rev 0; 8/04引脚配置位于数据资料末尾。
步进电机驱动芯片PMM8713中文资料
步进电机驱动芯片PMM8713中文资料
PMM8713步进电机总旋转位移,系与输入脉冲总数成正比,其旋转速度则系与输入脉冲的脉冲速率成正比。
此为步进电机结构的概要,换言之,步进电机可利用脉冲信号,直接执行开回路定位控制。
此为步进电机的最大特点.
有几家公司推出了步进电机相激磁专用IC,其机能大致相同。
在驱动步进电机时,除了相激磁之外还必须要有产生步进脉冲产
生电路。
三洋电机公司生产之PMM8713IC 为控制一般3 相/4 相步进马达专用芯片。
下述为PMM8713 的功能概要,包括了该芯片之特点、接脚连接、菜单及最大额定等数据。
PMM8713特点
○通用控制器:可利用激磁模态转换端子执行下述6 种模态的选择。
○ 4 相单激磁
○ 4 相双激磁
○ 4 相单-双激磁
○ 3 相单激磁
○ 3 相双激磁
○ 3 相单-双激磁
○电源电压范围宽阔:VDD=4V~18V
○高输出电流:吸极及源极均为20mA
○高噪声容限:所有的输入端子均内装有施密特电路
○两种脉冲输入:双输入端子式单一人工,单一转换端子式均可执行选择
○激磁状态识别*器:控制器的动作状态,系作为*器讯号,以向外部执行输出接脚连接
PMM8713引脚图
图1 引脚图及外形封装图
表1 PMM8713 的引脚概要
PMM8713应用电路
图2 应用电路:步进马达驱动电路。
百度文库:德州仪器OMAP系列汇总
德州仪器OMAP系列汇总∙MOTOROLA∙523358210∙1楼∙2010-11-20 15:46∙回复∙MOTOROLA 2楼德州仪器(TI) 是全球领先的数字信号处理与模拟技术半导体供应商,亦是推动因特网时代不断发展的半导体引擎。
作为实时技术的领导者,TI正在快速发展,在无线与宽带接入等大型市场及数码相机和数字音频等新兴市场方面,TI∙523358210∙凭借性能卓越的半导体解决方案不断推动着因特网时代前进的步伐∙2010-11-20 15:47∙回复∙MOTOROLA 3楼∙∙2010-11-20 15:47∙回复∙MOTOROLA∙523358210∙4楼下面来介绍德州仪器的部分CPU1、OMAP850OMAP850 是一款单芯片,集成了适用于应用处理的ARM926EJ-S™ 内核以及TI 的EDGE 数字基带调制解调器。
此产品供高产量无线OEM 和ODM 使用,不通过经销商销售。
OMAP850 包括OMAP850 的所有特性,并且还增加了对128Mb 或256Mb 堆栈式移动SDRAM 的支持。
这使得OMAP850 非常适用于空间有限的系统,或者更轻、更小的移动终端设计。
此外,它的功耗要小于传统的外部存储器配置。
这种灵活性使移动终端制造商可以进一步减小下一代高端智能电话和无线手持终端的尺寸。
除了节省空间之外,堆栈式SDRAM 还具有低功耗的特性。
这点对于移动终端设计人员非常重要。
OMAP850 处理器是TCS3500 EDGE 芯片组解决方案的一项核心内容。
多普达S1 MOTO A1210使用OMAP850∙2010-11-20 15:52 ∙回复∙MOTOROLA∙523358210∙5楼2。
OMAP3503:弹性架构应用处理器具备集成外设、采用600 MHz Cortex-A8 内核的OMAP3503 现已开始提供样片。
Cortex-A8 内核的时钟速度比300MHz ARM9 提高了一倍,也因此实现了两倍性能的提升。
AH3中文资料
Product Features• 50 – 870 MHz • +41 dBm OIP3 • 3 dB Noise Figure • 13 dB Gain • +20 dBm P1dB• Lead-free/Green/RoHS-compliant SOT-89 Package • Single +5 V Supply • MTTF > 100 yearsApplications• Mobile Infrastructure • CATV / DBS • RFID• Mobile WirelessProduct DescriptionThe AH3 is a high dynamic range amplifier in a low-cost surface-mount package. The combination of low noise figure and high output IP3 at the same bias point makes it ideal for receiver and transmitter applications. The device combines dependable performance with superb quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C. The AH3 is available in the environmentally-friendly lead-free/green/RoHS-compliant SOT-89 package.The broadband amplifier uses a high reliability GaAs MESFET technology and is targeted for applications where high linearity is required. In addition, the AH3 is internally matched for 50 ohms.Functional DiagramRF INGNDRF OUTFunction Pin No. Input 1 Output/Bias 3 Ground 2, 4Specifications (1)UnitsMinTypMaxOperational Bandwidth MHz 50 870 Test Frequency MHz 800Gain dB 12 12.9 14Input Return Loss dB 10 Output Return Loss dB 20Output P1dB dBm +20Output IP3 (2)dBm +37 +41Noise Figure (3) dB 2.9 Operating Current Range mA 120 150 180Supply Voltage V 51. Test conditions unless otherwise noted: T = 25 ºC, 50 Ω system.2. 3OIP measured with two tones at an output power of +5 dBm/tone separated by 10 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.3. Noise figure can be optimized by matching the input for optimal return loss.Absolute Maximum RatingRatingOperating Case Temperature -40 to +85 °C Storage Temperature -55 to +125 °C Supply Voltage+6 V RF Input Power (continuous) +10 dBm Junction Temperature+220 °COperation of this device above any of these parameters may cause permanent damage.Typical Performance (4)UnitsTypicalFrequency MHz 50 450 800S21 dB 13.2 13 12.5 S11 dB -8.4 -16 -15 S22 dB-18.7 -16 -15 Output P1dB dBm +20 +20 +20 Output IP3 (2)dBm +36 +40 +41 Noise Figure dB 6 3.5 3.4 Supply VoltageV 5 Device Current mA 1504. Parameters reflect performance in an AH3WB-PCB application circuit, as shown on page 3.Ordering InformationDescriptionAH3-GHigh Dynamic Range Amplifier (lead-free/green/RoHS-compliant SOT-89 package)AH3WB-PCB 50 – 870 MHz Fully Assembled Application CircuitTypical Device DataS-Parameters (V D = +5 V, I D = 150 mA, T = 25 °C, calibrated to device leads) Freq (MHz) S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang)50 -11.93 -33.34 14.15 169.58 -19.95 7.77 -18.60 -126.62 100 -13.21 -28.09 13.95 170.57 -19.98 2.69 -20.54 -149.57 150 -13.51 -28.85 13.85 169.10 -19.86 0.25 -21.16 -160.72 200 -13.48 -32.18 13.83 167.34 -19.85 -1.46 -21.23 -167.36 250 -13.55 -36.10 13.81 164.90 -19.87 -3.41 -20.91 -170.48 300 -14.05 -44.73 13.78 162.57 -19.86 -4.62 -19.26 -177.22 350 -14.12 -48.60 13.75 160.01 -19.91 -5.48 -19.07 -175.89 400 -13.53 -55.70 13.70 157.51 -19.92 -7.31 -19.12 -178.33 450 -13.60 -61.16 13.69 155.04 -19.95 -7.85 -18.71 -179.04 500 -13.32 -65.93 13.65 152.52 -19.90 -10.12 -18.67 178.55 550 -13.11 -70.97 13.60 150.15 -19.85 -10.20 -18.46 178.78 600 -12.65 -75.78 13.52 147.48 -19.91 -11.07 -18.43 177.91 650 -12.43 -80.45 13.51 145.06 -19.89 -12.83 -18.29 177.33 700 -12.10 -84.62 13.46 142.56 -19.87 -12.67 -18.31 175.94 750 -11.79 -88.75 13.39 140.08 -19.82 -14.15 -18.29 176.28 800 -11.54 -93.43 13.33 137.61 -19.92 -14.94 -18.18 174.92 850 -11.28 -96.17 13.26 135.38 -19.84 -15.94 -18.26 173.97 900 -10.97 -100.66 13.21 132.61 -20.09 -16.96 -18.20 174.37 950 -10.69-104.85 13.08 129.83 -20.09 -19.21 -18.35 175.02 1000 -10.53 -107.99 13.04 127.70 -19.92 -19.33 -17.83 174.09Device S-parameters are available for download on the website at: Gain10111213141502004006008001000Frequency (MHz)G a i n (d B )Return Loss-25-20-15-10-5002004006008001000Frequency (MHz)S 11, S 22 (d B )Typical RF Performance at 25 °CMHz 50 450 800 S21 – GaindB 13.2 13 12.5 S11 – Input R.L. dB-8.4 -16 -15 S22 – Output R.L. dB -18.7 -16 -15 Output P1dB dBm +20 +20 +20 Output IP3 (+5 dBm / tone, 10 MHz spacing)dBm +36 +40 +41 Noise Figure dB 6 3.5 3.4 Device Bias+5V @ 150mACircuit Board Material: .062” total thickness with a .014” FR-4 top RF layer, 4 layers (other layers added for rigidity), 1 oz copper, 50Ω Microstrip linedetails: width = .025”.AH3-G Mechanical InformationThis package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260 °C reflow temperature) and leaded (maximum 245 °C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.。
MT9083A中文操作手册
安立公司对数据丢失不负责任
务请注意下列几点, • 正在进行存取时,不得将插入式内存卡从脉冲测试器中拔出。 • 静电会对内存卡造成损坏。
本仪表所用部件有工作寿命或使用次数限制。 这些部件用户必须自费更换,即使在本操作手册开始部分描述的保修期内。 在长期连续工作时请务必注意部件的使用寿命。
ii
安全符号 为防止由于仪器的误操作而造成人员伤害和损失,安立公司使用下列安全标志表示相关的安全信息。 在使用仪器前,应确保您已经清楚知道这些标志的意义。 也许该仪器没有使用某些或全部标志。另外,在本手册的插图中,设备的安全标志可能没有画出。
手册中使用的安全标志
危险
该标志指明这是一个非常危险的操作,如果操作不当,将会导致重伤甚 至死亡。
该标志指明一个禁止的操作。带斜杠的圆圈标注于该操作之上或旁边。
该标志指明进行某项操作时,必须小心。圆圈标注于该操作之上或旁边。
该标志指明警告和小心。相关内容在三角形内或附近。
该标志指明一个说明。相关内容列于一个方框中。
这些标志指明被标记部件应予以回收利用。
中文版在中国国内印刷
iii
电气安全
危险
绝对不得触摸贴有左侧标志的部件。该部件具有至少1000伏的高压,可 能造成致命的电击。
Falling Over
7. 本仪器使用时应正确放置。若机身倒置或采用其他非正确的位置, 仪器将会不稳定,若由于轻微的机械震动而造成翻倒,就有可能损 坏仪器。 同样也不要在电源开关操作不同的地方使用本仪器。
v
电气安全
警告
Replacing Battery
8. 更换电池时,应使用指定的电池,并保证极性安装正确。如果使用 了不适当的电池或将极性装反,就有可能产生爆炸,造成严重伤害甚至 死亡。
A870U3 A870 设置手册
A870U3/A870 设置手册FCC 条款依照FCC 条款第15部分的规定,本装置已经通过测试并且符合Class B 级数字装置的限制。
此条款限制了在安装过程中可能造成的有害射频干扰并提供了合理的防范措施。
本装置在使用时会产生无线射频辐射,如果没有依照本手册的指示安装和使用,可能会与无线通讯装置产生干扰。
然而,并不保证在特定的安装下不会发生任何干扰。
如果关闭和重新开启本设备后,仍确定本装置造成接收广播或电视的干扰,用户可以使用以下列表中的一种或多种方法来减少干扰: ● 重新安装或调整接收天线。
● 增加本设备与接收设备之间的距离。
● 连接设备连接到不同的插座以便于两个设备使用不同的回路。
●咨询经销商或富有经验的无线电工程师,以获得更多资讯。
本用户手册内容的变更,恕不另行通知,制造商没有解释的义务。
本用户手册的所有内容若有任何错误,制造商没有义务为其承担任何责任。
所有商标和产品名称均有其各自所有权。
未经过书面许可,不得以任何形式(部分或全部)复制此手册信息。
免责说明本手册内容系BIOSTAR ®知识产权,版权归BIOSTAR ®所有。
我们本着对用户负责的态度,精心地编写该手册,但不保证本手册的内容完全准确无误。
BIOSTAR ®有权在不知会用户的前提下对产品不断地进行改良、升级及对手册内容进行修正,实际状况请以产品实物为准。
本手册为纯技术文档,无任何暗示及影射第三方之内容,且不承担排版错误导致的用户理解歧义。
本手册中所涉及的第三方注册商标所有权归其制造商或品牌所有人。
CE 符合性简短声明我们声明此产品符合现行法律,并满足2004/108/CE , 2006/95/CE 和1999/05/CE 的指令规定的所有基本要求。
A870U3/A870 设置手册防静电操作规则静电可能严重损坏您的设备,在处理主板以及其它的系统设备的时候要特别注意,避免和主板上的系统组件的不必要接触,保证在抗静电的环境下工作,避免静电放电可能对主板造成损坏,当在您的机箱中插入或者移除设备时,请保证电源处于断开状态,厂商对于不遵照本操作规则或者不遵守安全规范而对主板造成的损坏不负责。
AMS117-3.3中文资料
典型应用电路图
AMS1117
图 1. 典型固定输出电压
VIN 10 F
AMS1117-ADJ
VIN
VOUT
ADVANCED MONOLITHIC SYSTEMS (translate by BONA 0755-82800289)
共10页 第4页
管脚排列图
AMS1117
AMS1117
AMS1117
AMS1117
AMS1117
AMS1117
管脚描述
管脚号 1 2 3
封装 TO-252-2L TO-263-3L
打印名称
AMS1117-ADJ AMS1117-1.2 AMS1117-1.5 AMS1117-1.8 AMS1117-2.5 AMS1117-2.85 AMS1117-3.0 AMS1117-3.3 AMS1117-5.0 AMS1117-2.85 AMS1117-3.0 AMS1117-3.3 AMS1117-5.0
共10页 第3页
AMS1117
(接上页)
参数
输出电压
输出电压温度稳定性 线性调整 负载调整 漏失电压 静态电流 纹波抑制比 可调管脚电流 可调管脚电流变化 温度稳定性 长期稳定性 RMS输出噪声
热阻系数 (无散热片)
符号
测试条件
最小值 典型值 最大值 单位
AMS1117-2.85,
IOUT=10mA, VIN=4.85V,TJ=25°C , 2.820 2.850 .880
比索洛尔联合瑞舒伐他汀对冠状动脉慢血流患者内皮功能及炎症的影响
比索洛尔联合瑞舒伐他汀对冠状动脉慢血流患者内皮功能及炎症的影响黄敏;夏中华;谢福生;周天天【摘要】Objective To investigate the effects of bisoprolol combined with rosuvastatin on endothelial function and inflammation in patients with coronary slow flow (CSF). Methods Ninety CSF patients treated from August 2014 to October 2015 were randomly divided into control group, statin group and combined group, thirty cases in each group. The control group was given conventional therapy (aspirin 100 mg/d and isosorbide mononitrate 60 mg/d), statin group was given rosuvastatin 10 mg/d on the basic of control group, while the combined group was given bisoprolol 5 mg/d on the basic therapy of statin group. The serum concentrations of nitric oxide (NO), endothelin-1(ET-1), high-sensitivity c-reactive protein (hs-CRP) and interleukin-6 (IL-6) were detected before treatment and 8 weeks after treatment. The improvement of patients with angina pectoris was evaluated. Results After eight-week treatment, the NO levels were significantly increased in combined group and statin group, while the ET-1, hs-CRP and IL-6 levels were significantly decreased than those before the treatment (P<0.05). At the same time, comparing with the statin group and control group, the NO level was increased in combined group (P<0.05), while the ET-1, hs-CRP, and IL-6 levels decreased significantly (P<0.05). There were significant differences in the effective rates between the combined group (90.0%) and the statin group (83.3%), which were higherthan those in control group (56.7%). Conclusion Bisoprolol combined with rosuvastatin can improve the endothelial function and anti-inflammatoryin the treatment of CSF.%目的:研究比索洛尔联合瑞舒伐他汀对冠状动脉慢血流(CSF)患者内皮功能和炎症的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O2908HKIM No.A1304-1/2
(1.05)
±0.3
53.0 Effective Area
±0.3
±0.3
48.4
55.1
±0.2
(1.05)
元器件交易网
AM-8703
Ratings at Ta = 25°C
Parameter Open Circuit Voltage Short Circuit Current Operating Voltage & Operating Current Symbol Voc Isc Iope SS 50kLx SS 50kLx SS 50kLx, Vope=3.9V AM-1.5, 100mW/cm2, Vope=3.9V Maximum Output (Reference Value) Pmax SS 50kLx, Vop=4.6V, Iop=13.4mA AM-1.5, 100mW/cm2, Vop=4.6V, Iop=28.5mA Operating Temperature Storage Temperature Topr Tstg 11.6 Conditions min Ratings typ 6 15.7 14.5 32.1 62 131 -10 to +60 -20 to +70 max V mA mA mA mW mW °C °C Unit
元器件交易网
Ordering number : ENA1304
AM-8703
Package Dimensions (unit : mm)
Overcoat Side Glass Juts(4 Corners) Width : 0.6MAX, Length : 6.0MAX Light Receiving Side
SS: Solar Simulator
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.
Electrode Electrode
4.7541Βιβλιοθήκη 2±0.3(1.05)
37.8 Effective Area
±0.2
(2.35)
Note: Glass Substrate Thickness Module Thickness
: 1.1mm : 1.3mm max
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer' s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer' s products or equipment.