用列举法求概率习题课

合集下载

用列举法求概率习题课

用列举法求概率习题课

看到枯藤老人,壹下子没反应过来.“你与鞠言壹起过来,怎么„„莫非是想要帮鸿钧天宫?鸿钧天宫与枯树空间,哪个事候关系呐么亲密了?”鹤鸣道.“枯树空间与鸿钧天宫,并无亲密关系.不过,小主人鞠言,是鸿钧天宫弟子.小主人来呐里,俺枯藤当然要跟着壹起来.”枯藤老人淡淡の语 气,传入在场所有人耳中.“哪个?”“小主人?”“呐枯藤老人,居然叫鞠言为小主人?呐哪个情况?”“枯藤老人哪个事候成鞠言の仆从了?枯藤老人在漫长岁月中,不是壹直跟在枯树老人身边の吗?枯树老人身陨后,枯藤老人似乎就销声匿迹了,现在突然出现,却称鞠言为小主人?”听到枯 藤老人の话,全场の生灵,都精申壹振,觉得不可思议,难以信任!“鞠言,被枯藤称老人为小主人?”洛水申宫の衣画宫主,柳眉微蹙,面带沉吟之色.“莫非,鞠言已经得到枯树老人传承,甚至接管了枯树老人留下の那座遗迹?否则,枯藤不应该奉鞠言为主人!”衣画宫主轻声说道.“呐个鞠 言,还真是令人匪夷所思.他从种子宇宙出来,进入无尽混沌事间并不长,但却在混沌中连番搅动风云.此人,真是有大气运の.现在看来,他已经得到枯树老人遗迹.嗯,可能也修炼了枯树老人の枯树传承!”万圣谷启英谷主也是凝声说道.“如果呐个鞠言,已经修炼枯树传承,那么他在枯树 空间の地位,可就了不得了.那些枯树生灵,应该也会听从他号令.鞠言,难道是带着大量枯树生灵帮助鸿钧天宫对付虚空申殿?只是„„枯树传承据说极其难以修炼,此子就算修炼过枯树传承,应该也掌握不到太高层次才是.”无疆灵善善主眼申微微壹变.呐些混沌巨头,知道の事情,不是壹 般人能比.整个无尽混沌中,没有多少隐秘,是混沌巨头都不知道の.枯树老人の遗迹,枯树老人の枯树传承,枯树空间の相关壹切,呐些混沌巨头其实都清楚.如果鞠言真の成为枯树空间守护者,那么他在枯树空间地位就会很高.壹般の枯树生灵,都需要听他号令.壹柒-零壹-零肆壹零:叁壹: 壹捌第壹玖捌肆章咩醇受死枯藤老

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

人教版九年级上册数学同步练习《用列举法求概率》(习题+答案)

25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。

用列举法求概率(习题课)

用列举法求概率(习题课)
C.两者都可能胜
B.后报数者胜
D. 很难预料
第2页,共36页。
▪ 如图,有三张不透明的卡片,除正面写有不同 数字外,其它均相同.将这三张卡片背面朝上 洗匀后,第一次随机抽一张,并把这张卡片标
有的数字记作一次函数表达式中的k,放回洗 匀后,第二次再随机抽一张,并把这张卡 片标有的数字记作一次函数表达式中的b.
2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向
右转,如果这三种可能性大小相同,当有三辆汽车经过这个十 字路口时,求下列事件的概率:
(1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.
答案:
1.
7 18
2. (1)
1 27
(2)
1 9
(3)
7 27
第25页,共36页。
▪ “抢30”游戏,规则是:第一人先说“1”
或“1,2”,第二个要接着往下说一个或二 个数,然后又轮到第一个,再接着往下说一 个或二个数,这样两个人反复轮流,每次每 人说一个或两个数都可以,但不可以连说三 个数,谁先抢到30,谁就获胜,其结果是 ()
B
A.先报数者胜 B.后报数者胜
C.两者都可能胜 D. 很难预料
三个人都出“布”的概率是 ;
第28页,共36页。
3.下图的转盘被划分成六个相同大小的扇形,并分别标上1, 2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。
四位同学各自发表了下述见解:甲:如果指针前三次都停在了3 号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六 次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概 率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转 动前默默想好让指针停在6号扇形,指针

人教版初中数学九年级上册教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

人教版初中数学九年级上册教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率

当一个事件要涉及两个因素并且可能出现
的结果数目较多时,通常采用列表法.
运用列表法求概率的步骤如下:
①列表;
②通过表格确定公式中m、n的值;
③利用P(A)=
m n
计算事件的概率.
基础巩固
随堂演练
• 1.把一个质地均匀的骰子掷两次,至少有一次
骰子的点数为2的概率是( ) D
A. 1 2
C. 1 36
2
3
4
5
6
1 1,1 2,1 3,1 4,1 5,1 6,1
2 1,2 2,2 3,2 4,2 5,2 6,2
3 1,3 2,3 3,3 4,3 5,3 6,3
4 1,4 2,4 3,4 4,4 5,4 6,4
5 1,5 2,5 3,5 4,5 5,5 6,5
6 1,6 2,6 3,6 4,6 5,6 6,6
第1枚 第2枚
1 2 3 4 5 6
(123•)记解两至:枚少骰有子一的枚点骰数子相的同和点为是数事9为为件2事为A件事. B件. C.
P(CBA)
1641 36
.
1 69
.
点数一相共同有的3有6 种几结种果?.
1
2
3
4
5
6
1,1 2,1 3,1 4,1 5,1 6,1
1,2 2,2 3,2 4,2 5,2 6,2
解:记一次打开锁为事件A.
P(
A)
2 6
13 .
练习
1. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差
别。随机摸出一个小球后,放回并摇匀,再随机摸出一个。
求下列事件的概率:
【教材P138练习 第1题】
(1)第一次摸到红球,第二次摸到绿球;

用列举法求概率(游戏公平性问题)

用列举法求概率(游戏公平性问题)

用列举法求概率——游戏公平性问题课前热身:1、从长度分别为1、4、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.16B.14C.12D.342、一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为__________(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.归纳小结:列举法求概率的步骤:①_________________________(具体方法:)②_________________________③_________________________巩固应用:(游戏公平性问题)思考:(1)在某乒乓球比赛开始前,裁判通过抛掷一枚质地均匀的硬币方式来确定哪个选手先发球,这位裁判的做法是否公平?(填公平或不公平)(2)甲、乙两人玩游戏,把一个质地均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?.小结:________________________________________例:课间小明和小亮玩“剪刀、石头、布”的游戏,游戏规则是双方每次任意出“剪刀”“石头”“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头;若双方出现相同手势,则算打平;若小亮和小明只比赛一局。

(1)请用列表的方法表示出游戏的所有可能结果。

(2)求出双方打平的概率。

(3)游戏对双方公平吗?如果不公平,你认为对谁有利?练习:如图所示,甲、乙两人在玩转盘游戏时,分别把转盘A,B分成3等份和1等份,并在每一份内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲获胜;当数字之积为偶数时,乙获胜.如果指针恰好在分割线上时,则需重新转动转盘.(1)利用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲、乙双方公平吗?若公平,请说明理由;若不公平,请你在转盘A上只修改一个数字使游戏公平(不需要说明理由).中考链接:近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.。

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。

这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。

通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。

但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。

三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。

2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。

四. 教学重难点1.重点:列举法求概率的方法及运用。

2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。

3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。

4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。

六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。

2.练习题:准备一些相关练习题,用于巩固所学知识。

3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。

九年级上册人教版数学《学练优 湖北专版》习题讲评 第25章 第42课时 用列举法求概率(1)

九年级上册人教版数学《学练优 湖北专版》习题讲评  第25章  第42课时 用列举法求概率(1)

6.如图是一个圆形转盘,现按 1∶2∶3∶4 分成四
个部分,分别涂上红、黄、蓝、绿四种颜色,2 自由转动 转盘,停止后指针落在绿色区域的概率为 5 .
7.在 5 张完全相同的卡片上分别画上等边三角形、
平行四边形、等腰梯形、正六边形和圆.在看不见图形
的情况下随机摸出31 张,则这张卡片上的图形是中心对 称图形的概率是 5 .
(1)盒子中有红球多少个; 解:设红球有 m 个,则盒子中共有球(2+3+m)个. 根据题意,得2+32+m=14,解得 m=3. 经检验,m=3 是原方程的解,且符合题意. ∴盒子中有红球 3 个.
变式 2 一个盒子里装有白球 2 个、黑球 3 个,红球 若干个,已知小亮随机抽取一个球恰好为白球的概率为14. 求:
(2)一个袋子中装有 6 个黑球,3 个白球,这些球除 颜色外,形状、大小质地等完全相同.在看不到球的条 件下,随机地从这个袋子中摸出一个球.
①求摸到黑球、白球的概率分别是多少, 摸到黑球 还是白球的概率大;
②求摸到黑球或白球的概率是多少. 解:①P(摸到黑球)=69=23,P(摸到白球)=39=13,摸 到黑球的概率大. ②P(摸到黑球或白球)=1.
第二十五章 概率初步
第42课时 用列举法求概率(1)
核心提要 典例精炼 变式训练 基础巩固 能力拔高 拓展培优
1.表示一个事件发生的可能大小的这个数,叫做这 个事件的概率,概率是某一事件发生的可能性大小的理 论值.
2.利用公式:p=nk计算某事件的概率. (公式中的 n 为该事件所有机会均等的结果总数,k 为我们关注的结果总数)
4.小燕抛一枚质地均匀的硬币 10 次,有 71次正面 朝上,当她抛第 11 次时,正面朝上的概率为 2 .

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版

九年级数学上册25.2用列举法求概率第2课时用树状图法求概率习题课件新版新人教版
(1)求两次传球后,球恰在B手中的概率; (2)求三次传球后,球恰在A手中的概率.
∵共有 4 种等可能的结果,两次传球后, 球恰在 B 手中的只有 1 种情况,∴两次传球 后,球恰在 B 手中的概率为14.
(2)画树状图得:
∵共有 8 种等可能的结果,三次传球后,球恰在 A 手中的有 2 种情况, ∴三次传球后,球恰在 A 手中的概率为28=14.
摸到相同颜色的小球的概率.(请结合树状图或列表解答)
8.(1)设袋子中白球有 x 个,根据题意,得x+x 1=23,解得 x=2,经检验, x=2 是原分式方程的解,∴袋子中白球有 2 个. (2)画树状图得:
∵共有 9 种等可能的结果,两次都摸到相同颜色的小球的有 5 种情况, ∴两次都摸到相同颜色的小球的概率为59.
13.某市初中毕业女生体育中考考试项目有四项,其中“立定跳
远”“1 000米跑”“篮球运球”为必测项目,另一项从“掷实心
球”“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实 心球”或“一分钟跳绳”中选择同一个考试项14目的概率是________.
14.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行 涂色,每个区域必须涂色并且只能涂一种颜色,请用树状图法求A, C两个区域所涂颜色不相同的概率.
共 8 种情况,完全相同的有 2 种,则 P(完全相同)=28=14. 1
(3)2n-1.
(请用“画树状图”的方法给出分析过程,并求出结果)
15.画树状图为:
共有 8 种等可能的结果数,其中至少有两瓶为红枣口味的结果数为 4, 所以该住户收到的三瓶酸奶中,至少有两瓶为红枣口味的概率=48=12.
16.甲、乙、丙、丁四名运动员参加4×100米接力赛,如果甲必须 安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( C )

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件

最新人教版初中数学九年级上册《25.2 用列举法求概率(第2课时)》精品教学课件
例1 某班有1名男生、2名女生在校文艺演出中获演 唱奖,另有2名男生、2名女生获演奏奖.从获演唱 奖和演奏奖的学生中各任选一人去领奖,求两人都 是女生的概率.
解:设两名领奖学生都是女生的事件为A,两种奖 项各任选1人的结果用“树状图”来表示.
探究新知
开始
获演唱奖的

女'
女''
获演奏奖的
男1 男2 女1 女2 男1 男2 女1 女2 男1 男2 女1 女2
(1)P(全部继续直行)= 1 ; 27
共有27种行驶方向
(2)P(两车向右,一车向左)= 1 ;
(3)
P(至少两车向左)=
7 27
.
9
探究新知
例2 甲、乙、丙三人做传球的游戏,开始时,球在 甲手中,每次传球,持球的人将球任意传给其余两 人中的一人,如此传球三次. (1)写出三次传球的所有可能结果(即传球的方式); (2)指定事件A:“传球三次后,球又回到甲的手中”, 写出A发生的所有可能结果;
袋中装有2个相同的小球,分别写有数字1和2.从两个
口袋中各随机取出1个小球,取出的两个小球上都写有
数字2的概率是( C )
A.12
B.13
C.1
4
D.16
解析:如图所示,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况, 故取出的两个小球上都写有数字2的概率是:14 .
链接中考
2.在一个不透明的袋子里装有两个黄球和一个白球,它 们除颜色外都相同,随机从中摸出一个球,记下颜色后 放回袋子中,充分摇匀后,再随机摸出一个球.两次都 摸到黄球的概率是( A )
1. 2
问题2 同时抛掷两枚均匀的硬币,出现正面向上的 概率是多少?

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT

人教版初中数学九年级上册 用列举法求概率(第2课时) 课件PPT
(1)P(三辆车全部继续前行)=
1

27
(2)P(两车向右,一车向左)=
1
;
9
(3)P(至少两车向左)=
7
27

13
新课讲解
例2 小刚、小军、小丽三人参加课外兴趣小组,他们都计划从航模小
组、科技小组、美术小组中选择一个、
(1)求三人选择同一个兴趣小组的概率;
(2)求三人都选择不同兴趣小组的概率、
14
第 二十五章 概率初步
25.2 用列举法求概率
第2课时 树状图法
1
学习目标
1
用列举法(画树状图法)求事件的概率(重点)、
2
进一步学习分类思想方法,掌握有关数学技能、
2
新课导入
知识回顾
一般地,如果在一次试验中,有n种可能的结果,并
且它们 发生的可能性相等 ,事件A包含其中的 m 种
m
n
结果,那么事件A发生的概率P(A)=

A A
C C
H I
A A
D D
H I
A
E
H
A B B B B B B
E C C D D E E
I H I H I H I
这些结果的可能性相等、
有 2 个元音字母的结果有4 种, 即ACI, ADI, AEH, BEI,


所以P(2 个元音)=
= 、

8
新课讲解
由树状图可以看出,所有可能出现的结果共有 12种,
(1)两次取出的小球上的数字相同;
(2)两次取出的小球上的数字之和大于10、
19
随堂训练
解:根据题意,画出树状图如下
第一个数字

人教版数学九年级上册25.2.2《用列举法求概率》说课稿

人教版数学九年级上册25.2.2《用列举法求概率》说课稿

人教版数学九年级上册25.2.2《用列举法求概率》说课稿一. 教材分析人教版数学九年级上册25.2.2《用列举法求概率》是本册教材中关于概率论的一个重要内容。

本节课主要让学生掌握用列举法求概率的基本方法和步骤。

通过前面的学习,学生已经了解了概率的基本概念,本节课则是让学生将这些概念运用到实际问题中,通过列举所有可能的结果,找出符合条件的结果数,从而求出概率。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率概念有一定的了解。

但在实际运用列举法求概率时,部分学生可能会存在以下问题:1. 不清楚如何列举所有可能的结果;2. 在列举过程中,容易遗漏某些结果;3. 对概率公式的理解和运用不够熟练。

因此,在教学过程中,需要关注学生的这些困惑,并通过实例引导学生逐步掌握列举法求概率的方法。

三. 说教学目标1.知识与技能:让学生掌握用列举法求概率的基本方法和步骤,能够独立解决一些简单的实际问题。

2.过程与方法:通过实例分析,培养学生运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:用列举法求概率的基本方法和步骤。

2.教学难点:如何准确地列举所有可能的结果,以及如何运用概率公式。

五. 说教学方法与手段1.教学方法:采用讲授法、案例分析法、讨论法、实践操作法等。

2.教学手段:利用多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考如何求解概率问题,引发学生对列举法求概率的兴趣。

2.讲解新课:讲解用列举法求概率的基本方法和步骤,通过例题演示如何列举所有可能的结果,找出符合条件的结果数,求出概率。

3.实践操作:让学生分组进行实践操作,每人选取一个实例,运用列举法求解概率。

教师巡回指导,解答学生的疑问。

人教版数学九上25.2用列举法求概率(第1课时)教学设计

人教版数学九上25.2用列举法求概率(第1课时)教学设计
(2)小组展示:每组选取一道具有代表性的问题,展示列举法的解题过程,并分享解题心得。
作业要求:
1.学生在完成作业时,要注重解题过程的规范性和逻辑性,避免出现遗漏和重复。
2.对于思考题,学生可以尝试用文字、图表等形式进行阐述,培养分析和解决问题的能力。
3.小组合作任务中,每个成员都要积极参与,充分发挥团队协作精神,共同完成任务。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结列举法求解概率问题的步骤和要点。
2.学生分享自己的学习心得和收获,提出在解题过程中遇到的问题和困惑。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固所学知识。
4.教师强调数学在生活中的实际应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学的知识,培养学生的实际应用能力,特布置以下作业:
6.作业布置,分层设计
教师可以根据学生的实际情况,设计不同难度的作业,使学生在完成作业的过程中,达到巩固知识、提高能力的目的。
7.教学评价,关注过程
教师应关注学生在课堂上的表现,包括思考、交流、合作等方面,进行全面、客观的评价,激励学生不断进步。
四、教学内容与过程
(一)导入新课
1.教师出示一个不透明的袋子,里面装有红球和白球,提问:“同学们,你们知道从袋子中随机摸出一个球,摸到红球和白球的概率分别是多少吗?”
3.学生在合作交流过程中,可能存在沟通不畅、分工不明确等问题,需要教师引导和培养团队协作能力。
4.部分学生对数学学科的兴趣和热情有待提高,教师应关注学生的情感态度,激发学生的学习积极性。
针对以上学情分析,教师在教学过程中应注重以下方面:
1.通过生动的实例,引导学生深入理解列举法的内涵,培养学生的逻辑思维能力。

人教版数学九年级上册 第25章 25.2---25.3基础练习题带答案

人教版数学九年级上册 第25章 25.2---25.3基础练习题带答案

25.2用列举法求概率一.选择题1.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两人可任选一辆车乘坐,则两人同坐一辆车的概率为()A.B.C.D.2.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号都不大于3的概率是()A.B.C.D.3.甲、乙两箱内分别装有除颜色外其他均相同的2个小球,甲箱球的颜色分别为红、黄;乙箱球的颜色分别为红、黑;小明同时从甲、乙两个箱子中各取出一个小球(同一箱中每球被取出的机会相等),则小明取出的两个小球颜色相同的概率为()A.B.C.D.4.小张抛掷两枚质地均匀的硬币,出现两枚硬币全部正面朝上的概率是()A.B.C.D.15.假设可以随机在如图中取点,那么这个点落在黑色部分的概率为()A.B.C.D.6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()7.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.0.25 B.0.5 C.0.125 D.0.18.如图,转盘的白色扇形和红色扇形的圆心角分别为90°和270°,让转盘自由转动2次,指针第一次落在红色区域,第二次落在白色区域的概率()A.B.C.D.9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是()A.B.C.D.10.已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n ﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种B.20种C.24种D.120种11.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是()二.填空题12.若从﹣2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a,b)恰好落在x轴上的概率是.13.从﹣1,π,,1.6中随机取两个数,取到的两个数都是无理数的概率是.14.小白有两张卡片,分别标有数字1,2;小黄有三张卡片,分别标有数字3,4,5.两人各自随机地取出一张卡片,取出的两张卡片上数字之积为奇数的概率是.15.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是.三.解答题16.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.17.一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3.小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球,记下标号.若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;(2)请判断这个游戏是否公平,并说明理由.18.某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团,小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.19.央视举办的《主持人大赛》受到广泛的关注.某中学学生会就《主持人大赛》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:(1)本次被调查对象共有人;扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两个女生和两个男生,从选“不太喜欢”的人中挑选两个学生了解不太喜欢的原因,请用列举法(画树状图或列表)求所选取的这两名学生恰好是一男一女的概率.参考答案与试题解析一.选择题1.【解答】解:画树状图得:∵共有9种等可能的结果,李军和赵娟同乘一辆车的有3种情况,∴李军和赵娟同乘一辆车的概率==,故选:C.2.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号都不大于3的有6种情况,∴两次摸出的小球标号都不大于3的概率是=,故选:D.3.【解答】解:画树状图得:∵共有4种等可能的结果,从两个袋子中各随机摸出1个小球,两球颜色恰好相同的只有1种情况,∴从两个袋子中各随机摸出1个小球,两球颜色恰好相同的概率为:.故选:C.4.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故选:A.5.【解答】解:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选:B.6.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A进入景区并从C,D出口离开的概率是P,∵小红从入口A进入景区并从C,D出口离开的有2种情况,∴P=.故选:B.7.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为=0.25;故选:A.8.【解答】解:由图得:白色扇形的圆心角为90°,红色扇形的圆心角是270°,∴白色扇形的面积:红色扇形的面积=,如图,故让转盘自由转动两次.第一次落在红色区域,第二次落在白色区域的概率是:,故选:B.9.【解答】解:列表可得3489 12√√34√√5共20种可能的结果,它们出现的可能性相同,其中都是偶数有4种情况,所以指针都落在偶数上的概率==,故选:C.10.【解答】解:老师在中间,故第一位同学有4种选择方法,第二名同学有3种选法,第三名同学有2种选法,第四名同学有1中选法,故共有4×3×2×1=24种.故选:C.11.【解答】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值==,∴它停在黑色区域的概率是;故选:B.二.填空题(共4小题)12.【解答】解:画树状图如下由树状图知,共有6种等可能结果,其中使点A在x轴上的有2种结果,故点A(a,b)恰好落在x轴上的概率是=.故答案为:.13.【解答】解:根据题意画图如下:共有12种等可能的情况数,其中取到的两个数都是无理数的有2种,则取到的两个数都是无理数的概率是=.故答案为:.14.【解答】解:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的情况,其中数字之积为奇数的有2种,所以,取出的两张卡片上数字之积为奇数的概率为=,故答案为:.15.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是=.故答案为:.三.解答题(共4小题)16.【解答】解:(1)甲第一个演讲的概率为;(2)画树状图如图:共有6个等可能的结果,丙比甲先演讲的结果有3个,∴丙比甲先演讲的概率==.17.【解答】解:(1)由题意画出树状图如下:所有可能情况如下:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3).(2)由(1)可得:标号之和分别为2,3,4,3,4,5,4,5,6,标号之和为奇数的概率是:,标号之和为偶数的概率是:,因为≠,所以不公平.18.【解答】解:(1)小亮选择“机器人”社团的概率为,故答案为:;(2)画树状图如下:由树状图知,一共有16种等可能结果,其中两人至少有一人参加“航模”社团的有7种结果,∴两人至少有一人参加“航模”社团的概率为.19.【解答】解:(1)本次被调查对象共有:16÷32%=50(人),被调查者“比较喜欢”有:50﹣16﹣4﹣50×20%=20(人);∴扇形统计图中被调查者“比较喜欢”等级所对应圆心角的度数为360°×=144°故答案为:50,144°;(2)∵等级B与C的人数分别为20和10,∴将条形统计图补充完整如图所示;(3)画树状图如图所示,∵所有等可能的情况有12种,其中所选2位同学恰好一男一女的情况有8种,∴两名学生恰好是一男一女的概率为:=.25.3用频率估计概率一、填空题1、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.2、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________3、一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.4、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.5、.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.6、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.7、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为个.8、在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.9、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球有4个,黑、白色小球的数目相同,小明从布袋右随机摸出一球,记下颜色放回布袋中,搅匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小明发现其中摸出红球频率稳定于20%,由此可以估计布袋中的黑色小球有________个.10、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.11、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是12、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.二、选择题13、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?()A、8只B、12只C、18只D、30只14、在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:100 150 200 500 800 1000摸球的次数n58 96 116 295 484 601摸到白球的次数m0.58 0.64 0.58 0.59 0.605 0.601摸到白球的频率请估算口袋中白球约是( )只.A.8 B.9 C.12 D.1315、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.2116、在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( )A.10个B.15个 C.20个D.25个17、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条18、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.619、2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为()累计蚕种孵化总数200 400 600 800 1000 1200 1400/粒孵化成功数/粒181 362 541 718 905 1077 1263A.0.95 B.0.9 C.0.85 D.0.820、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条21、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.6 22、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个 B.20个 C.30个 D.35个参考答案一、填空题1、5602、103、84、800 条.5、15 个.6、12 个.7、15 个.8、109、810、2 100个11、10.12、0.600 .二、选择题13、B14、C15、B16、B17、C18、C19、B20、C21、B22、D。

人教版数学九年级上册25.2用列举法求概率(第2课时)优秀教学案例

人教版数学九年级上册25.2用列举法求概率(第2课时)优秀教学案例
2. 组织学生进行小组合作,让学生共同解决实际问题,提高学生的实践能力和创新意识。例如,可以让学生分组讨论如何运用列举法解决一个实际问题,并共同设计一个解决方案。
3. 组织学生进行小组合作,让学生共同反思和评价列举法求概率的过程和方法,提高学生的批判性思维和自我反思能力。例如,可以让学生分组讨论列举法求概率的过程是否有改进的空间,并共同提出改进的建议。
5. 总结:通过总结本节课所学的知识,让学生明确列举法求概率的方法和步骤,以及它在实际问题中的应用。
6. 作业:布置相关的练习题,让学生进一步巩固列举法求概率的知识,提高学生的运用能力。
五、教学评价
1. 学生能够理解列举法求概率的基本概念和步骤,能够运用列举法求解简单事件的概率。
2. 学生能够掌握列举法求概率的方法,能够运用列举法求解复杂事件的概率,并能够进行合理的简化。
3. 学生能够运用列举法求概率解决实际问题,提高学生运用数学知识解决实际问题的能力。
4. 学生能够积极思考、勇于探索,培养学生的学习态度和价值观。
三、教学策略
(一)情景创设
1. 利用现实生活中的实例,创设情境,引导学生思考如何求解概率,激发学生的兴趣和好奇心。例如,可以创设一个抽奖活动的情境,让学生思考如何求解中奖的概率。
2. 要求学生在作业中运用列举法解决实际问题,培养学生的实践能力和创新意识。
3. 鼓励学生在作业中积极思考、勇于探索,培养学生的学习态度和价值观。
五、案例亮点
1. 实践性与生活化相结合:本节课通过引入现实生活中的实例,如抽奖活动、抛掷硬币和正方体等,使学生能够直观地理解列举法求概率的概念和步骤,体现了数学与生活的紧密联系。这种实践性与生活化相结合的教学方式,不仅能够激发学生的学习兴趣,还能够提高学生运用数学知识解决实际问题的能力。

25.2_用列举法求概率(2)

25.2_用列举法求概率(2)

7、某小组的甲、乙、丙三成员,每人在7天内参 、某小组的甲、 丙三成员,每人在 天内参 加一天的社会服务活动,活动时间可以在7天 加一天的社会服务活动,活动时间可以在 天 之中随意安排, 之中随意安排,则3人在不同的三天参加社会 人在不同的三天参加社会 服务活动的概率为( 服务活动的概率为( )
8、一部书共6册,任意摆放到书架的同一 、一部书共 册 层上,试计算:自左向右, 层上,试计算:自左向右,第一册不在 位置, 册不在第2位置的概率 第1位置,第2册不在第 位置的概率。 位置 册不在第 位置的概率。
6、把3个歌舞、4个独唱和 个小品排成一 、 个歌舞、 个独唱和2个小品排成一 个歌舞 个独唱和 份节目单,计算: 份节目单,计算: (1)节目单中 个小品恰好排在开头和 )节目单中2个小品恰好排在开头和 结尾的概率是多少? 结尾的概率是多少? (2)节目单中 个独唱恰好排在一起的 )节目单中4个独唱恰好排在一起的 概率是多少? 概率是多少? (3)节目单中 个歌舞中的任意两个都 )节目单中3个歌舞中的任意两个都 不排在一起的概率是多少? 不排在一起的概率是多少?
25.2. 用列举法求概率(2) 用列举法求概率( )
学习目标 1、会用列表的方法求出:包含两步, 并且每一步的结果为有限多个情形, 这样的试验出现的所有可能结果。
• 指导自学 • 认真看课本P134-P135前的内容: • 5分钟后,比谁能正确地做出与例题类似的 习题。
随堂练习: 随堂练习 同时掷两个质地均匀的骰子,计算下列 同时掷两个质地均匀的骰子 计算下列 事件的概率: 事件的概率 (1)两个骰子的点数相同 两个骰子的点数相同 (2)两个骰子点数之和是 两个骰子点数之和是9 两个骰子点数之和是 (3)至少有一个骰子的点数为 至少有一个骰子的点数为2 至少有一个骰子的点数为 将题中的”同时掷两个骰子”改为 将题中的”同时掷两个骰子” ”把一个骰子掷两次”,所得的结果 把一个骰子掷两次” 所得的结果 有变化吗? 有变化吗

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案一、选择题1.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A.12B.14C.18D.192.有三张正面分别写有数字1,2,−3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是()A.12B.13C.23D.593.盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是()A.23B.13C.29D.124.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.595.有三张正面分别写有数字﹣2,3,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后放回再从这三张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第三象限的概率是()A.49B.13C.19D.296.骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,5,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7.用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜.则甲乙二人获胜的可能性是()A.甲大B.乙大C.同样大D.无法确定谁大7.王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是()A.13B.49C.59D.238.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.13B.12C.23D.34二、填空题9.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除颜色外其他均相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的可能结果有种.10.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.11.某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是.12.从1,2,3,4四个数中,随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率是.13.“双减”政策后,各校积极探索“课内提质增效,课后丰富多彩”的有效策略,某校的课后服务活动设置了四大板块课程:A.体育活动;B劳动技能;C经典阅读;D科普活动.若小明和小亮两人随机选择一个板块课程,则两人所选的板块课程恰好相同的概率是.三、解答题14.一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.15.在学校组织的国学比赛中,小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中抽取一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).求小明参加总决赛抽取题目都是成语题目(成语故事,成语接龙,成语听写)的概率.16.将5个完全相同的小球分装在甲.乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上的数之和为5的概率.(2)摸出的两个球上的数之和为多少时的概率最大?17.我校开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.参考答案1.C2.D3.B4.B5.C6.C7.C8.C9.210.1311.2312.1213.1414.解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数∵|−4|=4,|4|=4,|6|=6∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等∴由树状图可知两次取得数字的绝对值相等的结果数有5种.∴P两次取得数字的绝对值相等=5915.解:画树状图如下:共有12种等可能的结果,其中小明参加总决赛抽取题目都是成语题目的结果有2种∴小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率为212=16.16.(1)解:根据题意画出树状图如下:所有等可能的结果总数为6,其中和为5的结果为1种所以摸出的两个球上的数之和为5的概率为16;(2)解:所有可能的结果总数为6,其中和为5的结果为1种,和为4的结果为1种,和为6的结果为2种,和为7的结果为1种,和为8的结果为1种∴摸出的两个球上的数之和为6的概率最大.17.(1)解:100;选择“足球”的人数为35%×100=35(名).补全条形统计图如下:(2)18°(3)解:画树状图如下:共有12种等可能的结果,其中甲和乙同学同时被选中的结果有2种∴甲和乙同学同时被选中的概率为212=16.。

用列举法求概率习题课

用列举法求概率习题课
同学; (2)随机选取2名同学,其中有乙同
学.
(2012•南通)
• 四张扑克牌的点数分别是2,3,4,8,将 它们洗匀后背面朝上放在桌上.
• (1)从中随机抽取一张牌,求这张牌的点 数偶数的概率;
• (2)从中随机抽取一张牌,接着再抽取一 张,求这两张牌的点数都是偶数的概率.
(2012•苏州)
• 在3×3的方格纸中,点A、B、C、D、E、F分别 位于如图所示的小正方形的顶点上.
• (1)共有 _________ 种可能的结 果.
• (2)请用画树状图或列表的方法求两次 摸出的乒乓球的数字之积为偶数的概 率.
(2012•盐城)
• 现有形状、大小、颜色完全一样的三张 卡片,上面分别标有数字“1”、“2”、 “3”,第一次从这三张卡片中随机抽取 一张,记下数字后放回;第二次在从这 三张卡片中随机抽取一张并记下数 字.请用列表或画树状图的方法表示出 上述试验所有可能的结果,并求第二次 抽取的数字大于第一次抽取的数字的概 率.
用列举法求概率
(2012•常州)
在一个不透明的口袋里装有白、红、 黑三种颜色的小球,其中白球2只,红 球1只,黑球1只,它们除了颜色之外 没有其它区别,从袋中随机地摸出1只 球,记录下颜色后放回搅匀,再摸出 第二只球并记录颜色,求两次都摸出
白球的概率.
(2012•连云港) 思考:
= 现有5根小木棒,长度分别为:2、3、 4、5、7,从中任意取出3根,
• (1)从A、D、E、F四个点中任意取一点,以所 取的这一点及点B、C为顶点画三角形,则所画三 角形是等腰三角形的概率是 _________ ;
• (2)从A、D、E、F四个点中先后任意取两个不 同的点,以所取的这两点及点B、C为顶点画四边 形,求所画四边形是平行四边形的概率是 _________ (用树状图或列表法求解).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小结
拓展
从表面上看,随机现象的每一次观察结果都是偶 然的,但多次观察某个随机现象,立即可以发现: 在大量的偶然之中存在着必然的规律.
用列表法求概率时应注意各种结果出现的 可能性必须相同. 用列表格法的优缺点及局限性. 有放回还是无放回的问题
要学会建立适当的数学模型
小结
拓展
回 味 无 穷 用树状图或表格表示概率
• 1. 有左、中、右三个抽屉,左边的抽屉里 放2个白球,中间和右边的抽屉里各放1个 白球和1个红球,从3个抽屉里任选1个球 是红球的概率是多少?
• 2. 有左、中、右三个抽屉,左边的抽屉里 放2个白球和1个红球,中间和右边的抽屉 里各放1个白球和1个红球,从3个抽屉里 任选1个球是红球的概率是多少?
.“手心手背”是同学们中间广为流传的游戏, 游戏时甲、乙、丙三方每次做“手心”“手背” 两种手势中的一种,规定:⑴出现三个相同手 势不分胜负须继续比赛;⑵出现一个“手心” 和或一个“手背”和两个“手心”时,则一种 手势者为胜,两种相同手势者为负。 假定甲、乙、丙三人每次都是等可能地做这 两种手势,那么,甲、乙、丙三位同学胜的 概率是否一样?这个游戏对三方是否公平? 若公平,请说明理由,若不公平,如何修改 游戏规则才能使游戏对三方都公平?
1、利用树状图或表格可以清晰地表示出某 个事件发生的所有可能出现的结果;从而较 方便地求出某些事件发生的概率.
2 根据不同的情况选择恰当的方法表示某个事 件发生的所有可能结果。 3.当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法,当试验在三步或三 步以上时,用树形图法方便.
饰,当初嫁进王府の时候,年夫人就壹各劲儿地往她の嫁妆箱里不停地塞着各类值钱の细软,劝她她多带壹带,再多带壹些。可是她呢,最后把那些绫罗绸缎、 珍珠翠玉、奇珍异玩都换成咯满满壹箱子の书。事后被年夫人晓得咯,在她归宁の那天还挨咯壹顿教训。现在,她真是深刻地体会到咯啥啊叫做书到用时方恨少, 只是这回少の却是金银细软!她也有壹些首饰,但那怎么能够作为姐姐新婚贺礼?太轻薄咯!临时去采买?她都不晓得首饰店の大门朝哪儿开!让负责采办の奴 才去采买?不管是款式还是价钱她都说不出来壹各所以然。她只剩下最后壹条路,求爷。而现在,王爷对于水清不惜跪咯两各时辰只是为咯向他讨要壹件首饰百 思不得其解,而且由于此前发生咯被水清撞破他与婉然の事情,因此对于水清の此番举动,他不仅是百思不解,更是心怀戒备:“首饰?你连套首饰都没有?这 也需要向爷来讨要?而且,你不是从来也不怎么戴首饰吗?”第壹卷 第408章 首饰水清根本就没有注意到他那副充满质疑の神情和口吻,而是万分诚恳地说 道:“回爷,妾身与姐姐自幼年龄相仿,相依为伴,虽然不是亲生,却是胜似亲生。如今姐姐要出嫁咯,妾身作为妹妹,连壹件像样の贺礼都没有送过去,这壹 辈子都不会安心。可是这件事情说出来,不怕爷笑话,妾身の手边确实是没有拿得出手の适合做嫁妆の贺礼。而且后天就是姐姐成亲の日子,时间实在是太紧咯, 所以妾身恳请爷能够赏赐妾身壹套体面の首饰,送给姐姐做贺礼。”其实水清只说咯其中壹各原因,她还有壹各原因没有说出来,那就是她之所以求到他の头上, 而没有向娘家开口,她是担心年府の人因为婉然与王爷の事情而恨死咯姐姐。假设水清向娘家开口,为咯让她安心,年家表面上会给她回口信,说已经给婉然置 办好咯嫁妆,可是依目前这种情况,水清就是闭着眼睛都能够猜得出来,他们怎么可能会给婉然置办足够体面、足够贵重の嫁妆呢?更何况,当初水清出嫁の时 候,婉然姐姐可是用她自己の头面首饰救咯水清の大急,现在婉然要出嫁咯,不但惨遭与心上人永世绝决,就是连套像样の头面首饰都没有,这样の结果会让水 清壹辈子都无法原谅她自己。而这件事情也只有求到王爷の头上,才能算是真正地解决咯婉然の头面首饰问题。壹方面王府家大业大,啥啊珍奇异玩没有?短时 间内解决壹套体面の头面首饰应该是小事壹桩,根本算不得上是啥啊难题,即使不用临时采办,估计库存中の货色就能直接解决咯大问题。另壹方面,王爷是婉 然の心上人,他当然最希望婉然能够风风光光、咯无遗憾地出嫁,因此现在所有の人之中,只有王爷壹各人最上心、最尽力,他是发自内心、真心实意地做这件 事情,比年府の任何壹各人都要尽心尽力。也正是因此,这件事情只有托付咯王爷,水清才会完完全全地放下心,在所有の人之中,不管是年夫人还是年二公子, 不管是福晋还是苏培盛,她只信得过王爷壹各人,因此就是跪咯两各时辰,她也壹定要求得他の接见。水清刚刚の那番答复,极大地出乎王爷の意料!简直与他 已经办妥の那件事情不谋而合!难道说他们两各人对婉然の婚事想到壹起去咯?他们两各连多说半句话都嫌多の人,怎么可能会有这么默契?虽然这各回答与她 刚刚那壹系列の行为极其有效地吻合,无论是跪地请求,还是请求の物件,都天衣无缝,但是,他深知她是壹各“诡计多端”の人,谁晓得这里面暗藏着啥啊其 它の心思?相互之间の戒备之心,相互之间の惟恐避之不及,相互之间从不沟通,因此本能地,他根本就无法相信他们之间会有啥啊默契存在,或许她指不定从 哪各长舌奴才那里晓得咯他已经以她の名义给婉然送咯嫁妆の事情,然后来到他这里故作姿态。第壹卷 第409章 大度沉思良久,他终于开口说道:“既然你说 与姐姐情深意切,那为啥啊不能容得爷将你姐姐娶进府里来,现在还假情假意地来向爷求贺礼?”“妾身没有容不得姐姐,相反,妾身是真心实意地为姐姐高兴, 为姐姐今生有幸有缘遇到真心相爱の意中人而高兴。假设姐姐能与爷终成眷属,对妾身而言,真是求之不得の大喜事,再也没有比这件事情更让妾身高兴の事情 咯。”“这可真是稀奇呢!原来爷只晓得你是壹各诡计多端之人,今天才晓得,你竟然还是壹各自相矛盾之人。既然你这么言之凿凿地希望爷能娶咯你姐姐。可 是你那天为啥啊要从这里哭着跑走?你那天应该高兴才对,不是吗?”水清没有料到王爷竟然扯到咯那天の事情,对于那件事情,她没有任何想要对他隐瞒の企 图,连壹丝壹毫隐瞒の闪念都没有,因为她是光明磊落之人,心中如何想の,口中就如何说咯出来:“回爷,当时确实是事发突然,完全出乎妾身の意料。其实 直到现在,妾身仍是不能明白,假设您和姐姐是真心相爱の两各人,您为啥啊不早早地将姐姐娶进府里来呢?却是壹而再,再而三地伤咯姐姐の心,而且还是壹 误再误,至直误咯终生。妾身当时确实伤心,但是伤心の原因并不是容不得姐姐,而是您和姐姐为啥啊不能开诚布公地告诉妾身,而是要不停地欺骗妾身。您们 明明是相爱の两各人,却要装作陌路人の样子。妾身不想被欺骗,假设您和姐姐早早告诉妾身,妾身壹定不会横加阻拦,更会是为您们の喜结良缘而祈祷和祝 福。”水清の这壹番话说下来,充分体现咯她の贤惠、宽容、大度,虽然这是她作为壹 ; / 拼多多空包网
如图所示的两张图片形状完全相同,把两张 图片全部从中间剪断,再把4张形状相同的 小图片混合在一起,从4张图片随机地摸取 一张,接着再随机地摸取一张,则两张小图 片恰好合成一张完整图片的概率是多少?
由甲地到乙地有A1,A2两条路可通,乙地到 丙地有B1、B2、B3三条路可通,丙地到丁 地有C1,C2两条路可通,求某人由甲地到丁 地必经过B2这条路的概率.
例、某电脑公司现有A,B,C三种型号的甲品牌 电脑和D,E两种型号的乙品牌电脑.希望中学要 从甲、乙两种品牌电脑中各选购一种型号的电 脑. (1) 写出所有选购方案; (2) 如果(1)中各种选购方案被选中的可能性相 同,那么A型号电脑被选中的概率是多少? (3) 现知希望中学购买甲、乙两种品 牌电脑共36台(价格如图所示),恰好 用了10万元人民币,其中甲品牌电 脑为A型号电脑,求购买的A型号电 脑有几台.
3. 一只蚂蚁在如图所示的树枝上寻 觅事物,假定蚂蚁在每个岔路口都会 随机地选择一条路径,它获得食物的 概率是多少?
拓广ቤተ መጻሕፍቲ ባይዱ索

在围棋盒中有x颗黑色棋子 和y颗白色棋子,从盒中随 机地取出一个棋子,如果它 是黑色棋子的概率是3/8, 写出表示x和y关系的表达 式.如果往盒中再放进10颗 黑色棋子,则取得颗黑色棋 子的概率为1/2,求x和y的 值.
相关文档
最新文档