2019年全国二卷理科数学Word版
2019年高考全国卷2理科数学与答案(word精校版可以编辑)
2019 年普通高等学校招生全国统一考试全国卷 2 理科数学考试时间:2019年6 月7 日15:00——17:00使用省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、海南本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150 分,考试时间120 分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题,共60 分)一、选择题:本题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={ x|x2-5x+6>0} ,B={ x|x-1<0} ,则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i ,则在复平面内z 对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限u u u r 3.已知ABuuru u u u r=(2,3),AC =(3,t),BCu u u r u u u r=1,则AB BC =A.-3 B.-2C.2 D.34.2019 年1 月3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2 点的轨道运行.L2 点是平衡点,位于地月连线的延长线上.设地球质量为M 2,地月距离为R,L2 点到月球的距离为r,根1,月球质量为M据牛顿运动定律和万有引力定律,r 满足方程:M M M1 2 12 2 (R r ) 3( R r)r R.设rR ,由于的值很小,因此在近似计算中3 4 53 32(1 )3 3,则r的近似值为A.MM21R B.M212MRC. 3 3M2M1R D.3M23M1R5.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、 1 个最低分,得到7 个有效评分 .7 个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差6.若 a> b,则A.ln( a- b)>0 B.3a<3bC.a3- b3>0 D.│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2 2x y28.若抛物线y =2px(p>0)的焦点是椭圆3p p1 的一个焦点,则p=A.2 B.3C.4 D.89.下列函数中,以,)单调递增的是为周期且在区间(2 4 2A.f( x)= │cos x2│B.f( x)= │sin 2x│C.f(x)=cos │x│D.f (x)= sin x│10.已知α∈(0,),2sin 2α=cos 2α+1,则s in α=2A.15B.55C.33D.2552 2x y11.设F 为双曲线C: 2 2 1( 0, 0)a ba b2 2 2 的右焦点,O为坐标原点,以OF 为直径的圆与圆x y a交于 P,Q 两点.若PQ OF ,则C的离心率为A . 2 B. 3C.2 D. 512.设函数 f ( x) 的定义域为R,满足f (x 1) 2 f (x) ,且当x (0,1] 时,f (x) x(x 1) .若对任意x ( ,m] ,都有8f (x) ,则m的取值范围是9A ., 94 B . ,73C ., 5 2D ., 8 3第Ⅱ卷(非选择题,共 90 分)二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.我国高铁发展迅速,技术先进 .经统计,在经停某站的高铁列车中,有 10 个车次的正点率为 0.97,有20 个车次的正点率为 0.98,有 10 个车次的正点率为 0.99,则经停该站高铁列车所有车次的平均正点率 的估计值为 __________.f x ax .若f (ln 2) 8 ,则 a __________. 14.已知 f (x) 是奇函数,且当 x 0时,( )e15. △ABC的内角 A, B,C 的对边分别为a,b, c .若πb 6,a 2c, B,则 △ABC的面积为__________. 316.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体 ”(图 1).半正多面体是由两种或两种以上的正多边形围成的多面体 .半正多面体体现了数学的对称美 .图 2 是一个棱数为 48 的半正多面体,它的所有顶点都 在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有 ________个面,其棱长为_________.(本题第一空 2 分,第二空 3 分.)三、解答题:共 70 分。
2019年高考理科数学全国卷Ⅱ真题理数(附参考答案和详解)
文档说明绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅱ)数学(理工农医类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅱ·理)设集合2{|560}A x x x =-+>,{|10}B x x =-<,则A B =I ( )A.(,1)-∞B.(2,1)-C.(3,1)--D.(3,)+∞【解析】A B =I 2{|560}x x x -+>I {|10}x x -<{|23}{|1}{|1}x x x x x x x =<><=<I 或.故选A. 【答案】A2.(2019全国卷Ⅱ·理)设32i z =-+,则在复平面内z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】由32i z =-+,得32i z =--,则32i z =--,对应点(3,2)--位于第三象限.故选C. 【答案】C 3.(2019全国卷Ⅱ·理)已知(2,3)AB =u u u r ,(3,)AC t =u u u r ,||1BC =u u u r ,则AB BC ⋅=u u u r u u u r( )A.3-B.2-C.2D.3【解析】因为(3,)(2,3)(1,3)BC AC AB t t -=-==-u u u r u u u r u u u r ,||1BC =u u u r,1,解得3t =,所以(1,0)BC =u u u r,所以21302AB BC ⋅=⨯+⨯=u u u r u u u r.故选C.【答案】C4.(2019全国卷Ⅱ·理)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设rR α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为( )【解析】由rR α=得r R α=,代入121223()()M M M R r R r r R +=++,整理得5132243(1)+3+M M αααα=+. 又因为3453233(1)+3+ααααα≈+,所以2133M M α≈,所以α≈,所以r R α=≈.故选D. 【答案】D5.(2019全国卷Ⅱ·理)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差【解析】中位数是将9个数据从小到大或从大到小排列后 中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极值均受影响.故选A.【答案】A6.(2019全国卷Ⅱ·理)若a b >,则( )A.ln()0a b ->B.33a b <C.330a b ->D.||||a b >【解析】不妨设1,2a b =-=-,则a b >,可验证选项A ,B ,D 错误,只有选项C 正确.故选C. 【答案】C.7.(2019全国卷Ⅱ·理)设α,β为两个平面,则αβP 的充要条件是( ) A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线D.α,β垂直于同一平面【解析】若αβP ,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交;故A ,C ,D 均不是充要条件.根据平面与平面平行的判定定理可知,若一个平面内有两条相交直线与另一个平面平行,则两个平面平行,则两个平面平行,反之也成立.因此B 选项中条件是αβP 的充要条件.故选B. 【答案】B8.(2019全国卷Ⅱ·理)若抛物线22(0)y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p =( )A.2B.3C.4D.8【解析】抛物线22(0)y px p =>的焦点坐标为,02p ⎛⎫⎪⎝⎭,椭圆2213x y p p+=的焦点坐标为(.由题意得2p=, 所以0p =(舍去)或8p =.故选D. 【答案】D9.(2019全国卷Ⅱ·理)下列函数中,以π2为周期且在区间ππ,42⎛⎫⎪⎝⎭单调递增的是( ) A.()|cos2|f x x = B.()sin2|f x x =|C.()cos ||f x x =D.()sin ||f x x =【解析】作出函数()|cos2|f x x =的图象,如图.由图像可知()|cos2|f x x =的周期为2π,在区间ππ,42⎛⎫⎪⎝⎭单调递增. 同理可得()sin2|f x x =|的周期为为2π,在区间ππ,42⎛⎫⎪⎝⎭单调递减,()cos ||f x x =的周期为2π.()sin ||f x x =不是周期函数,排除B ,C ,D 选项.故选A.【答案】A10.(2019全国卷Ⅱ·理)已知π0,2α⎛⎫∈ ⎪⎝⎭,2sin2cos21αα=+,则sin α=( )A.15【解析】由2sin2cos21αα=+,得24sin cos 2cos ααα=g. 因为π0,2a ⎛⎫∈ ⎪⎝⎭,所以2sin cos αα=.又因为22sin cos 1αα+=, 所以21sin 5α=.又因为π0,2a ⎛⎫∈ ⎪⎝⎭,所以sin α故选B.【答案】B11.(2019全国卷Ⅱ·理)设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF为直径的圆与圆222x y a +=交于P ,Q 两点.若||||PQ OF =,则C 的离心率为( )C.2【解析】令双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 的坐标为(,0)c ,则c =.如图所示,由圆的对称性及条件||||PQ OF =可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF . 设垂足为M ,连接OP ,则||OP a =,||||2c OM MP ==, 由222||||||OM MP OP +=, 得22222c c a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以ce a==.故选A. 【答案】A12.(2019全国卷Ⅱ·理)设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A.9,4⎛⎤-∞ ⎥⎝⎦B.7,3⎛⎤-∞ ⎥⎝⎦C.5,2⎛⎤-∞ ⎥⎝⎦D.8,3⎛⎤-∞ ⎥⎝⎦【解析】因为当(0,1]x ∈时,()(1)f x x x =-, 所以当(0,1]x ∈时,1(),04f x ⎡⎤∈-⎢⎥⎣⎦.因为(1)2()f x f x +=,所以当(1,0]x ∈-时,1(0,1]x +∈,11()(1)(1)22f x f x x x =+=+,1(),016f x ⎡⎤∈-⎢⎥⎣⎦; …当(1,2]x ∈时,1(0,1]x -∈,()2(1)2(1)(2)f x f x x x =-=--, 1(),02f x ⎡⎤∈-⎢⎥⎣⎦;当(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)4(2)(3)f x f x f x x x =-=-=--, ()[1,0]f x ∈-;…()f x 的图象如图所示.若对于任意(,]x m ∈-∞,都有8()9f x ≥-,则有23m <≤.设8()9f m =-,则84(2)(3)9m m --=-,解得7833m m ==或.结合图像可知,当73m ≤时,符合题意.故选B. 【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)(含答案)
绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)2.设z=-3+2i,则在复平面内z对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知AB=(2,3),AC=(3,t),BC=1,则AB BC=A.-3 B.-2C.2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L点的轨道运行.2L点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,2L点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差6.若a >b ,则A .ln(a −b )>0B .3a <3bC .a 3−b 3>0D .│a │>│b │7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .89.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │10.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B.5C .3D .511.设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.15.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________. 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。
2019全国2卷理科数学试题及详解(可编辑修改word版)
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
(完整版)2019全国2卷理科数学试题及详解
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
2019年高考理科数学全国2卷(附答案)
12B-SX-0000020-绝密★启用前__2019 年普通高等学校招生全国统一考试_ -__-理科数学 全国 II 卷__- 本试卷共 23 小题,满分 150 分,考试用时 120 分钟:号 -(适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学 -注意事项:_-__1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
_-__2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__ -如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在___答题卡上。
写在本试卷上无效。
_ 线__ 封_ 3. 考试结束后,将本试卷和答题卡一并交回。
_密__ -__12 小题,每小题 5 分,共 60 分。
在每个小题给出的四个选: -一、 选择题:本题共 名 - 项中,只有一项是符合题目要求的。
姓 -2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则 A ∩B=班-A . (-∞, 1)B . (-2, 1)C .(-3 , -1)D . (3, +∞)___ -_ 2 .设 z=-3+2i ,则在复平面内 z 对应的点位于_-__A .第一象限B .第二象限C .第三象限D .第四象限年-____ 线 3 .已知 AB =(2,3) , AC =(3 ,t), BC =1,则 AB BC= _ _ 封_A . -3B . -2C . 2D . 3_密_-__4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_- ___ -我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_ 技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__ -___ -继星 “鹊桥 ”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,__ -_M 1,月球质量为 M 2 ,地月距离为: - 位于地月连线的延长线上.设地球质量为校 学 -R , L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1 ,月球质量为 M 2 ,地月距离为R, L 2 点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1M 2M 1(R r) 2r 2(R r ) 3 .R设r ,由于 的值很小,因此在近似计算中3 33453 3,则R(1 ) 2r 的近似值为A .M2RB .M2RC .33M2RD .3M2RM 12M 1M 13M 15.演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分, 得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是 A .中位数B .平均数C .方差D .极差6.若 a>b ,则A . ln(a- b)>0B .3a<3bC . a 3- b 3>0D . │a │ >│b │7.设 α, β为两个平面,则α∥ β的充要条件是A . α内有无数条直线与β平行B .α内有两条相交直线与β平行C . α, β平行于同一条直线D .α,β垂直于同一平面2x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆1 的一个焦点,则3p p- 1 -- 2 -12B-SX-0000020A .2B . 3C . 4D . 89.下列函数中,以为周期且在区间 ( , )单调递增的是242A .f(x)= │ cos x2│B . f(x)= │ sin 2x │C .f(x)=cos │x │D . f(x)= sin x │10.已知 α∈ (0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5A .55C .3D .2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C :b2a2为直径的圆与圆 x2y 2a 2交于 P ,Q 两点 .若 PQ OF ,则 C 的离心率为A . 2B . 3C . 2D .512.设函数 f ( x) 的定义域为 R ,满足 f (x 1)2 f ( x) ,且当 x (0,1] 时,f (x )x(x 1) .若对任意 x (, m] ,都有 f ( x)8 ,则 m 的9取值范围是A .9 B .7,,43C .5 D .8,,23二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年高考理科数学全国2卷(附答案)(2)(2021年整理)
(完整)2019年高考理科数学全国2卷(附答案)(2)(w o r d 版可编辑修改)绝密★启用前2019年普通高等学校招生全国统一考试理科数学 全国II 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:内蒙古/黑龙江/辽宁/吉林/重庆/陕西/甘肃/宁夏/青海/新疆/西藏/海南)注意事项:1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的1.设集合A ={x |x 2-5x +6>0},B ={ x |x —1〈0B = A .(—∞,1)B .(—2,1)C .(—3D .(3,+∞)2.设z =—3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .—2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R+=++.设r R α=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 A B C D 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
2019年高考全国卷2理科数学及答案(word精校版可以编辑)(可编辑修改word版)
分。
解答应写出文字说明、证明过程或演算步骤。
第17~21
(1)证明:BE ⊥平面EB 1C 1;
(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.18.(12分)
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.
(1)求P (X =2);
(2)求事件“X =4且甲获胜”的概率.
19.(12分)
已知数列{a n }和{b n }满足a 1=1,b 1=0,
,.
1434n n n a a b +-=+1434n n n b b a +-=-(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.
20.(12分)
所以,的取值范围是.a [1,)。
2019年高考理科数学全国2卷(附答案)
-- 12B-SX-0000020- 绝密★启用前__2019 年普通高等学校招生全国统一考试_-__ - 理科数学全国 II 卷___- 本试卷共 23 小题,满分150 分,考试用时120 分钟:号 - (适用地区:内蒙古 / 黑龙江 /辽宁 /吉林 /重庆 /陕西 / 甘肃 /宁夏 /青海 /新疆 / 西藏 /海南 )学-注意事项:_-__1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
_-__2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
__- 如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在___ 答题卡上。
写在本试卷上无效。
_线__封_ 3.考试结束后,将本试卷和答题卡一并交回。
_密__-__12 小题,每小题5 分,共 60 分。
在每个小题给出的四个选:-一、选择题:本题共名- 项中,只有一项是符合题目要求的。
姓- 2- 1.设集合 A={ x|x -5x+6>0} , B={ x|x-1<0} ,则A∩B=班- A . (-∞, 1) B . (-2, 1) C.(-3 , -1) D. (3, +∞)_ _ _-_2.设 z=-3+2i,则在复平面内 z对应的点位于_-__A .第一象限B .第二象限C.第三象限D.第四象限年-____线3.已知 AB =(2,3) , AC =(3 ,t), BC =1,则 ABBC =__封_A.-3 B.-2 C. 2 D. 3_密_-__ 4. 2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,_-___- 我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键___-_技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中__-___-继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2 点的轨道运行. L2 点是平衡点,__-_ M1,月球质量为 M2,地月距离为:-位于地月连线的延长线上.设地球质量为校学--- R, L2点到月球的距离为 r ,根据牛顿运动定律和万有引力定律,地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R, L2点到月球的距离为 r,根据牛顿运动定律和万有引力定律,r 满足方程:M1M 2M1(R r)2r2 (R r )3 .R设r ,由于的值很小,因此在近似计算中 3 33 45 3 3,则R (1 ) 2r的近似值为A .M 2 RB .M 2 R C.33M2R D .3M 2RM 12M 1M 13M 15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分,得到 7 个有效评分 .7 个有效评分与 9 个原始评分相比,不变的数字特征是A .中位数B .平均数C.方差D.极差6.若 a>b,则A . ln(a- b)>0B .3a<3 b C. a3- b3>0 D .│a│ >│b│7.设α,β为两个平面,则α∥ β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C.α,β平行于同一条直线D .α,β垂直于同一平面2 x2y2p=8.若抛物线 y =2px(p>0) 的焦点是椭圆 1 的一个焦点,则3p p-1- -2---12B-SX-0000020A .2B . 3C . 4D . 8 9.下列函数中,以 为周期且在区间( , )单调递增的是 2 4 2A .f(x)= │ cosx2│ B . f(x)= │ sin 2x │C .f(x)=cos│x │ D . f(x)= sin x │10.已知 α∈(0, ), 2sin 2α=cos 2α+1,则 sin α=21B .5 A .5 5C .3 D . 2535x 2y 21(a 0,b 0) 的右焦点, O 为坐标原点, 以 OF11.设 F 为双曲线 C : b 2a 2为直径的圆与圆 x 2y 2a 2交于 P ,Q 两点 .若 PQOF ,则 C 的离心率 为A . 2B. 3C . 2 D. 512.设函数 f ( x) 的定义域为 R ,满足 f (x1) 2 f ( x) ,且当 x (0,1] 时, f (x ) x(x 1) .若对任意 x ( , m] ,都有 f ( x) 8,则 m 的9取值范围是A . 9B .7 , , 43 C .5 D .8 ,,2 3-- 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(完整版)2019年全国二卷理科数学试卷(2)
2019年普通高等学校招生全国统一考试(II 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1. 设集合}065|{2>+=x x x A -,}01-|{<=x x B ,则=B A IA. )1,(-∞B. )1,2(-C. )1,3(--D. ),3(+∞ 2. 设i 23-+=z ,则在复平面内z 对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知====t · 1||),3()3,2(,则,,A. 3-B. -2C. 2D. 3 4. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又 一重大成就。
实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系,为 解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行, L 2点是平衡点,位于地月连线的延长线上。
设地球质量为M 1,月球质量为M 2,地月距离为R , L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:312221)()(R M r R r M r R M +=++。
设Rr =α,由于α的值很小,因此在近似计算中325433)1(33ααααα≈+++,则r 的近似值为 A. R M M 12 B. R M M 122 C. R M M 3123 D. R M M 3123 5. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去 掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数 字特征是A. 中位数B. 平均数C. 方差D. 极差6. 若a > b ,则A. 0)(ln >a-bB. b a 33<C. 033>-b aD. ||||b a >7. 设α、β为两个平面,则α // β的充要条件是A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α、β平行于同一条直线D. α、β垂直于同一平面 8. 若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p A. 2 B. 3 C. 4D. 8 9. 下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是 2019.610. 已知)2,0(πα∈,=+=αααsin 12cos 22sin ,则 A. 51B. 55C. 33D. 552 11. 设F 为双曲线C :)0,0(12222>>=-b a by a x 的右焦点,O 为坐标原点,以OF 为直径的圆与222y a x =+ 交于P 、Q 两点,若|PQ | = |OF |,则C 的离心率为A. 2B. 3C. 2D. 512. 设函数)(x f 的定义域为R ,满足)(2)1(x f x f =+,且当]1,0(∈x 时,)1()(-=x x x f ,若对任意],(m x -∞∈,都有98)(-≥x f ,则m 的取值范围是 A. ]49,(-∞ B. ]37,(-∞ C. ]25,(-∞ D. ]38,(-∞ 二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2019年高考理科数学全国2卷
2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合}065|{2>+-=x x x A ,}01|{<-=x x B ,则=B A I ( )A.)1,(-∞B.)1,2(-C.)1,3(--D.),3(+∞2.设i z 23+-=,则在复平面内z 对应的点位于 ( )A.第一象限B.第二象限C.第三象限D.第四象限3.已知)(3,2=,),3(t =,1||=,则=⋅BC AB ( ) A.-3 B.-2 C.2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。
实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行。
2L 点事平衡点,位于地月连线的延长线上。
设地球质量为1M ,月球质量为2M ,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: 312221)()(RM r R r M r R M +=++. 设Rr =α,由于α的值很小,因此在近似运算中325433)1(33ααααα≈+++,则r 的近似值为( ) A.R M M 12 B.R M M 122 C.R M M 3123 D.R M M 3123 5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效分。
7个有效评分与9个原始评分相比,不变的数字特征是 ( )A.中位数B.平均数C. 方差D. 极差6.若b a >,则( )A.0)ln(>-b aB. b a 33<C. 033>-b a D.||||b a >7.设βα,为两个平面,则βα//的充要条件是( )A. α内有无数条直线与β平行B.α内有两条相交直线与β平行C. α,β平行于同一条直线D.α,β垂直于同一条直线 8.若抛物线)0(22>=p px y 的焦点是椭圆1322=+p y p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.89.下列函数中,以2π为周期且在区间)2,4(ππ单调递增的是 ( ) A.|2cos |)(x x f = B.|2sin |)(x x f = C.||cos )(x x f = D.||sin )(x x f =10.已知)2,0(πα∈,12cos 2sin 2+=αα,则=αsin ( )A.51 B.55 C.33 D.552 11.设F 为双曲线)0,0(1:2222>>=-b a by a x C 的右焦点,O 为坐标原点,以OF 为直径的 圆与圆222a y x =+交于Q P ,两点,若||||OF PQ =,则C 的离心率为( ) A.2 B.3 C.2 D.512.设函数)(x f 的定义域为R ,满足)(2)1(x f x f =+,且当]1,0(∈x 时,)1()(-=x x x f .若对任意],(m x -∞∈,都有89)(-≥x f ,则m 的取值范围是( ) A.]49,(-∞ B.]37,(-∞ C.]25,(-∞ D.]38,(-∞ 二、填空题:本题共4小题,每小题5分,共20分。
(完整word版)2019年高考理科数学全国2卷
2019 年一般高等学校招生全国一致考试理科数学一、选择题:本题共12 个小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项吻合题目要求的。
1. 设会集A{ x | x25x60} , B{ x | x10} ,则A B()A. (,1)B. (2,1)C.(3, 1)D.(3,)2.设z 3 2i ,则在复平面内z 对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知,(3, t ),| BC |1,则 AB BC()AB (2,3) ACA.-3B.-2C.2D.34.2019 年 1 月 3 日嫦娥四号探测器成功实现人类历史上首次月球反面软着陆,我国航天事业获取又一重要成就。
实现月球反面软着陆需要解决的一个要点技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L2点的轨道运行。
L2点事平衡点,位于地月连线的延长线上。
设地球质量为M 1,月球质量为 M 2,地月距离为R ,L2点到月球的距离为r ,依照牛顿运动定律和万有引力定律, r 满足方程:M 1M2( R r )M1.(R r )2r 2R3设r,由于的值很小,因此在近似运算中 3 334533,则 r 的近似R(1) 2值为()A.M2 R B.M2 R C.33M2 R D. 3M2 R M 12M 1M 13M 15.演讲比赛共有9 位评委分别给出某选手的原始评分,评定该选手的成绩时,从9 个原始评分中去掉 1 个最高分、 1 个最低分,获取 7 个有效分。
7 个有效评分与9 个原始评分对照,不变的数字特色是()A.中位数B.平均数C. 方差D. 极差6.若a b ,则()A. ln( a b)0B. 3a3bC. a3b30D.| a || b |7.设,为两个平面,则//的充要条件是()A.内有无数条直线与平行B.内有两条订交直线与平行C.,平行于同一条直线D.,垂直于同一条直线8.若抛物线y2 2 px( p0) 的焦点是椭圆x2y2 1 的一个焦点,则p()3 p pA.2B.3C.4D.89.以下函数中,以2为周期且在区间( ,) 单调递加的是()42A. f (x) | cos 2x |B. f ( x)| sin 2x |C. f ( x)cos | x |D. f ( x)sin | x |10.已知(0,) , 2 sin 2cos21,则 sin()21B.5C.325A.53D.5511.设F为双曲线C :x2y21(a0,b0)的右焦点, O 为坐标原点,以OF 为直径的a2b2圆与圆 x2y2 a 2交于 P,Q 两点,若 | PQ ||OF |,则C的离心率为()A. 2B. 3C.2D. 512.设函数f ( x)的定义域为R,满足f (x1) 2 f (x),且当 x(0,1] 时, f ( x) x( x 1) .若对任意 x(, m] ,都有f (x)9),则 m 的取值范围是(, 9],7]8,5],8]A. (B. (C. (D. (4323二、填空题:本题共 4 小题,每题 5 分,共20 分。
2019年全国卷2(理科数学)含答案
绝密★启用前2019年普通高等学校招生全国统一考试理科数学(全国Ⅱ卷)本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x2–5x+6>0},B={x|x–1<0},则A∩B=A.(–∞,1)C.(–3,–1)2.设z=–3+2i,则在复平面内z对应的点位于A.第一象限C.第三象限B.(–2,1) D.(3,+∞)B.第二象限D.第四象限3.已知AB=(2,3),AC=(3,t),|BC|=1,则AB BC=A.–3 C.2B.–2 D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业(R+r)r R R+2=(R+r)1.设α=1C.3D.3p =1的一个焦点,则p=取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M,地月距离为R,L点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方22M M M r程:,由于α的值很小,因此在近似计算中2233α3+3α4+α5(1+α)2≈3α3,则r的近似值为A.MM2R1B.M2R2M13M2RM1M2R3M15.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数C.方差6.若a>b,则A.ln(a b)>0C.a3−b3>07.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行C.α,β平行于同一条直线B.平均数D.极差B.3a<3bD.│a│>│b│B.α内有两条相交直线与β平行D.α,β垂直于同一平面8.若抛物线y2=2p x(p>0)的焦点是椭圆A.2x23p+y2B.32 ),2sin2α=cos2α+1,则 sin α=2 A . -∞, ⎥B . -∞, ⎥C . -∞, ⎥D . -∞, ⎥C .49.下列函数中,以 π 2 为周期且在区间(π 4 , D .8π2 )单调递增的是A .f(x )=│cos2x │C .f(x )=cos│x │10.已知 α∈(0, πB .f(x )=│sin2x │D .f(x )=sin│x │A . 15B . 55C . 33 D . 2 5511.设 F 为双曲线 C : x 2 y 2- a b 2= 1(a > 0, b > 0) 的右焦点, O 为坐标原点,以 O F 为直径的圆与圆 x 2 + y 2 = a 2 交于 P ,Q 两点.若A . 2C .2PQ = OF ,则 C 的离心率为B . 3D . 512.设函数 f ( x ) 的定义域为 R ,满足 f (x + 1) = 2 f (x) ,且当 x ∈ (0,1] 时, f (x) = x(x - 1) .若8对任意 x ∈ (-∞, m ] ,都有 f ( x ) ≥ - ,则 m 的取值范围是9⎛ 9⎤ ⎝4 ⎦⎛ 5 ⎤ ⎝2 ⎦ ⎛ 7 ⎤ ⎝3 ⎦⎛ 8 ⎤ ⎝ 3 ⎦二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(完整版)2019全国2卷理科数学试题及详解 (2)
2019全国2卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分。
1.设集合A ={x |x 2−5x +6>0},B ={x |x −1<0},则A ∩B =( A ) A. (−∞,1) B.(−2,1) C.(−3,−1) D. (3,+∞)2.设z =−3+2i,则在复平面z̅对应的点位于( C ) A. 第一象限 B. 第二象限 C.第三象限 D.第四象限3.已知AB⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ =( C ) A.−3 B.−2 C. 2 D. 34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天 事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探 测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”。
鹊桥沿着围绕地月 拉格朗日L 2点的轨道运行,L 2点是平衡点,位于地月连线的延长线上,设地球质量为M 1 ,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r,根据牛顿运动定理和万有引力 定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3设α=rR ,由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( D )A. √M2M 1R B. √M22M 1R C. √3M 2M 13R D. √M23M 13R5.演讲比赛共有9为评委分别给出某选手的原始评分,评定该选手的成绩时,从9个 原始评分中去掉1个最高分、一个最低分,得到7个有效评分。
7个有效评分与9个 原始评分相比,不变的数字特征是( A )A. 中位数B. 平均数C. 方差D.极差 6.若a >b,则( C )A.ln (a −b )>0B.3a <3bC. a 3−b 3>0D. |a |>|b|7.设α,β为两个平面,则α∥β的 充要条件是( B )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面 8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p+y 2p=1的一个焦点,则p =( D )A. 2B. 3C. 4D. 89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( A )A.f (x )=|cos2x|B. f (x )=|sin2x|C. f (x )=cos |x |D. f (x )=sin |x| 10.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( B ) A. 15 B.√55 C.√33D.2√5511.设F 为双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径 的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( A ) A. √2 B. √3 C. 2 D. √512.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x −1). 若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是( B )A. (−∞,94] B. (−∞,73] C.(−∞,52] D. (−∞,83]二、填空题:本题共4小题,每题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国Ⅱ卷理科数学真题
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A =*x|x 2−5x +6>0+,B =*x|x −1<0+,则A ∩B = ( )
A.(−∞ ,1)
B.(−2 ,1)
C.(−3 ,−1)
D.(3 ,+∞)
2.设z =−3+2i ),则在复平面内z ̿对应的点位于 ( )
A.第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3.已知向量AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗⃗ =(3,t), |BC ⃗⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ = ( )
A.−3
B.−2
C.2
D.3
4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系,为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行,L 2是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定理和万有引力定理,r 满足的方程:
M 1(R:r)2+M 2r 2=(R +r)M 1R 3. 设α=r R ,由于α的值很小,因此在近似计算中3α3:3α4:α5
(1:α)2≈3α3,则r 的近似值
为 ( )
A.√M 2
M 1R B.√M 22M 1R C.√3M 2M 1R D.√M 23M 1R
5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分和9个原始评分相比,不变的数字特征是 ( )
A.中位数
B.平均数
C.方差
D.极差
6.设a >b ,则 ( )
A.ln (a −b)>0
B.3a <3b
C.a 3−b 3>0
D.|a |>|b |
7.设α,β为两个平面,则α//β的充要条件是 ( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α ,β平行与同一条直线
D.α,β垂直于同一平面
8.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p = ( )
A.2
B.3
C.4
D.8
9.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是 ( ) A.f (x )=|cos2x | B.f (x )=|sin2x | C.f (x )=cos |x | D.f (x )=sin |x |
10.已知α∈(0 ,π2),,2sin2α=cos2α+1,则sin α= ( )
A.15
B.
√55 C.√33 D.2√55 11.设F 为双曲线C :x 2a 2−y 2
b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为
直径的圆与圆x 2+y 2=a 2交于P ,Q 两点。
若|PQ |=|OF |,则C 的离心率为 ( )
A.√2
B.√3
C.2
D.√5
10.设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x(x −1).若对任意x ∈(−∞,m ],都有f (x )≥−89,则m 的取值范围是 ( ) A.(−∞,94] B.(−∞,73] C.(−∞,94] D.(−∞,73]
二、填空题:本题共4小题,每小题5分,共20分。
13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
14.已知f (x )是奇函数,且当x <0时,f (x )=−e ax .若f (ln2)=8,则a = .
15.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则ΔABC 的面积为 .
16.中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信得印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是棱数为48的半正多面体,它所有顶点都在同一个正方体的表面上,且次正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分)
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分
17.(12分)
如图,长方体ABCD−A1B1C1D1的底面ABCD是正方形,
点E在棱AA1上,BE⊥EC1.
(1)证明:BE⊥平面EB1C1;
(2)若AE=A1E , ,求二面角B−EC−C1的正切值.
18.(12分)
11分制兵乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束,甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立,在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜的概率”
19.(12分)
已知数列*a n+和*b n+满足a1=1,b1=0,4a3:1=3a n−b n+4,4b3:1=3b n−a n−4.
(1)证明:*a n+b n+是等比数列,*a n−b n+是等差数列;
(2)求*a n+和*b n+的通项公式.
20.(12分)
.
已知函数f(x)=lnx−x:1
x;1
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.
21.(12分)
已知A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−1
,记
2
M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE并延长交C于点G.
(ⅰ)证明:ΔPQG是直角三角形;
(ⅱ)求ΔPQG面积的最大值.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.
(1)当θ0=π
时,求ρ0及l的极坐标方程;
3
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
23.[选修4-5:不等式选讲](10分)
已知f(x)=|x−a|x+|x−2|(x−a).
(1)当a=1时,求不等式f(x)<0的解集;
(2)若x∈(−∞,1)时,f(x)<0,求a的取值范围.。