二次函数知识点

合集下载

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数知识点总结一、函数定义与表达式1.一般式:y = ax^2 + bx + c(a、b、c为常数,a≠0);2.顶点式:y = a(x - h)^2 + k(a、h、k为常数,a≠0);3.交点式:y = a(x - x1)(x - x2)(a≠0,x1、x2是抛物线与x轴两交点的横坐标)。

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b^2 - 4ac≥0时,抛物线的解析式才可以用交点式表示。

二次函数解析式的这三种形式可以互相转化。

二、函数图像的性质——抛物线1)开口方向——二次项系数a二次函数y = ax^2 + bx + c中,a作为二次项系数,显然a≠0.当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。

顶点坐标:(h,k)一般式:(-b/2a,-Δ/4a)总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。

|a|越大开口就越小,|a|越小开口就越大。

y = 2x^2y = x^2y = (1/2)x^2y = -(1/2)x^2y = -x^2y = -2x^22)抛物线是轴对称图形,对称轴为直线x = -b/2a。

对称轴顶点式:x = h两根式:x = x1、x = x23)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。

(“左同右异”)a与b同号(即ab>0)对称轴在y轴左侧a与b异号(即ab<0)对称轴在y轴右侧4)增减性,最大或最小值当a>0时,在对称轴左侧(当x。

-b/2a时),y随着x的增大而增大;当a -b/2a时),y随着x的增大而增大;当a>0时,函数有最小值,并且当x = -b/2a时,ymin = -Δ/4a;当a<0时,函数有最大值,并且当x = -b/2a时,ymax = -Δ/4a;5)常数项c常数项c决定抛物线与y轴交点。

二次函数知识点

二次函数知识点

一、二次函数的定义1.一般地,形如 2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,,,a b c 分别为二次函数的二次项、一次项和常数项系数.这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的性质1.二次函数2y ax =0a ≠()的性质:(1) 抛物线2y ax =的顶点是坐标原点(0,0),对称轴是0x =(y 轴). (2) 函数2y ax =的图像与a 的符号关系.① 当0a >时⇔抛物线开口向上⇔顶点为其最低点; ② 当0a <时⇔抛物线开口向下⇔顶点为其最高点;2. 2y ax c =+的性质:3. 二次函数2y ax bx c =++0a ≠()的相关性质若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: (1) 开口方向:00a a >⇔⎧⎨<⇔⎩向上向下, (2) 对称轴:2bx a =-(或x h =),(3) 顶点坐标:24(,)24b ac b a a--(或(,)h k )(4) 最值:0a >时有最小值244ac b a -(或k )(如图1);0a <时有最大值244ac b a-(或k )(如图2);(5)单调性:二次函数2y ax bx c =++(0a ≠)的变化情况(增减性)① 如图1所示,当0a >时,对称轴左侧2bx a<-,y 随着x 的增大而减小,在对称轴的右侧2bx a<- ,y 随x 的增大而增大;② 如图2所示,当0a >时,对称轴左侧2bx a<-, y 随着x 的增大而增大,在对称轴的右侧2bx a<-,y 随x 的增大而减小;(6)与坐标轴的交点:①与y 轴的交点:(0,C );②与x 轴的交点:使方程20ax bx c ++=(或2()0a x h k -+=)成立的x 值. 3. 二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.三、二次函数的图像与系数关系1. a 决定抛物线的开口方向:当0a >时⇔抛物线开口向上;当0a <时⇔抛物线开口向下a 决定抛物线的开口大小:a 越大,抛物线开口越小; a 越小,抛物线开口越大.注:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反.2. b 和a 共同决定抛物线对称轴的位置.(对称轴为:2b x a=-) 当0b =时,抛物线的对称轴为y 轴; 当,a b 同号时,对称轴在y 轴的左侧;当,a b 异号时,对称轴在y 轴的右侧.3. c 的大小决定抛物线与y 轴交点的位置.(抛物线与y 轴的交点为()0c ,) 当0c =时,抛物线与y 轴的交点为原点;当0c >时,交点在y 轴的正半轴; 当0c <时,交点在y 轴的负半轴.二、二次函数的三种表达方式(1)一般式:()20y ax bx c a =++≠ (2)顶点式:()2y a x h k =-+()0a ≠(3)双根式(交点式):()()()120y a x x x x a =--≠2.如何设点:⑴ 一次函数y ax b =+(0a ≠)图像上的任意点可设为()11x ax b +,.其中10x =时,该点为直线与y 轴交点.⑵ 二次函数2y ax bx c =++(0a ≠)图像上的任意一点可设为()2111x ax bx c ++,.10x =时,该点为抛物线与y 轴交点,当12bx a=-时,该点为抛物线顶点. ⑶ 点()11x y ,关于()00x x ,的对称点为()010122x x y y --,. 4.如何设解析式:① 已知任意3点坐标,可用一般式求解二次函数解析式; ② 已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式; ③ 已知抛物线与x 的两个交点坐标,可用交点式求解二次函数解析式.④ 已知抛物线经过两点,且这两点的纵坐标相等时,可用对称点式求解函数解析式(交点式可视为对称点式的特例)注:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.一、二次函数与一次函数的联系一次函数()0y kx n k =+≠的图像l 与二次函数()20y ax bx c a =++≠的图像G 的交点,由方程组2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.二、二次函数与方程、不等式的联系1.二次函数与一元二次方程的联系:1.直线与抛物线的交点:(1)y 轴与抛物线2y ax bx c =++得交点为(0, c ).(2)与y 轴平行的直线x h =与抛物线2y ax bx c =++有且只有一个交点(h ,2ah bh c ++). (3)抛物线与x 轴的交点:二次函数2y ax bx c =++的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程20ax bx c ++=的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0∆>⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0∆=⇔抛物线与x 轴相切; ③没有交点⇔0∆<⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是2ax bx c k ++=的两个实数根.(5)抛物线与x 轴两交点之间的距离:若抛物线2y ax bx c =++与x 轴两交点为()()1200A x B x ,,,,由于1x 、2x 是方程20ax bx c ++=的两个根,故1212,b c x x x x a a +=-⋅=12AB x x =-2.二次函数常用解题方法⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:3.二次函数与一元二次方程之根的分布(选讲)所谓一元二次方程,实质就是其相应二次函数的零点(图象与x 轴的交点问题,因此,二次方程的实根分布问题,即二次方程的实根在什么区间内的问题,借助于二次函数及其图象利用数形结合的方法来研究是非常有益的.设()()20f x ax bc c a =++≠的二实根为1x ,2x ,()12x x <,24b ac ∆=-,且()αβαβ<,是预先给定的两个实数.⑴ 当两根都在区间()αβ,内,方程系数所满足的充要条件: ∵12x x αβ<<<,对应的二次函数()f x 的图象有下列两种情形:当0a >时的充要条件是:0∆>,2ba αβ<-<,()0f α>,()0f β>. 当0a <时的充要条件是:0∆>,2baαβ<-<,()0f α<,()0f β<.两种情形合并后的充要条件是:()()0200b a f f αβαααβ⎫∆><-<⎪⎬⎪>>⎭,, ……①⑵ 当两根中有且仅有一根在区间(),αβ内,方程系数所满足的充要条件; ∵1x αβ<<或2x αβ<<,对应的函数()f x 的图象有下列四种情形:从四种情形得充要条件是: ()()0f f αβ⋅< ……②⑶ 当两根都不在区间[]αβ,内方程系数所满足的充要条件: 当两根分别在区间[]αβ,的两旁时; ∵12x x αβ<<<对应的函数()f x 的图象有下列两种情形:当0a >时的充要条件是:f α当0a <时充要条件是:()0f α>,()0f β>. 两种情形合并后的充要条件是:()0f αα<,()0f αβ< ……③当两根分别在区间[,]αβ之外的同侧时:∵12x x αβ<<<或12x x αβ<<<,对应函数()f x 的图象有下列四种情形:当12x x α<<时的充要条件是:0∆>,2baα-<,()0f αα> ……④当12x x β<<时的充要条件是:0∆>,2baβ->,()0f αβ> ……⑤4区间根定理如果在区间()a b ,上有()()0f a f b ⋅<,则至少存在一个()x a b ∈,,使得()0f x =. 此定理即为区间根定理,又称作勘根定理,它在判断根的位置的时候会发挥巨大的威力.二次函数与三角形在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:1.如图,过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A B S S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-其中D ,E 两点坐标可以通过BC 或AB 的直线方程以及A 或C 点坐标得到. 2.如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---. 所涉及的各块面积都可以通过已知点之间的坐标差直接求得. 3.如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()111222ABC ADEB CFEB ADFC A B A B B C B c C A C A S S S S x x y y x x y y x x y y ∆=-++=-++-++-+4.如图,作三角形的高,运用三角形的面积公式求解四边形的面积.该方法不常用,如果三角形的一条边与0x y ±=平行,则可以快速求解.12ABC S h BC ∆=⋅.二次函数图象的平移 1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。

本文将对二次函数的定义、性质、图像及其相关内容进行总结。

一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。

其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。

二次函数的定义域为全体实数集。

二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。

当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。

2. 对称轴:二次函数的对称轴是 x = -b / (2a)。

对称轴是图像的中心线,函数图像关于对称轴对称。

3. 零点:二次函数的零点是指函数值等于零的 x 值。

二次函数的零点可以有 0、1 或 2 个。

当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。

4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。

三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。

关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。

2. 确定对称轴:对称轴的方程为 x = -b / (2a)。

3. 确定开口方向:根据 a 的正负性可以确定开口方向。

4. 确定零点:根据判别式 D 的值可以确定零点的情况。

除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质1抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. 2函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.3顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于包括重合y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴或重合的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法1公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=.2配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为h ,k ,对称轴是直线h x =.3运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用1a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.2b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b 即a 、b 同号时,对称轴在y 轴左侧;③0<ab即a 、b 异号时,对称轴在y 轴右侧.3c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c :①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式1一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 2顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.3交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点1y 轴与抛物线c bx ax y ++=2得交点为0, c .2与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点h ,c bh ah ++2. 3抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点顶点在x 轴上⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离. 4平行于x 轴的直线与抛物线的交点同3一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.5一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.6抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故二次函数图象的平移左加右减1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。

其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。

2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。

4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。

零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。

5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。

通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。

2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。

3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。

4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。

三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。

2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2.2y ax c=+的性质: 上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项cc>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑴当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑵当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.⑶当0总结起来,c决定了抛物线与y轴交点的位置.,,都确定,那么这条抛物线就是唯一确定的.总之,只要a b c二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx cy ax bx c=++关于x轴对称后,得到的解析式是2()2y a x h ky a x h k=---;=-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2=-+;y ax bx cy ax bx c=++关于y轴对称后,得到的解析式是2()2y a x h k=++;=-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx cy ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h ky a x h k=-+关于原点对称后,得到的解析式是()24. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

二次函数知识点

二次函数知识点

二次函数(知识点)1. 二次函数的概念:一般地,如果y=ax 2+bx+c(a ,b ,c 是常数,a ≠0),其中二次项中x 的次数必须是2并且二次项的系数不能为0,那么这样的函数y 叫做x 的二次函数.2.二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0)的图象及画法二次函数y=ax 2+bx+c(a ≠0)的图象是对称轴平行于y 轴(或是y 轴本身)的抛物线.几个不同的二次函数.如果二次项系数a 相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 一 用描点法画图象首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x 轴的交点、与y 轴的交点. 二 用平移法画图象由于a 相同的抛物线y=ax 2+bx+c 的开口及形状完全相同,故可将抛物线y=ax 2的图象平移得到a 值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k 的形式,确定其顶点(h ,k),然后做出二次函数y=ax 2的图象.将抛物线y=ax 2平移,使其顶点平移到(h ,k).3.(1)函数y=ax 2(a ≠0)的图象与性质:a 的符号图象开口方向 顶点坐标 对称轴增减性最大(小)值a>0向上(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小当x=0时,y 最小=0a<0向下(0,0)y 轴或说直线x=0 x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时,y 最大=0顶点是坐标原点(0,0),对称轴是y 轴或直线x=0的抛物线的解析式形式为220)0(ax x a y =+-=)(0≠a(2)函数y=ax 2+c(a ≠0)的图象及其性质:a 的符号图象开口方向 顶点坐标对称轴 增减性 最大(小)值 a>0向上(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而增大 x<0时,y 随x 增大而减小 当x=0时, y 最小=ca<0向下(0,c)y 轴或说 直线x=0x>0时,y 随x 增大而减小 x<0时,y 随x 增大而增大当x=0时, y 最大=c顶点在y 轴上其坐标为(0,c ),对称轴是y 轴或直线x=0的抛物线的解析式形式为y=a (x-0)2+c=ax 2+c (3)抛物线y=ax 2与y=ax 2±c 之间的关系是:形状大小相同,开口方向相同,对称轴相同,而顶点位置和抛物线的位置不同. (4)抛物线之间的平移规律:抛物线y=ax 2向上平移c 个单位可以得到抛物线 y=ax 2+c ;抛物线y=ax 2向下平移c 个单位可以得到抛物线 y=ax 2-c ;4.(1)二次函数 y=ax 2+bx+c 的图像的性质二次函数y=ax 2+bx+c(a ≠0)的图象是一条抛物线.它的顶点坐标是(a b ac a b 44,22--),对称轴是直线x=ab 2-函数 二次函数y=ax 2+bx+c(a ,b ,c 是常数,a ≠0) 图象a>0a<0性质 (1)当a>0时,抛物线开口向上,并向上无限延伸,顶点(a b ac a b 44,22--)有最低点,存在最小值,对称轴为x=a b 2-,当x=a b 2-,y 最小值=ab ac 442-。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结一、基本概念二次函数,是指一种关系式y=ax²+bx+c,其中a为非零常数,而b和c为常数,x和y分别为自变量和因变量。

二次函数的解析式为y=ax²+bx+c,其中x为自变量,y 为因变量,a、b、c分别为常数,a不等于0.二、图像特征1. 开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2. 对称轴二次函数y=ax²+bx+c的对称轴为x=-b/2a.3. 单调性当a>0时,函数在对称轴左侧单减,右侧单增;当a<0时,函数在对称轴左侧单增,右侧单减。

4. 零点当y=0时,二次函数的解析式可变为ax²+bx+c=0,由求根公式可知,它有两个实数根x1、x2,为二次函数的零点。

5. 最值当a>0时,二次函数在对称轴上有一个最小值;当a<0时,二次函数在对称轴上有一个最大值。

三、性质和运用1. 判别式对于二次函数y=ax²+bx+c,判别式D=b²-4ac可以用来判断它的零点个数和类型:当D>0时,函数有两个不同实根,图像与x轴有两个交点;当D=0时,函数有一个重根,图像与x轴只有一个交点;当D<0时,函数没有实根,图像与x轴没有交点。

2. 求导对于二次函数y=ax²+bx+c,可以对其求导,得到y'=2ax+b,这个导数表示了函数在各个点的斜率,因此可以用来求函数的切线和极值。

3. 模型应用由于具有一定的可控性和可预测性,二次函数可以用来建立各种实际应用中的数学模型,例如:抛物线、自由落体、平衡价格等等。

4. 与图像的关系可以通过调整a、b、c的值,来控制函数图像的形态和特征,例如调整a的值可以改变函数的开口方向和形状,调整b的值可以改变对称轴的位置,调整c的值可以改变函数图像与y轴的截距。

四、常见问题1. 二次函数如何确定开口方向?二次函数的开口方向由二次项系数a的符号决定,当a>0时,函数开口向上;当a<0时,函数开口向下。

二次函数知识点总结(详细)

二次函数知识点总结(详细)

1、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤3、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是( ) A .a <0 B .c >0 C .ac b 42->0D .c b a ++>0 4、图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .(请写出所有正确说法的序号)11 1- OxyyxO1 -15、已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c ,2a+b ,2a -b 中,其值大于0的个数为( ) A .2B 3C 、4D 、5四、二次函数解析式的确定 例4. 求二次函数解析式:(1)抛物线过(0,2),(1,1),(3,5); (2)顶点M (-1,2),且过N (2,1);(3)已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

练习:根据下列条件求关于x 的二次函数的解析式 (1) 当x=3时,y 最小值=-1,且图象过(0,7)(2) 图象过点(0,-2)(1,2)且对称轴为直线x=32(3) 图象经过(0,1)(1,0)(3,0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)例5、 已知抛物线y =x 2-2x-8,(1)求证:该抛物线与x 轴一定有两个交点;(2)若该抛物线与x 轴的两个交点为A 、B ,且它的顶点为P ,求△ABP 的面积。

二次函数知识点梳理

二次函数知识点梳理

二次函数知识点梳理二次函数是数学中的一种重要函数,其具有许多特殊性质和应用。

下面将对二次函数的知识点进行梳理,包括定义、性质、图像、最值、根、变换和应用等方面。

1. 定义:二次函数是一个一元二次方程所确定的函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c是实数且a不等于0。

2.基本性质:(1)对称性:二次函数的图像关于抛物线的对称轴对称。

(2)开口方向:二次函数的开口方向由系数a的正负确定。

当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

(3)零点:二次函数的零点即为方程f(x)=0的解,也就是抛物线与x 轴的交点。

(4)极值:当二次函数的系数a大于0时,该函数有一个最小值;当系数a小于0时,函数有一个最大值。

3.图像:(1)抛物线的顶点:二次函数的顶点即为抛物线的最高或最低点,其x坐标为-b/(2a),y坐标为f(-b/(2a))。

(2)开口:抛物线的开口程度由系数a的绝对值大小决定。

绝对值较大时,开口较窄,反之开口较宽。

(3)过原点:当且仅当c=0时,二次函数通过原点。

4.最值:(1)最值的存在性:二次函数的最值存在性由系数a的正负决定。

当a大于0时,函数有最小值;当a小于0时,函数有最大值。

(2)最值的求解:对于凸(a>0)的二次函数,最小值为抛物线的顶点;对于凹(a<0)的二次函数,最大值为抛物线的顶点。

5.零点:(1)方程f(x)=0的解:二次函数的零点即为方程f(x)=0的解,可以通过求解一元二次方程来得到。

一元二次方程的求解可以使用因式分解、配方法、求根公式等方法。

(2) 零点的个数与判别式:一元二次方程的判别式Δ = b^2 - 4ac反映了方程解的情况。

当Δ大于0时,方程有两个不相等的实数解;当Δ等于0时,方程有两个相等的实数解;当Δ小于0时,方程无实数解。

6.变换:二次函数可以通过平移、伸缩、翻转等线性变换得到新的函数,以下是二次函数的基本变换形式:(1)左右平移:f(x-h)表示将函数向右平移h个单位;f(x+h)表示将函数向左平移h个单位。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中一种重要的函数形式,具有较广泛的应用。

本文将详细介绍二次函数的定义、性质、图像与变换、解析式、根与判别式、与其他函数的关系以及应用等知识点。

一、定义与性质:二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为已知常数,且a ≠ 0。

二次函数的定义域为全体实数集R,值域根据a的正负值有所不同。

二次函数的图像为抛物线,开口向上或向下。

性质1:二次函数f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b。

性质2:当二次函数的对称轴为x=h时,最高/最低点的横坐标为x=h,纵坐标为f(h)。

性质3:如果a>0,则抛物线开口向上,最低点为最小值;如果a<0,则抛物线开口向下,最高点为最大值。

二、图像与变换:二次函数的图像为一条抛物线,关键要素有顶点、对称轴、开口方向以及最高/最低点等。

1.顶点:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。

2.对称轴:二次函数的对称轴是垂直于x轴的一条线,其方程为x=-b/2a。

3.开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a>0,开口向上;若a<0,开口向下。

4.最高/最低点:顶点即为最高或最低点,纵坐标为二次函数的最值。

变换1:平移变换二次函数f(x) = ax^2 + bx + c关于横轴上下平移h个单位的函数为f(x) = a(x-h)^2 + bx + c。

变换2:垂直伸缩与翻转二次函数f(x) = ax^2 + bx + c关于纵轴上下压缩k倍且翻转ξ度的函数为f(x) = a(k(x-ξ))^2 + bx + c。

三、解析式:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为已知常数,且a ≠ 0。

根据实际问题的要求,可以确定二次函数的具体形式。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点(第一讲)、二次函数概念:1. 二次函数的概念:一般地,形如y=aχ2∙bx ∙c ( a , b , C是常数,a =O )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数 a = 0 ,而b ,c可以为零•二次函数的定义域是全体实数.2. 二次函数y =aχ2∙bx C的结构特征:⑴ 等号左边是函数,右边是关于自变量X的二次式,X的最高次数是2 .⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,C是常数项.二、二次函数的基本形式1. 二次函数基本形式:y =aχ2的性质:a的绝对值越大,抛物线的开口越小。

2. y =aχ2 C的性质:(上加下减)23. y =a (x —h )的性质:(左加右减)a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h ,0) X=hx>h 时,y 随X 的增大而增大;Xeh 时,y 随X 的增大而减小;X = h 时,y 有最小值0 .a cθ向下(h ,0) X=hx>h 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值0 .24. y=a(x —h)+k 的性质:a 的符号 开口方向顶点坐 标 对称 轴性质a >0向上(h, k ) X=hx>h 时,y 随X 的增大而增大;XCh 时,y 随X 的增大而减小;x=h 时,y 有最小值k .a v0向下 (h, k ) X=hXAh 时,y 随X 的增大而减小;XVh 时,y 随X 的增大而增大;X = h 时,y 有最大值k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式 y =a X -∙h j 亠k ,确定其顶点坐标 h , k ; ⑵ 保持抛物线y =aχ2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2. 平移规律在原有函数的基础上 h 值正右移,负左移;k 值正上移,负下移”概括成八个字“左加右减, 上加下减”.y=ax 2* y=ax 2+k向上(k>0)【或下(k<0)] y=a (x-h)2向右(h>0)【或左(h<0)] 平移|k|个单位y=a(x-h)2+k向上(k>0)【或向下(k<0)】平移Ikl 个单位向上(k>0)【或下(k<0)]平移|k 个单位向右(h>0)【或左(h<0)] 平移Kl 个单位向右(h>0)【或左(*0)] 平移Ikl 个单位平移∣k ∣个单位方法二:⑴y = ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y = ax 2 ∙ bx ∙ c 变成2 卜 2y = ax bx C m (或 y = ax bx c - m )⑵y =ax 2 ∙ bx C 沿轴平移:向左(右)平移 m 个单位,y = ax 2 bx C 变成2 卜 2y = a(x m) b(x m) c (或 y = a(x _ m) b(x _ m) c )四、二次函数y =a X _h i 亠k 与y =aχ2 bx c 的比较2从解析式上看,y =a X _h ]亠k 与y =aχ2 ∙ bx C 是两种不同的表达形式,后者通过配方可以得到五、二次函数y =aχ2 bx c 图象的画法五点绘图法:利用配方法将二次函数y =aχ2 bx C 化为顶点式y=a(x-h)2 ∙k ,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图 •一般我们选取的五点为: 顶点、与y 轴的交点O, c 、以及O,c 关于对称轴对称的点 2h ,C 、与X 轴的交点x 1, 0,X 2,O (若与X 轴没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 X 轴的交点,与y 轴的交点•六、二次函数y =ax 2 bx c 的性质随X 的增大而增大;当 ^-―时,y 随X 的增大而减小;当X b 时,2a2a七、二次函数解析式的表示方法1. 一般式: y =ax bx c ( a , b , C 为常数,a =O );2.顶点式: y =a(x-h) k ( a , h , k 为常数,a =O );3.两根式: y =a(x -x ι)(x -X 2) ( a =O , X i , X 2是抛物线与X 轴两交点的横坐标)前者,即y =a,其中Ta24ac — b 4a1.当a O 时,抛物线开口向上,对称轴为X b,顶点坐标为2ab 4ac-b 2— ,2a 4a当X 时,y 随X 的增大而减小;当X^ 时,2a2a最小值4ac "2 .4ay随X 的增大而增大;当X=E 时,y 有2.当a :::0时,抛物线开口向下, X =-b,顶点坐标为( b 4ac-b 2•当X ::」时,I ■—, 2a2a 4a2ay 有最大值4ac - b 2 4a对称轴为 y注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式,只有抛物线与X 轴有交点,即b 2_4ac_o 时,抛物线的解析式才可以用交点式表示.二次函数 解析式的这三种形式可以互化•八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y =aχ2 ∙ bx ∙ c 中,a 作为二次项系数,显然 a 厂0 .⑴当a 0时,抛物线开口向上,a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当a :::0时,抛物线开口向下,a 的值越小,开口越小,反之 a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴在a 0的前提下,当b 0时,一卫:::0 ,即抛物线的对称轴在 y 轴左侧;2a当b =0时,一丄=0 ,即抛物线的对称轴就是 y 轴;2a当b <0时,—b .0,即抛物线对称轴在 y 轴的右侧.2a⑵ 在a <0的前提下,结论刚好与上述相反,即当b 0时,—卫∙0 ,即抛物线的对称轴在 y 轴右侧;2a当b =0时,—b =O ,即抛物线的对称轴就是 y 轴;2a当b <0时,一P ::: 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.Kab 的符号的判定:对称轴X —在y 轴左边则ab • 0,在y 轴的右侧则ab ::: 0 ,概括的说就2a是“左同右异” 总结: 3. 常数项C总结起来,C 决定了抛物线与y 轴交点的位置.总之,只要a, b , C 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必 须根据题目的特点,选择适当的形式,才能使解题简便•一般来说,有如下几种情况:⑴当C 0时,抛物线与 y 轴的交点在X 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵当C =0时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0 ; ⑶当C <0时,抛物线与 y 轴的交点在X 轴下方,即抛物线与 y 轴交点的纵坐标为负.1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与X轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于X轴对称y = aX ∙ bx关于X轴对称后,得到的解析式是y - -aχ2 -bx -C ;2 2y=ax-h]亠k关于X轴对称后,得到的解析式是y - -a X -h k ;2. 关于y轴对称^aX bx关于y轴对称后,得到的解析式是y =aχ2 -bx ∙ c ;2 2y=ax-h「k关于y轴对称后,得到的解析式是y = a X^i ^k ;3. 关于原点对称y = ax2 bx C关于原点对称后,得到的解析式是y =-aχ2∙ bx-c ;2 2y = a X- h ■关于原点对称后,得到的解析式是y - -a X ∙ h k ;4.关于顶点对称(即:抛物线绕顶点旋转180°)y=aX ∙ bx关汙顶点对称后,得到的解析式是y»bx c 卫;2a2y =a x-h k关于顶点对称后,得到的解析式是2y = -a X - h j 亠k •5. 关于点m, n对称2 2y =a X -h i亠k关于点m , n 对称后,得到的解析式是y = -a x ■ h —2m i亠2n —k根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变•求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与X轴交点情况):一元二次方程ax2 bx C 0是二次函数y=aχ2 bx G当函数值y =O时的特殊情况• 图象与X轴的交点个数:①当厶-b2 -4ac 0时,图象与X轴交于两点Axl,0 , B X2 , 0 (X^-X2),其中的X i,X2是一元次方程ax2 bx C =0 a十0的两根.这两点间的距离②当=0时,图象与X轴只有一个交点;③当.—::0时,图象与X轴没有交点•1'当a 0时,图象落在X轴的上方,无论X为任何实数,都有y ∙0 ;2'当a :::0时,图象落在X轴的下方,无论X为任何实数,都有y:::0 .2.抛物线y =aχ2 bx C的图象与y轴一定相交,交点坐标为(0,C);3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与X轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数y =aχ2∙ bx ∙ c中a,b,C的符号,或由二次函数中a,b,C的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与X轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式ax2 bx C(^--=0)本身就是所含字母X的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:Δ>0抛物线与X轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根A =0抛物线与X轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根A <0抛物线与X轴无交占二次三项式的值恒为正一元二次方程无实数根.AB = X2 - X i I =b 4ac二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以X为自变量的二次函数y = (m「2)x2∙ m2「m「2的图像经过原点,则m的值是___________2 .综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx ∙ b的图像在第一、二、三象限内,那么函数3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:5已知一条抛物线经过(0,3) , (4,6)两点,对称轴为X ,求这条抛物线的解析式。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是一种二次方程的形式,可以表示为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

它是初中数学的一个重要内容,也是高中数学的一个基础概念。

下面将介绍二次函数的所有知识点,包括定义、图像、性质、解析式、求解、应用等方面。

一、定义和图像:1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。

2.二次函数的图像:二次函数的图像是一条抛物线,开口的方向由a 的正负决定,开口向上对应a大于0,开口向下对应a小于0。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的解析式。

二、性质和变换:1. 零点和根:对于二次函数y = ax^2 + bx + c,其零点即为使得函数值等于0的x值,可以用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求出。

2.对称轴:二次函数的对称轴为过顶点的直线,其方程为x=-b/2a。

3.对称性:二次函数关于对称轴有轴对称性,即函数值的符号关系和x关于对称轴的关系相同。

4.极值和最值:对于开口向上的二次函数,其顶点是最小值点,对于开口向下的二次函数,其顶点是最大值点。

5.平移和伸缩:二次函数可以通过平移和伸缩变换得到,平移可以改变顶点的位置,伸缩可以改变开口的大小。

6.切线和法线:二次函数的切线是与抛物线仅有一个交点的直线,法线是与切线垂直的直线,通过切点可求出切线和法线的斜率。

三、解析式和方程:1. 一般式和顶点式:二次函数的解析式可以有多种表示方法,常见的有一般式和顶点式。

一般式为y = ax^2 + bx + c,顶点式为y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

2.平方完成和配方法:求解二次方程可以使用平方完成、配方法和求根公式等方法。

平方完成是将一般式转化成顶点式的过程,配方法是将一般式变形成可用求根公式求解的形式。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结一、基本概念:1. 二次函数的定义:二次函数是指具有形式f(x) = ax^2 + bx + c 的函数,其中a、b、c为常数,且a不等于零。

2.二次函数图像的一般特征:二次函数的图像为抛物线,开口方向由a的正负确定。

3.二次函数的平面坐标系:二次函数的图像在平面直角坐标系中的形状、位置以及与坐标轴的焦点有关。

二、顶点坐标与开口方向:1.顶点坐标:二次函数的顶点坐标可通过化简函数式得到,即x=-b/(2a)得到x坐标,再代入函数式计算得到y坐标。

2.开口方向:二次函数开口向上当且仅当a大于零,开口向下当且仅当a小于零。

三、对称轴与焦点:1.对称轴:二次函数的对称轴是垂直于x轴的直线,其方程为x=-b/(2a)。

2.焦点:二次函数的焦点与平面坐标系画图时的焦点位置有关。

四、性质与变化规律:1.奇偶性:二次函数的奇偶性由二次项的系数a的奇偶性决定,即,若a为奇数,则函数为奇函数;若a为偶数,则函数为偶函数。

2.正负性:二次函数的正负性由函数值的正负决定,其函数值与x的值、a的符号以及顶点坐标的y值正负有关。

3.单调性与极值:二次函数的单调性与开口方向有关,开口向上的二次函数在对称轴两侧单调递增,开口向下的二次函数在对称轴两侧单调递减。

二次函数的极值即为顶点值。

4.过点性质:给定两点,可以通过这两点在函数上的坐标计算出唯一确定的二次函数的函数式。

5.零点求解:二次函数的零点即为函数与x轴的交点,可以使用因式分解、配方法、求根公式等方法求解。

五、两点式与标准式:1.两点式:已知二次函数经过两点,可以利用两点式直接写出函数的函数式。

2.标准式:将二次函数的一般式化简成标准式,即f(x)=a(x-h)^2+k 的形式,能够直接得到函数的顶点坐标。

六、函数图像:1.函数图像绘制:根据顶点坐标、对称轴方程、开口方向以及函数值的正负性,可以绘制出二次函数的图像。

2.辅助判断:利用辅助判断函数的图像与坐标轴的交点,确定函数的变化规律。

初中2次函数知识点

初中2次函数知识点

初中2次函数知识点
1.2次函数的定义:y=ax+bx+c,其中a≠0,a,b,c均为实数。

2. 抛物线的性质:抛物线的对称轴为x=-b/2a,开口朝上或朝下取决于a的正负性。

3. 2次函数的图像和解析式之间的关系:根据a的正负性和大小可以确定抛物线的开口方向和大小,根据对称轴可以确定抛物线的位置,根据顶点可以确定抛物线的最值。

4. 2次函数的零点:y=0时的x值即为函数的零点,可以用求解一元2次方程的方法求出。

5. 2次函数的最值:当a>0时,函数最小值为y=c-b/4a,当a<0时,函数最大值为y=c-b/4a。

6. 2次函数的平移:对于y=a(x-h)+k,平移后的函数为y=a(x-h ±m)+k±n,其中m为横向平移量,n为纵向平移量。

7. 2次函数的相关系数r:r=±(b/2a),表示抛物线的对称轴与x轴的交点与顶点的距离,可以用于判断抛物线的宽度和陡峭程度。

- 1 -。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要内容,其知识点涉及函数的定义、性质、图象、解析式、应用等。

下面是对二次函数知识点的总结。

一、函数的定义和基本性质:二次函数是形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c 为实数,a称为二次函数的系数。

①定义域:二次函数的定义域是任意实数集R。

②值域:对于二次函数y=ax^2+bx+c,当a>0时,函数的值域是[0,+∞),当a<0时,函数的值域是(-∞,0],当a=0时,函数的值域是{c}。

③对称轴:二次函数的对称轴是垂直于x轴的直线x=-b/2a。

④顶点:二次函数的顶点是对称轴上的点(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

⑤开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

二、图象和性质:①图象特点:二次函数在平面直角坐标系内的图象是一个抛物线。

②定点:二次函数开口向上时,顶点是最小点;二次函数开口向下时,顶点是最大点。

③与坐标轴的交点:二次函数与x轴的交点叫做零点,是方程ax^2+bx+c=0的解;与y轴的交点是函数的常数项c。

④单调性:二次函数的单调性受其系数a的符号影响。

当a>0时,二次函数在对称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。

⑤零点与解析式:对于二次函数y=ax^2+bx+c,其零点可以通过求解方程ax^2+bx+c=0得到,其中的判别式Δ=b^2-4ac可以判断二次方程的解的情况。

三、解析式和变形:①标准形式:二次函数的标准形式是y=ax^2+bx+c。

②顶点式:二次函数的顶点式是y=a(x-h)^2+k,其中(h,k)为顶点坐标。

③因式分解式:当二次函数可因式分解时,可以表示成y=a(x-p)(x-q)的形式。

四、一些常见问题和解法:①如何确定二次函数的开口方向和顶点:若a>0,则开口向上,顶点为抛物线的最小值;若a<0,则开口向下,顶点为抛物线的最大值。

二次函数知识点

二次函数知识点

二次函数知识点一、二次函数的定义。

二次函数是一种特殊的多项式函数,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

二次函数的图像是一个抛物线,开口方向由a的正负决定,当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

二、二次函数的图像特点。

1. 抛物线的开口方向由二次项的系数a决定,a大于0时开口向上,a小于0时开口向下。

2. 抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 抛物线的对称轴方程为x = -b/2a。

4. 抛物线的轴与y轴的交点为(0, c)。

5. 当a大于0时,抛物线在顶点处取得最小值;当a小于0时,抛物线在顶点处取得最大值。

6. 当a等于0时,函数变成一次函数,其图像为一条直线。

三、二次函数的性质。

1. 对称性,二次函数的图像关于其对称轴对称。

2. 单调性,当a大于0时,二次函数在对称轴左侧单调递减,在对称轴右侧单调递增;当a小于0时,二次函数在对称轴左侧单调递增,在对称轴右侧单调递减。

3. 零点,二次函数的零点即为方程f(x) = 0的解,其判别式Δ = b^2 4ac决定了二次函数的零点个数和位置。

4. 最值,当a大于0时,二次函数在对称轴上取得最小值;当a小于0时,二次函数在对称轴上取得最大值。

5. 范围,当a大于0时,二次函数的值域为[f(-b/2a), +∞);当a小于0时,二次函数的值域为(-∞, f(-b/2a)]。

四、二次函数的应用。

1. 物理学,二次函数可以描述抛体运动的轨迹。

2. 经济学,二次函数可以描述成本、收益、利润等经济指标随产量变化的关系。

3. 工程学,二次函数可以描述建筑物、桥梁等结构的受力情况。

4. 生活中,二次函数可以描述物体的运动轨迹、声音的传播等现象。

五、解二次函数的方法。

1. 因式分解法,当二次函数可以因式分解为两个一次因式的乘积时,可以通过因式分解的方法求解。

2. 公式法,利用二次函数的根的求解公式x = (-b±√Δ)/2a求解二次函数的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点巩固
姓名: 整理人:许明勇
一、二次函数的图像性质(2(a 0)y ax bx c =++≠)
1、 a>0时,开口向 ,a<0时,开口向 ,|a|越大,开口大小越 。

2、对称轴为 ,顶点坐标为 。

3、a>0时,当x , y 随x 的增大而减小;当2b x a
>-时,y 随x 的增大而 ;函数有 最 值,为 ; a<0时,当x , y 随x 的增大而减小;函数有最 值,为 .
二、二次函数的图像变换
1、2(x h)y a k =-+左右移m 个单位,再上下移m 个单位后的解析式为 。

2(a 0)y ax bx c =++≠左右移m 个单位,
再上下移m 个单位后的解析式为 。

2、2(a 0)y ax bx c =++≠关于x 对称后的解析式为 ,关于y 轴对称后的解
析式为 ,关于原点对称后的解析式为 。

二、求二次函数的解析式
1、已知顶点或对称轴,设解析式为 式; 已知与x 轴的两个交点,设 式;
其他情况设 式。

2、已知对称轴及与x 轴的交点距离,可以算出与x 轴的两个交点,从而可以设交点式。

三、二次函数的最值及应用
1、无限制条件下的最值:
①2(a 0)y ax bx c =++≠:当x= ,函数有最值 ; ②2(x h)y a k =-+:当x= ,函数有最值 ;③12(x x )(x x )y a =--:当x= ,函数有最值 ;
2、有限制条件下的最值:先算对称轴,再画草图,比较对称轴与所给范围,通过图像观察最值。

3、最大利润:引入变量;列表;根据利润公式得函数关系;求自变量范围;求最值。

4、几何问题中的最大面积:引入变量;用x 表示未知线段(勾股定理,相似,解三角形等);根据面积
求法得函数关系(直接法,间接法(分割,补形,转化));求最值。

5、抛物线中求面积最大值:几何法(平移,相切);代数法(设动点坐标,建立函数关系)
四、二次函数与二次方程,二次不等式关系
1、2
(a 0)y ax bx c =++≠与x 轴的交点问题⇔方程 根的问题⇔∆的问题; 2(a 0)y ax bx c =++≠与水平线y h =的交点问题⇔方程 根的问题;
2(a 0)y a x b x c =++≠与直线y kx m =+的交点问题⇔方程 根的问题; 2、2
(a 0)y ax bx c =++≠与x 轴的交点为A ,B ,则AB= = ; 2(a 0)y a x b x
c =++≠与y kx m =+的交点为A ,B ,则AB= = ; 3、20ax bx c ++>的解集为2(a 0)y ax bx c =++≠在x 轴 方图像的 坐标的范围;
4、2(a 0)y ax bx c =++≠的函数值恒正⇔函数图像全部在x 轴 方____________
a ⎧⇔⎨∆⎩ 2(a 0)y a x
b x
c =++≠的函数值恒负⇔函数图像全部在x 轴 方____________a ⎧⇔⎨∆⎩。

相关文档
最新文档