2018年浙江高考数学复习:第2部分 点17 集合与常用逻辑用语含答案

合集下载

2018年高考数学试题分类汇编集合与常用逻辑用语1 精品

2018年高考数学试题分类汇编集合与常用逻辑用语1 精品

一、集合与常用逻辑用语一、选择题一.(重庆理2)“x <-1”是“x 2-1>0”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要【答案】A2.(天津理2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A3.(浙江理7)若,a b 为实数,则“01m ab <<”是11a b b a <或>的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A4.(四川理5)函数,()f x 在点0x x =处有定义是()f x 在点0x x =处连续的 A .充分而不必要的条件 B .必要而不充分的条件 C .充要条件 D .既不充分也不必要的条件 【答案】B【解析】连续必定有定义,有定义不一定连续。

5.(陕西理一)设,a b 是向量,命题“若a b =-,则∣a ∣= ∣b ∣”的逆命题是A .若a b ≠-,则∣a ∣≠∣b ∣B .若a b =-,则∣a ∣≠∣b ∣C .若∣a ∣≠∣b ∣,则a b ≠-D .若∣a ∣=∣b ∣,则a = -b【答案】D6.(陕西理7)设集合M={y|y=2cos x —2sin x|,x ∈R},N={x||x —1i为虚数单位,x ∈R},则M ∩N 为 A .(0,一) B .(0,一]C .[0,一)D .[0,一]【答案】C7.(山东理一)设集合 M ={x|260x x +-<},N ={x|一≤x ≤3},则M ∩N =A .[一,2)B .[一,2]C .( 2,3]D .[2,3] 【答案】A8.(山东理5)对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要【答案】B9.(全国新课标理一0)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈其中真命题是(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A一0.(辽宁理2)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M(A )M (B )N (C )I(D )∅【答案】A一一.(江西理8)已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP=23P P ”是“12d d =”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】C一2.(湖南理2)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】A一3.(湖北理9)若实数a,b 满足0,0,a b ≥≥且0ab =,则称a 与b互补,记(,),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .即不充分也不必要的条件【答案】C一4.(湖北理2)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =A .1[,)2+∞B .10,2⎛⎫ ⎪⎝⎭C .()0,+∞D .1(,0][,)2-∞+∞【答案】A一5.(广东理2)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A .0B .一C .2D .3【答案】C一6.(福建理一)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈ C .3i S ∈D .2S i ∈【答案】B 一7.(福建理2)若a ∈R ,则a=2是(a-一)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件 C .既不充分又不必要条件 【答案】A 一8.(北京理一)已知集合P={x ︱x 2≤一},M={a }.若P ∪M=P,则a 的取值范围是 A .(-∞, -一] B .[一, +∞) C .[-一,一]D .(-∞,-一] ∪[一,+∞) 【答案】C 一9.(安徽理7)命题“所有能被2整聊的整数都是偶数”的否定是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个能被2整除的数都不是偶数 【答案】D20.(广东理8)设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的.若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 【答案】A 二、填空题2一.(陕西理一2)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = 【答案】3或422.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠ 的集合S 为 (A )57 (B )56(C )49(D )8【答案】B 23.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤ ,则U C A = 。

2018浙江高考(理)二轮《集合与常用逻辑用语》专题能力训练含答案.doc

2018浙江高考(理)二轮《集合与常用逻辑用语》专题能力训练含答案.doc

专题能力训练 1 集合与常用逻辑用语(时间:60 分钟满分:100 分)一、选择题(本大题共8小题,每小题5分,共40分)1. 若集合A={x卜2vx<1}, B={x|x<- 1,或x>3},则A H B= )A. { x|- 2<x<-1}B. { x|- 2vxv3}C. { x|- 1vxv1}D. { x| 1vxv3}2. (2017 浙江镇海中学5 月模拟)设集合A={x|x<- 2,或x>1,x€ R},B={x|x<0,或x>2,x € R}, 则(?刈H B是()A. (-2,0)B. (-2,0]C. [ -2,0)D. R3. 原命题为“若va n, n€ N,则数列{a n}是递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下, 正确的是()A. 真,真,真B. 假,假,真C. 真,真,假D. 假,假,假4. 直线I与平面a内的两条直线都垂直”是"直线l与平面a垂直”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 已知a , 3 € (0, n ),贝厂'sin a +sin 3 <” 是“ sin(a + 3 )<”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知集合A={1,2,3,4}, B=2,4,6,8}, 定义集合A X B={(x,y)|x € Ay€ B},则集合A XB 中属于集合{( x, y) | log x y€ N}的元素个数是()A. 3B.4C.8D.97. (2018浙江“超级全能生”8月联考)设A, B是有限集合,定义:d(A B)=,其中card( A)表示有限集合A中的元素个数,则下列不一定正确的是()Ad (A B) > card( A A E)B. d(AC d(A B) wD d (A B) =[card( A) +card( B) +| card( A) - card( B) | ]2 __________________________________________________________________________________________8. 已知集合Apx€R x -2x-3<0}, Bpx€R|- 1<x<m,若x €A是x€ B的充分不必要条件,则实数m的取值范围为()A. (3, +8)B. (-1,3)C. [3, +8)D. (-1,3]二、填空题(本大题共6小题,每小题5分,共30分)9. 已知集合A={3,吊}, B={-1,3,2 m-1}.若A? ________ B,则实数m的值为.210. 已知集合A={x| (x-2)( x+5)<0}, B={x|x - 2x- 3>0}, 全集U=R, 则A A B= ______________ , A U ( ?U B) = ______________ .11. ____________ 设全集U=R集合A={x|x (x- 2) <0}, B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是.12.设集合P={t|数列{n2+tn(n€ N*)}单调递增},集合Q=t|函数f(x)=kx2+tx在区间[1, +8)上单调递增},若“ t € P”是“t € Q'的充分不必要条件,则实数k的最小值为__________ .13. 给出下列四个命题:①在△ ABC中,若A>B 则sin A>sin B;②若0<a<1,则函数f(x)=x2+a x-3只有一个零点;③函数y=2sin x cos x在上是单调递减函数;④若lg a+g b=lg( a+b),则a+b的最小值为4.其中真命题的序号是___________ .14. 若X是一个集合,T是一个以X的某些子集为元素的集合,且满足:①X属于T ,空集?属于T ;②T中任意多个元素的并集属于T ;③T中任意多个元素的交集属于T .则称T是集合X上的一个拓扑.已知集合X={ a, b, c},对于下面给出的四个集合T :①T ={? ,{ a},{ c},{ a, b, c}};②T ={? ,{ b},{ c},{ b, c},{ a, b, c}};③T ={? ,{ a},{ a, b},{ a, c}};④T ={? ,{ a, c},{ b, c},{ c},{ a, b, c}}.其中是集合X上的一个拓扑的集合T的所有序号是 ___________ .三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分15 分)已知集合A={x| 2<x<7}, B={x| 2<x<10}, C={x| 5-a<x<a}.(1)求A U B( ?R A) n B;⑵若C? B求实数a的取值范围.16. (本小题满分15 分)已知p: -x +16x- 60>0, q: > 0, r:关于x 的不等式x - 3ax+2a <0(x € R).(1) 当a>0时,是否存在a使得r是p的充分不必要条件?(2) 若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.参考答案专题能力训练 1 集合与常用逻辑用语1. A 解析A H B={x|- 2vxv-1}.故选A2. C解析•••集合A={x|x<- 2 或x>1,x € R},•••?R A={X|- 2 w x< 1}.T 集合B={ x|x< 0 或x>2, x€ R},•(?R A)H B={x|- 2w x<0}=[-2,0) . 故选C.3. A 解析由<a n, 得a n+a n+1<2 a n, 即a n+1<a n.所以当<a n 时, 必有a n+1<a n,则数列{a n} 是递减数列.反之, 若数列{a n} 是递减数列, 必有a n+1<a n,从而有<a n. 所以原命题及其逆命题均是真命题, 从而其否命题及其逆否命题也均是真命题.4. B解析根据线面垂直的判定:l与a内的两条相交直线垂直?I丄a ,故是必要不充分条件, 应选B.5. A 解析当a =3 =时,sin a =sin 3 =1,sin a +sin 3 =2,sin( a + 3 ) =0<,所以后不能推前,又sin( a + 3 ) =sin a cos 3 +cos a sin 3 <sin a +sin 3 ,所以前推后成立.故选A.6. B 解析由给出的定义得A X B={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)} .其中log 22=1,log 24=2,log 28=3,log 44=1,因此一共有4 个元素,应选B.7. C 解析■/ card( A U B) > card( A H B),•d( A B) > card( A H B),选项A 正确;T d( A, B) =J•选项B 正确;T d(A,B)=,•••选项C错误;又| card( A)-card( B) | > 0, ."(A B) < [card( A)+card( B) +|card( A)-card( B) | ],选项 D 正确.故选C.8. A 解析A={x € R|x 2- 2x- 3<0} ={ x|- 1<x<3}, ■/x€ A 是x € B 的充分不必要条件,二A? B,二m:3.故选A.9. 1 解析■/ A? B 二m=2m-1 或m=-1(舍).由m=2m-1得m=.经检验m=l时符合题意.10. {x|- 5<x< -1} {x|- 5<x<3} 解析由题意知集合2A={ x| (x- 2)( x+5) <0} ={ x|- 5<x<2}, B={x|x - 2x- 3> 0} ={ x|x > 3 或x< -1},所以?u B={x|- 1<x<3},A n B={x|- 5<x<-1}, A U (?U B)={X|- 5<x<3}.11. a > 2 解析因为A={ x|x (x- 2) <0} ={ x| 0<x<2},又Venn图表达的集合关系是A? B, B={ x|x<a},所以a> 2.12. 解析因为数列{ n2+tn(n€ N*)}单调递增,2 2 __________________________________________________ *所以(n+1) +t( n+1) >n +tn,可得t>- 2n-1,又n € N,所以t>- 3.因为函数f (x) =kx2+tx在区间[1, +s)上单调递增,所以其图象的对称轴x=- < 1,且k>0, 所以t >-2k,又“ t € P是“ t € Q的充分不必要条件,所以-2k w-3,即k>.故实数k的最小值为.13. ①④ 解析在厶ABC中,A>田a>b? 2R sin A>2R sin B? sin A>sin B故①为真命题.v . , . ,在同一直角坐标系内作出函数y1=3-x ,y2=a(0<a<1)的图象如图所示.由图知两函数图象有两个交点,故②为假命题.由y=2sin x cos x=sin 2 x,又x €时,2 x € ,可知y=2sin x cos x在上是增函数,因此③为假命题.④中由lg a+lg b=lg( a+b 知ab=a+b 且a>0, b>0.2 又ab w ,所以令a+b=t(t>0),则4t < t ,即t > 4,因此④为真命题.14.②④解析① T ={? ,{ a},{ c},{ a, b, c}},但是{a} U {c}={a, c}?T ,所以①错;②④ 都满足集合X上的一个拓扑的集合T的三个条件,所以②④正确;③{a, b} U {a.c} ={ a, c, b} ? T ,故错.所以答案为②④.15. 解(1) A U B={x|2vxv10}, ?R A={X|X < 2 或x> 7},( ?R A) n B=>|7W x<10}.(2)①当C=?时,满足C? B,此时5-a > a,得a< ;②当C M ?时,若C? B,则解得<a w 3.故由①②得实数a的取值范围是a w 3.2 2 216. 解(1)由-x +16x-60>0,解得6vxv10,当a>0 时,由x-3ax+2a <0,解得a<x<2a.若r 是p的充分不必要条件,则(a,2 a) ? (6,10)且两集合不相等,则a无解,不存在.2(2)由-x +16x- 60>0,解得6VXV10,由>0,解得x>1.2 2当a>0 时, 由x2-3ax+2a2<0, 解得a<x<2a.若r是p的必要不充分条件,则(6,10) ? (a,2 a),此时5 w a< 6.①若r是q的充分不必要条件,则(a,2 a)? (1, +^),此时a> 1.②由①②得5w a w 6.22当a<0时,由x -3ax+2a <0,解得2a<x<a<0,而右r是p的必要不充分条件,(6,10) ? (a,2 a) 不成立,(a,2 a) ? (1, )也不成立,不存在a值.22当a=0时,由x - 3ax+2a <0,解得r为? ,(6,10) ? ?不成立,不存在a值.综上,5 w a w 6为所求.。

(完整word版)2018浙江高考数学知识点,推荐文档

(完整word版)2018浙江高考数学知识点,推荐文档

2018高考数学知识点总结1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

女口:集合A x|y lg x ,B y|y Ig x ,C (x,y)|y Ig x ,A、B、C 中元素各表示什么?2. 2.进行集合的交、并、补运算时,不要忘记集合本身和空集注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

若B A,则实数a的值构成的集合为____________ 3. 注意下列性质:(1)集合a i, a2,……,a n的所有子集的个数是2n;的特殊情况。

如:集合A x|x 2x 3 0 , B x|ax 1(答:1, o,-)3非空子集个数是2n 1,真子集个数是2n1,非空真子集个数是2n 2 4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

(••• 3 M,二•^03 a 5a 1,59,25)••• 5 M ,•••豎口05 a5.可以判断真假的语句叫做命题,逻辑连接词有“或”(),“且”()和“非”().若p q为真,当且仅当p、q均为真若p q为真,当且仅当p、q至少有一个为真若p为真,当且仅当p为假6.命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f : A T B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,A中元素不可剩余,允许B中有元素剩余。

)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?女口:函数f(x)的定义域是a, b , b a 0,则函数F(x) f(x) f( x)的定义域是_ (答:a, a )11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x;②互换x、y :③注明定义域) 女口:求函数1 xf(x) 2xx 0的反函数x 0〜 1 x 1x 1(答:f 1(x))v x x 013.反函数的性质有哪些?①互为反函数的图象关于直线y = x对称;②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性?(取值、作差、判正负) 如何判断复合函数的单调性?(y f(u), u (x),则y f (x)(外层)(内层)二……)15. 如何利用导数判断函数的单调性?在区间a, b内,若总有f'(x) 0则f(x)为增函数。

2018年高考数学专题01集合与常用逻辑用语分项试题含解析理

2018年高考数学专题01集合与常用逻辑用语分项试题含解析理

专题 集合与常用逻辑用语1.【2018广西三校联考】如果集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N ⋂=( )A. {}|04x x <<B. {}|4x x ≥C. {}|04x x <≤D. {}|04x x ≤≤ 【答案】B【解析】{}52004,?|4x x M x x -≥∴≥=≥, {}0N x x =, {}|4M N x x ⋂=≥ 故选B2.【2018豫南九校质考二】命题:,,命题:,,则是的( )A. 充分非必要条件B. 必要非充分条件C. 必要充分条件D. 既不充分也不必要条件 【答案】A点睛:充分必要条件中,小范围推大范围,大范围推不出小范围;这是这道题的跟本; 再者,根据图像判断范围大小很直观,快捷,而不是去解不等式;3.【2018吉林百校联盟联考】已知集合{}2|3410A x x x =-+≤, {}|43B x y x ==-,则A B ⋂= ( ) A. 3,14⎛⎤⎥⎝⎦ B. 3,14⎡⎤⎢⎥⎣⎦ C. 13,34⎡⎤⎢⎥⎣⎦D. 13,34⎡⎫⎪⎢⎣⎭【答案】B【解析】求解不等式: 23410x x -+≤可得: 1|13A x x ⎧⎫=≤≤⎨⎬⎩⎭, 函数43y x =-有意义,则: 430x -≥,则3|4B x x ⎧⎫=≥⎨⎬⎩⎭,据此可得: 3|14A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭. 本题选择B 选项.4.【2018湖南益阳联考】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C. ()p q ⌝∧ D. p q ∧【答案】C5.【2018湖南湘潭联考】设全集U R=,集合()()2{|log 2},{|210}A x x B x x x =≤=-+≥,则U A C B ⋂=( )A. ()0,2B. []2,4C. (),1-∞-D. (],4-∞ 【答案】A【解析】集合{}2|2{|04}A x log x x x =≤=<≤,()(){}|210{|12}B x x x x x x =-+≥=≤-≥或.{|12}U C B x x =-<<.所以{}()|020,2U A C B x x ⋂=<<=. 故障A. 6.【2018广东省广州市综合测试】已知集合()()22{,|4},{,|21}A x y x y B x y y x =+===+,则A B ⋂中元素的个数为( )A. 3B. 2C. 1D. 0 【答案】B【解析】由22201{ 540{ 121x x y x x y y x =+=⇒+=⇒==+或45{35x y =-=-, ∴集合A B ⋂中有两个元素,故选B.7.【2018江西省红色七校联考】在右边Venn 图中,设全集,U R =集合,A B 分别用椭圆内图形表示,若集合{}(){}2|2 ,|ln 1 A x x x B x y x =<==-,则阴影部分图形表示的集合为( )A. {}| 1 x x ≤B. {}| 1 x x ≥C. {}|0 1 x x <≤D. {}|1 2 x x ≤< 【答案】D8.【2018广西桂林柳州市模拟一】已知集合{}32,A x x n n N ==+∈, {}6,8,12,14B =,则集合A B ⋂中元素的个数为( ) A. 5 B. 4 C. 3 D. 2 【答案】D【解析】由题意可得,集合A 表示除以3之后余数为2的数,结合题意可得: {}8,14A B ⋂=, 即集合A B ⋂中元素的个数为2. 本题选择D 选项.9.【2018广东省珠海一中联考】下列选项中,说法正确的是( ) A. 若0a b >>,则ln ln a b <B. 向量()1,a m =, (),21b m m =-(R m ∈)垂直的充要条件是1m =C. 命题“*N n ∀∈, ()1322nn n ->+⋅”的否定是“*N n ∀∈, ()1322nn n -≥+⋅”D. 已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题【答案】D10.【2018广东省珠海一中六校联考】已知集合(){}10A x x x =-<, {}e 1xB x =>,则()RA B ⋂=( )A. [)1,+∞B. ()0,+∞C. ()0,1D. []0,1 【答案】A 【解析】解A=(0,1) B=(0, ∞),()()R0,1A = ()()R 0,1A B ⋂=11.【2018陕西省西工大附中六模】下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >”是 “22sin sin A B >”的必要不充分条件C. “若tan 3α≠,则3πα≠”是真命题D. ()0,0,x ∃∈-∞ 使得0034xx<成立 【答案】C12.【2018陕西省西工大附中六模】已知集合{}1,A a =, {}2|540 ,B x x x x Z =-+=∈,若A B ⋂≠∅,则a 等于( ) A. 2 B. 3 C. 2或3 D. 2或4 【答案】C【解析】由题意可得: {}{}|14,2,3B x x x Z =<<∈=, 结合交集的定义可得:则a 等于2或3. 本题选择C 选项.13.【2018陕西省西工大附中七模】已知集合(){,|,,}xA x y y e x N y N ==∈∈,()2{,|1,,}B x y y x x N y N ==-+∈∈,则A B ⋂=( )A. ()0,1B. {}0,1C. (){}0,1D. φ【答案】C 【解析】(){}(){}0101A B A B =∈∴⋂=,,,选C. 14.【2018河北省石家庄二中模拟】已知函()1x xf x e x=++则120x x +>是()()()()1212f x f x f x f x +>-+-的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】C现证充分性:∵120x x +>, 12x x >-,又()()1x xf x e x∞∞=+-++在,上为单调增函数,∴()()12f x f x >-,同理: ()()21f x f x >-,故()()()()1212f x f x f x f x +>-+-.充分性证毕. 再证必要性:记()()gx ? f x f x =--,由()()1x xf x e x∞∞=+-++在,上单调递增,可知()()f x ∞∞--+在,上单调递减,∴()()gx ? f x f x =--在()∞∞-+,上单调递增。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

(浙江专版)2018年高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

(浙江专版)2018年高考数学二轮专题复习第一部分专题一集合、常用逻辑用语、函数与导数、不等式讲义

专题一集合、常用逻辑用语、函数与导数、不等式第一讲集合与常用逻辑用语考点一集合的概念及运算一、基础知识要记牢1.集合中元素的特性集合元素具有确定性、互异性和无序性.解题时要特别注意集合元素互异性的应用.2.运算性质及重要结论如(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A等.二、经典例题领悟好[例1] (1)(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)(2)(2018届高三·金丽衢联考)已知全集U=R,集合A={x|x<-1或x>4},B={x|-2≤x≤3},那么阴影部分表示的集合为( )A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤-1}D.{x|-1≤x≤3}[解析] (1)根据集合的并集的定义,得P∪Q=(-1,2).(2)由题意得,阴影部分所表示的集合为(∁U A)∩B={x|-1≤x≤3},故选D.[答案] (1)A (2)D解答集合间的运算关系问题的思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义.(2)根据元素的不同属性采用不同的方法对集合进行化简求解.(3)确定(应用)集合间的包含关系或运算结果,常用到以下技巧:①若已知的集合是不等式的解集,用数轴求解;②若已知的集合是点集,用数形结合法求解;③若已知的集合是抽象集合,用Venn图求解.三、预测押题不能少1.(1)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.(2)设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 因为x ∈A ∩B ,所以x 可取0,1; 因为y ∈A ∪B ,所以y 可取-1,0,1,2,3. 则(x ,y )的可能取值如下表所示:故考点二 四种命题及其关系 一、基础知识要记牢与“四种命题”相关联的结论(1)若一个命题有大前提,其他三种命题需保留大前提;(2)一个命题的否命题与命题的否定不是同一个命题:前者既否定条件,又否定结论,后者只否定命题的结论;(3)互为逆否关系的命题真假相同,所以四种命题的真假个数一定为偶数. 二、经典例题领悟好[例2] (1)(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R.其中的真命题为( )A.p1,p3 B.p1,p4C.p2,p3 D.p2,p4 (2)(2017·金华一中模拟)下列命题中为真命题的是( ) A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题[解析] (1)设复数z=a+b i(a,b∈R),对于p1,∵1z=1a+b i=a-b ia2+b2∈R,∴b=0,∴z∈R,∴p1是真命题;对于p2,∵z2=(a+b i)2=a2-b2+2ab i∈R,∴ab=0,∴a=0或b=0,∴p2不是真命题;对于p3,设z1=x+y i(x,y∈R),z2=c+d i(c,d∈R),则z1z2=(x+y i)(c+d i)=cx-dy +(dx+cy)i∈R,∴dx+cy=0,取z1=1+2i,z2=-1+2i,z1≠z2,∴p3不是真命题;对于p4,∵z=a+b i∈R,∴b=0,∴z=a-b i=a∈R,∴p4是真命题.(2)对于A,其逆命题是:若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y;对于B,其否命题是:若x≤1,则x2≤1,是假命题.如x=-5,x2=25>1;对于C,其否命题是:若x≠1,则x2+x-2≠0,由于x=-2时,x2+x-2=0,所以原命题的否命题是假命题;对于D,若x2>0,则x>0或x<0,不一定有x>1,因此原命题与它的逆否命题都是假命题.故选A.[答案] (1)B (2)A1在判定四个命题之间的关系时,首先要分清命题的“大前提、条件、结论”,再进行比较.2判断一个命题为真命题,要给出推理证明;判断一个命题为假命题,只需举出反例.3根据“互为逆否关系的命题同真同假”这一性质,当一个命题的真假不易判定时,可转化为判断其等价命题的真假.三、预测押题不能少2.(1)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 命题的逆否命题是将条件和结论对换后分别否定,因此“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是若x +y 不是偶数,则x 与y 不都是偶数.(2)有下列四个命题:①若“xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题为( ) A .①② B .②③ C .④D .①②③解析:选D ①的逆命题:“若x ,y 互为倒数,则xy =1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x 2-2x +m =0没有实数解,则m >1”是真命题;命题④是假命题,所以它的逆否命题也是假命题,如A ={1,2,3,4,5},B ={4,5},显然A ⊆B 是错误的.故选D.考点三 充要条件 一、基础知识要记牢对于p 和q 两个命题,若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p 和q 互为充要条件.推出符号“⇒”具有传递性,等价符号“⇔”具有双向传递性.二、经典例题领悟好[例3] (1)(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)设A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -1x +1<0,B ={x ||x -b |<a },若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,所以“d >0”是“S 4+S 6>2S 5”的充分必要条件.(2)A ={x |-1<x <1},当a =1时,B ={x |b -1<x <b +1},若“a =1”是“A ∩B ≠∅”的充分条件,则有-1≤b -1<1或-1<b +1≤1,所以b ∈(-2,2).[答案] (1)C (2)(-2,2)判定充分、必要条件时的关注点(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .2要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行,那么可以尝试通过举出恰当的反例来说明.三、预测押题不能少3.(1)“10a>10b”是“lg a >lg b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由10a>10b得a >b ,由lg a >lg b 得a >b >0,所以“10a>10b”是“lg a >lg b ”的必要不充分条件.(2)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件.故选A.[知能专练(一)]一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.(2017·浙江延安中学模拟)命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是( ) A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0 B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0 C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0 D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:选D “若p,则q”的逆否命题为“若綈q,则綈p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.3.(2017·宁波模拟)“x<0”是“ln(x+1)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“l n(x+1)<0”的必要不充分条件.4.(2017·吉林模拟)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是( )A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]解析:选A 设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.5.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.6.(2018届高三·安徽“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x ∈A)的值域为B,则(∁R A)∩B等于( )A.{x|1<x≤2} B.{x|1≤x≤2}C.{x|0≤x≤1} D.{x|x>1}解析:选A 由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁R A={x|x<0或x>1},∴(∁R A)∩B={x|1<x≤2}.7.设集合S n={1,2,3,…,n},n∈N*,若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为( ) A.7 B.8C.9 D.10解析:选A 若n=4,则S n的所有奇子集为{1},{3},{1,3},故所有奇子集的容量之和为7.8.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( )A.3 B.2C.1 D.0解析:选B 因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y =x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.9.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.10.下列关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的结论中成立的是( )A.都为真命题 B.都为假命题C.否命题为真命题 D.逆否命题为真命题解析:选D 对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.二、填空题11.已知集合U={1,2,3,4,5,6},S={1,3,5},T={2,3,6},则S∩(∁U T)=________,集合S共有________个子集.解析:由题意可得∁U T={1,4,5},则S∩(∁U T)={1,5}.集合S的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.答案:{1,5} 812.(2017·南通模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.解析:“a>b”是“3a>3b”的充要条件,①错误;“α>β”是“cos α<cos β”的既不充分也不必要条件,②错误;“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件,③正确.故正确命题的序号为③.答案:③13.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x 2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=________,M ∪(∁R N )=________.解析:M =⎩⎨⎧⎭⎬⎫x 2x <1={x |x <0或x >2},N ={y |y =x -1+1}={y |y ≥1},∁R M ={x |0≤x ≤2},∁R N ={y |y <1},∴N ∩(∁R M )={x |1≤x ≤2},M ∪(∁R N )={x |x <1或x >2}. 答案:{x |1≤x ≤2} {x |x <1或x >2}14.若“4x +p <0”是“x 2-x -2>0”的充分条件,则实数p 的取值范围是________. 解析:由x 2-x -2>0,得x >2或x <-1. 由4x +p <0得x <-p4.故-p 4≤-1时,“x <-p4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件. 答案:[4,+∞)15.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =________,(∁R A )∩B =________.解析:∵A ={x |-2≤x ≤0},∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2},∴A ∪B ={x |-2≤x ≤2},∴(∁R A )∩B ={x |0<x ≤2}.答案:{x |-2≤x ≤2} {x |0<x ≤2}16.(2017·四川南山模拟)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知,13<x <12是不等式|x -m |<1成立的充分不必要条件,所以⎩⎨⎧⎭⎬⎫x 13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎪⎨⎪⎧-1+m ≤13,1+m ≥12(两个不等式不能同时取等号),解得-12≤m ≤43,所以m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案:⎣⎢⎡⎦⎥⎤-12,43 17.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =______,A ∪B =________,∁R A =________.解析:∵A ={x |-1<x <4},B ={x |1<x <5},∴A ∩B ={x |1<x <4},A ∪B ={x |-1<x <5},∁R A ={x |x ≤-1或x ≥4}.答案:{x |1<x <4} {x |-1<x <5} {x ≤-1或x ≥4} [选做题]1.已知集合A ={(x ,y )|x =n ,y =na +b ,n ∈Z},B ={(x ,y )|x =m ,y =3m 2+12,m ∈Z},若存在实数a ,b 使得A ∩B ≠∅成立,称点(a ,b )为“£”点,则“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为( )A .0B .1C .2D .无数个解析:选A A ={(x ,y )|x =n ,y =na +b ,n ∈Z}={(x ,y )|y =ax +b ,x ∈Z},B ={(x ,y )|x=m ,y =3m 2+12,m ∈Z}={(x ,y )|y =3x 2+12,x ∈Z},联立⎩⎪⎨⎪⎧y =ax +b ,y =3x 2+12,故3x 2-ax +12-b =0,①因为A ∩B ≠∅,故Δ=a 2-12(12-b )=a 2+12b -144≥0,即a 2+12b ≥144,联立⎩⎪⎨⎪⎧a 2+12b ≥144,a 2+b 2≤108,解得a =±62,b =6,代入①中可知x =±2,这与x ∈Z 矛盾,故“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为0,故选A.2.对于非空数集A ,B ,定义A +B ={x +y |x ∈A ,y ∈B },下列说法: ①A +B =B +A ;②(A +B )+C =A +(B +C ); ③若A +A =B +B ,则A =B ; ④若A +C =B +C ,则A =B . 其中正确的是( ) A .① B .①② C .②③D .①④解析:选B 对于①,A +B ={x +y |x ∈A ,y ∈B }={y +x |x ∈A ,y ∈B }=B +A ,①正确;对于②,(A +B )+C ={(x +y )+z |x ∈A ,y ∈B ,z ∈C }=A +(B +C ),②正确;对于③,当A ={奇数},B ={偶数}时,A +A ={偶数}=B +B ,显然A ≠B ,③错误,对于④,当A ={奇数},B ={偶数},C ={整数}时,A +C ={整数}=B +C ,显然A ≠B ,④错误.综上所述,正确的为①②,故选B.3.已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t2-(a +3)t +(a +2)<0.若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意知,-2t 2+7t -5>0,解得1<t <52.∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a +2)<0解集的真子集.因为方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.答案:⎝ ⎛⎭⎪⎫12,+∞第二讲函数的概念与性质考点一 函数及其表示 一、基础知识要记牢(1)函数初、高中定义形式不同,本质一样,核心是对应; (2)当两个函数的三要素完全相同时表示同一个函数;(3)分段函数是一个函数而不是几个函数,离开定义域讨论分段函数是毫无意义的. 二、经典例题领悟好[例1] (1)(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|(2)(2017·嘉兴模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(3)(2016·江苏高考)函数y = 3-2x -x 2的定义域是________.[解析] (1)取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x=0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误;取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )= x +1,则对任意x ∈R 都有f (x 2+2x )= x 2+2x +1=|x +1|,故选项D 正确.(2)当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.当a >0时,f (a )=-a 2<0,由f (f (a ))=a 4-2a 2+2=2,解得a = 2.(3)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].[答案] (1)D (2) 2 (3)[-3,1]1.理解函数概念的要点函数概念本质是对应,以具体函数模型为基础,在新背景、综合背景下理解. 2.求函数定义域的类型和相应方法 1若已知函数的解析式,则这时函数的定义域是使解析式有意义的自变量的取值范围,只需构建并解不等式组即可;2实际问题或几何问题除要考虑解析式有意义外,还应使实际问题有意义., 3.求函数值时应注意的问题分段函数的求值解不等式问题,必须依据条件准确地找出利用哪一段求解;对具有周期性的函数求值要利用好其周期性.三、预测押题不能少1.(1)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].(2)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析:∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案:-2 考点二 函数的图象 一、基础知识要记牢函数的图象包括作图、识图、用图,其中作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.正确作图是解题的基本保障,识图、用图是解题的手段和目标.二、经典例题领悟好[例2] (1)(2016·浙江高考)函数y =sin x 2的图象是( )(2)函数f (x )的图象是如图所示的折线段OAB ,其中A (1,2),B (3,0),函数g (x )=xf (x ),那么函数g (x )值域为( )A .[0,2]B.⎣⎢⎡⎦⎥⎤0,94 C.⎣⎢⎡⎦⎥⎤0,32D .[0,4][解析] (1)∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =±π2时,y =sin x 2=1,而π2<π2,且y =sin π24<1,故D 项正确. (2)由题图可知直线OA 的方程是y =2x ; 而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3x =-⎝ ⎛⎭⎪⎫x -322+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0.综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94.[答案] (1)D (2)B由解析式确定函数图象的判断技巧(1)由函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置. (2)由函数的单调性,判断图象的变化趋势. (3)由函数的奇偶性,判断图象的对称性. (4)由函数的周期性,判断图象的循环往复. 三、预测押题不能少2.(1)函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的大致图象是( )解析:选A 由二次函数的图象可知b <-1,0<a <1,所以g (x )=a x+b 为减函数,其图象由指数函数y =a x的图象向下平移|b |个单位长度得到,故选A.(2)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2. 答案:(-∞,-2) 考点三 函数的性质 一、基础知识要记牢(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y 轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f (a +x )=f (x )(a 不等于0),则其一个周期T =|a |.二、经典例题领悟好[例3] (1)(2017·北京高考)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数(2)(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( ) A .-2B .-1C .0D .2(3)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[解析] (1)因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-[ 3x -⎦⎥⎤⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.(2)由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.故选D. (3)∵f (x )满足f (x -4)=-f (x ), ∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). ∵f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11). [答案] (1)A (2)D (3)D函数性质综合应用问题的3种类型和解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.三、预测押题不能少3.(1)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.(2)下列函数中既是奇函数又在其定义域上是减函数的是( ) A .y =lg 1+x1-xB .y =e -x-e xC .y =sin x -|cos x |D .y =x 3-3x解析:选B 选项A 错误,因为函数f (-x )=lg 1-x 1+x =-lg 1+x1-x =-f (x ),所以是奇函数且定义域为(-1,1),因为g (x )=1+x 1-x =21-x -1是增函数,所以y =lg 1+x1-x 是增函数;选项B 正确,f (-x )=e x-e -x=-(e -x-e x )=-f (x ),所以是奇函数,因为y =e -x=⎝ ⎛⎭⎪⎫1e x 是减函数,y =-e x是减函数,所以y =e -x -e x是减函数;选项C 错误,f (-x )=-sin x -|cos x |≠-f (x ),所以f (x )=sin x -|cos x |不是奇函数;选项D 错误,函数y =x 3-3x 是奇函数但不是单调函数.故选B.(3)若f (x )是定义在f (x )是定义在R 上的周期为4的函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x 1-x ,0≤x ≤1,cos πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=________.解析:因为f (x )的周期为4,则f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫8+53=f ⎝ ⎛⎭⎪⎫53=cos 5π3=cos π3=12,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫293=f ⎝ ⎛⎭⎪⎫12=12⎝ ⎛⎭⎪⎫1-12=14.答案:14[知能专练(二)]一、选择题1.已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x,则f (-1)=( )A .-2B .0C .1D .2解析:选A f (-1)=-f (1)=-2.2.(2017·大连测试)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.3.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析:选D f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;x >0时,f (x )=2x 2-e x ,f ′(x )=4x -e x ,当x ∈⎝ ⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝ ⎛⎭⎪⎫0,14单调递减,排除C.故选D.4.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:选C 由f (x )为奇函数,知g (x )=xf (x )为偶函数.因为f (x )在R 上单调递增,f (0)=0,所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3),20.8<2=log 24<log 25.1<log 28=3,所以b <a <c .5.若f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)解析:选B 由题意可知函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )的图象在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2,解得a ∈[4,8).6.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f 1(x )=2log 2(x +1),f 2(x )=log 2(x +2),f 3(x )=log 2x 2,f 4(x )=log 22x ,则“同根函数”是( )A .f 2(x )与f 4(x )B .f 1(x )与f 3(x )C .f 1(x )与f 4(x )D .f 3(x )与f 4(x )解析:选A f 4(x )=log 22x =1+log 2x ,f 2(x )=log 2(x +2),将f 2(x )的图象沿着x 轴先向右平移2个单位得到y =log 2x 的图象,然后再沿着y 轴向上平移1个单位可得到f 4(x )的图象,根据“同根函数”的定义可知选A.7.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m解析:选B 因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i +y i )=m .二、填空题8.若函数f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g 2x ,x <0为奇函数,则a =________,f (g (-2))=________.解析:由函数f (x )是R 上的奇函数可得f (0)=a =0.因为g (-2)=f (-1)=-f (1)=-4,所以f (g (-2))=f (-4)=-f (4)=-25.答案:0 -259.(2016·四川高考)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.解析:∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0. ∵f (x )=4x,x ∈(0,1),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12 =-f ⎝ ⎛⎭⎪⎫12=-412=-2.∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 答案:-210.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a=35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25. 答案:-2511.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集为________.解析:当x ≥0时,f (x )=x +1x +1=1,当x <0时,f (x )=x +11-x =-1-2x -1, 作出f (x )的图象,如图所示.可得f (x )在(-∞,0)上递增,不等式f (x 2-2x )<f (3x -4)即为⎩⎪⎨⎪⎧3x -4≥0,x 2-2x <0或⎩⎪⎨⎪⎧3x -4<0,x 2-2x <0,x 2-2x <3x -4,即有⎩⎪⎨⎪⎧x ≥43,0<x <2或⎩⎪⎨⎪⎧x <43,0<x <2,1<x <4,解得43≤x <2或1<x <43,所以1<x <2,即不等式的解集为(1,2). 答案:(1,2)12.(2017·杭州模拟)设集合A ={x |x 2-|x +a |+2a <0,a ∈R},B ={x |x <2}.若A ≠∅且A ⊆B ,则实数a 的取值范围是________.解析:由题意知x 2-|x +a |+2a <0⇒x 2<|x +a |-2a ,其解集A ≠∅时,可设A ={m <x <n }. 首先,若n =2时,则|2+a |-2a =4, 解得a =-2,满足A ⊆B .由函数y =|x +a |-2a 的图象可知,当a <-2时,n >2,不满足A ⊇B ,不合题意,即可知a ≥-2;考虑函数y =|x +a |-2a 的右支与y =x 2相切时,则x +a -2a =x 2,即x 2-x +a =0,解得a =14.又当a ≥14时,A =∅,即可知a <14.综上可知:-2≤a <14.或考虑函数y =|x +a |和函数y =x 2+2a 进行数形结合.答案:⎣⎢⎡⎭⎪⎫-2,14 三、解答题13.已知二次函数f (x )=ax 2+bx +3是偶函数,且过点(2,7),g (x )=x +4. (1)求f (x )的解析式; (2)求函数F (x )=f (2x)+g (2x +1)的值域;(3)若f (x )≥mx +m +4对x ∈[2,6]恒成立,求实数m 的取值范围. 解:(1)由题意,对任意x ∈R ,f (-x )=f (x ), ∴ax 2-bx +3=ax 2+bx +3,得2bx =0, 又∵x ∈R ,∴b =0,得f (x )=ax 2+3.把点(2,7)代入得4a +3=7,解得a =1,∴f (x )=x 2+3. (2)F (x )=f (2x)+g (2x +1)=(2x )2+3+2x +1+4=(2x )2+2×2x+7.设2x=t ,则t ∈(0,+∞),F (t )=t 2+2t +7=(t +1)2+6>7,∴函数F (x )的值域为(7,+∞).(3)依题意得当x ∈[2,6]时,x 2+3≥mx +m +4恒成立,即x 2-mx -m -1≥0对x ∈[2,6]恒成立.设p (x )=x 2-mx -m -1,则⎩⎪⎨⎪⎧m 2<2,p 2≥0或⎩⎪⎨⎪⎧m 2>6,p 6≥0或Δ=m 2+4m +4≤0,即⎩⎪⎨⎪⎧m <4,m ≤1或⎩⎪⎨⎪⎧m >12,m ≤5或m =-2,得m ≤1.综上可知,实数m 的取值范围是(-∞,1]. 14.设a >0,b ∈R ,函数f (x )=ax-2bx +b (0<x ≤1). (1)求函数f (x )的最小值;(2)若f (x )+|2a -b |≥0在区间(0,m ]上恒成立,求实数m 的最大值.解:(1)当b ≥0时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -2b +b =a -b ;当b <0时,有ax -2bx ≥2ax×-2bx =2-2ab ,x = a -2b 时等号成立.当-a 2≤b <0,即 a-2b≥1时,f (x )在0<x ≤1上递减,此时f (x )min =f (1)=a -b .当b <-a2,即a-2b<1时,此时f (x )min=f ⎝⎛⎭⎪⎫a -2b =2-2ab +b ,综上知f (x )min=⎩⎪⎨⎪⎧a -b ,b ≥-a2,2-2ab +b ,b <-a2.(2)当b ≤2a 时,f (x )+|2a -b |=a x-2bx +2a≥a x-4ax +2a =a ⎝ ⎛⎭⎪⎫1x -4x +2, 当b >2a 时,f (x )+|2a -b |=ax+2b (1-x )-2a≥a x+4a (1-x )-2a =a ⎝ ⎛⎭⎪⎫1x -4x +2. 由1x -4x +2≥0,解得1-54≤x ≤1+54, 又因为1+54<1,所以m 的最大值为1+54.第三讲基本初等函数、函数与方程及函数的应用 考点一 基本初等函数的图象与性质一、基础知识要记牢指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)的图象和性质,分0<a<1,a>1两种情况,当a>1时,两函数在定义域内都为增函数,当0<a<1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2017·杭州模拟)将函数f(x)=ax+b,g(x)=log a(1+bx)的图象画在同一个平面直角坐标系中,其中可能正确的是( )(2)设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>aC.a>c>b D.a>b>c[解析] (1)因为g(0)=0,故排除D;选项A中,由直线可以看出b<0,由1+bx>0知,函数在y轴右侧的图象是有限的,排除A;选项C中,由直线可以看出b>0,由1+bx>0知,函数在y轴左侧的图象是有限的,排除C,故选B.(2)a=log36=log33+log32=1+log32,b=log510=log55+log52=1+log52,c=log714=log77+log72=1+log72,∵log32>log52>log72,∴a>b>c.[答案] (1)B (2)D1基本初等函数的图象是其性质的直观载体,要结合图象理解性质;图象变换要以基本函数图象为基础,结合性质等判断、应用.2比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较.三、预测押题不能少1.(1)函数y=x-x 13的图象大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x在R 上为增函数知,b <a ;又因为a =243=423,c =2513=523,由函数y =x 23在(0,+∞)上为增函数知,a <c .综上得b <a <c .故选A.考点二 二次函数 一、基础知识要记牢二次函数的相关结论若f (x )=ax 2+bx +c (a ≠0),则(1)f (x )的图象与x 轴交点的横坐标是方程ax 2+bx +c =0的实根.(2)若x 1,x 2为f (x )=0的实根,则f (x )在x 轴上截得的线段长应为|x 1-x 2|=b 2-4ac|a |.(3)当⎩⎪⎨⎪⎧a >0,Δ<0时,恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.二、经典例题领悟好[例2] (1)(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关(2)若二次函数f (x )满足f (3)=f (-1)=-5,且f (x )的最大值是3,则函数f (x )的解析式为________.(3)若函数f (x )=cos 2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2上是减函数,则a 的取值范围是________.[解析] (1)f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24+b ,①当0≤-a2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关.(2)法一:设f (x )=ax 2+bx +c (a ≠0),依题意得⎩⎪⎨⎪⎧9a +3b +c =-5,a -b +c =-5,4ac -b 24a =3,解得⎩⎪⎨⎪⎧a =-2,b =4,c =1,所以二次函数的解析式为f (x )=-2x 2+4x +1.法二:设f (x )=a (x -m )2+n (a ≠0),因为f (3)=f (-1), 所以抛物线的对称轴为x =3+-12=1,则m =1.又f (x )的最大值是3,则a <0,n =3,即f (x )=a (x -1)2+3, 由f (3)=-5得4a +3=-5,则a =-2,所以二次函数的解析式为f (x )=-2(x -1)2+3=-2x 2+4x +1. 法三:设f (x )+5=a (x -3)(x +1)(a ≠0), 即f (x )=ax 2-2ax -3a -5=a (x -1)2-4a -5, 又f (x )的最大值是3,则a <0,且-4a -5=3,所以a =-2, 所以二次函数的解析式为f (x )=-2x 2+4x +1. (3)f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝ ⎛⎭⎪⎫π6,π2, 则t ∈⎝ ⎛⎭⎪⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1上是减函数,结合二次函数图象可知,a 4≤12,所以a ≤2.答案:(1)B (2)f (x )=-2x 2+4x +1 (3)(-∞,2]解决有关二次函数两类综合问题的思想方法(1)含有参数的二次函数与不等式的综合问题注意分类讨论思想、函数与方程思想的运用. (2)二次函数的最值问题,通常采用配方法,将二次函数化为y =a (x -m )2+n (a ≠0)的形式,得其图象顶点(m ,n )或对称轴方程x =m ,分三种情况:①顶点固定,区间固定; ②顶点含参数,区间固定; ③顶点固定,区间变动. 三、预测押题不能少2.(1)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,则a 的最小值是( )A .0B .2C .-52D .-3解析:选C 设f (x )=x 2+ax +1,其图象开口向上,对称轴为直线x =-a 2.当-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,应有f ⎝ ⎛⎭⎪⎫12≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在⎝ ⎛⎦⎥⎤0,12上是增函数,应有f (0)=1≥0,恒成立,故a ≥0.当0<-a 2<12,即-1<a <0时,应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a <0.综上,a 的取值范围是a ≥-52,所以a 的最小值是-52,故选C.(2)在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y =1x(x >0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.解析:设P ⎝⎛⎭⎪⎫x ,1x ,则|PA |2=(x -a )2+⎝ ⎛⎭⎪⎫1x -a 2=⎝ ⎛⎭⎪⎫x +1x 2-2a ⎝ ⎛⎭⎪⎫x +1x +2a 2-2,令t =x +1x,则t ≥2(x >0,当且仅当x =1时取“=”),则|PA |2=t 2-2at +2a 2-2.①当a ≤2时,(|PA |2)min =22-2a ×2+2a 2-2=2a 2-4a +2,由题意知,2a 2-4a +2=8, 解得a =-1或a =3(舍).②当a >2时,(|PA |2)min =a 2-2a ×a +2a 2-2=a 2-2. 由题意知,a 2-2=8,解得a =10或a =-10(舍), 综上知,a =-1,10. 答案:-1,10 考点三 函数的零点一、基础知识要记牢确定函数零点的常用方法(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例3] (1)(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B.13C.12D .1(2)(2018届高三·温州六校联考)函数f (x )=3-x+x 2-4的零点个数是________. [解析] (1)法一:由f (x )=x 2-2x +a (ex -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e1-x+ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.。

2018版高考数学浙江专用专题复习 专题1集合与常用逻辑

2018版高考数学浙江专用专题复习 专题1集合与常用逻辑

一、选择题1.(2016·湖南衡阳上学期五校联考)命题“若x ≥a 2+b 2,则x ≥2ab ”的逆命题是( )A .若x <a 2+b 2,则x <2abB .若x ≥a 2+b 2,则x <2abC .若x <2ab ,则x <a 2+b 2D .若x ≥2ab ,则x ≥a 2+b 22.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题是“若x ≠4,则x 2-3x -4≠0”B .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题C .“x =4”是“x 2-3x -4=0”的充分条件D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”3.(2016·淄博期中)“x (x -5)<0成立”是“|x -1|<4成立”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.直线x -y +m =0与圆x 2+y 2-2x -1=0相交的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <15.(2016·广东广雅中学期中)设p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增;q :m >43,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .以上都不对6.(2017·杭州质检)设等比数列{a n }的前n 项和为S n ,则“a 2>0且a 1>0”是“数列{S n }单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.设命题p :2x -1≤1,命题q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( )A .(0,2)B .[0,12]C .[-2,0]D .(-2,0) 8.(2016·大庆期中)给出下列命题:①等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的既不充分也不必要条件; ②“x ≠1”是“x 2≠1”的必要不充分条件;③函数y =lg(x 2+ax +1)的值域为R ,则-2<a <2;④“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充要条件.其中真命题的个数是( )A .1B .2C .3D .4二、填空题9.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题;④若ab 是正整数,则a ,b 都是正整数.其中真命题是________.(写出所有真命题的序号)10.已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则实数a 的取值范围是________.11.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________.12.(2016·绍兴期中)已知“命题p :(x -m)2>3(x -m)”是“命题q :x2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.答案解析1.D 2.B3.A [∵x (x -5)<0⇒0<x <5,|x -1|<4⇒-3<x <5,∴“x (x -5)<0成立”⇒“|x -1|<4成立”,反之,则不一定成立,∴“x (x -5)<0成立”是“|x -1|<4成立”的充分而不必要条件.故选A.]4.C [圆方程化为(x -1)2+y 2=2,圆心(1,0)到直线x -y +m =0的距离d =|1+m |2,当直线与圆相交时,|1+m |2<2,即-3<m <1, 因为{m |0<m m |-3<m <1},所以0<m <1是直线与圆相交的一个充分不必要条件.故选C.]5.C [∵f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,∴f ′(x )=3x 2-4x +m ,即3x 2-4x +m ≥0在R 上恒成立,∴Δ=16-12m ≤0,即m ≥43, ∵p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,q :m >43,∴根据充分必要条件的定义可判断:p 是q 的必要不充分条件,故选C.]6.C [当a 1>0,a 2>0时,a 1q >0,所以q >0,a n =a 1q n -1>0,所以{S n }单调递增;当{S n }单调递增时,S n +1>S n ,即a n +1>0,所以a 2>0,q >0,a 1>0,所以“a 2>0且a 1>0”是“数列{S n }单调递增”的充要条件,故选C.]7.B [解不等式2x -1≤1,得12≤x ≤1,故满足命题p 的集合P =[12,1].解不等式(x -a )[x -(a +1)]≤0,得a ≤x ≤a +1,故满足命题q 的集合Q =[a ,a +1].又q 是p 的必要不充分条件,则P 是Q 的真子集,即a ≤12且a +1≥1,解得0≤a ≤12,故实数a 的取值范围是[0,12].] 8.B [若首项为负,则公比q >1时,数列为递减数列,a n +1<a n (n ∈N *).当a n +1>a n (n ∈N *)时,包含首项为正,公比q >1和首项为负,公比0<q <1两种情况,故①正确;“x ≠1”时,“x 2≠1”在x =-1时不成立,“x 2≠1”时,“x ≠1”一定成立,故②正确;函数y =lg(x 2+ax +1)的值域为R ,则x 2+ax +1=0的Δ=a 2-4≥0,解得a ≥2或a ≤-2,故③错误;“a =1”时,“函数y =cos 2x -sin 2x =cos 2x 的最小正周期为π”,但“函数y =cos 2ax -sin 2ax 的最小正周期为π”时,a =±1,故“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故④错误.故选B.]9.①③解析 ①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,则a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.10.[-1,6]解析 p :-4<x -a<4⇔a -4<x<a +4;q :(x -2)(3-x)>0⇔2<x<3.又綈p 是綈q 的充分不必要条件,即q 是p 的充分不必要条件,所以⎩⎨⎧ a -4≤2,a +4>3或⎩⎨⎧a -4<2,a +4≥3,解得-1≤a≤6. 11.m>9解析 方程x2-mx +2m =0对应二次函数为f(x)=x2-mx +2m ,若方程x2-mx +2m =0有两根,其中一根大于3一根小于3,则f(3)<0,解得m>9,即方程x2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m>9.12.{m|m≥1或m≤-7}解析 由命题p 中的不等式(x -m)2>3(x -m)变形,得(x -m)(x -m -3)>0,解得x>m +3或x<m ;由命题q 中的不等式x2+3x -4<0变形,得(x -1)·(x +4)<0,解得-4<x<1,因为命题p 是命题q 的必要不充分条件,所以m +3≤-4或m≥1,解得m≤-7或m≥1.所以m 的取值范围为{m|m≥1或m≤-7}.。

2018版高考数学浙江专用专题复习 专题1集合与常用逻辑

2018版高考数学浙江专用专题复习 专题1集合与常用逻辑

一、选择题1.(2016·山东乳山一中月考)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆BB .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}2.(2016·浙江冲刺卷五)设集合P ={4,log 2m },Q ={m ,n },若P ∩Q ={1},则P ∪Q 等于( ) A .{1,4} B .{1,2,4} C .{0,1,4}D .{1,2,3,4}3.(2016·浙江衢州二中交流卷二)已知集合A ={x |x 2-2x <0},B ={x |0<x <t ,t >0},若A ∩B =A ,则t 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)4.(2016·厦门模拟)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是( ) A .1 B .2 C .3D .45.(2016·杭州严州中学一模)已知集合A ={x |y =ln(1-2x )},B ={x |x 2≤x },则∁(A ∪B )(A ∩B )等于( ) A .(-∞,0)B.⎝⎛⎦⎤-12,1 C .(-∞,0)∪⎣⎡⎦⎤12,1D.⎝⎛⎦⎤-12,06.设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是( ) A .PQB .PQC .P =QD .P ∩Q =∅7.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( ) A .(0,34)B .[34,43)C .[34,+∞)D .(1,+∞)8.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”. 其中,正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题9.(2016·嘉兴高三教学测试)设全集U =R ,集合A ={x |1<x ≤3},B ={x |x ≥2},则A ∩B =________,A ∪B =________,A ∩(∁R B )=________.10.若集合A ={x |-1<x ≤2},B ={x |(x -a )(x -a +1)≥0},且A ∩B =A ,则实数a 的取值范围是______________________.11.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B ={x |3<x ≤4},则a +b 的值等于________.12.设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集.其中真命题是________.(写出所有真命题的序号)答案解析1.D 2.B 3.D4.D [由于函数y =3x的图象经过点(0,1),且(0,1)在椭圆x 24+y 216=1内,所以函数y =3x 的图象与椭圆x 24+y 216=1有两个交点,从而A ∩B 中有2个元素,故A ∩B 的子集的个数是4,故选D.]5.C [∵集合A ={x |y =ln(1-2x )} ={x |1-2x >0}={x |x <12},B ={x |x 2≤x }={x |0≤x ≤1}, ∴A ∪B ={x |x ≤1}, A ∩B ={x |0≤x <12},∴∁(A ∪B )(A ∩B )=(-∞,0)∪⎣⎡⎦⎤12,1,故选C.]6.C [Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},对m 分类: ①为m =0时,-4<0恒成立; ②当m <0时,需Δ=(4m )2-4×m × (-4)<0,解得-1<m <0. 综合①②知-1<m ≤0.故选C.]7.B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1图象的对称轴为直线x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43.] 8.C [因为2 014=402×5+4,又因为[4]={5n +4|n ∈Z },所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z 除以5可得的余数为0,1,2,3,4,所以③正确;若a ,b 属于同一“类”,则有a =5n 1+k ,b =5n 2+k ,所以a -b =5(n 1-n 2)∈[0],反过来,如果a -b ∈[0],也可以得到a ,b 属于同一“类”,故④正确.故有3个结论正确.]9.[2,3](1,+∞)(1,2)解析因为A=(1,3],B=[2,+∞),所以A∩B=[2,3],A∪B=(1,+∞),因为∁R B=(-∞,2),所以A∩(∁R B)=(1,2).10.(-∞,-1]∪[3,+∞)解析化简B={x|x≥a或x≤a-1},又A∩B=A,所以A⊆B.由数轴知a≤-1或a-1≥2,即a≤-1或a≥3.所以a的取值范围是(-∞,-1]∪[3,+∞).11.-7解析由已知得A={x|x<-1或x>3},∵A∪B=R,A∩B={x|3<x≤4},∴B={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.12.①②解析①正确,任取x,y∈S,设x=a1+b13,y=a2+b23(a1,b1,a2,b2∈Z),则x+y =(a1+a2)+(b1+b2)3,其中a1+a2∈Z,b1+b2∈Z.即x+y∈S.同理x-y∈S,xy∈S.②正确,当x=y时,0∈S.③错误,当S={0}时,是封闭集,但不是无限集.④错误,设S={0}⊆T ={0,1},显然T不是封闭集.因此正确命题为①②.。

专题01 集合与常用逻辑用语-2018年高考题和高考模拟题数学(文)分项版汇编 Word版含解析

专题01 集合与常用逻辑用语-2018年高考题和高考模拟题数学(文)分项版汇编 Word版含解析

1.集合与常用逻辑用语1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.【2018年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B.{1,3} C.{2,4,5} D.{1,2,3,4,5}3.【2018年文北京卷】能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________.4.【2018年江苏卷】已知集合5.【2018年天津卷文】设,则“,”是“,那么”的________.A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.【2018年天津卷文】设集合,,,则A. B. C. D.7.【2018年北京卷文】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.【2018年北京卷文】已知集合A={(|||<2)},B={−2,0,1,2},则A.{0,1}B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}9.【2018年新课标I卷文】已知集合A. B. C. D.,,则10.【2018年全国卷Ⅲ文】已知集合A. B. C. D.,,则11.【2018年全国卷II文】已知集合A. B. C. D.,,则优质模拟试题12.【福建省厦门市2018届二质检文】已知集合A. B. C. D.,则()13.【山东省威海市2018届二模文】已知命题:“题的是()A. B. C. D. 14.【江西省重点中学2018届二联文】已知数列”,命题:“”,则下列为真命是等差数列,,,为正整数,则“”是“”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件15.【湖南省湘潭市2018届四模文】设有下面四个命题::若:若,则,则;:若;:若,则,则;.其中的真命题为()A.,B.,C.,D.,16.【山西省两市2018届二联考文】下列语句中正确的个数是()①,函数都不是偶函数;②命题“若,则”的否命题是真命题;③若或为真,则,非均为真;④已知向量A.0B.1C.2D.3,则“”的充分不必要条件是“与夹角为锐角”. 17.【山东省烟台市2018届二模文】已知命题:在中,是的充要条件,命题:若为等差数列A.的前项和,则B. C. D.成等差数列.下列命题为真命题的是()18.【河南省洛阳市2018届三模文】下列叙述中正确的个数是()①将一组样本数据中的每个数据都加上同一个常数后,方差不变;②命题,,命题,,则为真命题;③“”是“的必要而不充分条件;④将函数的图象向左平移个单位长度得到函数的图象.【 【A. 1B. 2C. 3D. 419.【重庆市 2018 届三模文】设集合A.B. C.D.20. 河北省衡水中学 2018 届第十六次模拟文】已知集合A.B.C. D.21.【辽宁省大连市 2018 届二模文】下面四个命题:,若 ,则实数 的取值范围是( ), ,则( ):命题“”的否定是“”;:向量 ,则是的充分且必要条件;:“在中,若,则“”的逆否命题是“在 中,若 ,则“ ”;:若“”是假命题,则 是假命题.其中为真命题的是( ) A.B.C. D.22.【山东省潍坊市 2018 届三模文】直线是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件23.【安徽省示范高中(皖江八校)2018 届 5 月联考文】已知集合实数 的值为()A.B.C.D.24.【宁夏银川一 中 2018 届三模文】下列选项中,说法正确的是 ,则“ 或 ”,若 ,则A. 命题是命题 的必要条件.B. 若向量C. 若D. 命题“满足,则,则 与 的夹角为钝角..”的否定是“ ”.25.浙江省教育绿色评价联盟 2018 届 5 月】已知函数,则 “ 的最大值为 ”是“ 恒成立”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【26.浙江省教育绿色评价联盟2018届5月】已知集合则A. B. C.D.27.【山东省烟台市2018届二模文】已知命题:在中,,,若,是的充要条件,命题:若为等差数列A.的前项和,则B. C. D.成等差数列.下列命题为真命题的是()28.【河北省衡水中学2018届第十六次模拟文】下面几个命题中,假命题是()A.“若a≤b,则2a≤2b-1”的否命题B.“∀a∈(0,+∞),函数y=a x在定义域内单调递增”的否定C.“π是函数y=sin x的一个周期”或“2π是函数y=sin2x的一个周期”D.“x2+y2=0”是“xy=0”的必要条件29.【辽宁省大连市2018届二模文】下面四个命题::命题“”的否定是“”;:向量,则是的充分且必要条件;:“在中,若,则“”的逆否命题是“在中,若,则“”;:若“”是假命题,则是假命题.其中为真命题的是()A. B. C. D.30.【山东省烟台市2018届一模】已知函数和,命题:在定义域内部是增函数;函数的零点所在的区间为(0,2),则在命题:A.0B.1C.2D.3中,真命题的个数为()1.集合与常用逻辑用语答案1.【2018年浙江卷】已知平面α,直线m,n满足mα,nA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】α,则“m∥n”是“m∥α”的点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.2.【2018年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B.{1,3} C.{2,4,5} D.{1,2,3,4,5}【答案】C【解析】试题分析:分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.3.【2018年文北京卷】能说明“若a﹥b,则【答案】(答案不唯一)”为假命题的一组a,b的值依次为_________.【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若根据不等式的性质,去特值即可.详解:使“若,则”为假命题,则使“若,则”为真命题即可,,则”成立的,..“..只需取即可满足,所以满足条件的一组 的值为 (答案不唯一)点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难4.【2018 年江苏卷】已知集合【答案】{1,8}, ,那么 ________.点睛:本题考查交集及其运算,考查基础知识,难度较小.5.【2018 年天津卷文】设 ,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可详解:求解不等式可得 ,求解绝对值不等式 可得 或,据此可知: ”是“ ” 的充分而不必要条件.本题选择 A 选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.6.【2018 年天津卷文】设集合 , , ,则A.B. C.D.【答案】C【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果 详解:由并集的定义可得:,结合交集的定义可知: .本题选择 C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力 7.【2018 年北京卷文】设 a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比 数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“ ”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.8.【2018 年北京卷文】已知集合 A ={( || |<2)},B ={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合详解:化成最简形式,再进行求交集运算., , ,故选 A.点睛:此题考查集合的运算,属于送分题.9.【2018 年新课标 I 卷文】已知集合A.B. C.D.【答案】A, ,则【解析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合 中的元素,最后求得结果.详解:根据集合交集中元素的特征,可以求得,故选 A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果10.【2018 年全国卷Ⅲ文】已知集合 , ,则A.B. C. D.【答案】C【解析】分析:由题意先解出集合 A,进而得到结果。

2018高考数学题源探究集合与常用逻辑用语:集合 含解

2018高考数学题源探究集合与常用逻辑用语:集合 含解

集合【考点梳理】1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、Venn图法.2.集合间的基本关系(1)子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,但∃x∈B,且x∉A,则A⊂≠B或B⊂≠A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).【教材改编】1.(必修1 P8例5改编)设集合A={x|(x+1)(x-2)<0},B={x|0≤x≤3},则A∪B=( )A.{x|-2<x≤3}B.{x|-1<x≤3}C.{x|0≤x<2} D.{x|-1<x<2}[答案] B[解析] ∵A={x|-1<x<2},B={x|0≤x≤3},∴A∪B={x|-1<x≤3}.2.(必修1 P12A组 T6改编)设集合A={x|2≤x<5},B={x∈Z|3x-7≥8-2x},则A∩B =( )A.{x|3≤x<5} B.{x|2≤x≤3}C .{3,4}D .{3,4,5}[答案] C[解析] ∵A ={x |2≤x <5},B ={x ∈Z |3x -7≥8-2x }={x ∈Z |x ≥3},∴A ∩B ={3,4}.3.(必修1 P 44 A 组T 5改编)已知集合M ={x |y =lg(2x -x 2)},N ={x |x 2+y 2=1},则M ∩N =( )A .[-1,2)B .(0,1)C .(0,1]D .∅[答案] C[解析] 由2x -x 2>0, 解得0<x <2, 故M ={x |0<x <2},又N ={x |-1≤x ≤1},因此M ∩N =(0,1].4.(必修1 P 44 A 组T 4改编)已知集合A ={x |x 2=1},B ={x |ax =1},若B ⊆A ,则实数a 的取值集合为( )A .{-1,0,1}B .{-1,1}C .{-1,0}D .{0,1}[答案] A[解析] 因为A ={1,-1},当a =0时,B =∅,符合题意;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ⊆A ,则1a=1或1a=-1,解得a =1或a =-1,所以实数a 的取值集合为{-1,0,1}.5.(必修1 P 12B 组T 1改编)设集合A ={1,2,3},集合B 满足A ∪B ={1,2,3,4},则集合B 的个数为( )A .2B .4C .8D .16[答案] C[解析] 由A ={1,2,3},A ∪B ={1,2,3,4}, 得集合B 中所含元素必须有4,∴集合B ={4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}, ∴集合B 的个数为8,故选C.6.(必修1 P 44A 组T 4改编)设A ={x |-1<x ≤2},B ={x |3x +a >1},若A ∩B =A ,则a 的范围是( )A .a ≥5B .a ≥4C .a <-5D .a <4[答案] B[解析] B ={x |x >1-a3},由A ∩B =A ⇒A ⊆B ,∴1-a3≤-1,解得a ≥4,故选B. 7.(必修1 P 11例8改编)设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =________.[答案] {4,5,6}[解析] ∵U ={1,2,3,4,5,6,7,8}, ∴∁U A ={4,5,6,7,8},∴(∁U A )∩B ={4,5,6,7,8}∩{3,4,5,6}={4,5,6}.8.(必修1 P 44 A 组T 4改编)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________.[答案] (-∞,4][解析] 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,实数m 的取值范围是(-∞,4].9.(必修1 P 12A 组T 4(2)改编)若A ={x ∈Z |2x∈Z },B ={x |x 2-2x -3<0},则A ∩B =________.[答案] {1,2}[解析] ∵A ={x ∈Z |2x∈Z },∴A ={-2,-1,1,2},又B ={x |x 2-2x -3<0}={x |-1<x <3}, ∴A ∩B ={1,2}.10.(必修1 P 12A 组T 6改编)设集合A ={x |(x -2)(x -4)≤0},B ={x ∈N |3x -7≤8-2x },则A ∩B =________.[答案] {2,3}[解析] ∵A={x|(x-2)(x-4)≤0}={x|2≤x≤4},B={x∈N|3x-7≤8-2x}={x∈N|x≤3}={0,1,2,3},∴A∩B={2,3}.11.(必修1 P45B组T3改编)设全集U={x∈N*|x≤9}.∁U(A∪B)={1,3},A∩(∁U B)={2,4},则B=________.[答案] {5,6,7,8,9}[解析] ∵全集U={1,2,3,4,5,6,7,8,9},由∁U(A∪B)={1,3},得A∪B={2,4,5,6,7,8,9},由A∩(∁U B)={2,4}知,{2,4}⊆A,{2,4}⊆∁U B.∴B={5,6,7,8,9}.。

2018年浙江高考数学二轮复习练习:第2部分 必考补充专题 专题限时集训17 集合与常用逻辑用语 Word版含答案

2018年浙江高考数学二轮复习练习:第2部分 必考补充专题 专题限时集训17 集合与常用逻辑用语 Word版含答案

专题限时集训(十七) 集合与常用逻辑用语(对应学生用书第页)[建议、组各用时:分钟][组高考题、模拟题重组练]一、集合.(·浙江高考)已知集合={-≥},={<<},则∩=( ).[) .(].(-) .(-][={-≥}={(-)(+)≥}={≥或≤-},∴∩={≥或≤-}∩{<<}={≤<},即∩=[).] .(·浙江高考)已知集合={-<<},={<<},那么∪=( ).(-) .().(-) .()[∵={-<<},={<<},∴∪={-<<}.故选.].设集合={=,∈},={-<},则∪=( ).(-) .().(-,+∞).(,+∞)[由已知得={>},={-<<},则∪={>-}.故选.].(·浙江高考)已知集合={∈≤≤},={∈≥},则∪(∁)=( ).[] .(-].[) .(-∞,-]∪[,+∞)[∵={∈≥},∴∁={∈<}={-<<}.∵={∈≤≤},∴∪(∁)={-<≤}=(-].].(·浙江高考)已知集合={-≥},={<≤},则(∁)∩=( ) .[) .(].() .[][由-≥,得≤或≥,即={≤或≥},所以∁={<<}=().又={<≤}=(],所以(∁)∩=().] .(·浙江高考)设全集={∈≥),集合={∈≥},则∁=( ).∅.{}.{} .{}[因为={∈≤-或≥},所以∁={∈≤<),故∁={}.]二、命题及其关系、充分条件与必要条件.(·浙江高考)设,是实数,则“+>”是“>”的( ).充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件[特值法:当=,=-时,+>,<,故+>⇒>;当=-,=-时,>,但+<,所以>⇒+>.故“+>”是“>”的既不充分也不必要条件.].(·湖州市高三第一学期期末调研测试)已知{}是等比数列,则“<”是“{}是单调递增数列”的( ).充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件[若=(-),是等比数列,且=<=,但该数列不具有单调性,所以充分性不成立;若{}是单调递增的等比数列,则必有<,所以必要性成立,即“<”是“{}是单调递增数列”的必要不充分条件,故选.].设:实数,满足(-)+(-)≤,:实数,满足(\\(≥-,≥-,≤,))则是的( ).必要不充分条件.充分不必要条件.充要条件.既不充分也不必要条件[表示以点()为圆心,为半径的圆面(含边界),如图所示.表示的平面区域为图中阴影部分(含边界).由图可知,是的必要不充分条件.故选.].已知直线,分别在两个不同的平面α,β内,则“直线和直线相交”是“平面α和平面β相交”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件[由题意知⊂α,⊂β,若,相交,则,有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则,的位置关系可能为平行、相交或异面.因此“直线和直线相交”是“平面α和平面β相交”的充分不必要条件.故选.].设集合={>-},={≥},则“∈且∉”成立的充要条件是( ) .-<≤.≤.>-.-<<[由∈且∉知∈∩(∁),又∁={<},则∩(∁)={-<<}.][组“+”模拟题提速练]一、选择题.已知集合={=(-)},集合={-<,>},若⊆,则的取值范围为( ).(] .().[,+∞).(,+∞)[由题意将两个集合化简得:=(),=(,),因为⊆,所以≥.].(·杭州市高三年级第二学期教学质量检测)设α,β是两个不同的平面,是一条直线,给出下列命题:①若⊥α,⊂β,则α⊥β;②若∥α,α⊥β,则⊥β,则.①②都是假命题.①是真命题,②是假命题.①是假命题,②是真命题.①②都是真命题[由面面垂直的判定可知⊥α,⊂β,则α⊥β,故命题①为真命题;∥α,α⊥β,与β可能平行,在β内,或与α相交,故②为假命题.].(·浙江高考)已知是虚数单位,,∈,则“==”是“(+)=”的( ).充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件[当==时,(+)=(+)=;当(+)=时,得(\\(-=,=,))解得==或==-,所以“==”是“(+)=”的充分不必要条件.].(·浙江省名校新高考研究联盟高三第三次联考)已知集合={∈<<},={∈+-≤},则( ) .∈.∈∁.∁⊆.∁⊆∁[由题意得集合={<<},={-≤≤},所以∁={≤或≥},∁={<-或>},所以∁⊆∁,故选.] .函数()的定义域为实数集,“()是奇函数”是“()是偶函数”的( ) 【导学号:】.充分不必要条件.必要不充分条件.既不充分也不必要条件.充要条件[()为奇函数,则(-)=-(),所以(-)=-()=(),因此()是偶函数,但当()为奇函数时,()为偶函数,但由()为偶函数不能得出结论()为奇函数,因此本题选.].“=”是“函数()=-+为奇函数”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件[()的定义域为{≠},关于原点对称,当=时,()=-,(-)=(-)-=-+=--()))=-(),故()为奇函数;反之,当()=-+为奇函数时,(-)+()=,又(-)+()=(-)-++-+=,故=,所以“=”是“函数()=-+为奇函数“的充要条件,故选.].已知集合={-+=,∈},={<<,∈},则满足条件⊆⊆的集合的个数为( )....[={(-)(-)=,∈}={},={<<,∈}={}.因为⊆⊆,所以可以为{},{},{},{}.].(·浙江高考)设,是有限集,定义:(,)=(∪)-(∩),其中()表示有限集中元素的个数.( ) 命题①:对任意有限集,,“≠”是“(,)>”的充分必要条件;命题②:对任意有限集,,,(,)≤(,)+(,)..命题①和命题②都成立.命题①和命题②都不成立.命题①成立,命题②不成立.命题①不成立,命题②成立[命题①成立,若≠,则(∪)>(∩),所以(,)=(∪)-(∩)>.反之可以把上述过程逆推,故“≠”是“(,)>”的充分必要条件;命题②成立,由图,知(∪)=()+()-(∩),(,)=()+()-(∩),(,)=()+()-(∩),所以(,)+(,)-(,)=()+()-(∩)+()+()-(∩)-[()+()-(∩)]=()-(∩)-(∩)+(∩)=()+(∩)-[(∩)+(∩)]≥()+(∩)-[((∪)∩)+(∩∩)]=[()-(\\())+[(∩)-(∩∩)]≥,所以(,)≤(,)+(,)得证.]二、填空题.(·浙江省名师原创预测卷(二))已知集合=,={=++},则(∁)∩=.{} [由题意得=,即=(-∞,)∪(,+∞),={≥},所以(∁)∩=[]∩[,+∞)={}.].已知集合=,={∈-<<+},若∈成立的一个充分不必要的条件是∈,则实数的取值范围是.(,+∞) [=={-<<},因为∈成立的一个充分不必要条件是∈,所以⊆,所以+>,即>.].(·浙江省名师原创预测卷(四))已知集合={,…,},若集合的一个非空子集中的奇数的个数不多于偶数的个数,则称该子集为“偏偶集”,那么集合的所有非空子集中,“偏偶集”的个数为.[集合的所有非空子集可分为三类:偶数的个数多于奇数的个数、奇数的个数多于偶数的个数、偶数的个数与奇数的个数相等.其中前两种情况的子集数相等,现考虑第三种情况,即考虑元素个数为的子集,则共有子集数:()+()+()+()+()=,从而“偏偶集”的个数为+(--)=.].设:(-)≤,:(+)(-)≥,若是的充分不必要条件,则实数的取值范围是.(-∞,-]∪[:(-)≤,所以-≤≤+,:≤-或≥.因为是的充分不必要条件,所以+≤-或-≥,即≤-或≥.].(·浙江高考)设集合={≥},={≤},则∩=.[] [因为={≥},={≤},所以∩={≥且≤}={≤≤}.].已知集合={},={∈≤},则∩(∁)=.{} [因为集合={},={∈≤}={-},所以∩(∁)={}.].(·江南十校一模)已知集合={-<<,∈},={-<,∈},若∩≠∅,则的最小值等于.[集合={-<<,∈},={-<,∈}={},∩≠∅,可得的最小值为.]。

(浙江专用)2018版高考数学大一轮复习 第一章 集合与常用逻辑用语 1.1 集合及其运算教师用书

(浙江专用)2018版高考数学大一轮复习 第一章 集合与常用逻辑用语 1.1 集合及其运算教师用书

(浙江专用)2018版高考数学大一轮复习第一章集合与常用逻辑用语 1.1 集合及其运算教师用书1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B(或B A)1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( ×)(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( ×)(3)若{x2,1}={0,1},则x=0,1.( ×)(4){x|x≤1}={t|t≤1}.( √)(5)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.( √)(6)若A∩B=A∩C,则B=C.( ×)1.(教材改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是( ) A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D解析由题意知A={0,1,2,3},由a=22,知a∉A.2.(2016·杭州质检)设集合A={x|x2-2x≥0},B={x|-1<x≤2},则(∁R A)∩B等于( ) A.{x|-1≤x≤0} B.{x|0<x<2}C.{x|-1<x<0} D.{x|-1<x≤0}答案 B解析因为A={x|x≥2或x≤0},所以∁R A={x|0<x<2},(∁R A)∩B={x|0<x<2},故选B. 3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B等于( ) A.{1} B.{4}C.{1,3} D.{1,4}答案 D解析因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10;即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.故选D.4.(2016·云南名校联考)集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是__________.答案 [2,+∞)解析 由A ∩B =A ,知A ⊆B ,从数轴观察得a ≥2.题型一 集合的含义例1 (1)(2016·济南模拟)设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是( )A .9B .8C .7D .6(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 (1)B (2)0或98解析 (1)当a =0时,a +b =1,2,6; 当a =2时,a +b =3,4,8; 当a =5时,a +b =6,7,11.由集合中元素的互异性知P +Q 中有1,2,3,4,6,7,8,11共8个元素.(2)若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)(2016·宁波模拟)已知A ={x |x =3k -1,k ∈Z },则下列表示正确的是( ) A .-1∉AB .-11∈AC .3k 2-1∈A (k ∈Z )D .-34∉A(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =________.答案 (1)C (2)2解析 (1)∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A . (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,得b a=-1, 所以a =-1,b =1,所以b -a =2. 题型二 集合的基本关系例2 (1)(2016·余姚一模)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是( ) A .5 B .4 C .3 D .2(2)已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________________. 答案 (1)B (2)[2 016,+∞) 解析 (1)∵{1,2}⊆B ,I ={1,2,3,4},∴满足条件的集合B 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)由x 2-2 017x +2 016<0,解得1<x <2 016, 故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 016},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(1)(2016·宁波模拟)已知集合A ={-1,0,1,2},B ={1,x ,x 2-x },且B ⊆A ,则x 等于( )A .1B .0C .2D .-1(2)(2016·连云港模拟)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________. 答案 (1)D (2)(-∞,4]解析 (1)当x =0时,x 2-x =0,不满足条件; 当x =2时,x 2-x =2,不满足条件; 当x =-1时,x 2-x =2,满足条件, 所以x =-1,故选D.(2)当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2016·全国乙卷)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( ) A.⎝⎛⎭⎪⎫-3,-32B.⎝⎛⎭⎪⎫-3,32C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,3 (2)(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )等于( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)答案 (1)D (2)B解析 (1)由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}={x |x >32},得A ∩B ={x |32<x <3}=⎝ ⎛⎭⎪⎫32,3,故选D. (2)由已知得Q ={x |x ≥2或x ≤-2}. ∴∁R Q =(-2,2).又P =[1,3],∴P ∪(∁R Q )=[1,3]∪(-2,2)=(-2,3]. 命题点2 利用集合的运算求参数例4 (1)已知集合P =[1,3],集合Q =(-∞,a )∪(b ,+∞),其中a <b ,若P ∩(∁R Q )=[2,3],则( ) A .a =2,b =3 B .a =2,b ≤3 C .a =2,b ≥3D .a ≤2,b ≥3(2)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( ) A .-1<a ≤2 B .a >2 C .a ≥-1 D .a >-1答案 (1)C (2)D解析 (1)因为∁R Q =[a ,b ],P ∩(∁R Q )=[a ,b ]∩[1,3]=[2,3],所以a =2,b ≥3,故选C. (2)因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)(2016·山东)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B 等于( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 (1)C (2)D解析 (1)∵A ={y |y >0},B ={x |-1<x <1}, ∴A ∪B =(-1,+∞),故选C.(2)由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例5 若对任意的x ∈A ,1x ∈A ,则称A 是“伙伴关系集合”,则集合M ={-1,0,12,1,2}的所有非空子集中,具有伙伴关系集合的个数为________. 答案 7解析 具有伙伴关系的元素组有-1;1;2和12共三组,它们中任一组、两组、三组均可组成非空伙伴关系集合,所以非空伙伴关系集合分别为{1},{-1},{12,2},{-1,1},{-1,12,2},{1,12,2},{-1,1,12,2},共7个. 思维升华 解决以集合为背景的新定义问题,要抓住两点(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.定义一种新的集合运算△:A △B ={x |x ∈A 且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A 等于( ) A .{x |3<x ≤4} B .{x |3≤x ≤4} C .{x |3<x <4} D .{x |2≤x ≤4}答案 B解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知B △A ={x |x ∈B 且x ∉A }={x |3≤x ≤4}.1.集合关系及运算典例 (1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3或0(2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________. 错解展示解析 (1)由A ∪B =A 得B ⊆A ,∴m =3或m =m , 故m =3或m =0或m =1. (2)∵B ⊆A ,讨论如下:①当B =A ={0,-4}时,⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1.②当B A 时,由Δ=0得a =-1, 此时B ={0}满足题意,综上,实数a 的取值范围是{1,-1}. 答案 (1)D (2){1,-1} 现场纠错解析 (1)A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B. (2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得 ⎩⎪⎨⎪⎧Δ=a +2-a 2-,-a +=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}. 答案 (1)B (2)(-∞,-1]∪{1}纠错心得 (1)集合的元素具有互异性,参数的取值要代入检验. (2)当两个集合之间具有包含关系时,不要忽略空集的情况.1.(2016·台州模拟)若A ={x |x =4k +1,k ∈Z },B ={x |x =2k -1,k ∈Z },则( ) A .A ⊆B B .B ⊆A C .A =B D .A ∩B =∅答案 A解析 ∵k ∈Z ,∴4k +1∈B ,∴A ⊆B .2.(2016·四川)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是( ) A.3 B.4 C.5 D.6答案 C解析由题意可知,A∩Z={-2,-1,0,1,2},则A∩Z中元素的个数为5.故选C.3.已知集合M={1,2,3,4},则集合P={x|x∈M且2x∉M}的子集的个数为( )A.8 B.4 C.3 D.2答案 B解析由题意得P={3,4},∴集合P有4个子集.4.(2016·绍兴期末调研)设集合S={x|x>2},T={x|x2-x-12≤0},则S∩T等于( ) A.[3,+∞) B.[4,+∞)C.(2,3] D.(2,4]答案 D解析由x2-x-12≤0,得-3≤x≤4,所以T={x|-3≤x≤4},所以S∩T=(2,4],故选D.5.(2017·杭州二中月考)已知全集为U,集合M={x|-2≤x<2},N={x|y=log2(x-1)},则图中阴影部分表示的集合是( )A.{x|-2≤x≤1} B.{x|1<x<2}C.{x|1≤x<2} D.{x|-2≤x<0}答案 A解析由x-1>0,解得x>1,所以N={x|x>1}.图中阴影部分表示的集合为M∩(∁U N),又∁U N={x|x≤1},所以M∩(∁U N)={x|-2≤x≤1},故选A.6.已知集合A={x|-1<x<0},B={x|x≤a},若A⊆B,则a的取值范围为( )A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(0,+∞)答案 B解析用数轴表示集合A,B(如图),由A⊆B,得a≥0.7.(2015·浙江)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q等于( )A .[0,1)B .(0,2]C .(1,2)D .[1,2] 答案 C解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2},故选C.8.(2016·杭州第二中学考试)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案 B解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.9.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4 答案 D解析 由x 2-3x +2=0,得x =1或x =2,∴A ={1,2}. 由题意知B ={1,2,3,4}.∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.*10.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫作集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( )A.13B.23C.112D.512 答案 C解析 由已知,可得⎩⎪⎨⎪⎧m ≥0,m +34≤1,即0≤m ≤14;⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎢⎡⎦⎥⎤0,34,N =⎣⎢⎡⎦⎥⎤23,1,所以M ∩N =⎣⎢⎡⎦⎥⎤0,34∩⎣⎢⎡⎦⎥⎤23,1=⎣⎢⎡⎦⎥⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112,故选C.x<0},则A∩(∁U B)=11.(2016·浙江五校高三联考)定义集合A={x|2x≥1},B={x|log12________.答案[0,1]解析∵A={x|x≥0},B={x|x>1},∴∁U B={x|x≤1},∴A∩(∁U B)=[0,1].12.(2016·诸暨高三5月质检)已知集合P={1,m},Q={m2},若P∪Q=P,则实数m的值是________.答案0或-1解析由P∪Q=P,得Q⊆P,∴m2∈{1,m},当m2=1时,m=1(舍)或m=-1;当m2=m时,m=1(舍)或m=0.综上,m=-1或m=0.13.(2016·临安模拟)设全集U=R,集合A={x|y=x2-2x-3},B={y|y=e x+1},则A∪B =__________.答案(-∞,-1]∪(1,+∞)解析因为A={x|x≥3或x≤-1},B={y|y>1},所以A∪B={x|x>1或x≤-1}.14.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是__________.答案(-∞,1]解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.15.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是________.答案 5解析当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.*16.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.。

2018年浙江高考数学二轮复习练习:第2部分必考补充专题专题限时集训17集合与常用逻辑用语Word版含答案

2018年浙江高考数学二轮复习练习:第2部分必考补充专题专题限时集训17集合与常用逻辑用语Word版含答案

[B 组 “8+7”模拟题提速练 ]
一、选择题 1.已知集合 A={ x| y= lg( x- x2)} ,集合 B={ x| x2- cx< 0,c>0} ,若 A? B,则 c 的取值范围为
6.(2014 ·浙江高考 ) 设全集 U= { x∈ N| x≥2) ,集合 A= { x∈ N| x2≥5} ,则 ?UA= (
)
A.? C.{5}
B.{2} D.{2,5}
B [ 因为 A= { x∈ N| x≤- 5或 x≥ 5} ,
所以 ?UA= { x∈N|2 ≤ x< 5) ,故 ?UA= {2} . ]
“直线 a 和直线 b 相交”是“平面 α 和平面 β 相交”的充分不必要条件.故选 A.]
11.设集合 A= { x| x>- 1} , B= { x| x≥1} ,则“ x∈A 且 x?B”成立的充要条件是
()
A.- 1< x≤1
B.x≤1
C.x>- 1
D.- 1< x<1
D [ 由 x∈ A 且 x?B 知 x∈A∩ ( ?RB) ,又 ?RB= { x| x< 1} ,则 A∩ ( ?RB) ={ x| - 1<x< 1} . ]
2.(2017 ·浙江高考 ) 已知集合 P={ x| - 1<x<1} , Q= { x|0< x<2} ,那么 P∪ Q= ( )
A.( - 1,2)
B.(0,1)
C.( - 1,0)
D.(1,2)
A [ ∵P= { x| - 1<x<1} ,Q= { x|0< x<2} ,
∴ P∪ Q= { x| - 1<x<2} .
二、命题及其关系、充分条件与必要条件 7.(2015 ·浙江高考 ) 设 a, b 是实数,则“ a+ b>0”是“ ab>0”的 ( )

(浙江专版)18年高考数学第2部分必考补充专题突破点17

(浙江专版)18年高考数学第2部分必考补充专题突破点17

内部文件,请勿外传
提炼 2 充要条件 设集合 A={x|x 满足条件 p},B={x|x 满足条件 q},则有 从逻辑观点看 p 是 q 的充分不必要条件(p⇒q,qD p) p 是 q 的必要不充分条件(q⇒p,pD q) p 是 q 的充要条件(p⇔q) p 是 q 的既不充分也不必要条件(pD q,qD 不包含 p) 从集合观点看 A B B A A=B A与B互
突破点 17
集合与常用逻辑用语
栏目 导航
专题限时集训
[核心知识提炼] 提炼 1 集合的概念、关系及运算 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C. (3)空集是任何集合的子集. (4)含有 n 个元素的集合的子集有 2n 个,真子集有 2n-1 个,非空真子集有 2n-2 个. (5)重要结论: A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.
2018版高三二轮复习与策略
内部文件,请勿外传
上一页
返回导航下Βιβλιοθήκη 页2018版高三二轮复习与策略
内部文件,请勿外传
上一页
返回导航
下一页

专题1-1 集合、常用逻辑用语、不等式-2018届浙江高三

专题1-1 集合、常用逻辑用语、不等式-2018届浙江高三

专题1.1 集合、常用逻辑用语、不等式1.利用描述法表示集合时,要注意代表元素的意义,如集合}1|{2+=x y x 表示函数12+=x y 的定义域,集合}1|{2+=x y y 表示函数12+=x y 的值域,集合}1|),{(2+=x y y x 表示函数12+=x y 的图象.2.分析集合关系时,弄清集合由哪些元素组成,这就需要我们把抽象的问题具体化、形象化,也就是善于对集合的三种语言(文字、符号、图形)进行相互转化,同时还要善于将多个参数表示的符号描述法(){}x p x 的集合化到最简形式.此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时.因此分类讨论思想是必须的.3.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴,进而用集合语言表示,增强数形结合思想的应用意识.要善于运用数形结合、分类讨论、化归与转化等数学思想方法来解决集合的问题.要注意若A B ⊆,则A B A = ,A B B = ,U U C A C B ⊇,U A C B =∅ 这五个关系式的等价性.4.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.5.充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q 且q ⇏p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.6.(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;⌝p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(⌝p )∧(⌝q );命题p ∧q 的否定是(⌝p )∨(⌝q ). 7.线性规划中常见目标函数的转化公式: (1)截距型:x zz ax by y b b=+⇒=-+,与直线的截距相关联,若0b >,当z b 的最值情况和z 的一致;若0b <,当zb 的最值情况和z 的相反;(2)斜率型:(,)y b z a b x a-=⇒-与(,)x y 的斜率,常见的变形:()()by ay b a a ak x c x c --+⇔⨯=+--,()11()x y b y c b k x c x c ++--⇔+=++--,11x b y c y ck x b-⇔=---.(3)点点距离型:2222()()z x y ax by c z x m x n =++++⇒=-+-表示(,)x y 到(,)m n 两点距离的平方; (4)点线距离型:z ax by c z =++⇒=表示(,)x y 到直线0ax by c ++=的距离的.注:线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 8.基本不等式的变形式:①a ,b R ∈⇒222a b ab +≥(当且仅当a b =时取“=”号);②22ab a b a b +≤≤≤+当且仅当a b =时取“=”号). 利用基本不等式求最值满足条件:一正、二定、三相等.注意:(1)若多次利用基本不等式求解一个式子的最值时,需验证每次等号成立的条件必须相同;(2)若等号成立不在给定的区间内,通常利用函数(0)by ax ab x=+>的单调性求最值. 9.含有绝对值的不等式(1)|()|(0)()f x a a f x a >>⇔>或()f x a <-; (2)|()|(0)()f x a a a f x a <>⇔-<<;(3)对形如||||x a x b c -+-≤,||||x a x b c -+-≥的不等式,可利用绝对值不等式的几何意义求解;(4)||||||||||a b a b a b -≤±≤+,此性质可用来解不等式或证明不等式.1. 【2018届西北师大附中高三下学期第二次模拟】已知集合{}2,1,0,1,2A =--, 2{|4}B x x =≥,则下图中阴影部分所表示的集合为( )A. {}2,1,0,1--B. {}0C. {}1,0-D. {}1,0,1- 【答案】D本题选择D 选项.【要点回扣】集合的运算、集合的图示.2.【2018届百校联盟TOP20三月联考】已知集合{}2|280A x N x x =∈--≤, {}|28xB x =≥,则集合A B⋂的子集个数为( )A. 1B. 2C. 3D. 4 【答案】D【解析】根据题意, {}{}2|2800,1,2,3,4,B {|3}A x N x x x x =∈--≤==≥,则{}3,4A B ⋂=,所以集合A B ⋂的子集个数为4. 故选D.【要点回扣】集合的运算、集合的包含关系、简单不等式的解法 3.设,a b R ∈,则“22log log a b >”是“21a b->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】22log log 0a b a b >⇔>>,21a ba b ->⇔>,所以“22log log a b >”是“21a b ->”的充分不必要条件,故选A.【要点回扣】命题与简易逻辑.4.已知错误!未找到引用源。

高中数学集合与常用逻辑用语专题复习-2

高中数学集合与常用逻辑用语专题复习-2

易错点,若,则实数的值为A.B.C.D.或或【错解】由得或,解得或或,所以选D.【错因分析】在实际解答过程中,很多同学只是把答案算出来后就不算了,根本不考虑求解出来的答案是不是合乎题目要求,有没有出现遗漏或增根.在实际解答中要根据元素的特征,结合题目要求和隐含条件,加以重视.当时,A=B={1,1,y},不满足集合元素的互异性;当时,A=B={1,1,1}也不满足元素的互异性;当时,A=B={1,−1,0},满足题意.集合中元素的特性:(1)确定性.一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合;(2)互异性.集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素(3)无序性.集合与其中元素的排列顺序无关,如a ,b ,c 组成的集合与b ,c ,a 组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系1.集合{x –1,x 2–1,2}中的x 不能取得值是A .2B .3C .4D .5【解析】当x =2时,x –1=1,x 2–1=3,满足集合元素的互异性,集合表示正确;当x =3时,x –1=2,集合中元素重复,不满足互异性,集合表示错误;当x =4时,x –1=3,x 2–1=15,满足集合元素的互异性,集合表示正确;当x =5时,x –1=4,x 2–1=24,满足集合元素的互异性,集合表示正确;故选B .【答案】B错点2误解集合间的关系致错已知集合,则下列关于集合A 与B 的关系正确的是A .B .C .D .【错解】因为,所以,所以,故选B .【试题解析】因为,所以,则集合是集合B 中的元素,所以,故选D .【参考答案】D(1)元素与集合之间有且仅有“属于()”和“不属于()”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征.(2)包含、真包含关系是集合与集合之间的关系,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作(或);如果集合,但存在元素,且,我们称集合是集合的真子集,记作(或).2.若集合,,则有A .B .C .D .【解析】,,故.故选B .易错点3忽视空集易漏解已知集合,,若,则实数m 的取值范围是A .B .C .D .【错因分析】空集不含任何元素,在解题过程中容易被忽略,特别是在隐含有空集参与的集合问题中,往往容易因忽略空集的特殊性而导致漏解.由并集的概念知,对于任何一个集合A ,都有,所以错解中忽略了时的情况.【试题解析】∵,∴.,①若,则,即,故时,;②若,如图所示,则,即.由得,解得.又∵,∴.由①②知,当时,.【参考答案】C(1)对于任意集合A ,有,,所以如果,就要考虑集合可能是;如果,就要考虑集合可能是.(2)空集是任何集合的子集,是任何非空集合的真子集,即,.3.集合,若,则实数的取值范围是A .B .C .D .【解析】当时,集合,满足题意;当时,,若,则,∴,所以,故选B .是B 的充分条件与A 的充分条件是B 的区别设,则“”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【错解】选A .【错因分析】充分必要条件的概念混淆不清致错.【试题解析】若,则,但当时也有,故本题选B .【参考答案】B(1)“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,即B ⇒A 且A B ;(2)“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ,即A ⇒B 且.4.已知,,若的一个充分不必要条件是,则实数的取值范围是A .B .C .D .【解析】由基本不等式得,,由,又因为的一个充分不必要条件是,则,故选A.错点5命题的否定与否命题的区别命题“且”的否定形式是A.B.C.D.【错因分析】错解1对命题的结论否定错误,没有注意逻辑联结词;对于错解2,除上述错误外,还没有否定量词;错解3的结论否定正确,但忽略了对量词的否定而造成错选.【试题解析】全称命题的否定为特称命题,因此命题“且”的否定形式是“”.故选D.【参考答案】D1.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.2.命题的否定(1)对“若p,则q”形式命题的否定;(2)对含有逻辑联结词命题的否定;(3)对全称命题和特称命题的否定.学!科网(4)全称(或存在性)命题的否定与命题的否定有着一定的区别,全称(或存在性)命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定,而命题的否定则直接否定结论即可.从命题形式上看,全称命题的否定是存在性命题,存在性命题的否定是全称命题.5.已知,则¬p是¬qA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【解析】∵,∴5x−2>3或5x−2<−3,∴x>1或,∴¬p:.∵,∴x2+4x−5>0,∴x>1或x<−5,∴¬q:−5≤x≤1,∴¬p⇒¬q,但¬q¬p,故¬p是¬q的充分不必要条件.【答案】A将命题的否定形式错误地认为:,∴x2+4x−5<0导致错误.一、集合1.元素与集合的关系:.2.集合中元素的特征:(1)确定性:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.(3)无序性:集合与其中元素的排列顺序无关,如a,b,c组成的集合与b,c,a组成的集合是相同的集合.这个特性通常被用来判断两个集合的关系.3.常用数集及其记法:集合非负整数集(自然数集)正整数集整数集有理数集实数集复数集符号或4.集合间的基本关系(或)是任何非空集合的真,个元素,则有个子集,有个非空子集,有个真子集,有个非)子集关系的传递性,即.)空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.5.集合的基本运算)二、命题及其关系、充分条件与必要条件1.四种命题命题表述形式原命题若p ,则q 逆命题若q ,则p 否命题若,则逆否命题若,则2.四种命题间的关系都是任意(所有)的任两个())四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件的概念(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q且q p,则p是q的充分不必要条件;(3)若p q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p q且q p,则p是q的既不充分也不必要条件.等价转化法判断充分条件、必要条件的充分不必要条件是的充分不必要条件;的必要不充分条件是的必要不充分条件;的充要条件是的充要条件;④p是q的既不充分也不必要条件是的既不充分也不必要条件.(2)集合判断法判断充分条件、必要条件若p以集合A的形式出现,q以集合B的形式出现,即p:A={x|p(x)},q:B={x|q(x)},则①若,则p是q的充分条件;②若,则p是q的必要条件;③若,则p是q的充分不必要条件;④若,则p是q的必要不充分条件;⑤若,则p是q的充要条件;⑥若且,则p是q的既不充分也不必要条件.三、逻辑联结词、全称量词与存在量词1.常见的逻辑联结词:或、且、非一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作,读作“p且q”;用联结词“或”把命题p和q联结起来,得到一个新命题,记作,读作“p或q”;对一个命题p的结论进行否定,得到一个新命题,记作,读作“非p”.2.复合命题的真假判断“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:p q真真假假真真真假假真真假假真真假真假假假真真假假3.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等存在量词存在一个、至少一个、有些、某些等4.含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:含有逻辑联结词的命题的真假判断:)中一假则假,全真才真.)中一真则真,全假才假.p与真假性相反.学科网注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.1.(2018浙江)已知全集U={1,2,3,4,5},A={1,3},则A.B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(2018新课标全国Ⅰ文科)已知集合,,则A.B.C.D.3.(2018新课标全国Ⅲ文科)已知集合,,则A.B.C.D.4.(2018天津文科)设集合,,,则A.B.C.D.5.(2018浙江)已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(2018天津文科)设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(2018北京文科)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(2017新课标全国Ⅰ文科)已知集合A=,B=,则A.A B=B.A BC.A B D.A B=R9.(2017新课标全国Ⅱ文科)设集合,则A.B.C.D.10.(2017北京文科)已知全集,集合,则A.B.C.D.11.(2017北京文科)设m,n为非零向量,则“存在负数,使得”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.(2016四川文科)设p:实数x,y满足且,q:实数x,y满足,则p是q的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.已知集合,则实数a的值为A.−1B.0C.1D.214.已知集合,,则A.B.C.D.15.设命题p:,则为A.B.C.D.16.“若,则,都有成立”的逆否命题是A.,有成立,则B.,有成立,则C.,有成立,则D.,有成立,则17.已知集合,集合,则集合A.B.C.D.18.已知集合,,若,则实数的取值范围是A.B.C.D.19.“”是“函数在区间无零点”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件20.设、都是非零向量,下列四个条件中,使成立的充分条件是A.B.C.D.且21.已知命题:对任意,总有是的充分不必要条件,则下列命题为真命题的是A.B.C.D.22.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是A.B.C.D.23.在射击训练中,某战士射击了两次,设命题是“第一次射击击中目标”,命题是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是A.为真命题B.为真命题C.为真命题D.为真命题24.(2018北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.25.已知集合,集合,若,则实数=________.26.若命题“”是假命题,则的取值范围是__________.27.已知条件,条件,若是的充分不必要条件,则实数的取值范围是______.28.下列有关命题的说法一定正确的是________.(填序号)①命题“,”的否定是“,”②若向量,则存在唯一的实数使得③若函数在上可导,则是为函数极值点的必要不充分条件④若“”为真命题,则“”也为真命题29.命题:若,则;命题:若,则恒成立.若的逆命题,的逆否命题都是真命题,则实数的取值范围是__________.。

2018届浙江省基于高考试题的复习资料——集合

2018届浙江省基于高考试题的复习资料——集合

一、集合与常用逻辑用语(一)集合一、高考考什么?[考试说明]1.了解集合、元素的含义及其关系。

2.理解集合的表示法。

3.理解集合之间包含、相等的关系。

4. 理解全集、空集、子集的含义。

5. 会求简单集合间的并集、交集。

6. 理解补集的含义并会求补集。

[全面解读]集合是现代数学的基础,也是高中数学最基本的概念,因而是每年高考数学的必考内容。

主要考查集合的含义、元素的特点、表示的方法等基本概念,子集、补集的概念,以及交集、并集的运算,并要求能结合其他知识的正确应用,有时也以集合为背景创设新的情景来考查学生的数学能力。

[难度系数] ★☆☆☆☆二、高考怎么考?[原题解析][2004年](1)若{1,2,3,4},{1,2},{2,3}U M N ===,则()U C MN = ( )A .{1,2,3}B .{2}C .{1,3,4}D .{4} [2005年](9)设()21f n n =+(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |()f n ∈P },Q ∧={n ∈N |()f n ∈Q },则(P ∧∩N C Q ∧)∪(Q ∧∩N C P ∧)=( )A . {0,3}B .{1,2}C . (3,4,5}D .{1,2,6,7}[2006年](1)设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )A .[0,2]B .[1,2]C .[0,4]D .[1,4] [2008年](2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A ⋂⋃⋂= ( ) A .∅ B .{}|0x x ≤ C .{}|1x x >- D .{}|01x x x >≤-或 [2009年](1)设U=R ,{|0}{|1}u A x x B x x C B =>=>⋂=,,则A ( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >[2010年](1) 设2{|4},{|4}P x x Q x x =<=<,则( )A .p Q ⊆B .Q P ⊆C .R p C Q ⊆D .R Q C P ⊆(10)设,,a b c 为实数,22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档