河北省廊坊市大城县2012-2013学年八年级(下)期末 数学试卷
河北省大城县八年级数学下学期期末考试试题(扫描版)
河北省大城县2013-2014学年八年级数学下学期期末考试试题八年级数学期末考试参考答案一:选择题 题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答 案 C C D B D A D A B D C B A C C B 二:填空题(17)正方形 (18)12m (19)⎩⎨⎧==2520y x (20) 42 三:解答题21题 (1) 3(36-)-421 (2)122=+-xx x 解:原式=32-3-22 解:方程两边同乘以x (x -2)得=2-3 x 2+2(x -2)= x (x -2)x 2+2x -4= x 2-2x 4x=4x=1 检验:当x=1时x (x -2)≠0∴原分式方程的解是:x=1 22题 解:设10min 后,甲乙两人相距xmx 2=(30×10)2+(40×10)2x 2=250000x=±500 ∴ x 1=-500(舍去)x 2=500 答:10mi n 后,甲乙两人相距500m 23题 解:四边形EFGH 是菱形证明:∵四边形ABCD 是平行四边形 ∴AB ∥CD ∴∠EAO =∠GCO在△EAO 和△CGO 中∴△EAO ≌△CGO ∴OE=OG ,⎪⎩⎪⎨⎧∠=∠=∠=∠(对顶角相等)COG AOE COAO GCOEAO同理可得OH=OF又∵HF ⊥EG ∴四边形EFGH 是菱形24题 解:(1)40,11 50-3-6-11-13-6=11(人)(38×50-10×3-15×6-30×11-50×13-60×6)÷11=40(元)(2)众数:50 中位数:24040+=40: 25题 解:(1) ∵y=2x 经过(2,m )点∴m=2×2=4∴y=kx+b 经过(-1,-5)和(2,4)两点∴⎩⎨⎧+=+-=-b k 24b k 5 ∴k=3 b=-2 ∴y=3x -2 (2)当y=0时3x -2=0可得x=32 ∴S 三角形=43221⨯⨯=3426题 解:(1)∵CE 平分∠ACB ,∴∠ACE=∠BCE ,∵MN ∥BC ,∴∠OEC=∠ECB , ∠OEC=∠OCE ,∴EO=FO ,同理,CO=FO ∴OE=OF .(2)当点O 运动到AC 中点处时,四边形AECF 是矩形.如图AO=CO ,EO=FO ,∴四边形AECF 为平行四边形,∵CE 平分∠ACB , ∴∠ACE=21∠ACB ,同理,∠ACF=21∠ACD , ∴∠ECF=∠ACE+∠ACF=21(∠ACB+∠ACG )=21×180°=90°, ∴四边形AECF 是矩形.(3)如图:四边形AECF 是正方形时,△ABC 是直角三角形证明∵四边形AECF 是正方形,∴AC ⊥EF ,故∠AOM=90°,∵MN ∥BC ,∴∠BCA=∠EOA ,∴∠BCA=90°,∴△ABC是直角三角形.。
2012-2013八年级下学期期末考试数学试卷(人教版)(含答案)
2012-2013学年度第二学期期末考试一、选择题(每小题3分,共36分) 1.在式子22,2,,3,1y x xab b a c b a --π中,分式的个数为( B )A .2个B .3个C .4个D .5个2.当x =( B )时,分式x x 242--的值为0。
A. 2B. -2C. ±2D. 63.若A (a ,b )、B (a -1,c )是函数xy 1-=的图象上的两点,且a <0,则b 与c 的大小关系为( B ) A .b <c B .b >c C .b=c D .无法判断4.如图,已知点A 是函数y=x 与y=x4的图象在第一象限内的交点,点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( C )A .2B .2C .22D .4第4题图 第5题图 第8题图 第10题图5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( ) A .1 B .2 C .3 D .26.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有( )A .1个B .2个C .3个D .4个7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )A .①B .②C .③D .④8.如图,已知E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A .20ºB .25ºC .30ºD .35º9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80. 下列关于对这组数据的描述错误的是( )A .众数是80B .平均数是80C .中位数是75D .极差是1510.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )A .33吨B .32吨C .31吨D .30吨11.如图,直线y=kx (k >0)与双曲线y=x1交于A 、B 两点,BC ⊥x 轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =21. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个A B OyxABCDEABEDC第11题图 第12题图 第16题图 第18题图12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ;③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 二、填空题(每小题3分,共18分)13. 甲、乙两名学生在5次数学考试中,得分如下: 甲:89,85,91,95,90; 乙:98,82,80,95,95。
学1213学年下学期八年级期末考试数学(附答案)
车逻初中2012—2013学年第二学期期末考试八年级数学(考试时间120分钟 满分150分)一、选择题(本大题有8小题,共24分.把答案填入下表)1.若分式12x x -+的值为0,则 A. 2x =-B. x= 0C. x = 1或2x =-D. x = 12. 若n m <,则下列不等式不一定正确的是A.n m 22<B.0<-n mC.23-<-n mD.22n m <3. 若反比例函数的图象经过点(-1,2),则它的解析式是 A. y = -x 21 B. y = -x 2 C. y = x 2 D. y = x14. 下列计算正确的是A.336x x x += B.236m m m ⋅= C.3= 5. 对4000米长的大运河堤进行绿化时,为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是A.21040004000=+-x x B.24000104000=--x x C.24000104000=-+x x D.21040004000=--x x6.如图,点D 、E 分别在△ABC 的 AB 、AC 边上,下列条件不能使△ADE ∽△ACB 的是A. ∠ADE =∠CB. ∠AED =∠BC. AD :AC=DE :BCD. AD :AC=AE :ABCE DA第6题图第7题图第8题图7.如图,身高1.6m 的小玲想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,若AC=0.8m ,BC=3.2m ,则树的高度为A. 4.8mB. 6.4mC. 8mD. 10m 8.如图,两个反比例函数xy 1=和x y 3-=的图象分别是1l 和2l .设点A 在1l 上,xAB ⊥轴交2l 于点B ,y AC ⊥轴交2l 于点C ,则△ABC 的面积为A. 4cm 2B. 6cm 2C. 8cm 2D. 10cm 2 二、填空题(本大题有10小题,共30分.把答案填在对应题号的横线上)9. 当m ▲ 时,42-m 有意义.10. 化简的结果为 ▲ . 11.在比例尺为1:500000的地图上,若甲、乙两地的距离cm 4,则甲、乙的实际距离 是 ▲ km .12.命题“平行四边形的对角线互相平分”的逆命题是 ▲ .13.学校举行中学生运动会,某班需要从3名男生和2名女生中随机抽取一名做志愿者,则女生被选中的概率是 ▲ . 14.关于x 的方程32=-+x ax 无解,则a 的值是 ▲ .15.如果将一张矩形的A4纸沿长边对折,得到两张全等的矩形纸片,恰好与原矩形相似,那么A4纸的长与宽的比为 ▲ . 16. 若点P (m , n )在反比例函数xy 4=的图象上,则243m n m -+的值为 ▲ . 17.已知△ABC 如图所示,A (5,0)、B (6,3) 、C (3,0),将△ABC 以坐标原点O 为位似中心、位似比3:1进行缩小,则缩小后的点B 所对应的点的坐标为 ▲ .18.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,21=CD DE ,若△DEF 的面积为1,则平行四边形ABCD 的面积为 ▲ . 三、解答题(本大题有10小题,共96分) 19.(本题满分8分)解不等式组()⎪⎩⎪⎨⎧≤-->+51325x x x x ,并写出最大整数解.20.(本题满分8分)已知x 是绝对值不大于2的整数,先化简221112x x x x x---÷+,再选择一个合适的x 的值代入求值.第17题图第18题图CBE DA F21.(本题满分8分)计算:(1(2)1)(1-22.(本题满分8分)我市自2013年1月开始实行的《交通新规》规定:在十字路口,机动车应按所需行进方向驶入导向车道. 如图,在一个两车道的十字路口,向左转弯的必须进入第一车道,直行或者向右转弯的进入第二车道.假设每一辆车经过该路口时,左转、直行、右转的可能性的大小均相同.(1)机动车驶入第二条车道的概率是 .(2)如果在第二条车道共有三辆机动车,利用画树状图或列表求车辆可以通行时这三辆车全部直行的概率.23.(本题满分10分)如图,在下列五个关系:①AB∥CD,②AD=BC,③∠A =∠C,④∠B =∠D,⑤∠B +∠C=180°中,选出两个关系作为条件,可以推出四边形ABCD是平行四边形,并以平行四边形定义.......作为依据予以证明.(写出一种即可)已知:在四边形ABCD中,,.求证:四边形ABCD是平行四边形.24.(本题满分10分)“六一”儿童节前,玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.第一、二批玩具每套的进价分别是多少元?25.(本题满分10分)在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D , EF 垂直平分AD 交AB 于点E .(1)证明:△DEF ∽△ADC ; (2)若AE=25 ,AC=32,求AD 的长.26.(本题满分10分)已知一次函数7+-=x y 与反比例函数()00>>=x k xky ,图象相交于A 、B 两点,其中A (1,a )、B (b ,1).(1)求k b a 、、的值; (2)观察图象,直接写出不等式07<-+x xk的解集; (3)若点M (3,0),连接AM 、BM ,探究∠AMB 是否为90°,并说明理由.27.(本题满分12分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价-进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.28.(本题满分12分)如图1,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 是BC 上一定点.动点P 从C 出发,以2cm /s 的速度沿C →A →B 方向运动,动点Q 从D 出发,以1cm /s 的速度沿D →B 方向运动.点P 出发5 s 后,点Q 才开始出发,且当一个点达到B 时,另一个点随之停止. 图2是当50≤≤t 时△BPQ 的面积S( cm 2)与点P 的运动时间t (s )的函数图象. (1)CD = ,=a ;(2)当点P 在边AB 上时,t 为何值时,使得△BPQ 与△ABC 为相似? (3)运动过程中,求出当△BPQ 是以BP 为腰的等腰三角形时的t 值.图1图2)。
河北省廊坊市大城县八年级数学下学期期末考试试题(扫描版) 新人教版
河北省廊坊市大城县2012-2013学年八年级数学下学期期末考试试题(扫描版)新人教版2012~2013学年度八年级第二学期期末考试数学参考答案及评分标准一、选择题(每小题2分,共20分)二、填空题(每小题3分,共24分)11.1 12.0 13.45% 14.90 15.1 16.10cm 17.500 18.60482361818++-=x x (化简也可)三、解答题19.解:原式=1222--x x,……………………………………………………………………4分 =)1)(1()1(2+--x x x ,……………………………………………………………………6分 =12+x .……………………………………………………………………………8分22.解:(1)1500,1500; ………………………………………………………………4分 (2)平均数; …………………………………………………………………………6分 (3)略. ………………………………………………………………………………8分 23.解:(1)由已知得,k <0,…………………………………………………………4分(2)设A (x ,y ),由已知得,| x y |=| k |=12,………………………………8分∵k <0,∴k =-12,所以,反比例函数的解析式为xy 12-=.…………………………………………10分24.解:(1)图略…………………………………………………………………………2分(2)由题意得,AB 2=5,AC 2=20, BC 2=25,…………………………………4分∴AB 2+AC 2=BC 2,……………………………………………………………6分∴△ABC 是直角三角形,……………………………………………………………8分 (3)四边形AECF 是菱形.………………………………………………………10分 25.解:(1)设购进甲种礼品的单价为x 元,则购进乙种礼品的单价为4x 元,……1分由题意得:10044400016500=-xx , ………………………………………………5分 解这个方程,得x =55,………………………………………………………………6分经检验,x =55是所列方程的根.4x =220.所以购进甲、乙两种礼品的单价分别为55元和220元.…………………………8分 (2)55×20%=11,220×20%=44,55+11=66,220+44=264,所以甲、乙两种礼品的售价分别为66元和264元.………………………………10分 (3)52.8元.……………………………………………………………………………12分。
2012-2013学年八年级下学期期末数学练习卷(附答案)
2012-2013学年度第二学期期末学情分析样题(一)八年级数学一、选择题(每小题2分,共16分) 1.当b a >时,下列不等式中正确的是( )A .b a 22<B .33->-b aC .1212+<+b aD .b a ->- 2.若分式121+x 有意义,则( )B A .2-=x B. 21-≠x C.21≠x D. 2≠x 3.下列命题中,假命题是( ) A .三角形三个内角的和等于l80° B .两直线平行,同位角相等 C .矩形的对角线相等 D .相等的角是对顶角4.已知1112a b -=,则aba b -的值是 ( ) A .12 B .-12C .2D .-25.如图所示,给出下列条件:①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC ABCD BC =;④ACAD AB AC =.其中单独能够判定ABC ACD △∽△的个数为 ( )A .1B .2C .3D .46. 小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( ) A .0.5m B .0.55m C .0.6m D .2.2m 7.如果反比例函数y =1 –m x的图象在第一、三象限,那么下列选项中m 可能取的一个值为( )A .0B .1C .2D .3 8. 如图,把△ABC 纸片沿DE 折叠,使点A 落在图中的A '时,则与和的关系是( )A .212∠-∠=∠AB .)21(23∠-∠=∠AC .2123∠-∠=∠AD .21∠-∠=∠A(第5题图)32O二、填空题(每小题2分,共20分)9.如果 x 2 = y3 ≠0,那么xy x 32+= .10.在比例尺为1:5000000的中国地图上,量得盐城与南京相距6.4cm,那么盐城与南京两地的实际距离 为 km..11.分式112+-x x 的值为0,则x 的值为 .12.不等式组1021x x -≥⎧⎨-<⎩的整数解是___________.13.命题“平行四边形的对角相等”的逆命题是 .14.将4个红球若干个白球放入不透明的一个袋子内,摇匀后随机摸出一个球,若摸出的红球的概率为32,那么白球的个数为 . 15.两个相似三角形对应边长的比为1:2,则其面积比为 .16.如图,∠1=∠2,若使△ABC ∽△ADE .则要补充的一个条件是 .17.在反比例函数4y x=-的图象上有两点11()A x y ,、22()B x y ,,当120x x >>时,则1y 2y . (填“<”或“>”) 18.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格纸中,作格点△ABC 和△OAB 相似(相似比不为1),则点C 的坐标是 . 三、解答题(本大题共10小题,满分共64分) 19.(5分)解不等式223-x <21+x ,并把解集在数轴上表示出来..20.(5分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.21. (5分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个方格地面是草坪,小方格地面的大小和形状完全相同.(1)一只自由飞行的小鸟,将随意落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任选2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?22.(5分) 如图,在正方形网格中,△OBC 的顶点分别为O (0,0), B (3,-1)、C (2,1). 以点O (0,0)为位似中心,按比例尺2:1在y 轴的左侧将△OBC 放大得△OB C '' . (1) 画出△OB C ''的图形,并写出点B ′、C ′的坐标:B '( , ),C '( , ). (2)若点M (x ,y )为线段BC 上任一点,写出变化后点M 的对应点M ′的坐标( , )23.(6分)如图,点B 、E 分别在AC 、DF 上,BD 、CE 与AF 相交于点H ,G ,∠1=∠2,∠C =∠D . 求证:∠A =∠F .24.(6分)如图,反比例函数1ky x=的图象与一次函数2y mx b =+的图象交于A (1,3),B (n ,-1)两点. (1)求反比例函数与一次函数的关系式. (2)根据图象回答:①当x <-3时,写出y 1的取值范围; ②当y 1≥y 2时,写出x 的取值范围.第23题图21H GF E D C BA25.(7分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会.该厂家请来了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.求顾客获得小奖和大奖的概率分别是多少?26.(8分)某商场进货员预测某商品能畅销市场,就用8万元购进该商品,上市后果然供不应求.商场又用17.6万元购进了第二批这种商品,所购数量是第一批购进量的2倍,但进货的单价贵了4元,商场销售该商品时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这笔生意中,商场共盈利多少元?27. (7分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形的面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形的面积之比等于夹这个角的两边乘积之比;…现请你根据对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分AC.经探究S四边形P1R1R2P2=13S△ABC,请说明结论的正确性.问题2:若有另一块三角形纸板,可将其与问题1中的△ABC拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.28.(10分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF =90°,固定△ABC,将△EFD绕点A顺时针旋转,当边DF与AB重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H两点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);(3)问:当x为何值时,△AGH是等腰三角形?2012-2013学年度第二学期期末学情分析样题(一)八年级数学评分标准二、填空题(每小题2分,共20分)9.21310.320 11.1 12. 1、2 13.对角相等的四边形是平行四边形 14.2个 15.1 :4 16 .答案不唯一:例如:∠B =∠D ,或∠ACB =∠AED 或AEACAD AB = 17 . > 18. (4,0), (3,2) 三、解答题 19.(5分)解:去分母,得23-x <12+x ………………………………………………………………2分移项,得x x 23-<21+…………………………………………………………………3分解得x <3……………………………………………………………………………………4分不等式解集在数轴上表示正确………………………………………………………… …5分 20.(5分 ) 解:原式=⎪⎭⎫⎝⎛+-++2122x x x ÷()()211+-+x x x …………………………………………2分 =21++x x ·()()112-++x x x =11-x …………………………………………………4分 当2x =时,原式1=.…………………………………………………………………5分21. (5分 )解:(1)P (小鸟落在草坪上)=96=32.…………………………………………………2分 (2)用树状图或利用表格列出所有可能的结果:所以编号为1、2的2个小方格空地种植草坪的概率为62=31.………………………………………5分 22. (5分) ⑴ 画图正确…………2分B’( -6 , 2 ),C’( -4 , -2 )…………4分⑵ M ′的坐标( -2x , -2y ) …………5分 23.(6分)证明:因为∠1=∠2,又∠2=∠AGC所以∠1=∠AGC …………………………………………………………………………………1分 所以DB ∥EC ………………………………………………………………………………………2分 所以∠C =∠ABD ……………………………………………………………………………………3分 又因为∠C =∠D , 所以∠ABD =∠D ……………………………………………………………………………………4分 所以AC ∥DF …………………………………………………………………………………………5分 所以∠A =∠F …………………………………………………………………………………………6分 (其余证法参照上面给分) 24. (本题满分共6分) 解:⑴xy 31=…………1分,22+=x y …………3分 ⑵ ①1-<1y <0…………4分 ②3-≤x 或0<1≤x …………6分25.(本题满分共7分)解:该数学老师设计的抽奖方案符合厂家的设奖要求…………………………………………1分 分别用黄1、黄2、白1、白2、白3表示这5个球方法一:列表…………………………………………………………………………………………4分由列表可知共有20种等可能性结果…………………………………………………………………5分, 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分方法二:树状图正确…………………………………………………………………4分(白3,白2)(白3,白1)(白3,黄2)(白3,黄1)(白2,白3)(白2,白1)(白2,黄2)(白2,黄1)(白1,白3)(白1,白2)(白3,黄1)(黄2,白3)(黄2,白2)(黄2,白1)(白2,黄1)(白1,黄2)(白1,黄1)(白1,黄1)(黄2,黄1)(黄1,黄2)白3白2白1黄2黄1白3白2白1黄2黄1结果第2球第1球第2球白2白1黄2黄1白1黄2黄1白3黄1黄2白2白3白3白1白2黄1第1球开始白3白2白1黄2白3白2白1黄2黄1由树状图可知可知共有20种等可能性结果………………………………………………………………5分 满足摸到的2个球都是黄球有2种,记为事件A ,其余的事件记为B ∴P (A )=101202=,P (B )1092018==………………………………………………………6分 即顾客获得大奖的概率为10%,获得小奖的概率为90%…………………………………7分26.(8分)解:设第一批购进x 件商品,第二批购进2x 件商品根据题意,得方程4800002176000=-xx …………………………………………3分 解这个方程得2000=x ………………………………………………………………5分经检验,2000=x 是所列方程的解且符合题意………………………………………6分则商场共盈利 176000800008.015058)1506000(58--⨯⨯+-⨯90260=(元)…………………………………………………………7分 答:商场共盈利90260元……………………………………………………8分27.(7分)28(本题满分共10分)【解】(1)△HGA及△HAB;…………………………………………………………2分(2)由(1)可知△AGC∽△HAB∴CG ACAB BH=,即99xy=,所以,81yx =…………………………………………………………4分(3)当CG<12BC时,∠GAC=∠H<∠HAC,∴AC<CH∵AG<AC,∴AG<GH又AH>AG,AH>GH此时,△AGH不可能是等腰三角形;…………………………………………………………6分当CG=12BC时,G为BC的中点,H与C重合,△AGH是等腰三角形;此时,GC x…………………………………………………………8分当CG>12BC时,由(1)可知△AGC∽△HGA所以,若△AGH必是等腰三角形,只可能存在AG=AH若AG=AH,则AC=CG,此时x=9综上,当x=9△AGH是等腰三角形.…………………………………………………10分(答本试卷时,正确的解法请参照评分细则给分)。
20122013学年下学期期末八年级数学参考答案
18. 证明:∵GH⊥CD, (已知) ∴∠CHG=90° . (垂直定义) ………………………………………2 分 又∵∠2=30° , (已知) ∴∠3=60° . ∴∠4=60° . (对顶角相等) ………………………………………5 分 又∵∠1=60° , (已知) ∴∠1=∠4. ……………………… …………………………………7 分 ∴AB∥CD(同位角相等,两直线平行) …………………………9 分 19. 设∠1=∠2=x,则∠3=∠4=2x. ……………………………3 分 因为∠BAC=63° , 所以∠2+∠4=117° ,即 x+2x=117° , 所以 x=39° ; …………………………………………………………6 分 所以∠3=∠4=78° , ∠DAC=180° -∠3-∠4=24° ………………………………………9 分. 20. 解: (1)50﹣4﹣8﹣10﹣16=12(人) , 填充频数分布表得; ………………………………………………3 分 分组 频数 频率 50.5﹣60.5 4 0.08 60.5﹣70.5 8 0.16 70.5﹣80.5 10 0.20 80.5﹣90.5 16 0.32 90.5﹣100.5 12 0.24 合计 50 1 (2)补全频数分布直方图:
;…………………………………………6 分 (3)①由频率分布表或频率分布直方图可知,竞赛成绩落在 80.5﹣90.5 这个范围内的人数最多, ②12÷ 50× 100%× 1000=240(人) , 答:该校成绩优秀学生约为 240 人. ………………………………9 分 21. 解: (1)设乙队单独完成需 x 天. 1 1 1 根据题意,得: × 20+( )× 24=1 60 x 60 解这个方程得:x=90. ………………………………………………3 分 经检验,x=90 是原方程的解. ∴乙队单独完成需 90 天. …………………………………………4 分 1 1 (2)设甲、乙合作完成需 y 天,则有( )y=1. 60 90 解得 y=36, …………………………………………………………6 分 甲单独完成需付工程款为 60× 3.5=210(万元) . ………………7 分 乙单独完成超过计划天数不符题意, ……………………………8 分 甲、乙合作完成需付工程款为 36× (3.5+2)=198(万元) . …9 分 答:在不超过计划天数的前提下,由甲、乙合作完成最省钱. 10 分 22. 解: (1)甲生的设计方案可行. 根据勾股定理,得 AC2=AD2+CD2=3.22+4.32=28.73 米. ∴AC= 28.73 > 25 =5 米. ∴甲生的设计方案可行. ……………………………………………3 分 (2)设:测试线应画在距离墙 ABEFx 米处, 根据平面镜成像,可得:x+3.2=5, ∴x=1.8, ∴测试线应画在距离墙 ABEF1.8 米处. 故答案为:1.8. ……………………………………………………6 分 (3)∵FD∥BC ∴△ADF∽△ABC. FD AD ∴ BC AB FD 3 ∴ 3 .5 5 ∴FD=2.1(cm) . 答:小视力表中相应“E”的长是 2.1cm. ………………………10 分 4 23. 解: (1)由 y=﹣ x+8, 3 令 x=0,得 y=8; 令 y=0,得 x=6. A,B 的坐标分别是(6,0) , (0,8) ;………………………2 分
2012-2013学年度八年级第二学期期末考试数学试卷
2012-2013学年度⼋年级第⼆学期期末考试数学试卷2012-2013学年度⼋年级第⼆学期期末考试数学试卷(考试时间90分钟满分120分)⼀、选择题(本题共24分,每⼩题3分)在每个⼩题给出的四个备选答案中,只有⼀个是符合题⽬要求的。
1. 下列各交通标志中,不是中⼼对称图形的是()2. 点(-1,2)关于原点对称的点的坐标为()A. (2,-1)B. (-1,-2)C. (1,-2)D. (1,2) 3. 由下列线段a ,b ,c 可以组成直⾓三⾓形的是( )A. 3,2,1===c b aB. 3,1===c b aC. 6,5,4===c b aD. 4,32,2===c b a4. 下列计算中,正确的是( ) A. 523=+ B. 327=÷3 C. 6)32(2= D. 0)3()3(22=+-5. 若实数x y 、2(5)y =-0,则y x 的值为( )A. 1B.±1C.5D. -1 6. 若的根,是⽅程012=-+x x a 则2222008a a ++的值为( )A. -1010B.±1010C. 1010D.1001 7. 菱形ABCD 的⼀条对⾓线长为6,边AB 的长是⽅程01272=+-x x 的⼀个根,则菱形ABCD 的⾯积为().A.7 B. 712 C. 78 D. 768. 如果关于x 的⼀元⼆次⽅程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( )A. B. C. D. 9. ( ) A.5 B.4 C.3 D.7.41- k .41- k .041≠-x k 且 .41-≥k 的值是则若221,51m m m m +=+10. 若最简⼆次根式b a +3与b a b 2+能合并成⼀个⼆次根式,则a 、b 是()A. B. C. D. ⼆、填空题(本题共18分,每⼩题3分)10. 函数2-=x y 的⾃变量x 的取值范围是__________。
2012~2013学年度第二学期八年级期末测试卷
2012~2013学年度第二学期八年级期末测试卷数 学一、选择题(每小题2分,共12分)1.函数1y x=-的图像位于( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 2.下列命题中,真命题是( ) A .内错角相等 B .面积相等的三角形全等 C .任何数的平方都大于0 D .两点之间线段最短3.一个不透明的盒子里装有1个白球,一个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是35,则盒子中黄球的个数是( )A .1B .2C .3D .44.从下列不等式中选择一个与12x +≥组成不等式组,若要使该不等式组的解集为1x ≥,则可以选择的不等式是( ) A .0x > B .2x > C .0x < D .2x < 5.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADE ⊿⊿的是( )A .AB AC AD AE = B .AB BC AD DE =C .BD ∠=∠ D .C AED ∠=∠21DAB CE6.某班四个小组进行辩论比赛,赛前甲、乙、丙三位同学预测比赛结果如下: 甲说:“第二组得第一,第四组得第三”; 乙说:“第一组得第四,第三组得第二”; 丙说:“第三组得第三,第四组得第一”;赛后得知,三人各猜对一半,则冠军是( ) A .第一组 B .第二组 C .第三组 D .第四组 二、填空题(每小题2分,共20分)7.当x =__________时,分式23x x-+没有意义.8.已知23a b =,则3ba bα+=-___________.9.在比例尺为18000000∶的地图上,南京与徐州的图上距离是4.4cm ,则南京与徐州的实际距离是__________km .10.已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为__________米.11.ABC △的三条边之比为2∶5∶6,与其相似的三角形最大边长为12cm ,则最小边的长为__________cm .12.对于反比例函数2y x-=,下列说法:①点(-2,-1)在它的图象上;②它的图象在第一、三象限;③当0x >时,y 随x 的增大而增大;④当0x <时,y 随x 的增大而减小.上述说法中,正确的序....号.是__________.(填上所有你认为正确的序号)13.若关于x 的方程1011m xx x --=--有增根,则m 的值是__________. 14.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点()90C ACB ∠=︒在直尺的一边上,若130∠=︒,则2∠=__________.(第14题)15.如图,以数轴上的原点为位似中心,将边长为32的正方形ABCD 放大为原来的2倍,若A B 、两点均在数轴上,且A 点对应的实数是2,则B '点对应的实数是__________.(第15题)C '16.如图,矩形AOCB 的两边OC OA 、分别位于x 轴、y 轴上,点B 的坐标为2053B ⎛⎫- ⎪⎝⎭,,D 是AB 边上的一点.将ADO △沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的关系式是__________.(第16题)三、解答题:(本大题共12小题,共88分)17.(7分)解不等式组()2322122x x x x +≥+⎧⎪⎨-⎪⎩,<,并写出不等式组的整数解.18.(6分)先化简,再求值:2121a a a a a -+⎛⎫-÷ ⎪⎝⎭,其中2a =.19.(6分)解分式方程:11222x x x-+=--. 20.(6分)下表反映了x 与y 之间存在某种函数关系,现给出了几种可能的函数关系式:61751y x y x y y x =+=-=-=-,,,(2)请说明你选择这个函数表达式的理由.21.(7分)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图).小明和小亮用图中的转盘做游戏:分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.(第21题)22.(8分)如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P表示照明灯的位置.(第22题)P(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为__________________;(2)请你在图中画出小亮站在AB处的影子;(3)当小亮离开灯杆的距离 4.2mOB=时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离6mOD=时,小亮的影长是多少m?23.(4分)阅读材料,解答问题:观察下列方程:①23xx+=;②65xx+=;③127xx+=;…;(1)按此规律写出关于x的第4个方程为____________________,第n个方程为____________________;(2)直接写出第n个方程的解,并检验此解是否正确.24.(6分)如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,求这条道路的占地面积.(第24题)D C25.(9分)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工作量(以百米为单位)的方案有几种?请你帮助设计出来.26.(8分)如图,在直角坐标系中,O 为坐标原点.已知反比例函数()0ky k x=>的图像经过点()4A m ,,过点A 作AB x ⊥轴于点B ,AOB △的面积是2. (1)求k 和m 的值;(2)过原点O 的直线y nx =(n 为常数,且0n ≠)与反比例函数ky x=的图像交于P Q 、两点,当线段PQ 长度取最小值时,求点P 和点Q 的坐标;(3)请你直接根据图像写出使得knx x>成立x 的取值范围.27.(9分)【问题提出】规定:四条边对应相等,四个角对应相等的两个四边形全等.我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究. 【初步思考】在两个四边形中,我们把“一条边对应相等或一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件. 【深入探究】(1)小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型,小莉写出其中的两种类型,请你写出剩下的两种类型: Ⅰ一条边和四个角对应相等; Ⅱ______________________; Ⅲ______________________; Ⅳ四条边和一个角对应相等.(2)现对Ⅰ、Ⅳ两种类型进行深入研究,请你用“八下证明(一)”全等三角形知识解决以下问题: ①小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.②小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明(不需要写出每一步推导的理由).已知:如图,______________. .求证: ______________. . 证明:(第27题)DACA 1B 1C 1D 1【联想迁移】(3)类比以上小红判断两个四边形全等的方法,你能得出“要使得两个四边形相似,需要满足的条件是________________________________________”. 28.(12分)我们曾“利用一张不等边三角形纸片折出一个矩形”(如图①),矩形的四个顶点在三角形的三边上,那么称这个矩形叫做三角形的内接矩形.(第28题)D GACE F图③图②图①【画法初探】 (1)如图②,在ABC △内任作一矩形DEFG ,点D 在边AB 上,点E F 、在边BC 上,借助矩形DEFG ,利用位似作图,画出ABC △内接矩形(画图工具不限,保留画图痕迹或有必要的说明);(2)按照以上作图方法,你觉得一个三角形存在__________个内接矩形,要使得作出的内接矩形为正方形,四边形DEFG 的形状是__________形; 【特例探究】(3)若ABC △为锐角三角形,则存在__________个内接正方形, 若ABC △为直角三角形,则存在__________个内接正方形, 若ABC △为钝角三角形,则存在__________个内接正方形;(4)如图③,若用一个不等边锐角ABC △(a b c >>)纸板制造面积尽可能大的正方形,则正方形两个顶点应都在__________条边上. 【拓展应用】(5)如图④,ABC △的高AD 为3,BC 为4,过AD 上任一点G 作ABC △的内接矩形EPQF ,以EF 为斜边作等腰直角三角形HEF (点H 与点A 在直线EF 的异侧),设EF 为x ,EFH △与四边形EPQF 重合部分的面积为y . ①求线段AG (用x 表示);②求y 与x 的函数关系式,并求x 的取值范围.第28题④D GAB CE FPQ。
2012—2013学年第二学期期末数学试卷(初二)
2012—2013学年第二学期期末试卷一、选择题:(本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上)1.下列不等式中,一定成立的是 【 】 A. 54a a > B . 23x x +<+ C .2a a ->- D . 42a a> 2.若分式122--x x 的值为0,则x 的值为 【 】 A. 1B. -1C. ±1D.23.一项工程,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合做此项工程所需时间为 【 】 A. 11()a b -天 B . 1ab 天 C . ab a b +天 D . 1a b-天 4. 若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定 经过点 【 】 A .(1,2) B .(2,1) C .(-1,-2) D .(-1,2)5.如图,DE ∥FG ∥BC ,AE=EG=BG ,则S 1:S 2:S 3= 【 】A.1:1:1 B .1:2:3 C . 1:3:5 D . 1:4:96.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 【 】7.一只猫在如图所示的方砖上走来走去,最终停留在黑色方砖上的概率为A.29 B . 18 C . 716 D . 798.对于句子:①延长线段AB 到点C;②两点之间线段最短;③轴对称图形是等腰三角形; ④直角都相等;⑤同角的余角相等;⑥如果│a │=│b │,那么a=b.其中是命题的有【 】 A.6个 B .5个 C .4个 D . 3个二、填空题:(本大题共10小题.每小题2分,共20分.把答案直接填在相对应的位置上) 9.在比例尺为1:20的图纸上画出的某个零件的长是32cm ,这个零件的实际长是 cm . 10.一次函数y=(2m-6)x+5中,y 随x 的增大而减小,则m 的取值范围是________. 11.已知3x+4≤6+2(x-2),则| x+1|的最小值等于________.A .B .C .D . A B C12.请选择一组,a b 的值,写出一个关于x 的形如2ab x =-的分式方程,使它的解是0x =,这样的分式方程可以是 . 13.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m.紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起手臂超出头顶______________m.14.从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是 . 15.把命题“全等三角形的对应边相等”改写成“如果……那么……”的形式.. 16.如图,D,E 两点分别在△ABC 的边AB,AC 上,DE 与BC 不平行,当满足_______________条件(写出一个即可)时,△ADE ∽△ACB.17.如图, 点A 的坐标为(3,4), 点B 的坐标为(4,0), 以O 为位似中心,按比例尺1:2将 △AOB 放大后得△A 1O 1B 1,则A 1坐标为______________.18.两个反比例函数k y x =(k>1)和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上).三、解答题 (本大题共9小题,共64分.把解答过程写在相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用铅笔并描黑.)19. (本小题5分)解分式方程:231x x =+.20. (本小题5分)解不等式组255432 x xx x-<⎧⎨-+⎩≥,.21. (本小题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.22. (本小题7分)将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上,随机地抽取一张作为十位上的数字,放回后再抽取一张作为个位上的数字,试利用树状图探究能组成哪些两位数?恰好是“偶数”的可能性为多少?23. (本小题7分)如图,在正方形ABCD中,点M、N分别在AB、BC上,且AB=4AM,BC=163BN.(1)△ADM和△BMN相似吗? 并说明理由.(2) 求∠DMN的度数.24. (本小题7分)某长途汽车客运公司规定旅客可随身携带一定质量的行李.如果超过规定质量,那么需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数.根据图象回答下列问题:(1)求旅客最多可免费携带行李的质量;(2)求y与x之间的函数关系式;(3)某旅客所买的行李票的费用为4~15元,求他所带行李的质量的范围.25.(本小题9分)已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).(1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于反比例函数的值?26.(本小题9分)某工厂计划支援西部某学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该校,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出....用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.27.(本小题9分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)请直接..写出..图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR的值.AB C DEPQ R初二数学参考答案一、选择题:BDCD CBAB 二、填空题9.640 10.m<3 11.1 12.212x =-- 13.0.5 14. 2315. 如果两个三角形是全等三角形, 那么这两个三角形的对应边相等 16. ∠AED=∠ABC 或∠ADE=∠ACB 或AE ADAB AC=17.(6,8) 18. ①②④ 三、解答题19.解:化简得2(x+1)=3x ……………………2分 解得2x =, ……………………4分 检验知,2x =是原方程的解. ……………………5分20.解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5 ……………………2分由不等式(2)得:x ≥3 ……………………4分 所以: 3≤x<5 ……………………5分 21.解:设该文具厂原来每天加工这种文具x 套. 根据题意,列方程得25001000250010005 1.5x x x--=+,…………………………………2分 解得100x = …………………………………4分经检验,100x =是原方程的根. …………………………………5分 答:该文具厂原来每天加工这种文具100套. …………………………………6分 22.解:树状图略,………………………………………………………………3分 能组成11,12,13,21,22,23,31,32,33九个两位数,……………5分 恰好是偶数的概率为13.………………………………………………………7分 23.(1)∵在正方形ABCD 中, 且AB=4AM,BC=163BN ∴AB=AD=BC,∠DAM=∠MBN=90o∴4AD AM =,AB=43BM, ∴BM BN =4, 4AD BMAM BN== …………………………………2分 又∵∠DAM=∠MBN=90o∴△ADM ∽△BMN …………………………………4分 (2) 由(1) 得∠ADM=∠BMN …………………………………5分 又∵在Rt △ADM 中, ∠ADM+∠AMD=90o∴∠BMN+∠AMD=90o ……………………………6分 ∴∠DMN=90o . ……………………………7分 24. (1)10; …………………………………2分 (2)y=15x-2; …………………………………4分(3)124512155x x ⎧-≥⎪⎪⎨⎪-≤⎪⎩ …………………………………5分解得30≤x ≤85. …………………………………6分答: 旅客所带行李的质量的范围为30 kg 到85kg. …………………………………7分 25. 解:(1)设一次函数的关系式为y=kx+b , 反比例函数的关系式为ny x=, 反比例函数的图象经过点(23)Q -,, 362nn ∴-==-,.∴所求反比例函数的关系式为6y x=-.…………2分将点(3)P m -,的坐标代入上式得2m =,∴点P 的坐标为(32)-,. 由于一次函数y kx b =+的图象过(32)P -,和(23)Q -,,322 3.k b k b -+=⎧∴⎨+=-⎩,解得11.k b =-⎧⎨=-⎩,∴所求一次函数的关系式为y= -x-1. …………………………………4分(2)两个函数的大致图象如图. …………………………………6分(3)由两个函数的图象可以看出.当3x <-和02x <<时,一次函数的值大于反比例函数的值.……………………8分 当30x -<<和2x >时,一次函数的值小于反比例函数的值.……………………9分 26. 解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500-x)套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥…………………………………2分 解得240≤x ≤250 …………………………………3分 因为x 是整数,所以有11种生产方案. …………………………………4分 (2)y=(100+2)x+(120+4)×(500-x)=-22X+62000 …………………………5分 ∵-22<0,y 随x 的增大而减少.∴当x=250时,y 有最小值. ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时y min =-22×250+62000=56500(元) …………………………………7分 (3)有剩余木料 …………………………8分 最多还可以解决8名同学的桌椅问题. …………………………9分x27. [解](1)△BCP ∽△BER, △PCQ ∽△PAB, △PCQ ∽△RDQ, △PAB ∽△RDQ ……4分 (2) 四边形ABCD 和四边形ACED 都是平行四边形, BC AD CE ∴==,AC DE ∥,PB PR ∴=,12PC RE =.………………………5分 又PC DR ∥,PCQ RDQ ∴△∽△. ∵点R 是DE 中点,DR RE ∴=.12PQ PC PC QR DR RE ∴===.2QR PQ ∴=. ………………………7分又3BP PR PQ QR PQ ==+= ,::3:1:2BP PQ QR ∴=. ………………………9分A BCD EP Q R。
2012-2013学期2期末答案
2012—2013学年度第二学期终结性检测八年级数学参考答案及评分标准一、选择题(每题3分,共30分)二、填空题(每题3分) 11、5312、 613、(1)43(2) 7 (3)220y t =- 15、8 16、 96 1922n三、解答题17、∵四边形ABCD 是正方形,∴AD=AB , 90DAB ∠= …………………………………………1分 ∴90DAF DAB ∠=∠=……………………………………… 2分 ∵E 是AD 的中点,∴12AE AD =∵AF =21AB ∴AE =AF ………………………………………………………3分 ∴DAF BAE △≌△ ………………………………………… 5分 ∴BE =DF ………………………………………………………6分18、(1)(31)(03)A B ,,,-…………………………………………2分设一次函数的表达式为y kx b =+,依题意得13,3k b b =+⎧⎨-=⎩ ∴4,33k b ⎧=⎪⎨⎪=-⎩所求一次函数的表达式为433y x =-(2)设(0,)P p ∵12ABP AOB S S ∆∆=∴12BP OB = ………………………………………………………4分∵(03)B ,- ∴32BP =∴39(0,)(0,)22P --或…………………………………………………6分 19、∵∠ACD =∠B ,∠A =∠A ,∴△ACD ∽△ABC ………………………………………………1分 ∴AC ADAB AC=…………………………………………………2分 ∴2AC AD AB =⋅ ………………………………………3分 又∵AB =4,D 为AB 中点 ∴AD =2∴2248AC AD AB =⋅=⨯= ……………………………4分 ∴AC =……………………………………………5分20、过点A 作AE DC ∥ …………………………………………1分 又∵AD ∥BC , ∴AECD 是平行四边形∴AD =EC ,AE =DC ………………………………………………… 2分 ∵AD =3,BC =7∴BE =4 ……………………………………………3分∵AB =DC , AE =DC ∴AB =AE 又∵∠ABC =60°∴△ABE 是等边三角形…………………………………………… 4分 ∴4AB = ………………………………………………………5分21、(1)400 , 0.31 …………………………………2分(2)略 …………………………………4分 (3) 500 ………………………………………………5分22、(1)5 ………………………………………………2分(2)(0,0),(4,2),(4,4),(3,3),(3,2),(0,1)………………………………………………6分注:(2)题写对2个给1分,写对3个给2分,写对4个给3分, 写对6个给4分23、取BE 中点H ,连结FH …………………………………1分 ∵ F 是AE 的中点∴ FH 为△EAB 的中位线∴11=22FH AB FH AB ∥, ………………………………2分EA BD CA 又∵ABCD∴ ,DC AB DC AB =∥∴ FH ∥EC∴ ∠CEG =∠FHG ,∠ECG =∠HFG 又∵ E 为DC 中点∴ 1122EC DC AB FH === …………………………3分∴ △ECG ≌△HFG …………………………4分 ∴ GF =GC ……………………………………5分24.(1)作CF ⊥AD 交AD 的延长线于F . ……………………1分 ∵ ∠ADC =120°, ∴ ∠CDF=60°.在Rt △CDF 中,3.FC CD === …………………………3分 即点C 到直线AD 的距离为3. (2)∵ ∠BED=135°,BE = ∴ ∠AEB =45°. ∵ 90A ∠=︒, ∴ ∠ABE =45°.∴ 2.AB AE == ……………………………………………4分 作BG ⊥CF 于G .可证四边形ABGF 是矩形. ∴ FG =AB =2,CG =CF -FG =1.H∵ 12DF CD ==∴ 22 4.BG AF AE ED DF ==++=+= ………………5分∴ BC === ………………………………6分 25.(1) 不是; 是. ………………………………2分 (2)如图所示:∵点P (a ,3)在y =-x +b 上 ∴3=-a +b ∴a =b -3则P (b -3,3) …………………………………………………3分 ∴OA =PB =3,PA =OB =|b -3| ∵和谐点P 在y =-x +b 上 ∴2OA +2PA =OA ·PA即2×3+2·|b -3|=3 ·|b -3| ∴|b -3|=6解得:b =9或-3 ∴a =6或-6∴a =6,b =9或a =-6,b =-3…………………………4分(3)如图所示∵点Q 在直线y =x +4上,∴设点Q 坐标为(x ,x +4) ∴OA =|x |,QA =|x +4| 由题意得2|x |+2|x +4|=|x |·|x +4|① 当x >0时,2x +2(x +4)=x整理得,x 2=8解得,x =(舍负)此时,和谐点Q 坐标为(+4) ……………………6分○2当-4<x <0时,-2x+2(x+4)=-x ·(x+4) 整理得,x 2+4x+8=0, 此方程无解○3当x <-4时,-2x -2(x+4)=(-x )·[-(x+4)] 整理得,x 2+8x+8=0解得,x =-4-4+此时,和谐点Q 坐标为(-4-8分 综上:点Q 坐标为()或(-4-,-。
2012—2013八年级数学
2012——2013学年度下学期期末考试八年级数学试题卷首语:亲爱的同学们,你已顺利的完成了本学期学习任务,现在是检测你学习效果的时候,希望你带着轻松.带着自信来解答下面的题目,同时尽情展示自己的才能。
答题时,请记住细心.精心和耐心。
祝你成功! 一.精心选一选(每小题3分,共36分,每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1.如果把分式yx yx -+中的x 和y 都扩大到原来的3倍,那么分式的值( ) A .扩大到原来的3倍 B.不变 C.缩小到原来的13 D.缩小到原来的162.纳米是一种长度单位,1纳米=910-米.已知某种花粉的直径为35000纳米,则用科学计数法表示该花粉的直径为 ( )A. m 6105.3-⨯ B. m 5105.3-⨯ C. m 41035-⨯ D. m 4105.3⨯ 3.某八年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数 B.众数 C.极差 D.平均数 4.下列计算中,正确的是( )A .123-⎪⎭⎫ ⎝⎛-=23B .a 1+b 1=b a +1C .b a b a --22=a+bD .0203⎪⎭⎫⎝⎛-=0CM5.正方形具有菱形不一定具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线平分一组对角 6.已知三点),(111y x P ),(222y x P )2,1(3-P都在反比例函数xky =的图象上,0,021><x x ,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>7.如图,在周长为20cm 的平行四边形ABCD 中,AB≠AD,AC.BD 相交于点O ,OE⊥BD 交AD于E ,则△ABE 的周长为( )A .4cm B.6cm C.8cm D.10cm8.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点, MN ⊥AB 于点N ,则MN 等于( )A.56 B.59 C.512 D.5169.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a .其中能判断△ABC 是直角三角形的个数有( )个A .1个B .2个C .3个D .410.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,若四边形EFGH 为菱形,则四边形ABCD 必须满足条件( )A.四边形ABCD 是平行四边形B.四边形ABCD 是矩形C.四边形ABCD 是菱形D.AC=BD11.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 312.如图,关于x 的函数)1(-=x k y 和xky -= (k ≠0), 它们在同一坐标系内的图象大致是ABCDOE二.细心填一填(每题3分,共15分)13.当x =1时,分式nx mx -+2无意义,当x =4分式的值为零, 则n m +=________. 14.过函数my x=图像上一点A 作AB ⊥x 轴于B,△AOB 的面积为3,则m=______. 第14题图 第15题图 第16题图 第17题图 15.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB 、AD 的中点,若EF =2,则菱形ABCD 的边长是 .16.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm , 则EC=___________cm 。
2012年八年级下学期期末考试数学卷(有答案)
2012年八年级下学期期末考试数学卷(有答案)2012年八年级下学期期末考试数学卷(有答案)注意事项:1.本试卷共3大题,29小题,满分130分,考试时间120分钟;2.答题前,考生务必将自己的学校、班级、姓名、考试号用0.5毫米黑色墨水签字笔填写在答题卡相应的位置上,并用2B铅笔将考试号所对应的标号涂黑;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其它答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题(作图可用铅笔);4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在函数中,自变量x必须满足的条件是(▲)A.x≠1B.x≠-1C.x≠0D.x>12.分式的计算结果是(▲)A.B.C.D.3.以下说法正确的是(▲)A.在367人中至少有两个人的生日相同;B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是.4.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC的长是(▲)A.2B.4C.2D.45.已知反比例函数的图象过点P(1,3),则该反比例函数的图象位于(▲) A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.小宸同学的身高为1.8m,测得他站立在阳光下的影长为0.9m,紧接着他把手臂竖直举起,测得影长为1.2m,那么小宸举起的手臂超出头顶的高度为(▲)A.0.3mB.0.5mC.0.6mD.2.1m7.高跟鞋的奥秘:当人肚脐以下部分的长m与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高170cm,脱去鞋后量得下半身长为97cm,则建议她穿的高跟鞋高度大约为(▲)A.4cmB.6cmC.8cmD.10cm8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是(▲)A.B.C.D.9.如图是反比例函数和(k1线AB//y轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k2-k1的值是(▲)A.1B.2C.4D.810.如图,已知DE是直角梯形ABCD的高,将△ADE沿DE翻折,腰AD恰好经过腰BC的中点,则AE:BE等于(▲)A.2:1B.1:2C.3:2D.2:3二、填空题(本大题共8小题,每小题3分.共24分)11.画在比例尺为1:20的图纸上的某个零件的长是32cm,这个零件的实际长是▲cm.12.当x=▲时,分式的值为0.13.若一次函数y=(m-1)x+2的图象,y随x的增大而减小,则m的取值范围是▲.14.若,则=▲.15.如图,在△ABC中,已知DE∥BC,AB=8,BD=BC=6,则DE=▲.16.使分式的值为整数的所有整数m的和是▲.17.如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是▲.18.如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是▲.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题共5分)解方程:.20.(本题共5分)先化简,再求值:,其中.21.(本题共6分)解不等式组:,并判断是否为该不等式组的解.22.(本题共6分)如图,在正方形ABCD中,已知CE⊥DF于H.(1)求证:△BCE≌△CDF:(2)若AB=6,BE=2,求HF的长.23.(本题共6分)有两堆背面完全相同的扑克,第一堆正面分别写有数字1、2、3、4,第二堆正面分别写有数字1、2、3.分别混合后,小玲从第一堆中随机抽取一张,把卡片上的数字作为被减数;小惠从第二堆中随机抽取一张,把卡片上的数字作为减数,然后计算出这两个数的差.(1)请用画树状图或列表的方法,求这两数差为0的概率;(2)小玲与小惠作游戏,规则是:若这两数的差为非负数,则小玲胜;否则,小惠胜.你认为该游戏规则公平吗?如果公平,请说明理由.如果不公平,请你修改游戏规则,使游戏公平.24.(本题共7分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知(AB>DE),∠A=∠D,求证:△ABC∽△DEF)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).请利用上述方法完成这个定理的证明.25.(本题共7分)如图,某一时刻垂直于地面的大楼AC的影子一部分在地上(BC),另一部分在斜坡上(BD).已知坡角,∠DBE=45°,BC =20米,BD=2米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度AC.26.(本题共8分)如图,在平面直角坐标系内,已知OA=OB=2,∠AOB =30°.(1)点A的坐标为(▲,▲);(2)将△AOB绕点O顺时针旋转a度(0①当a=30时,点B恰好落在反比例函数y=(x>0)的图象上,求k的值;②在旋转过程中,点A、B能否同时落在上述反比例函数的图象上,若能,求出a的值;若不能,请说明理由.27.(本题共8分)如图1,已知直线y=-2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连结BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=▲;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.28.(本题共9分)如图①,将直角梯形OABC放在平面直角坐标系中,已知OA=5,OC=4,BC∥OA,BC=3,点E在OA上,且OE=1,连结OB、BE.(1)求证:∠OBC=∠ABE;(2)如图②,过点B作BD⊥x轴于D,点P在直线BD上运动,连结PC、P、PA和CE.①当△PCE的周长最短时,求点P的坐标;②如果点P在x轴上方,且满足S△CEP:S△ABP=2:1,求DP的长.29.(本题共9分)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB =90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x +3于点C、D,求点A关于直线CD的对称点E的坐标.。
河北省廊坊市八年级下学期数学期末考试试卷
河北省廊坊市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是()A . 一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据6,8,7,8,8,9,10的众数和中位数都是8D . 若甲组数据的方差S2甲=0.01,乙组数据的方差S2乙=0.1,则乙组数据比甲组数据稳定2. (2分)下列判断:①平行四边形的对边平行且相等;②四条边都相等且四个角也都相等的四边形是正方形;③对角线互相垂直的四边形是菱形;④对角线相等的平行四边形是矩形;⑤对角线相等的梯形是等腰梯形。
其中正确的个数有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2017八下·林甸期末) 平行四边形一边长为12cm,那么它的两条对角线的长度可以是()A . 8cm和14cmB . 10cm 和14cmC . 18cm和20cmD . 10cm和34cm4. (2分)设直线kx+(k+1)y=1(k≥1且为正整数)与两坐标轴围成的三角形的面积为Sk(k=1,2,…,2011),则S1+S2+…+S2011=()A .B .C .D .5. (2分) (2018八下·灵石期中) 下列命题中,正确个数是()①若三条线段的比为1:1:,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A . 2个B . 3个C . 4个D . 5个6. (2分)在平移过程中,对应线段()A . 互相平行且相等B . 互相垂直且相等C . 在一条直线上D . 互相平行(或在同一条直线上)且相等7. (2分)点A(, 1)关于y轴对称的点的坐标是()A . (﹣,﹣1)B . (﹣, 1)C . (,﹣1)D . (, 1)8. (2分)如图,点E在正方形ABCD的边AD上,已知AE=7,CE=13,则阴影部分的面积是()A . 114B . 124C . 134D . 1449. (2分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF的度数为()A . 100°B . 120°C . 115°D . 130°10. (2分)如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是()A . AD平分∠BACB . EF=BCC . EF与AD互相平分D . △DFE是△ABC的位似图形二、填空题 (共10题;共13分)11. (1分)(2018·嘉兴模拟) 如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为________.12. (1分) (2017八下·沧州期末) 某市为了分析全市9600名初中毕业生的中考数学考试成绩,共抽取15本试卷进行调查,其中每本试卷都是30份,该调查的样本容量是________13. (1分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是________.14. (1分)(2011·淮安) 在四边形ABCD中,AB=DC,AD=BC,请再添加一个条件,使四边形ABCD是矩形.你添加的条件是________.(写出一种即可)15. (1分)(2017·海淀模拟) 某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是________(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.16. (1分) (2017七下·肇源期末) 已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式.根据上图所示,一个四边形可以分成2个三角形;于是四边形的内角和为360度;一个五边形可以分成3个三角形,于是五边形的内角和为540度,…,按此规律n边形的内角和为________度.17. (1分) (2017八下·垫江期末) 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x小时,两车之间的距离y千米,图中的折线表示y与x之间的函数关系,则出发6小时的时候,甲、乙两车相距________千米.18. (1分)(2017·孝义模拟) 如图1是一种阳台户外伸缩晾衣架,侧面示意图如图2所示,其支架AB,CD,EF,GH,BE,DG,FK的长度都为40cm(支架的宽度忽略不计),四边形BQCP、DMEQ、FNGM是互相全等的菱形,当晾衣架的A端拉伸到距离墙壁最远时,∠B=∠D=∠F=80°,这时A端到墙壁的距离约为________cm.(sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)19. (4分)如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家________ 千米,小刚在体育场锻炼了________ 分钟.(2)体育场离文具店________ 千米,小刚在文具店停留了________ 分钟.20. (1分) (2016九上·江北期末) 如图,六个正方形组成一个矩形,A,B,C均在格点上,则∠ABC的正切值为________.三、解答题 (共6题;共59分)21. (5分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点C与点A重合,请在图中画出折痕,并求折痕的长.22. (14分)(2017·罗平模拟) 某中学对本校500名毕业生中考体育测试情况进行调查,根据男生及女生身体机能类选考坐位体前屈测试成绩整理,绘制成如下不完整的统计图(图①,图②)请根据统计图提供的信息,回答下列问题:(1)该校毕业生中男生有________人,女生有________人;(2)扇形统计图中a=________,b=________,并补全条形统计图;(3)求图①中“8分a%”所对应的扇形圆心角的度数;(4)若该校毕业生中随机抽取一名学生,则这名男生身体机能类选考坐位体前屈测试成绩为10分的概率是多少?23. (15分)如图1,一次函数y= x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△PAC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.24. (5分)已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.(1)求证:△ABM≌△CDN;(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.25. (10分) (2019八下·硚口月考) 如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?26. (10分) (2018九上·萧山开学考) 如图,在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF 于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG= CE.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共59分)21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、。
廊坊市数学八年级下学期期末考试试卷
廊坊市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017八上·海勃湾期末) 在式子,,,中,分式的个数为()A . 1个B . 2个C . 3个D . 4个2. (2分)(2017·平顶山模拟) 为建设生态平顶山,某校学生在植树节那天,组织九年级八个班的学生到山顶公园植树,各班植树情况如下表:下列说法错误的是()班级一二三四五六七八棵数1518222529141819A . 这组数据的众数是18B . 这组数据的平均数是20C . 这组数据的中位数是18.5D . 这组数据的方差为03. (2分) (2018七上·大庆期中) 如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A .B .C .D .4. (2分)如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则▱ABCD的周长是()A . 16B . 14C . 26D . 245. (2分)如图,△ABC是直角三角形,BC是斜边,现将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为()A .B .C . 5D . 46. (2分) (2019八上·西湖期末) 如图所示,在△ABC中,D为AB的中点,BE⊥AC,垂足为点E,若DE=4,AE=6,则BE的长度是()A . 10B . 2C . 8D . 27. (2分)已知函数y=(k<0),又x1 , x2对应的函数值分别是y1 , y2 ,若x2>x1>0对,则有()A . y1>y2>0B . y2>y1>0C . y1<y2<0D . y2<y1<08. (2分)如图,已知△ABC的周长为1,连接△ABC的三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2015个三角形的周长为()A .B .C .D .二、填空题 (共8题;共9分)9. (2分) (2016八下·红桥期中) 若式子在实数范围内有意义,则a的取值范围是________.10. (1分)(2016·上海) 已知反比例函数y= (k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是________.11. (1分) (2017八下·富顺竞赛) 一个等腰三角形一腰上的中线将周长分成15和9两个部分,则该三角形的底边长为________ .12. (1分)(2018·灌云模拟) 在元旦晚会的投飞镖游戏环节中,5名同学的投掷成绩单位:环分别是:7、9、9、6、8,则这组数据的众数是________.13. (1分)(2019·哈尔滨模拟) 如图,为的直径,直线与相切于点,垂足为交于点,连接若,则线段的长为________.14. (1分) (2010七下·横峰竞赛) 我国著名田径运动员刘翔以12秒88创110米跨栏世界新记录后,专家组将刘翔历次比赛和训练时的图象与数据输入电脑后分析,显示出他跨过10栏(相邻两个栏间的距离相等)的每个“栏周期”(跨过相邻两个栏所用时间)都不超过一秒,最快的一个“栏周期”达到了惊人的0.96秒,从起跑线到第一个栏的距离为13.72米,刘翔此段的最好成绩是2.5秒,;最后一个栏到终点线的距离为14.02米,刘翔在此段的最好成绩是1.4秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省廊坊市大城县2012-2013学年八年级(下)期末
数学试卷
一、选择题(共10小题,每小题2分,满分20分。
在每小题给出的四个选项中,只有一个是符合要求的)
y=
y=
2.(2分)在函数y=中,自变量x的取值范围是()
4.(2分)技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要
=
B=C=D
=
、=
,故本选项错误;
,
=,
8.(2分)一项市政工程,需运送土石方106米3,某运输公司承办了这项运送土石方的工程,则运送公司平均每天3
B C D
)
9.(2分)如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AE=6cm,且∠B=60°.则下列说法中错误的是(
10.(2分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()
C
FC×
二、填空题(共8小题,每小题3分,满分24分)
11.(3分)计算30=1.
12.(3分)当x=0时,分式的值是零.
13.(3分)如图是某电器商场五月份对甲、乙、丙三种品牌空调销售量所做的统计图,则所销售的甲种品牌空调数占总销售量的百分数为45%.
故甲种品牌空调数占总销售量的百分数为
14.(3分)(2008•巴中)如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF= 90度.
15.(3分)如图,是由四个直角边分别为3和4全等的直角三角形拼成的“赵爽弦图”,那么阴影部分面积为1.
16.(3分)矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,若AB=5cm,则BD=10cm.
17.(3分)小强欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1000牛顿和0.5米,则当动力臂为1米时,撬动石头至少需要的力为500牛顿.
比师生队伍少走了6千米,结果早到达48分钟,已知李老师骑自行车的平均速度是师生步行平均速度的3倍,设师
生步行的平均速度为x千米/时,则根据题意可列出方程为:=+2+.(直接用方程中的数据,不必化简)
由题意,=+2+.
故答案为=+2+.
三、解答题(共8小题,满分76分。
解答应写出文字说明、证明过程或演算步骤)
19.(8分)计算:﹣.
==.
20.(8分)解分式方程:.
21.(8分)如图,已知E,F分别是平行四边形ABCD的边AD、BC上的点,且AE=AD,CF=BC.求证:四边形AECF是平行四边形.
AD
(1)已知该公司员工工资的平均数1800元,其中位数为1500元,众数为1500元;
(2)该公司在宣传材料中称,该公司员工工资平均待遇是较高的,你认为宣传材料中所说公司员工工资平均待遇是平均数、中位数、众数中的哪一个数?
(3)补全反应公公司员工工资情况的条形统计图.
23.(10分)已知反比列函数y=的图象在每一条曲线上,y都随x的增大而增大,
(1)求k的取值范围;
(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为12,求此函数的解析式.
的图象在每一条曲线上,
.
24.(10分)(2010•路南区三模)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求完成下列各题:
(1)画AD∥BC(D为格点),连接CD;
(2)试判断△ABC的形状?请说明理由;
(3)若E为BC中点,F为AD中点.四边形AECF是什么特殊的四边形?请说明理由.
25.(12分)上海世博会开馆前,某礼品经销商预测甲、乙两种礼品能够畅销,用16500元购进了甲种礼品,用44000元购进了乙种礼品,由于乙种礼品的单价是甲种礼品单价的4倍,实际购得甲种礼品的数量比乙种礼品的数量多100个.
(1)求购进甲、乙两种礼品的单价各多少元?
(2)如果要求每件商品在销售时的利润为20%,那么甲、乙两种礼品每件的售价各是多少元?
(3)在(2)的条件下,如果甲种礼品的进价降低了,但售价保持不变,从而使销售甲种礼品的利润率提高了5%,那么此时每个甲种礼品的进价是多少元?(直接写出结果)(利润=售价﹣进价,利润率=×100%.)
由题意得:﹣
26.(12分)如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;
②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;
③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;
根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△ABE≌△DAH,进而得到线段BE=AH;
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.
,,。