第8章脂质和生物膜
细胞生物学题库及答案1
第四章细胞膜及物质的跨膜运输A型题:1.生物膜是指A.单位膜B.蛋白质和脂质二维排列构成的液晶态膜C.包围在细胞外面的一层薄膜D.细胞内各种膜的总称E.细胞膜及内膜系统的总称2.生物膜的主要化学成分是A.蛋白质和核酸B.蛋白质和糖类C.蛋白质和脂肪D.蛋白质和脂类E.糖类和脂类3.生物膜的主要作用是A.区域化B.合成蛋白质C.提供能量D.运输物质E.合成脂类4.细胞膜中蛋白质与脂类的结合主要通过A.共价键B.氢键C.离子键D.疏水键E.非共价键5.膜脂中最多的是A.脂肪B.糖脂C.磷脂D.胆固醇E.以上都不是6.在电子显微镜上,单位膜为A.一层深色带B.一层浅色带C.一层深色带和一层浅色带D.二层深色带和中间一层浅色带E.二层浅色带和中间一层深色带7.生物膜的液态流动性主要取决于A.蛋白质B.多糖C.类脂D.糖蛋白E.糖脂8.膜结构功能的特殊性主要取决于A.膜中的脂类B.膜中蛋白质的组成C.膜中糖类的种类D.膜中脂类与蛋白质的关系E.膜中脂类和蛋白质的比例9.主动运输与入胞作用的共同点是A.转运大分子物资B.逆浓度梯度运输C.需载体的帮助D.有细胞膜形态和结构的改变E.需消耗代谢能10.细胞识别的主要部位在A.细胞被B.细胞质C.细胞核D.细胞器E.细胞膜的特化结构11.正常细胞与癌细胞最显著的差异是A.细胞透过性B.细胞凝聚性C.有无接触抑制D.细胞的转运能力E.脂膜出现特化结构12.目前得到广泛接受和支持的细胞膜分子结构模型是A.单位膜模型B.“三夹板”模型C.流动镶嵌模型D.晶格镶嵌模型E.板块镶嵌模型13.能以单纯扩散的方式进出细胞的结构是A.Na+B.葡萄糖C.氨基酸D.磺胺类药物E.O214.关于细胞膜上糖类的不正确描述A.脂膜中的糖类的含量约占脂膜重量的2%~10%B.主要以糖蛋白和糖脂的形式存在C.糖蛋白和糖脂上的低聚糖侧链从生物膜的胞脂面伸出D.糖蛋白中的糖类部分对蛋白质膜的性质影响很大E.与细胞免疫、细胞识别及细胞癌变有密切关系15.关于生物膜不正确的描述A.细胞内所有的膜厚度基本相同B.不同细胞中膜厚度不同C.同一细胞不同部位的膜厚度不同D.同一细胞不同细胞器的膜厚度不同E.同一细胞器不同膜层厚度不同B型题:A.单纯扩散B.溶剂牵引C.易化扩散D.主动运输E.出(入)胞作用16.氧气通过肺泡细胞和毛细血管壁细胞的膜依靠17.氨基酸和葡萄糖进入细胞要依靠18.葡萄糖进入红细胞要依靠19.K+进入神经细胞内要依靠A.胞饮作用B.吞噬作用C.胞吐作用D.受体介导的入胞作用E.内移作用20.吞噬细胞吞噬胶粒21.肥大细胞分泌组织胺22.细胞对胆固醇的吸收22.肾小管细胞的重吸收23.吞噬泡或吞饮泡在细胞质内运行A.氢键B.疏水键C.离子键D.范德华力E.共价键24.C原子连接成链而形成的复杂大分子依靠25.镶嵌蛋白质与脂双层的结合依靠26.DNA中G与C或A与T的结合依靠A.细胞膜受体B.配体C.细胞内的酶D.细胞膜上的酶E.第二信使27.腺苷酸环化酶为28.cGMP29.肝细胞膜上的β受体为30.肾上腺素为C型题:A.包围在细胞膜外面的一层薄膜B.细胞内不同膜相结构的膜C.二者都是D.两者均不是31.细胞膜32.生物膜33.细胞内膜34.单位膜A.在细胞膜的外侧B.在细胞膜的内侧C.二者均有D.二者均无35.附着蛋白质36.镶嵌蛋白质37.脂类38.糖类39.Na+-K+-ATP结点A.出胞作用B.入胞作用C.二者均有D.二者均无40.巨噬细胞清除衰老细胞时吞噬细胞碎片靠41.小血管内皮细胞把大分子物质从血流中转送到细胞外液中去利用42.肥大细胞分泌组织胺A.附着核糖体B.游离核糖体C.二者均是D.二者均否43.绝大多数膜蛋白的合成部位是44.膜脂的合成部位是45.细胞内全部膜蛋白的合成部位是46.外输性蛋白的合成部位是X型题:47.细胞被的功能是A.细胞的连接和支持作用B.作为保护层C. 物质交换D.与细胞识别通讯有关E.与细胞膜的特性有关48.下列那些物质是配体A.激素B.神经递质C.药物D.抗原E.光子49.间断开放的通道受闸门控制,主要调控机制为A.配体闸门通道B.电压闸门通道C.离子闸门通道D.持续开放闸门通道E.水通道蛋白50.位于细胞膜表面的低聚糖主要为A.半乳糖B.甘露糖C.岩藻糖D.唾液酸E.葡萄糖51.细胞膜对小分子物质的运输A.被动运输B.易化扩散C.溶剂牵引D.通道扩散E.主动运输52.关于细胞膜上的钠钾泵,下列哪些叙述正确A.钠钾泵具有ATP酶的活性B.乌本苷可增殖钠钾泵的活性C.钠钾泵仅存于部分动物细胞膜上D.钠钾泵有钠钾离子的结合位点E.钠钾泵顺浓度梯度运输53.动物细胞表面结构A.细胞膜B.细胞外被C.膜下溶胶层D.细胞连接E.细胞表面的特化结构54.膜脂的运输中少见的类型是A.旋转异构运动B.旋转运动C.侧向运动D.振荡与伸缩运动E.翻转运动55.细胞的连接方式A.紧密连接B.粘着连接C.桥粒连接D.间隙连接E.化学突触名词解释:1.生物膜2.相变温度3.兼性分子4.内在蛋白5.外周蛋白6.细胞被7.入胞作用和出胞作用8.受体9.抗体10.膜抗原11.抗体12.细胞识别填空题:1.在原始生命物质进化过程中的形成是关键的一步。
脂类化学与生物膜生物化学习题汇编
(E)LDL, VLDL, IDL,乳糜微粒 13、生物膜的基本结构是( ) (A)磷脂双层两侧各有蛋白质附着 (B)磷脂形成片层结构,蛋白质位于各个片层之间 (C)蛋白质为骨架,二层磷脂分别复着于蛋白质的两侧 (D)磷脂双层为骨架,蛋白质附着于表面或插入磷脂双层中 (E)由磷脂构成的微团 14、质膜的标志的是( ) (A)琥珀酸脱氢酶(B)触酶(C)葡萄糖-6-磷酸酶 (D)5′-核苷酸酶(E)酸性磷酸酶 15、一些抗菌素可作为离子载体,这意味着它们( ) (A)直接干扰细菌细胞壁的合成 (B)对细胞膜有一个类似于去垢剂的作用 (C)增加了细胞膜对特殊离子的通透性 (D)抑制转录和翻译 (E)仅仅抑制翻译 16、图2-15脂-水相互作用中,哪个最稳定?( ) (A)图A (B)图B (C)图C (D)图D (E)图E
1、写出下列简写符号的脂酸结构式 (1)16:0 (2)14:3(7,10,13) 2、猪油的皂化价是193~203,碘价是54~70;椰子油的皂化价是246~265,碘价是8~10。这些数值说明猪油和椰子油的分子 结构有什么差异? 3、1-软脂酰-2-硬脂酰-3-月桂酰甘油与磷脂酸的混合物在苯中与等体积的水震荡,让两相分开后,问哪种脂类在水相中的浓度 高?为什么? 4、一个含有:(1)心磷脂;(2)磷脂酰甘油;(3)磷脂酰乙醇胺;(4)磷脂酰丝氨酸;(5)O-赖氨酰磷脂酰甘油的脂类混合物在pH 7.0 时进行电泳。指出这些化合物的移动方向(向阳极,向阴极或停在原处)。 5、1mol某种磷脂完全水解可得油酸、软脂酸、磷酸、甘油和胆碱各1mol。(1)写出这种磷脂最可能的结构式;(2)是甘油醇磷 脂还是鞘氨醇磷脂;(3)是卵磷脂还是脑磷脂。 6、人红细胞(RBC)膜的主要糖蛋白是血型糖蛋白,这血型糖蛋白有下列性质:①它的相对分子质量是50000(60%糖,40%蛋 白质);②它是一个内在蛋白;③用CNBr处理得五个片段,其中三个片段含有糖基如图2-2所示;④血型糖蛋白的糖中25%是唾 液酸,唾液酸苷酶可把这些唾液酸水解掉;⑤乳酸过氧化物酶能够将碘标记到暴露的酪氨酸残基上。用乳酸过氧化物酶来处理 完整的RBC,然后用CNBr裂解,裂解片段1,2,3被标记上,用乳酸过氧化物酶来处理破裂的RBC,CNBr裂解片段1,2,3 和5被标记上。 问:(1)为什么仅仅用乳酸过氧化物酶处理破裂的RBC时,CB-5片段才被碘标记上? (2)为什么用乳酸过氧化物酶处理完整和破裂的RBC时,CB-4片段都未能被碘标记上?(假设它有酪氨酸残基) (3)关于CB-4片段的氨基酸组成,你能预言些什么? (4)画出RBC膜上血型糖蛋白)酯化(B)还原(C)皂化(D)氧化(E)水解 4、下列化合物中的哪个不属脂类化合物?( ) (A)甘油三硬脂酸酯(B)甘油三丁酸酯 (C)胆固醇硬脂酸酯(D)羊毛蜡(E)石蜡 5、下列哪个是脂酸?( ) (A)顺丁烯二酸(B)亚麻酸(C)苹果酸(D)琥珀酸(E)柠檬酸 6、下列那种叙述是正确的?( ) (A)所有磷脂分子中都含有甘油基 (B)脂肪和胆固醇分子中都含有脂酰基 (C)中性脂肪水解后变成脂酸和甘油 (D)胆固醇酯水解后变成胆固醇和氨基糖 (E)碳链越长,脂酸越易溶解于水 7、下列脂类化合物中哪个含有胆碱基?( ) (A)磷脂酸(B)神经节苷脂(C)胆固醇(D〕)葡萄糖脑苷脂(E)神经鞘磷脂 8、下列化合物中除哪个外都是神经节苷脂的组分?( ) (A)甘油(B)唾液酸(C)己糖(D)鞘氨醇(E)长链脂酸 9、神经节苷脂是一种( ) (A)脂蛋白(B)糖蛋白(C)糖脂(D))脂多糖(E)磷脂 10、胆固醇是( ) 〔A)酸性固醇(B)17-酮类固醇(C)所有类问醇激素的前体 (D)17-羟皮质类固醇(E)苯的衍生物 11、以克计算,脂肪中的脂酸完全氧化所产生的能量比糖多,糖和脂肪完全氧化时最接近的能量比为( ) (A)1:2 (B)1:3 (C)1:4 (D)2:3 (E)3:4 12、乳糜微粒、中间密度脂蛋白(IDL)、低密度脂蛋白(LDL)和极低密度脂蛋白(VLDL)都是血清脂蛋白,这些颗粒若按密度从低 到高排列,正确的次序为( ) (A)LDL, IDL, VLDL,乳糜微粒(B)乳糜微粒,VLDL, IDL, LDL (C)VLDL, IDL, LDL, 乳糜微粒(D)乳糜微粒,vldl, ldl, idl
脂质代谢
(四)高密度脂蛋白(HDL)
1.合成部位及来源: 肝脏(主);小肠(少);血中 CM、VLDL的GT被LPL降解后脱落的表面成分亦形 成HDL。 2.主要代谢变化: 新生HDL为圆盘状双脂层结构。其表 面ApoA1激活LCAT水解卵磷脂,产物溶血磷脂(释放入 血)和CE(转入HDL核心); 表面消耗的PL、Ch从细胞膜、CM和VLDL处补充, 随CE内移HDL变为球状;表面ApoC、E转移至CM、 VLDL后成为成熟的HDL3 。 HDL3 接受Ch并酯化内移,还接受CM、VLDL脂解 后的表面成分成为HDL2。
乳化
长链脂酸、胆固醇等
增加酶对脂类物质的接触面,利于酶 的催化作用
二、 脂类的吸收 在十二指肠下段及空肠上段吸收
消化产物乳化 成混合微团 扩散 小肠粘膜 重新酯化
乳糜微粒
细胞内 载脂蛋白结合
肝脏
门静脉
第七节 血浆脂蛋白代谢
一、血脂 二、血浆脂蛋白的分类、组成及结构 三、载脂蛋白 四、血浆脂蛋白的代谢 五、血浆脂蛋白代谢异常
第八章
本章的主要内容
脂类代谢
1.了解脂类的主要生理功能 2.掌握脂酸的β-氧化、 酮体的生成 与利用及其调节
3.掌握胆固醇的生物合成及其调节 4.了解血浆脂蛋白的分类,掌握血浆脂蛋 白组成和结构及其代谢
脂类的概念:
脂类是脂肪和类脂的总称,不溶于水
而溶于有机溶剂。 脂肪又称三酰甘油或甘油三酯
(triglyceride,TG)
(三)低密度脂蛋白(LDL)
1.合成部位及来源: 一部分(约50%)由VLDL 转变而来,一部分是肝脏合成。
生物氧化讲义(8)讲解
第八章生物氧化(6学时)第一节概述生物氧化的一般过程在葡萄糖的分解代谢中,1分子葡萄糖共生成10个NADH和2个FADH2.总的△Gˊ0=-2564.8KJ/mol在燃烧时,1分子葡萄糖可释放出的热 2870.23KJ/mol,因此可推算葡萄糖分子所释放自由能的90%贮存在还原型辅酶中.还原辅酶的再氧化在电子传递过程中,还原辅酶借助O2得以氧化的过程可用下式表示:NADH+H++1/2O2 →NAD++H2O △Gˊ0=-220.07KJ/mol →ATPFADH2 +1/2O2→ FAD+ H2O △Gˊ0=-181.58KJ/mol →ATP产能物质在不同的分解代谢过程中,都伴有代谢物的脱H和辅酶NAD+或FAD的还原.这些携带着H+和e 的还原型辅酶NADH和FADH2,最终将H+和e传递给氧时,都经历相同的一系列电子载体传递过程.第二节线粒体氧化体系(呼吸链)生物体内存在多种氧化体系,其中最重要的是存在与线粒体中线粒体氧化体系。
此外还有微粒体氧化体系、过氧化体氧化体系、细菌的生物氧化体系等。
一、线粒体氧化体系(呼吸链)在生物氧化过程中,代谢物的氢由脱氢酶激活,脱下来的氢经过几种传递体的传递,将电子传递到细胞色素体系,最后将电子传递给氧,活化的氢(H+)和活化的氧(O2-)结合成水,在这个过程中构成的传递链称为电子传递链,或呼吸链。
(一)呼吸链的组成构成呼吸链的成分有20多种。
大致可将它们分成五类。
即以NAD+或NADP+为辅酶的脱氢酶类;以FAD或FMN为辅基的黄素蛋白酶类;铁硫蛋白类;泛醌和细胞色素类。
依具体功能又可分为递氢体和递电子体。
1.递氢体在呼吸链中即可接受氢又可把所接受的氢传递给另一种物质的成分叫递氢体,包括:(1)NAD+NAD+是不需氧脱氢酶的辅酶。
它们分别可与不同的酶蛋白组成多种功能各异的不需氧脱氢酶。
辅酶分子能可逆地加氢和脱氢。
NAD++2H++2e-→NADH+H+(2)FAD和FMNFAD和FMN是黄素蛋白(又称黄素酶)类的辅基。
生物化学习题-第八章:脂质代谢
第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。
通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
某些萜类及类固醇类物质,如维生素A、D、E、K、胆酸及固醇类激素,都具有营养、代谢及调节的功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。
(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
甘油经过磷酸化及脱氢反应,转变成磷酸二羟丙酮,进入糖代谢途径。
脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。
脂酰CoA在线粒体内膜上的肉毒碱-脂酰CoA转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA,再通过三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH2、1分子NADH+H+、1分子乙酰CoA以及1分子比原先少两个碳原子的脂酰CoA。
此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,作为糖异生和其它生物合成代谢的碳源。
乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者则催化乙醛酸与乙酰CoA缩合生成苹果酸。
(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。
第二章脂类和生物膜(给学生)
3、水解作用
• 酸、碱、酶
O O R2 CH2 O C O R3 CH2 O C R1 C O CH
皂和皂化作用
补充:脂的分类(按能否皂化分)
• 可皂化脂类
– 能被碱水解而产生 皂(脂肪酸盐)的 称为可皂化脂类
• 不可皂化脂类
– 不能被碱水解而产 生皂(脂肪酸盐) 的称为不可皂化脂 类,主要有不含脂 肪酸的萜类和固醇 类
第二章 脂类
本章总结
• • • • • • 脂类的种类 甘油三酯 脂肪酸 油脂的理化性质和鉴定 甘油磷脂、鞘磷脂、固醇 生物膜结构及功能
需要掌握的单词(1)
• lipid • • • • palmitic acid stearic acid oleic acid lipase
• • • • •
triacylglycerol monodiglycerol fatty acid
• 请按照简写符号写出下列脂肪酸的结构 式: • C18:0 C18:1Δ9 C18:3 Δ6,9,12
第二节 磷脂
一、甘油磷酸酯类
• 极性头和非极性尾
补充:卵磷脂
2、磷脂的水解(磷脂酶)
• 溶血磷脂
3、磷脂分子层
二、神经鞘磷脂
• 植物和动物细胞膜的重要组分 • 不含甘油 • 由一分子脂肪酸、一分子鞘氨醇和一分子 极性头基团组成
3、微生物固醇
• 微生物固醇以麦角固醇最多,经过日光和 紫外线照射可以被转化为维生素D2
二、类固醇
• 固醇的衍生物 • 胆酸盐
– 是体内天然的乳化剂 – 促进肠道内脂肪、胆固醇以及脂溶性维生素的 乳化
第四节
生物膜化学
细胞膜
含大量脂类、蛋白质的双分子层结构 使细胞成型,有通透、屏蔽等作用
生物化学第二章 脂类和生物膜
(一)种类: 1、按脂肪酸种类分: 饱和脂肪酸 如:软脂酸(16C)、 硬脂酸(18C)。 不饱和脂肪酸 如:油酸、亚油酸。
(二)命名
脂肪酸的俗名主要反映其来源和特点。系统名反映其碳原 子数目、双键数和位置。如:硬脂酸的系统名是十八烷酸, 用18:0表示,其中“18”表示碳链长度,“0”表示无双键; 油酸是十八碳-9-烯酸,用18:1 Δ9c表示,“1”表示有一 个双键。反油酸用18:1Δ9,trans表示。 天然脂肪酸中的双键多为顺式结构,少数为反式结构, 如:反油酸等。大多数单不饱和脂肪酸中双键的位置在C9 和C10之间( Δ9),多不饱和脂肪酸通常有一个双键在 Δ9,其余双键在Δ9和烃链末端甲基之间。
另外,根据是否能被碱水解而产生皂,分为皂化 脂质和不可皂化脂质。非皂化脂 包括类固醇、萜 类和前列腺素类。 不含脂肪酸,不能被碱水解。 根据脂质在水中和水界面上的行为分为:非极性 和极性。
3、脂质的生物学作用
(1)贮存脂质 机体代谢燃料和储能形式; 三酰甘油主要分布在皮下、胸腔、腹腔、肌肉、骨髓 等处的脂肪组织中,是储备能源的主要形式。 保护作用;绝缘保温、缓冲压力、减轻摩擦振动 (2)结构脂质 磷脂、糖脂、胆固醇等极性脂是构 成生物膜的重要组分; (3)活性脂质 具营养、代谢及调节功能;与细胞 识别、种特异性、组织免疫等密切相关。 肾上腺皮质激素和性激素的本质是类固醇;各种脂溶 性维生素是脂类得的衍生物。
(三)饱和与不饱和脂肪酸的构象
柔性大,完全伸展
一个双键有30°的 刚性弯曲
(四)脂肪酸盐与乳化作用
脂肪酸盐属于Ⅲ类极性脂质,具有亲水基团和疏水基 团,是典型的两亲化合物,是一种离子型的去污剂, 如:天然的胆汁盐酸、人工合成的十二烷基硫酸钠 (SDS)。
脂类与生物膜
9
10 B 8
3 4
HO
5
7
6
胆固醇
二、固醇类
1.胆固醇——甾体活性物质前体 存在于动物细胞和组织中,属两性分子。 胆固醇与长链脂肪酸形成的胆固醇酯是血浆蛋白及
细胞外膜的重要组分。 参与神经兴奋传导、脂类代谢,也是一些类固醇物
质的前体物质; 测定:与毛地黄糖苷结合生成沉淀; 三氯甲烷溶液中与乙酸酐、浓硫酸作用呈蓝绿色,
皂化值=56.1Vc/m V为滴定用HCl体积,mL;c为HCl的浓度;56.1为
KOH的相对分子质量;m为测定所用油脂质量。
二、油脂的性质
皂化值的大小可以推知脂肪中所含脂肪酸的平 均相对分子质量。
5g三酰甘油需要0.5mol/L KOH 36.0mL才能使之 完全水解并将其脂肪酸转变为肥皂。试计算样 品中脂肪酸的平均相对分子质量。
内吞作用 胰岛素的作用
氧化磷酸化
吞噬作用
脂质体(liposome)
脂质体可用于转基因或制备的药物,它可以 与细胞膜融合,将药物送入细胞内部。
本章小结
脂类的结构组成和油脂的性质; 生物膜的组成和结构; 生物膜的功能和特性。
谢谢大家
生产计划部
必需脂肪酸( essential fatty acid )
必需脂肪酸是哺乳动物生长所必需的、而体内又 不能合成的脂肪酸必须从食物中获得 。如亚油酸 和-亚麻酸。 植物能够合成亚油酸和-亚麻酸,所以植物是这 些脂肪酸的最初来源。
脂肪的存在形式
不饱和脂肪酸的加成反应
与氢或卤素起加成反应,生成饱和脂肪酸。 可用于推断油脂中脂肪酸的不饱和程度,用碘值
颗粒使之均匀地分散在水中。
二、油脂的性质
4.自动氧化——脂肪的自动氧化及其防止 油脂在空气中暴露过久,就会产生一种难闻的臭
生物化学习题-第八章:脂质代谢
第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。
通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
某某些萜类及类固醇类物质,如维生素A 、D 、E 、K 、胆酸及固醇类激素,都具有营养、代谢及调节的功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。
(二)脂肪的降解在脂肪酶的作用下,在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
脂肪水解成甘油和脂肪酸。
脂肪水解成甘油和脂肪酸。
甘油经过磷酸化及脱氢反应,甘油经过磷酸化及脱氢反应,甘油经过磷酸化及脱氢反应,转变成磷转变成磷酸二羟丙酮,进入糖代谢途径。
脂肪酸与ATP 和CoA 在脂酰CoA 合成酶的作用下,生成脂酰CoA 。
脂酰CoA 在线粒体内膜上的肉毒碱-脂酰CoA 转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA ,再通过三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH 2、1分子NADH+H +、1分子乙酰CoA 以及1分子比原先少两个碳原子的脂酰CoA 。
此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO 2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
5脂质和生物膜
概述 脂肪 脂肪酸 磷脂 鞘脂类 类固醇 生物膜
脂质概述
一、脂质的定义:脂质(lipid)亦译为脂类或类脂是 脂质的定义:脂质(lipid) 一类低溶于水而高溶于非极性溶剂的生物有机分子。 一类低溶于水而高溶于非极性溶剂的生物有机分子。其化 学本质是脂肪酸和醇所形成的酯类及其衍生物。 学本质是脂肪酸和醇所形成的酯类及其衍生物。 脂肪酸多为4碳以上的长链一元羧酸。 脂肪酸多为4碳以上的长链一元羧酸。 醇成分包括甘油、鞘氨醇、高级一元醇和固醇。 醇成分包括甘油、鞘氨醇、高级一元醇和固醇。 脂类的元素组成主要是C O,有些尚含N P。 脂类的元素组成主要是C H O,有些尚含N S P。 二、脂质的分类 脂质的分类 单纯(简单)脂质:是由脂肪酸和醇形成的酯, 包括脂肪和蜡。其中脂肪就是甘油三酯 复合脂质:除含有脂肪酸和醇基团以外,还含有一 些非脂成分,如甘油磷脂、鞘磷脂异戊二烯类脂 衍生脂质:上述脂质的衍生物,如固醇及其衍生物。
第二节 物 膜 六、生 生物膜
(一)细胞中的膜系统 生物膜的概念 生物膜是构成细胞所有膜的总称,包 括围在细胞质外围的质膜和细胞器的内膜(细胞核 膜、线粒体膜、内质网膜、溶酶体膜、高尔基体膜) 系统。电镜下表现出大体相同的形态、厚度6~9nm左 右的3片层结构。
(二)膜的化学组成 1.膜脂:主要是磷脂、固醇和鞘脂。当磷脂分 膜脂:主要是磷脂、固醇和鞘脂。 膜脂 散于水相时,可形成脂质体 微团)。 脂质体( 散于水相时,可形成脂质体(微团)。 2.膜蛋白:内在(内嵌)蛋白、外在(外周)蛋白 膜蛋白: 膜蛋白 内在(内嵌)蛋白、外在(外周) 3.膜糖类 膜糖类 4.金属离子 水 金属离子
二、脂肪酸
2.按照碳原子数目 脂肪酸 奇数脂肪酸
偶数脂肪酸:但天然的脂肪酸绝大多数为偶数脂肪 酸。软脂酸(16C)、硬脂酸(18C)。 3.按照双键数目 单不饱和脂肪酸:油酸 脂肪酸 多不饱和脂肪酸:亚油酸、亚麻酸、花生四烯酸 4.按照营养价值 必需脂肪酸:在人体内(或其它高等动物)不能 自已合成,可是人体又需要它,因此必须从食物 脂肪酸 中获取。亚油酸、亚麻酸、花生四烯酸。 非必需脂肪酸:能够自身合成饱和及单不饱和 脂肪酸。饱和脂肪酸、油酸。
《生物化学》 脂质
见 P90图2-6
几种 常见 类二 十碳 烷的 结构
三、三酰甘油和蜡
动植物油脂的化学本质是酰基甘油(acylglycerol),主 要是三酰甘油(triacylglycerol) ,此外还有二酰甘油和单酰 甘油。
常温下呈液态的酰基甘油称油(oil),呈固态的称脂 (fat)。植物性酰基甘油多为油,动物性酰基甘油多为脂。 三酰甘油是甘油和脂肪酸形成的三酯(triester).
A Triacylglycerol
A Triacylglycerol
Three Fatty Acids
(一)甘油取代物的构型 (二)三酰甘油的类型及二酰甘油、单酰甘油 (三)烷醚酰基甘油 ( 四)三酰甘油的物理和化学性质 (五)蜡
(一)甘油取代物的构型
CH2OH
CH2 –O-PO3-
HO H
56 = KOH的分子量
(2)氢化与卤化 (加成反应)
氢化(hydrogenation):
在催化剂如Ni的存在下油脂中的双键与氢 发生加成称氢化。
氢化可将液态的植物油转变成固态的脂。
卤化(halogenation)
不饱和油脂与卤素中的溴或碘发生加成而 成饱和的卤化脂的过程。
卤化机制属于离子型亲电加成。
ω-6多不饱和脂肪酸的来源
ω- 6系列:
亚油酸(18:2Δ9,12)植物油(葵花籽、大豆、棉籽、红花籽、 玉米胚、小麦胚、芝麻、花生、油菜籽)
γ-亚麻酸 和花生四烯酸 (18:3 Δ6,9,12)
(20:4 Δ5,8,11,14)
肉类、玉米胚油等(或在体内由亚油酸合成)
ω-3多不饱和脂肪酸的来源
(4) 酸败与自动氧化
酸败(rancidity):
天然油脂长时间暴露在空气中会产生难闻的气 味,这种现象称为酸败。
第8章(一)脂质
三、脂肪酸盐
凡是能形成氢键的分子如羟基化合物、胺、巯基 化合物、醛和羧酸等都能溶于水,称为亲水 (hydrophilic)化合物; 脂肪烃和芳香烃及其衍生物不能形成氢键,因而 不能溶于水,称为疏水(hydrophobic)化合物; 同时具有极性头(亲水)和非极性尾部(疏水亲 脂),这样的生物分子称为两亲化合物(amphipathic compound),如脂肪酸盐、磷脂和糖脂等。
(3)羊毛蜡
第四节
主要参与细胞膜成分 1.甘油磷脂 2.鞘磷脂
磷脂
1.甘油磷脂:甘油,脂肪酸,磷酸
最简单的磷脂:磷脂酸。磷脂酸的磷酸基被极性醇(胆碱、乙醇胺、 丝氨酸等)酯化后形成各种甘油磷脂(表8-3)。
X:胆碱、乙醇胺、丝氨酸等
2.鞘磷脂:也叫鞘氨醇磷脂,存在高等动物的脑髓鞘和红细胞膜,植
由磷脂构成的脂双层结构
活性脂质 活性脂质属小量的细胞成分,但其有专一 的重要的生物活性。包括数百种类固醇和萜。 类固醇激素包括雄性激素、雌性激素和肾上腺皮类激 素,起调控作用;萜类化合物包括人体所必需的脂溶 性维生素A、D、E、K和多种光合色素如类胡萝卜素; 泛醌、酶辅因子、激活剂等。
第二节
血浆脂蛋白依密度分为:
(1)乳糜微粒; (2)极低密度脂蛋白(VLDL); (3)中间密度脂蛋白(IDL),介于VLDL与 LDL 中间; (4)低密度脂蛋白(LDL); (5)高密度脂蛋白(HDL)。
血浆脂蛋白的结构:球状颗粒
核心(疏水脂,包括三酰甘油和胆固醇酯) 外壳层 极性脂(磷脂和游离胆固醇) 载脂蛋白
2.密度梯度超速离心法分类 依据:各脂蛋白颗粒中脂类含量不同而有不同的密度,超
脂类化学与生物膜生物化学习题汇编
目录第二章脂类化学和生物膜2一、填空题2二、是非题2三、选择题3四、问答题8五、计算题9第二章脂类化学和生物膜一、填空题1、脂类是由( )[和( )等所组成的酯类及其衍生物。
2、脂类化合物具有以下三个特征( )、( )、( )。
3、固醇类化合物的核心结构是( )。
4、生物膜主要由( )和( )组成。
5、生物膜的厚度大约为( )。
6、膜脂一般包括( )、( )和( ),其中以( )为主。
7、膜蛋白按其与脂双层相互作用的不同可分为( )与( )两类。
8、生物膜的流动性主要是由( )、( )和(或)( )所决定的,并且受温度的影响。
9、细胞膜的脂双层对( )的通透性极低。
10、脂质体是( )。
11、基础代谢为7530kJ 的人体,若以脂肪为全部膳食,每天需要( )g 脂肪。
12、磷脂酰胆碱(卵磷脂)分子中( )为亲水端,( )为疏水端。
13、磷脂酰胆碱(卵磷脂)是由( )、( )、( )和( )组成。
14、脑苷脂是由( )、( )和( )组成。
15、神经节苷脂是由( )、( )、( ) 和( )组成。
16、低密度脂蛋白的主要生理功能是( );17、乳糜微粒的主要生理功能是( )。
18、生物膜内地蛋白质( )氨基酸朝向分子外侧,而( )氨基酸朝向分子内侧。
二、是非题1、自然界中常见的不饱和脂酸多具有反式结构。
2、磷脂是中性脂。
3、磷脂一般不溶于丙酮,根据这个特点可将磷脂和其他脂类化合物分开。
4、不同种属来源的细胞可以互相融合,说明所有细胞膜都由相同的组分组成。
5、原核细胞的细胞膜不含胆固醇,而真核细胞的细胞膜含有胆固醇。
6、质膜上糖蛋白的糖基部位于膜的外侧。
7、细胞膜类似于球蛋白,有亲水的表面和疏水的内部。
8、细胞膜的内在蛋白通常比外周蛋白疏水性强。
9、缩短磷脂分子中脂酸的碳氢链可增加细胞膜的流动性。
10、某细菌生长的最适温度是25℃,若把此细菌从25℃移到37℃的环境中,细菌细胞膜的流动性将增加。
11、细胞膜的两个人表面(外表面、内表面)有不同的蛋白质和不同的酶。
第2章、脂类化合物(脂质和生物膜)
• 糖脂: 非脂成分是糖。因醇成分的不同,分为:鞘糖脂和甘油糖脂
3 衍生脂质(derived lipid):由单纯脂质和复合脂质衍生而来, 包括:取代烃,固醇类(甾类),萜和其他脂质
(三)脂质按生物学功能分类
2. 甘油三酯的物理性质 P93
• 溶解度:水不溶性,也无形成高度分散的倾向,甘油二酯 和甘油单酯含-OH,可形成高度分散态。 • 熔点:由脂肪酸组成决定,随饱和脂肪酸数目及碳链长度 的增加而增加。
• 光学性质:甘油本身无光学活性,C1及C3的脂肪酸不同时, C2为不对称碳,有光学活性。 • 颜色和气味:是无色、无嗅、无味的稠性液体或蜡状固体。
第2章、脂质和生物膜
一、脂类的概述
(一)脂质的概念
脂质(lipid,脂类或类脂),是一类低溶于水而高溶于非 极性溶剂的生物有机分子。对大多数脂质而言,其化学本质是 脂肪酸和醇所形成的酯类及其衍生物。
脂质是生物体的一大类重要的有机化物,脂类包括的范围 很广,这些物质不但化学成份和化学结构有很大差异,而且具 有不同的生物学功能。
(一)脂肪酸概述 ( fatty acid)
1、存在:多结合,少游离,形成甘油三酯、磷脂、糖脂等
2、分类
饱和脂肪酸
脂肪酸
不饱和脂肪酸
单不饱和脂肪酸:含一个双键 多不饱和脂肪酸:含2个或2个以上双键
3、命名: 有俗名和系统命名两种,脂肪酸的俗名主要反映其
来源和特点。系统名反映其碳原子数目、双键 数和位置。
苏州大学 2006
不饱和脂肪酸的合成
• 不饱和脂肪酸的合成分成有氧机制(脱氢途径) 和无氧机制(脱水途径)。 1、需氧途径(存在于真核生物中)
第八章脂代谢
脂酰CoA
第八章脂代谢
一、 -磷酸甘油的合成
1、甘油激酶 2、磷酸甘油脱氢酶
CH2OH CHOH CH2OH
ATP
ADP
CH2OH CHOH CH2O P
CH2OH NAD+HH+
CO CH2O P
NAD+
磷酸二羟丙酮可以来自于糖代谢
第八章脂代谢
CH2OH CHOH CH2O P
C2H OH ADPC2H O P N AD H + H +
磷酸丙糖 异构酶
C2H OH CO
C2H O P
CHO CHOH C2H O P
甘油
3-磷酸甘油
磷酸二羟丙酮 3-磷酸甘油醛
3-磷酸甘油醛
糖无氧氧化:乳酸+能量(少)
糖有氧氧化:CO2+H2O+能量(多) 糖异生:葡萄糖或糖原
可见: 糖代谢与脂肪代谢可经磷第八酸章脂代二谢 羟丙酮联系起来
1 2 3
5
4
2、3、4、5步反应不断重 复,直到完全生成乙酰辅 酶A
2
3 4 5
第八章脂代谢
-氧化 氧化磷酸化
三羧酸循环
第八章脂代谢
骤脂 肪 酸 氧 化 三 大 步
能 量 计 算:
以16C的软脂酸为例:
第一步消耗了2个高能磷酸键,所以应为108-2=106个高能磷酸键 当软脂酸氧化时,自由能变化为-2340千卡/摩尔; ATP水解生成 ADP+Pi时,自由能变化为-7.30千卡/摩尔。
脱氢水化再脱氢循环用苯基标记的带奇数碳原子的脂肪酸尿中排出的是苯甲尿酸苯甲酰n甘氨酸马尿酸用苯基标记的带偶数碳原子的脂肪酸尿中排出的是苯乙尿酸苯乙酰n甘氨酸chcoohchcoohch1coohncoohcoohcoohconhch每次切下一个或三个碳原子都是不符合实验结果的脂肪酸在体内氧化时每次切下一个二碳物1904年knoop提出氧化作用后经同位素实验证实偶数奇数苯乙尿酸苯甲尿酸脂肪酸在体内氧化时每次降解一个二碳单元物氧化是从羧基端的位置碳原子开始释放出一个乙酸单元
脂类与生物膜
脂类与生物膜
㈠ 膜分子结构的不对称性
1、膜脂的分布不对称,即膜脂双分子层内外两 侧的脂种类、含量不同,如人红细胞质膜: 内
❖ 膜的外层卵磷脂、鞘磷脂较多
❖ 膜的内层脑磷脂、磷脂酰丝氨酸较多
2、膜蛋白的分布不对称
如线粒体内膜中的NADH电子传递链各组分: ❖ Cyt氧化酶 、琥珀酸脱氢酶在线粒体内膜内侧 ❖ Cytc在线粒体内膜外侧
糖蛋白
3. 糖类 生物膜中的糖类大多与膜蛋白结合
糖蛋白(信息识别) 少数与膜脂结合 糖脂
脂类与生物膜
糖类在膜上的分布
非对称的,全部分布在膜的非细胞质 一侧。
质膜上的糖
脂类与生物膜
细胞内膜的糖
脂类与生物膜
三、 生物膜的分子结构模型
流体镶嵌模型 1972年美国Singer和Nicolson提出
膜脂的流动性是不均匀的,在一定温度下,有的膜 脂处于凝胶态,有的则呈液晶态,处于液晶态的各 膜脂的流动性也不完全相同.
第四章 脂类与生物膜
脂类与生物膜
脂的分类与功能
甘油三酯 单纯脂 (脂肪酸+醇) 蜡(长链脂肪酸+长链醇或固醇)
磷脂
复合脂
(含有非脂成分)
糖脂 鞘脂
脂类与生物膜
提问:脂类有哪些功能?
皮下脂肪细胞 (黄、白色)
1.能量物质
三酰甘油脂又称油脂,每克的发热值比同质量的糖、蛋白脂质肪高滴2.3 脂肪倍滴,并且不溶于水,在细胞内易于聚集,储存,故而被普遍作为
HH
H3C-(CH2)12-C C- C- C- CH2-O-半乳糖
鞘氨醇
H OH N-H
OC R1
生物化学教案生物膜的结构与功能
生物化学教案生物膜的结构与功能教学目标:1.了解生物膜的结构与功能;2.理解生物膜对细胞有机体起到的重要作用;3.掌握生物膜与物质运输、信号传导等过程的关系。
教学重点:1.生物膜的结构与组成;2.生物膜在细胞内外的功能。
教学难点:1.生物膜的复杂结构与功能的关系。
教学过程:一、导入(10分钟)通过提问和引入话题,引发学生的思考和兴趣,比如:“请问生物膜是什么?在生物体中起到什么作用?”让学生思考并回答。
二、知识讲解(20分钟)1.生物膜的定义:生物膜指的是由脂质、蛋白质、糖类等多种生物分子组成的细胞膜结构,广泛存在于生物体的各种细胞和组织中。
2.生物膜的结构与组成:a.磷脂双分子层:生物膜的主要组成成分是磷脂,由两层磷脂分子构成。
磷脂分子的疏水性头部与亲水性尾部形成双分子层结构。
b.蛋白质:生物膜中含有不同类型的蛋白质,包括通道蛋白、受体蛋白、酶等。
这些蛋白质能够在生物膜上发挥各种功能。
c.糖类:一部分生物膜表面的磷脂分子上结合有糖类,形成糖脂双分子层,起到保护细胞、识别和结合外来物质等作用。
三、生物膜的功能(30分钟)1.物质运输:生物膜能够通过对物质的选择性通透性,控制细胞内外物质的交换和传递。
比如细胞膜上的离子通道能够调节离子的进出,细胞膜上的转运蛋白能够主动转运物质。
2.细胞识别与结合:生物膜上的糖类能够参与细胞识别和结合,与其他细胞或分子相互作用。
这种相互作用能够介导细胞的黏附、移动、分化等过程。
3.信号传导:多种信号分子能够与生物膜上的受体蛋白结合,通过生物膜的传导作用,进一步传递信号并引起细胞内的生物学效应。
4.维持细胞形态和结构:生物膜的完整性和稳定性对于细胞形态和结构的维持非常重要。
四、案例分析(20分钟)以相关的案例和实验结果为例,让学生分析和讨论生物膜在细胞中的具体作用。
比如,生物膜的组成和结构对于细胞内物质运输的调节、信号传导等过程的影响。
五、小结与拓展(10分钟)通过对本节课的学习,对生物膜的结构与功能进行一个简要的总结,并展示扩展知识,比如其他膜相关的知识和实验研究进展。
第8章 脂类化合物的提取分离
常用吸附剂有硅酸、氧化铝、氧化镁和硅酸镁等。
离子交换层析是常用的纯化方法。脂类分非离解的、 两性离子的和酸式离解的三种情况,对每一种情况,可 根据它们的极性和酸性的不同进行分离纯化,如 DEAE纤维素可对各种脂类进行一般分离,TEAE-纤维素则对 分离脂肪酸和胆汁酸等特别有用。
2021/10/6
12
H
OH
H
H
OH H
N
C
N
CH2 N
CH N
OC
C
C
C
C
C HC
CO
H3C C
C CH CH2
2021/10/6
CC
CC
CC
CH3 CH2 CH2 COOH
CH2 CH3 CH2 COOH
CH3 CH2 CH
C、肝脏中。其以乳牛及狗 胆汁中含量最高,猪胆汁次之,牛胆汁更次之,羊、兔 皮禽胆汁多含胆绿素。国内多选用猪胆汁为原料,且新 鲜者质量、收率均高。
3.尿素包合法
尿素通常呈四方晶形,当与某些脂肪簇化合时,会 形成包含一些脂肪族物质的六方晶型,许多直链脂肪酸 及其甲酯均易与尿素形成络合物而达到纯化的目的。
饱和脂肪酸比不饱和脂肪酸易与尿素化合,形成稳 定络合物。在实际操作时,将尿素和混合脂肪酸或其甲 酯混在一起,先溶于热的甲醇(或甲醇乙醇混合液)中, 冷却至室温或0℃以结晶,再将络合物和母液分别与水 混合,再按常规用乙醚或石油醚萃取,即可得成品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→→ 内吞过程
←←外排过程
吞噬细胞消除外来的细菌获病毒
细菌以基团转移方式吸收乳糖 磷酸化 乳糖 E3 PE3
乳 糖
乳糖 E2
细胞内
PHPr
HPr
细 胞 膜 细胞外
磷酸烯 醇式丙 酮酸
E1
PE1
丙酮酸
能量转换
氧化磷酸化:通过生物氧化作用,将食物分子中存储
的化学能转变成生物能,即将化学能转换成ATP分子的
锚蛋白 阴离子通道 血型糖蛋白
生物膜的功能
1 物质转运-----转运功能
细胞或细胞器需要经常与外界进行物质交换以维 持其正常的功能。
细胞或细胞器通过生物膜,从膜外选择性地
吸收所需要的养料,同时也要排出不需要的物质。 在各种物质跨膜转运过程中,细胞膜起着重要 的调控作用。
简单扩散( simple diffusion):生物膜是 半透膜,不允许极性分子或生物大分子通过。只
全顺-二十二碳-4-7-10-13-16-19六烯酸 22:6 △4c,7c,10c, 13c,16c,19c
n- 十 六 酸 n- 十 八 酸 n- 二 十 酸
18:1△9c, 18:2△9c,12c 18:3△9c,12c,15c
油酸 亚油酸 α-亚麻酸 花生四烯酸
二十二碳六烯酸
2 生物脂肪酸的结构特点
内吞作用和外排作用
内吞(endocytosis):细胞从外界摄取大分子物质或 颗粒的过程称为内吞。
外排(exocytosis):细胞将细胞内的物质排到细胞外的 过程称为外排。
内吞固体物质称为“吞噬”,例如:淋巴吞噬细 胞的吞噬作用。 吞液态物质称为“胞饮” 原核生物在它们的质膜和外膜中含有多成分的输出系统, 使得它们能够将某些蛋白质(往往是些毒素或酶)分泌到 细胞外介质中。
需由食物提供,所以被称为必需脂肪酸。
(二)三酰甘油的物理性 质
酰基甘油主要是三酰甘油,也称甘油三酯,中性 脂肪,也就是通常说的脂肪。 颜色和气味:无色、无味黏性液体或蜡状固 体。
密度和溶解度:密度小于水,不溶于水,易溶
于乙醇、氯仿和苯等有机溶剂。
三酰甘油的化学性质
(1) 水解与皂化:三酰甘油在碱中水解生成脂
周蛋白能溶于水。
外周蛋白与膜的结合比较疏松,容易从膜上分离出来。
锚定膜蛋白
内嵌蛋白
糖脂
胆固醇
卵磷脂
内在蛋白
( 二)脂双层的的自我装配 micelle: 微团 双层的为:微囊(脂质体) Monolayer:脂单层 Bilayer:脂双层
(三) 膜组分的不对称性分布
膜脂和膜蛋白在膜两边分布不对称。这种
2、抗原的化学标记 血型抗原
3、细胞分化阶段可鉴定的化学标记 4、调节细胞的正常生长 5、授予细胞与其它生物活性物质的反应性倾向。
七
萜类和类固醇
统称为类异戊二烯类 (isoprenoid)
(一) 萜类
萜分子的碳架可以看成是由两个或多个异戊 二烯单位连接而成。是重要的活性物质。
(二)类固醇(甾类)
含有环戊烷多氢菲母核的一类醇、酸及其衍 生物。也是重要的活性物质。
HO—CH2—CH—COO-(丝氨酸) │ N+H3
(4) 磷脂酰肌醇(PI)
(5) 磷脂酰甘油(PG)
(6) 二磷脂酰甘油
(四)醚甘油磷脂
(五) 鞘磷脂 组成 鞘氨醇 脂肪酸
磷酸
胆碱或乙醇胺
神经酰胺 胆碱鞘磷脂
葡萄糖苷神经酰胺 乳糖苷神经酰胺Fra bibliotek神经节苷脂
糖脂
(一) 鞘糖脂(神经酰胺糖脂)
单糖、双糖或寡糖通过O-糖苷键与神经酰胺相连而形成
胆固醇是合成胆汁酸、类固醇激素、维生素D等生理 活性物质的前体。 肾上腺皮质激素、雌激素、雄激素
四 血浆脂蛋白
Lipoprotein
脂蛋白是由脂类物质和蛋白质一非共价 键结合而成的复合物
(一)血浆脂蛋白 的分类:
1 2 3 4 5 乳糜微粒(CM) ; 极低密度脂蛋白 (VLDL); 中间密度脂蛋白 (IDL); 低密度脂蛋白 (LDL); 高密度脂蛋白 (HDL),
成翻转扩散。
2 膜蛋白的运动:很多膜蛋白在膜脂中漂浮,侧
向扩散,但是经常受到一定的限制。
(五)生物膜的流动镶嵌模型:
1972年美国科学家Singer 和 Nicolson提
出的双层脂分子流体镶嵌模型
生物膜的流动镶嵌模型结构要点
1. 膜结构的连续主体是极性的脂质双分子层。 2. 脂质双分子层具有流动性。 3. 内嵌蛋白“溶解”于脂质双分子层的中心疏水部分。
1 单纯脂类:脂肪酸与醇类形成的酯: (1)三酰甘油酯:三分子脂肪酸和一分子甘油。 (2)蜡:长链脂肪酸和长链醇或固醇组成。 2 复合脂类:除脂肪酸和醇外,还有其他非脂分子的成分。按 其它非脂成分的不同有:磷脂、糖脂。
3 衍生脂类:由单纯脂质和复合脂质衍生而来的复合物,具有 脂质的一般性质。 固醇类:固醇(甾醇)胆酸,强心苷,性激素等 萜类:天然色素,香油精,天然橡胶等。
允许水或一些小分子扩散进去。
被动转运(passive transport)
物质从高浓度的一侧,通过膜转运到低浓 度的另一侧,即沿着浓度梯度(膜两边的浓
度差)的方向跨膜转运的过程。
这类转运是通过被转运物质本身的扩
散作用进行的,是一个不需要外加能量的自
发过程。 许多物质的被动转运过程需要特殊的蛋白 载体帮助。
4. 外周蛋白与脂质双分子层的极性头部连接。
5. 双分子层中的脂质分子之间或蛋白质组分与脂质 之间无共价结合。 6. 膜蛋白可作横向运动。
红细胞膜骨架各组分
肌动蛋白 原肌球蛋白 (五)生物膜的流动镶嵌模型: 血影蛋白 1972年美国科学家Singer 和 Nicolson提出的双层脂分子流体镶嵌模型
1、脑苷脂
半乳糖苷神经酰胺、葡萄糖苷神经酰胺
2、硫脑苷脂
脑苷脂被硫酸化,在生理pH下带负电荷。
3、神经节苷脂
寡糖链(带有一个或多个唾液酸残基)与神经酰胺形成的鞘糖脂。
甘油糖脂 甘油糖脂是二酰甘油分子的羟基与糖基以糖苷 键连接而成。
植物的叶绿体和微生物的质膜富 含甘油糖脂
糖脂的生物学功能
1、细胞结构的刚性
二磷脂酰甘油脂
膜蛋白:生物膜中含有多种不同的蛋白质,通常称 为膜蛋白。 根据它们在膜上的定位情况,可以分为外周蛋 白(膜周边蛋白质)和内在蛋白(膜内在蛋白质)。
膜蛋白具有重要的生物功能,是生物膜实施
功能的基本场所。
内在蛋白
内在蛋白约占膜蛋白的70-80%,蛋白的部分或全部嵌在
双层脂膜的疏水层中。内在蛋白与双层脂膜疏水区接触部分,
高能磷酸键。然后再通过ATP分子磷酸键的分解释放能 量,为生物体提供所需的能量。 光合磷酸化:通过光合作用,将光能(主要是太阳能) 转换成ATP的高能磷酸键。再利用ATP的能量合成糖类物
不对称分布将导致膜两侧的电荷和流动性等差异。 膜脂和膜蛋白在膜两边不对称分布和膜的生物功 能有密切关系。
1 膜脂的流动性:
膜脂的脂酰链在脂双分子层内作热运动。膜脂由 液态到固态的转变温度称为相变温度。 膜脂分子在脂双分子层的一层作车侧向运动也称 侧向扩散。 膜脂分子在脂双分子层的两层之间作翻转运动也
分类:按化学组成分为:
贮存脂:甘油脂(三酰甘油),蜡
结构脂:膜脂主要是磷脂还有胆固醇。 活性脂:有生物活性的脂类,脂肪类激素, 类固醇激素。
也可分为:可皂化脂和不可皂化脂。
二
脂肪酸及其衍生物
(一)脂肪酸的种类
饱和脂肪酸:烃链不含双键。
不饱和脂肪酸:含一个双键的为单不饱和脂肪酸,含
一个以上双键的为多不饱和脂肪酸。
由于没有水分子的影响,多肽链内形成氢键趋向大大增加,
因此,它们主要以-螺旋和-折叠形式存在,其中又以螺旋更普遍。
蛋白的特征是不溶于水,主要靠疏水键与膜脂相结合,不容
易从膜中分离出来。分离内在蛋白需要比较剧烈的条件,经 常使用去污剂(表面活性剂)例如SDS。内在蛋白能溶于有 机溶剂。
外周蛋白
这类蛋白约占膜蛋白的20-30%,分布于双层脂膜 的外表层,主要通过静电引力或范德华力与膜结合。外
肪酸盐(俗称肥皂),称为皂化。
皂化值:完全皂化1克油脂所需KOH的毫克数 (2)氢化和卤化:碘值:100克油脂吸收碘的克数。 (3)酸败和氧化: 酸值:中和1 克油脂中的游离脂肪酸所消耗的
KOH毫克数
二
磷 脂和鞘脂
甘油磷脂
(一)甘油磷脂的结构
磷脂
鞘磷脂
鞘脂
鞘糖脂
甘油磷脂的基本结构
(二)甘油磷脂的一般性质
O
CH 2 O C R 1 O OH CH 2 O P O X
R 2 C O CH
磷脂酸 磷脂酰胆碱(卵磷脂) 磷脂酰乙醇胺 磷脂酰甘油 磷脂酰丝氨酸
X=
OH OH
OH
O CH 2 O OCH O OH 2 C C C O R3 R4
磷脂酰肌醇
O X= P OOCH 2 CHCH 2 O OH
P O
纯的甘油磷脂为白色蜡状固体
溶于大多数含少量水的非极性溶剂, 但难溶于无水丙酮。
在水中能形成双分子层的微囊。
(三)常见的甘油磷脂
(1) 磷脂酰胆碱(卵磷脂)(PC)
HO—CH2CH2N+ (CH3)3胆碱)
(2) 磷脂酰乙醇胺(脑磷脂)(PE)
HO—CH2CH2—N+H3(乙醇胺)
(3) 磷脂酰丝氨酸(PS)
双键位置用Δ表示,不饱和脂肪酸分为顺式和反式两
种,生物体内的不饱和脂肪酸都为顺式。
一 三酰甘油和蜡
简单三脂酰甘油
多
三酰甘油(甘油三脂)
混合三脂酰甘油
酰基
少 少 蜡