数学-二次函数知识点总结

合集下载

初三数学二次函数知识点总结

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2.2y ax c =+的性质:上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y 1 10 x o-1 x 0 x 0 -1 x A B C D考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容,也是高中数学的基础。

它在数学和实际生活中都有广泛的应用。

下面就来对二次函数的知识点进行一个全面的总结。

一、二次函数的定义一般地,形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,叫做二次函数。

其中,$x$是自变量,$a$叫做二次项系数,$b$叫做一次项系数,$c$叫做常数项。

需要注意的是,二次函数的二次项系数$a$不能为$0$,否则就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。

抛物线的对称轴是直线$x =\frac{b}{2a}$。

抛物线的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。

三、二次函数的表达式1、一般式:$y = ax^2 + bx + c$($a ≠ 0$)2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$,顶点坐标为$(h, k)$)3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$,$x_1$、$x_2$是抛物线与$x$轴交点的横坐标)四、二次函数的性质1、当$a > 0$时,在对称轴左侧,$y$随$x$的增大而减小;在对称轴右侧,$y$随$x$的增大而增大。

当$a < 0$时,在对称轴左侧,$y$随$x$的增大而增大;在对称轴右侧,$y$随$x$的增大而减小。

2、二次函数的最值:当$a > 0$时,函数有最小值,$y_{min} =\frac{4ac b^2}{4a}$。

当$a < 0$时,函数有最大值,$y_{max} =\frac{4ac b^2}{4a}$。

五、二次函数与一元二次方程的关系抛物线$y = ax^2 + bx + c$与$x$轴的交点的横坐标就是一元二次方程$ax^2 + bx + c = 0$的根。

二次函数必背知识点(精辟)

二次函数必背知识点(精辟)
同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐
标相等,设纵坐标为 k ,则横坐标是 ax 2 bx c k 的两个实数根.
(5)一次函数 y kx nk 0的图像 l 与二次函数 y ax2 bx ca 0的图像
(2)函数 y ax 2 的图像与 a 的符号关系. ①当 a 0 时 抛物线开口向上 顶点为其最低点; ②当 a 0 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 y 轴的抛物线的解析式形式为 y ax 2(a 0).
3.二次函数 y ax2 bx c 的图像是对称轴平行于(包括重合) y 轴的抛物线.
y最小 ax22 bx2 c 。
考点四、二次函数的性质 (6~14 分) 1、二次函数的性质
二次函数
函数
y ax2 bx c(a,b,ห้องสมุดไป่ตู้c是常数,a 0)
a>0
a<0
y y
图像
0
x
0
x
(1)抛物线开口向上,并向上无限延伸;
(1)抛物线开口向下,并向下无限延伸;
(2)对称轴是 x= b ,顶点坐标是( b , (2)对称轴是 x= b ,顶点坐标是
性质
2a
2a
2a
4ac b2
);
4a

b
4ac b2

);
2a 4a
相信你会成功。加油!!
5
适合任何版本的数学教材,希望能帮到你。
(3)在对称轴的左侧,即当 x< b 时,y 随 2a
x 的增大而减小;在对称轴的右侧,即当 x>

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结1. 二次函数的定义:二次函数是指形如 $y=ax^2+bx+c$ 的函数,其中$a≠0$。

2. 二次函数的图像:二次函数的图像是一个开口向上或向下的抛物线。

当 $a>0$ 时,抛物线开口向上;当 $a<0$ 时,抛物线开口向下。

3. 二次函数的对称轴:二次函数的对称轴是抛物线的中心线,一定经过抛物线的顶点。

对称轴的方程为 $x=-\frac{b}{2a}$。

4. 二次函数的顶点(最值点):当 $a>0$ 时,抛物线的顶点是最小值点;当$a<0$ 时,抛物线的顶点是最大值点。

顶点的坐标为$\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$。

5. 二次函数的零点:二次函数的零点是函数图像与 $x$ 轴交点的横坐标。

可以通过求根公式来求得二次函数的零点。

求根公式为 $x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

6. 二次函数的判别式:判别式是指 $b^2-4ac$ 的值,用于判断二次函数的零点个数及其性质。

当判别式 $b^2-4ac>0$ 时,函数有两个不相等的实数根;当判别式$b^2-4ac=0$ 时,函数有两个相等的实数根;当判别式 $b^2-4ac<0$ 时,函数没有实数根。

7. 二次函数的增减性:当 $a>0$ 时,二次函数是增函数;当 $a<0$ 时,二次函数是减函数。

10. 二次函数在平面直角坐标系中的表示:二次函数在平面直角坐标系中的图像,以抛物线的形式展现。

其中,参数 $a$ 决定了抛物线的开口方向和大小,参数 $b$ 决定了抛物线在 $x$ 轴上的位置,参数 $c$ 决定了抛物线在 $y$ 轴上的位置。

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上学期《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k);(2) 当h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k4.抛物线的性质(1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

初三数学_二次函数_知识点总结

初三数学_二次函数_知识点总结

二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠),,是常数,0的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.(因此:二次函数应满足两个条件:①二次项的系数不等于0,②x 最高项的指数是2)2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax①,a 的绝对值决定开口的大小(a 的绝对值越大,抛物线的开口越小,a 的绝对值越小,抛物线的开口越大)②a 的符号决定开口的方向(a>0,开口向上,a<0开口向下)2. 2=+的性质:y ax c上加下减。

(c>0,将2=的图像向下移=向上移动,c<0将2y axy ax动=3.()2y a x h =-的性质:左加右减。

4.()2y a x h k=-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式(又称为对称式):2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(又称为两点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开a 的大小决定开口的大小.2. 一次项系数b :在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式(三点式);2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式(对称式);3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式(两点);4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况): 一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. 二次函数与x 轴两个交点的距离)② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1'当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 十、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少注:在实际应用中凡是需要求最大,最小(或极值)问题一般都要考虑用二次函数的最大值或最小值二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )A B C D 3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数(最全的中考数学二次函数知识点总结)

二次函数(最全的中考数学二次函数知识点总结)

二次函数知识点总结及相关典型题目第一部分 二次函数基础知识✧ 相关概念及定义➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.➢ 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换➢ 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2ax y =的性质✧ 二次函数2y ax c =+的性质✧ 二次函数y a x h =-的性质:✧ ✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.➢a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.➢ 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(ab ac a b 4422--➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大 小.➢ 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:➢ 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法➢ 公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式➢ 一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ➢ 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点➢y 轴与抛物线c bx ax y ++=2得交点为(0, c ).➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.➢ 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达➢ 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;➢ 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;➢ 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;➢ 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.➢ 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移➢ 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: ➢【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理

中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。

2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。

4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。

二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。

2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。

3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。

4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。

1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。

2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。

所以二次函数的零点就是二次方程的根。

3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。

根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。

四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。

2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。

3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。

(完整版)初中数学二次函数知识点总结

(完整版)初中数学二次函数知识点总结

初中数学二次函数知识点总结I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y 轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结二次函数是一类形式为y=ax^2+bx+c(a ≠ 0)的函数,其中a、b、c为常数。

二次函数的图象是抛物线。

一、二次函数的图象特点及分类1. 根据二次项系数a的正负情况,二次函数的图象可分为开口向上和开口向下两种情况。

当a>0时,二次函数的图象开口向上,抛物线的顶点在图象的下方。

当a<0时,二次函数的图象开口向下,抛物线的顶点在图象的上方。

2. 二次函数的图象关于纵轴对称,也称二次函数的图象有对称轴。

3. 二次函数的图象与x轴相交的点称为二次函数的零点,即方程ax^2+bx+c=0的解。

4. 若二次函数的图象与x轴有且仅有一个公共点,则二次函数的图象在x轴上有且仅有一个切点;若与x轴没有公共点,则二次函数的图象在x轴上无切点。

二、二次函数的性质和定理1. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x)=ax^2+bx+c。

2. 二次函数的最值:若a>0,二次函数的最小值为f(-b/2a);若a<0,二次函数的最大值为f(-b/2a)。

4. 二次函数的对称轴方程为x=-b/2a。

5. 二次函数的单调性:若a>0,则二次函数在对称轴左侧单调递增,在对称轴右侧单调递减;若a<0,则二次函数在对称轴左侧单调递减,在对称轴右侧单调递增。

6. 零点判别式:设二次函数为f(x)=ax^2+bx+c,其判别式为Δ=b^2-4ac。

若Δ>0,则方程ax^2+bx+c=0有两个不相等的实数解;若Δ=0,则方程ax^2+bx+c=0有两个相等的实数解;若Δ<0,则方程ax^2+bx+c=0无实数解。

7. 与坐标轴的交点:与x轴的交点即为二次函数的零点;与y轴的交点为(0, c)。

2. 确定顶点:顶点的横坐标为对称轴的x坐标,即x=-b/2a;顶点的纵坐标为代入顶点横坐标所得的函数值,即f(-b/2a)=a(-b/2a)^2+b(-b/2a)+c。

二次函数知识点总结大全

二次函数知识点总结大全

二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。

下面是二次函数的知识点总结。

一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。

2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。

3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。

4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。

5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。

6.二次函数的平移:二次函数的图像在平面上的平移。

二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。

3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。

4.求零点:二次函数的零点可以通过解一元二次方程求得。

三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。

2.对称性质:二次函数的图像关于顶点对称。

3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。

4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。

四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。

2.顶点式:形如y=a(x-h)²+k的二次函数。

3.概率型:形如y=a(x-p)(x-q)的二次函数。

五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。

初二上册数学二次函数知识点总结

初二上册数学二次函数知识点总结

初二上册数学二次函数知识点总结
1. 二次函数的定义
二次函数是指具有形如 y = ax^2 + bx + c 的函数形式,其中 a、b、c 是实数且a ≠ 0。

2. 二次函数的图像特征
- 二次函数的图像是抛物线;
- a 的正负决定了抛物线的开口方向,正值向上开口,负值向下开口;
- 二次函数关于抛物线的对称轴是 x = -b / (2a);
- 二次函数的图像经过对称轴上的顶点,顶点坐标为 (-b / (2a), f(-b / (2a)))。

3. 二次函数的性质
- 二次函数的定义域是全体实数;
- 二次函数的值域取决于 a 的正负,若 a > 0,则值域为 [f(-∞), +∞),若 a < 0,则值域为 (-∞, f(-∞)];
- 若 a > 0,则二次函数的图像开口向上;若 a < 0,则二次函数的图像开口向下;
- 二次函数的最小值(a > 0)或最大值(a < 0)为 f(-b / (2a))。

4. 二次函数图像的变换
- 改变 a 的值可以控制二次函数图像的开口方向和形状;
- 改变 b 的值会使二次函数的对称轴发生平移;
- 改变 c 的值会使二次函数的图像整体上下平移。

5. 二次函数的应用
- 二次函数可以用来描述许多现实世界中的问题,如物体的抛射运动、最优化问题等;
- 基于二次函数的概念,我们可以求解二次方程,从而得到函数的根和解析表达式。

以上是初二上册数学二次函数的知识点总结,希望对你有所帮助。

初中数学知识点总结二次函数

初中数学知识点总结二次函数

初中数学知识点总结二次函数
一、二次函数的定义
二次函数是最基本的二次多项式函数,它属于多项式函数的一种,它
的定义为:
二次函数:f(x)=ax2+bx+c(a≠0)。

二、二次函数的一般式
二次函数的一般式为:ax2+bx+c(a≠0),从而可以知道,它由三个
系数a,b,c组成,它由于保持不变的性质,所以对于它的参数,a,b,
c都是可以任意取值的,即a,b,c都可以取任意实数。

三、二次函数的图像
根据上述一般式,二次函数一般都会把它的图像想象成一个平滑的抛
物线图形,又称双曲线,这样的抛物线有三个特殊点:拐点,根点,中点。

1.拐点
对于图形来说,拐点就是一个折点,而二次函数中的拐点则是指函数
图像在特定点的一次导数变种符号,这就是二次函数很重要的特征,即函
数图像的拐点。

2.根点
根点是一种更特殊的拐点,即二次函数的一般式中当x=κ时,函数
值y=0,这时,它成为了一个函数的根点,即出现了函数的等式,它的特
殊性体现在它刚好相等。

3.中点
在二次函数中,中点指的是拐点和根点的中点,这一点其实十分重要,在不同的情况下,中点的位置会发生变化,有时候也会出现二次函数的准
确位置,这就需要我们根据情况来判断了。

数学二次函数知识点总结【通用6篇】

数学二次函数知识点总结【通用6篇】

数学二次函数知识点总结【通用6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲致辞、法律文书、心得体会、岗位职责、鉴定评语、实习文案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, legal documents, personal experiences, job responsibilities, appraisal comments, internship copywriting, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学二次函数知识点总结【通用6篇】作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。

【初中数学】初中数学二次函数知识点总结

【初中数学】初中数学二次函数知识点总结

【初中数学】初中数学二次函数知识点总结i.定义与定义表达式一般来说,自变量x和因变量y之间的关系如下:y=ax^2+BX+C(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常是二次三项式。

ii.二次函数的三种表达式通式:y=ax^2+BX+C(a,B,C是常数,a≠ 0)顶点式:y=a(xh)^2+k[抛物线的顶点p(h,k)]交点公式:y=a(XX?)(xx?)[仅适用于a(x?0)和B(x?0)与x轴相交的抛物线]注:在3种形式的互相转化中,有如下关系:h=b/2ak=(4acb^2)/4ax?,x?=(b±√b^24ac)/2aiii.二次函数的图像当在平面直角坐标系中制作二次函数y=x^2的图像时,可以看到二次函数的图像是抛物线。

iv.抛物线的性质这个图形是一条轴对称抛物线。

对称轴是一条直线x=B/2A。

对称轴与抛物线唯一的交点为抛物线的顶点p。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,其坐标为:P(B/2a,(4acb^2)/4A)当B/2a=0时,P在y轴上;当δ=当B^24AC=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上打开;当a<0时,抛物线向下打开|a |抛物线的开口越大,越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a和B具有相同的符号(即AB>0)时,对称轴位于y轴的左侧;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项C确定抛物线和y轴的交点。

抛物线与y轴交于(0,c)6.抛物线与X轴的交点数δ=b^24ac>0时,抛物线与x轴有2个交点。

δ=当B^24AC=0时,抛物线与x轴相交。

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点
一、常用二次函数
1.()2
y a x h k =-+2.2y ax bx c =++1)画图注意事项
开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.注:a 的正负决定开口方向,a 的大小决定开口的大小.
b 决定了抛物线对称轴的位置.
c 决定了抛物线与y 轴交点的位置.
2)函数性质a 的符号
开口方向顶点坐标对称轴性质
a >向上
()
h k ,X=h
x h >时,y 随x 的增大而增大;x h <时,y
随x 的增大而减小;x h =时,y 有最小值k .
0a <向下
()
h k ,X=h
x h >时,y 随x 的增大而减小;x h <时,y
随x 的增大而增大;x h =时,y 有最大值k .
a 的
符号
开口方向
顶点坐标对称轴
性质
a >向上
2424b ac b a
a ⎛⎫-- ⎪
⎝⎭,2b
x a
=-
当2b
x a
<-
时,y 随x 的增大而减小;当2b
x a
>-
时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2
44ac b a
-.
a <向下
2424b ac b a
a ⎛⎫
-- ⎪
⎝⎭,2b
x a
=-
当2b
x a
<-
时,y 随x 的增大而增大;当2b
x a
>-
时,y 随x 的增大而减小;当2b
x a
=-时,y 有最大值244ac b a -.
二、二次函数()2
y a x h k =-+与2y ax bx c =++的比较
从解析式上看,()2
y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛
⎫=++ ⎪⎝
⎭,其中2424b ac b h k a a -=-=
,.三、二次函数的平移规律图示
“左加右减,上加下减”
四、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x 轴对称
2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2
y a x h k =-+关于x 轴对称后,得到的解析式是()2
y a x h k =---;
2.关于y 轴对称
2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2
y a x h k =-+关于y 轴对称后,得到的解析式是()2
y a x h k =++;
3.关于原点对称
2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2
y a x h k =-+关于原点对称后,得到的解析式是()2
y a x h k =-+-;
4.关于顶点对称(即:抛物线绕顶点旋转180°)
2
y ax bx c =++关于顶点对称后,得到的解析式是2
2
2b y ax bx c a
=--+-;()2
y a x h k =-+关于顶点对称后,得到的解析式是()2
y a x h k =--+.
5.关于点()m n ,
对称()2
y a x h k =-+关于点()m n ,
对称后,得到的解析式是()2
22y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适
的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
五、二次函数与一元二次方程
1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.2.图象与x 轴的交点个数:
①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是
一元二次方程()200ax bx c a ++=≠的两根②当0∆=时,图象与x 轴只有一个交点;③当0∆<时,图象与x 轴没有交点.
其中:当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;
当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.
3.抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)
c。

相关文档
最新文档