苏科版初中数学七年级上册第二章《有理数》检测试卷

合集下载

苏科版七年级上《第二章有理数》单元检测试题含答案

苏科版七年级上《第二章有理数》单元检测试题含答案

②若每千米耗油 0.0 升,则今天共耗油多少升?
䁮 .如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是 对进入的数进行转换的转换器)
1 当小明输入 3;9;0. 这三个数时,这三次输入的结果分别是多少? 䁮 你认为当输入什么数时,其输出的结果是 0? 3 你认为这的“有理数转换器”不可能输出什么数?
3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以
我们为中国节水,为世界节水.若每人每天浪费水 0.3䁮r,那么 100 万人每天
浪费的水,用科学记数法表示为( )
A.3.䁮 10 r C.3.䁮 10 r
B.3.䁮 10 r D.3.䁮 10 r
.下列关于零的说法中,正确的个数是( )①零是正数;②零是负数;③零
所以输出的数应为非负数.
∴ 晦 0, 1,


时,原式
01 0
31
1
䁮 10;

时,原式
01 0
31
1
䁮 0;
所以


3
的值为 10 或 0.
䁮3.解: 1 根据题意:规定向东为正,向西为负:则 1
13
10
1䁮
3
13
1
䁮 千米,
故小王在出车地点的西方,距离是 䁮 千米; 䁮 这天下午汽车走的路程为
1
13
10
1䁮
3
13
汽车耗油量为 0. 升/千米,则 t 0. 3 .t 升,
① 晦 0;② 晦 0;③ 晦 ;④ 晦 t 0.
1 .若 䁮 䁮 䁮‫ ݕ‬1 0,则 ‫________ ݕ‬.
1t.有一颗高出地面 10 米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行 的路径是每向上爬行 米又向下滑行 1 米,它想爬到树顶至少爬行________米.

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

第二章 有理数 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 在227,π3,1.62,0四个数中,有理数的个数为( )A.4B.3C.2D.12. 2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )A.360×102B.36×103C.3.6×104D.0.36×1053. 有下列四个算式:①(−5)+(+3)=−8;②−(−2)3=6;③(+56)+(−16)=23;④−3÷(−13)=9. 其中,错误的有( )A.0个B.1个C.2个D.3个4. 不小于−4的非正整数有( )A.5个B.4个C.3个D.2个5. 小明玩“24点”游戏时抽到了以下四个4,要求用数学运算符号运算,结果为24,请判断下列算式正确的是( )A.(4+4)(4−√4)=24B.4+4×(4+4)=24C.(4+4)(4−4−1)=24D.(4+4)(4−40)=24 6. 下列算式中,运算结果为负数的是( )A.−|−1|B.−(−2)3C.−(−52)D.(−3)27. 下列实数中,不是无理数的是()3 D.−2A.√2B.πC.√38. 下列说法中①相反数等于本身的数是0,②绝对值等于本身的是正数,③倒数等于本身的数是±1,正确的个数为()A.3个B.2个C.1个D.0个二、填空题(本题共计12 小题,每题3 分,共计36分,)的整数的积等于________.9. 绝对值不大于51310. 如图,这两个圈分别表示正数集合和整数集合,则它们的重叠部分表示的是________集合.11. 如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.12. 比−3小5的数是________,比−3∘C高5∘C的温度是________.13. 数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为________.14. 平方和绝对值都是它本身的相反数的数是________.15. 绝对值小于4的所有整数的积是________ .绝对值不大于2的所有非正整数的和是________;16. 对于算式15−144÷(7+5)应先算________,再算________,最后算________.17. −(−13)是________的相反数.18. 已知|a|=3,|b|=4,且a >b ,则a ×b =________.19. +6+9−15+3=________+________+________-________.20. 已知a ,b ,c ,d 为有理数,且|2a +b +c +2d +1|=2a +b −c −2d −2,则(2a +b −12)(2c +4d +3)=________. 三、 解答题 (本题共计 8 小题 ,共计60分 , )21. −8×(+12)×(−7)×0.22. (−212)÷(−5)×(−313).23. (79−56+34+718)÷(−136).24. 已知|4−y|+|x +7|=0,求x−y xy 的值.25. 若|a+1|+|b−2|+(c+3)2=0,求(a−1)(b+2)(c−3)的值.26. 若a、b互为相反数,c、d互为倒数,m的绝对值为2,求:a+ba+b+c−cd+2m的值.27. 我们把从1开始的几个连续自然数的立方和记为S n,那么有:S1=13=12=[1×(1+1)2]2S2=13+23=(1+2)2=[2×(1+2)2]2S3=13+23+33=(1+2+3)2=[3×(1+3)2]2S4=13+23+33+43=(1+2+3+4)2=[4×(1+4)2]2…观察上面的规律,完成下面各题:(1)写出S5,S6的表达式;(2)探索写出S n的表达式;(3)求113+123+...+203的值.28. 已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b−3)2=0.(1)则a=________,b=________;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A,B两点的距离和为11,若点C在数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.(温馨提示:M,N之间距离记作|MN|,点M,N在数轴上对应的数分别为m,n,则|MN|=|m−n|.)参考答案一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】B【解答】解:在227,π3,1.62,0四个数中,有理数为227,1.62,0,共3个. 故选B .2.【答案】C【解答】36000=3.6×104,3.【答案】C【解答】解:①(−5)+(+3)=−2,原来的计算错误;②−(−2)3=8,原来的计算错误;③(+56)+(−16)=23,原来的计算正确; ④−3÷(−13)=9,原来的计算正确.错误的有2个.故选C .4.【答案】A【解答】解:不小于−4的非正整数有:0,−1,−2,−3,−4.共有5个.故选A .5.【答案】D【解答】解:A ,原式=8(4−√4)=32−8×2=16,此选项错误;B ,原式=4+4×8=36,此选项错误;C ,原式=8×(4−14)=30,此选项错误;D ,原式=8×(4−1)=24,此选项正确.故选D .6.【答案】A【解答】解:∵ −|−1|=−1,故选项A 符合题意,∵ −(−2)3=−(−8)=8,故选项B 不符合题意,∵ −(−52)=52,故选项C 不符合题意, ∵ (−3)2=9,故选项D 不符合题意,故选A .7.【答案】D【解答】解:无理数就是无限不循环小数,分析选项可得,A 、B 、C 都是无理数,故选项错误; D 是有理数,故选项正确.故选D .8.【答案】B【解答】①相反数等于本身的数是0,故①符合题意,②绝对值等于本身的是非负数,故②不符合题意,③倒数等于本身的数是±1,故③符合题意,二、 填空题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )9.【答案】【解答】绝对值不大于51的整数有:±5,±4;±3;±2;±1;0,3的所有整数的积为0.所以绝对值不大于51310.【答案】正整数【解答】解:正数集合和整数集合,则它们的重叠部分表示的是正整数,故答案为:正整数.11.【答案】2−2π【解答】∵ 半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∵ OA′之间的距离为圆的周长=2π,A′点在2的左边,∵ A′点对应的数是2−2π.12.【答案】−8,2∘C【解答】解:−3−5=−8;−3∘C+5∘C=2∘C.故答案为:−8;2∘C.13.【答案】−1或5【解答】当点B在点A的左边的时候,点B表示的数为2−3=−1;当点B在点A的右边的时候,点B表示的数为2+3=5;所以点B表示的数为−1或5,14.【答案】0和−1【解答】平方与绝对值都是它本身的相反数的数是:0和−1.15.【答案】0,−3【解答】解:绝对值小于4的所有整数为:−3,−2,−1,0,1,2,3,它们的积为:(−3)×(−2)×(−1)×0×1×2×3=0;绝对值不大于2的所有非正整数为:−2,−1,0,它们的和为:(−2)+(−1)+0=−3.故答案为:0;−3.16.【答案】括号,除法,加法【解答】解:先算括号,再算除法,最后算减法.故答案为:括号;除法;减法.17.【答案】−13【解答】解:−(−13)的相反数是−13,故答案为:−13.18.【答案】−12或12【解答】解:∵ |a|=3,|b|=4,∵ a=±3,b=±4,∵ a>b,∵ a=±3,b=−4,∵ a×b=3×(−4)=−12,或a×b=−3×(−4)=12.故答案为:−12或12.19.【答案】6,9,3,15【解答】解:原式=6+9+3−15.故答案为:6;9;3;15.20.【答案】【解答】∵ |2a +b +c +2d +1|=2a +b −c −2d −2,∵ 2a +b +c +2d +1=2a +b −c −2d −2或−2a −b −c −2d −1=2a +b −c −2d −2,∵ 2c +4d =−3或2a +b =12,∵ (2a +b −12)(2c +4d +3)=0, 三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 )21.【答案】解:−8×(+12)×(−7)×0=0.【解答】解:−8×(+12)×(−7)×0=0.22.【答案】解:(−212)÷(−5)×(−313), =−52×15×103, =−53.【解答】解:(−212)÷(−5)×(−313),=−52×15×103, =−53.23.【答案】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.【解答】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.24.【答案】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.【解答】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.25.【答案】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.【解答】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.26.【答案】解:∵ a、b互为相反数,c、d互为倒数,∵ a+b=0,cd=1,∵ m的绝对值为2,∵ m=±2,∵ 当m=2时,原式=−1+4=3;当m=−2时,原式=−1−4=−5.∵ 原代数式的值为3或−5.【解答】解:∵ a 、b 互为相反数,c 、d 互为倒数, ∵ a +b =0,cd =1, ∵ m 的绝对值为2, ∵ m =±2,∵ 当m =2时,原式=−1+4=3; 当m =−2时,原式=−1−4=−5. ∵ 原代数式的值为3或−5. 27. 【答案】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2(3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.【解答】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2 (3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.28.【答案】 −4,3(2)点C 在数轴上所对应的数为x , ∵ C 在B 点右边, ∵ x >3. 根据题意得x −3+x −(−4)=11, 解得x =5.即点C 在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.【解答】解:(1)∵ |a+4|+(b−3)2=0,∵ a+4=0,b−3=0,解得a=−4,b=3.点A,B表示在数轴上为:故答案为:−4;3.(2)点C在数轴上所对应的数为x,∵ C在B点右边,∵ x>3.根据题意得x−3+x−(−4)=11,解得x=5.即点C在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.。

苏科版七年级数学上册第二章《有理数》单元检测卷

苏科版七年级数学上册第二章《有理数》单元检测卷

新苏科版七年级数学上册第二章《有理数》单元检测卷(时间 90 分钟 满分 100 分)班级学号 姓名得分 ______________一、填空题(每题2 分,共 20分)1. 21的倒数是, 2 1的相反数是, 21的绝对值是.3332.比较大小:1 1 ; 28 .76 331333.数轴上的 A 点与表示- 3 的点距离 4 个单位长度,则 A 点表示的数为 .4.苏州市某天上午的温度是5℃,正午又上涨了 3℃,下午因为冷空气南下,到夜间又降落了 9℃,则这日夜间的温度是℃.5.小明乘电梯从地下2 层升至地上 8 层,电梯一共升了层.6.绝对值大于 1 而不大于 3 的整数有,它们的和是.7.已知 |a|=4,那么 a =.8.察看下边一列数,依据规律写出横线上的数,-1;1;-1;1;;;,, ;第2010 个数是.12 349.在以下(- 1) 2009,(- 1)2010,- 22,(- 3)2 这四个数中,最大的数与最小的数的和等于.10.5 月 12 日四川汶川发生8.0 级大地震,给当地民众造成生命、财富重要损失,全国人民团结一心,帮助灾区人民渡过难关.中央电视台举办了《爱的奉献》抗震救灾募捐活动,募捐到救灾款15.14 亿元.将 15.14 亿用科学记数法表示为 元.二、选择题(每题 3 分,共 18分)11.以下各数中数值相等的是()A .32 与 23B .-23与( -2)3C .- 32 与( - 3)2D .[- 2×( -3)] 2与 2×( -3 ) 212. a 和 b 互为相反数,则以下各组中不互为相反数的是()A . a 3 和 b3B . a 2 和 b2C . - a 和 - bD . a与b2213.以下各式中,正确的选项是()A .B .C .232 22 32 D .14.以下计算中,正确的选项是()A .B .C.D.(n表示自然数)15.以下各数中,数值相等的是()A.32和B.与C.与D.16.以下计算错误的有()个(1);(2);(3);(4);( 5);(6)A . 1B. 2C. 3D. 4三、解答题(共62 分)17.计算:(每题 2 分,共 12 分)(1)7 13 6 20;(2);499159(3)1( 2) 2 3 5;(4)(-5)×(-7)-5×(-6);281231(5)0.25 ;(6)22.352218.( 4 分)假如海平面的高度为0 米,一潜水艇在海水下 40 米处航行,一条鲨鱼在潜水艇上方 10 米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.19.( 4 分)某地探空气球的气象观察资料表示, 高度每增添 1 千米,气温大概降低 6℃.若该地地面温度为 21℃,高空某处温度为- 39℃,求此处的高度是多少千米?20.(4 分)画出数轴,在数轴上表示以下各数,并用“ <”连结:5 ,3.5 , 1 , 1 1, 4, 0,2 221.( 4 分)学校正初一男生进行立定跳远的测试, 以能跳 及以上为达标, 超出的厘米数用正数表示,不足l.7m 的厘米数用负数表示.第一组 10 名男生成绩以下(单位cm ):+2-4 0 +5+8 -7 0 +2 +10 -3问:第一组有百分之几的学生达标?22.(4 分)若a 5 , b 3 ,求a b的值.23.( 4 分)如图,是一个数值变换机表示图,请按要求在括号内填写变换步骤,在表格中填写数值.输入 a- 1输入()输出0()()输出3a1 224.( 6 分)一名足球守门员练习折返跑,从球门的地点出发,向前记作正数,返回记作负数,他的记录以下(单位:米):+5,- 3,+ 10,- 8,- 6,+ 12,- 10.(1)守门员能否回到了本来的地点?(2)守门员走开球门的地点最远是多少?(3)守门员一共走了多少行程?25.(6 分)正式足球竞赛对所用足球的质量有严格的规定,标准质量为400 克.下边是 5 个足球的质量检测结果(用正数记超出规定质量的克数,用负数记不足规定质量的克数):-25,+10 ,-20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行说明.26.( 6 分)两条笔挺的公路垂直交错于十字路口 A 处,甲小组乘一辆汽车,商定向东为正,从 A 地出发到竣工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3 , -2 ,+12, +4, -5 ,+6.同时,乙小组也从 A 地出发,沿南北方向的公路检修线路,商定向北为正,行走记录为:-17 ,+9,-2 ,+8, +6,+9,-5 ,-1 ,+4,-7 ,-8 .(1)分别计算竣工时,甲、乙两组各在检修站 A 地的哪一边,分别距 A 地多远?(2)若每千米汽车耗油 a 升,求出发到竣工时两组各耗油多少升?27.( 8 分)察看以下等式111 1 , 131 1 ,141 1 ,22223334将以上三个等式两边分别相加得:1111411111111 3 .22332233444( 1)猜想并写出:1.n( n1)( 2)直接写出以下各式的计算结果:①1213311;12420082009②1213311.124n(n1)( 3)研究并计算:1111.24466820082010参照答案一、填空题13, 2, 2237或1415.9 6.2,2,0.11.>>..733.4.111.5.10978,6,91052008二、选择题11. B 12.B 13. D 14. D 15.B 16. C三、解答题17.( 1)144 ;(2)20;(3)1;( 4) 65 18.潜水艇:40,鲨鱼: 3019. 10 千米20.图略 21.70%22.1523.乘以1 3 ,加1,除以2,2,324.回到了本来的地点;( 2)12;( 3)5425.( 1)每个足球的质量分别为:375 克、 410 克、 380 克、430 克、415 克( 2)质量为410 克(即质量超出+10 克)的足球的质量好一些,原因(略)26.( 1)甲组在 A 地的东边,且距 A 地 39 千米,乙组在 A 地的南边,且距 A 地 4 千米;( 2)从出发到竣工时,甲、乙两组各耗油65a 升、 76 升27.略。

苏科版七年级上册数学第二章《有理数》专项训练

苏科版七年级上册数学第二章《有理数》专项训练

初中数学试卷七年级数学第二章《有理数》专项训练一、选择题(每题 3 分,共 12 分)1. 在- 2,0,1, 3 这四个数中,比0 小的数是() .A.- 22.以下说法中,正确的选项是 (). A.任何有理数的绝对值都是正数B.假如两个数不相等,那么这两个数的绝对值也不相等C.任何一个有理数的绝对值都不是负数D.只有负数的绝对值是它的相反数3. 以下说法正确的选项是().A.零是最小的有理数B.若两数的绝对值相等,那么这两数也必定相等C.正数和负数统称有理数D.互为相反数的两个数之和为零4.以下结论正确的选项是 ().A.数轴上表示 6 的点与表示 4 的点相距 10B.数轴上表示- 4 的点与表示 4 的点相距 10C.数轴上表示 +6 的点与表示- 4 的点相距 10D.数轴上表示- 6 的点与表示- 4 的点相距 10二、填空题(每题 4 分,共 44 分)5. 假如生产成本增添5% 记作5% ,那么成本降低10 %记作.某天的最高气温为 6 ℃,最低气温为-2 ℃,这日的最高气温比最低气温高℃.6 .- 2010 的相反数是,1的绝对值是.7 .-的倒数是,- 0.125 的相反数是.8. (1)10 4 ;(2)5 7 ;( 3 )8 ;( 4 )27 9 = ;9. (1)222. ;(2) 210. 太阳的半径约为69600 km ,用科学记数法表示这个量为km.11 .定义一种新运算:关于随意有理数 a ,b,都有 a e b b2 1 .比如, 7 e 4 42 1 17 ,那么,5 e 3= ;当 m 为有理教时,m e me 212 .已知a是最小的正整数, b 是a的相反数,c的绝对值为 3 ,则a b c .13. 已知x2y 2 0 ,则 y x . 514. 现有四个有理数 3 , 4 , -6 ,10. 将这四个数进行加、减、乘、除四则混淆运算,使其结果为24 ,请写出两个不一样的算式:( 1 )_____________________;(2)______________________ ;15. 已知在数轴上,到点 2 和点 6 距离相等的点表示的数是4,有这样的关系 4 1(2 6),2那么到点100 和到点999 距离相等的数是;到点 m 和点 n 距离相等的点表示的数是.三、解答题(第18 题 6 分,第 21 、 23 题每题 9 分,其他每题 4 分,共 44 分)5 516 .比较与的大小,6717.画一条数轴,把以下各数及其相反数记在数轴上,而后把这些数按从小到大的次序用“ < ”连结起来.0, 3, 3, ( 0.5), 3 .2 418. 计算:31 (1)2( 8)733(2)211 1 1001 ;28 21 1 1 4 1 1 (3 )3 4 5 6602 19. 把以下各数填在相应的会合里,并在数轴上表示以下各数:5, 3,0, 2.5,31, 2, 5,11.23整数会合: ﹛﹜ 负数会合:﹛﹜20.依据以下图的程序计算,若输入的数为1 ,则输出的数是什么?21.2009 年 3 月 17 日俄罗斯特技飞翔队在名胜景色旅行区——张家界天门洞特技表演,其中一架飞机腾飞后的高度变化以下表:(1)此时这架飞机比腾飞点高了多少千米?(2) 假如飞机每上涨或降落 1 km 需耗费 2L 燃油,那么这架飞机在这 4 个动作表演过程中,一共耗费了多少升燃油?(3) 假如飞机做特技表演时,有4个规定动作,前3个动作腾飞后高度变化以下:上涨,降落,再上涨 1.6km, 若要使飞机最后比腾飞点超出1km ,问第 4 个动作是上涨仍是降落,上涨或降落多少千米?22.依据气象观察资料表示:某地高度每增添1 km ,气温大概降低 6 ℃ .若该地域温度为 21 ℃,高空某处的温度为-39 ℃,求此处的高度.金戈铁制卷23.小明靠勤工俭学的收入保持上大学的费用,下边是小明某一周的进出状况表:(收入为正,支出为负,单位为元)(1)这一周小明有多少节余?(2)照这样,小明一个月(按 30 天计算)能有多少节余?(3)按以上的支出水平,小明—个月(按30 天计算)起码要有多少收入才能保持正常开销?参照答案1. A2. C3. D4. C5. -10%81 7. -86. 201028. (1)-6 (2)2 (3)1 (4 )-39. (1)-4 (2)410. 6.96 10411. 10 26 12.313. -3214. (1)3 × 10 6 4 (2)3× 10 4 615.10991(m n)16.5 5226 73 3 3 3 17. 340.5 0( 0.5)3 数轴略2421 18. (1)-1 (2 )(3)-27819. 整数会合: ﹛5,-3 ,0,-2 ,+5 ﹜负数会合: ﹛ -3 , -2.5 , -2 ﹜数轴略20. 设输入 X ,则输出结果为 2 X 2 4当 X=1 时, 2X24 2 ; 当 X=-2 时, 2X 2 4 4 ;∵ 40,∴ 输出结果为 4.21. (1)1 km ,此时这架飞机比腾飞点高1km.(2)L .(3)第 4 个动作是降落,降落 1.5km.22. 2139 60 (℃), 60 6 10,10 1 10 km .23.(1) 这一周小明有节余7 元 .(2) 小明一个月能节余 30 元 .(3) 起码要有 330 元收入才能保持正常开销 .。

数学七年级上苏科版 第二章有理数单元检测题

数学七年级上苏科版 第二章有理数单元检测题

第二章有理数测试卷一、选择题(共30分)1.下列说法中正确的是( ) A.一个数的相反数是负数B.一个数的绝对值一定不是负数C.一个数的绝对值一定是正数D.一个数的绝对值的相反数一定是负数2.数轴上在原点以及原点右侧的点所表示的数是( ) A.正数B.负数C.非负数D.非正数3.绝对值大于一2且小于5的所有的整数的和是( ) A.7 B.一7 C.0 D.54.下列算式中正确的是( ) A.(一14)一5=一9 B.0一(一3)=3C.(一3)一(一3)= 一6 D.53-=一(5—3)5.下列说法中错误的是( ) A.一a的绝对值为a B.一a的相反数为aC.1a的倒数是a D.一a的平方等于a的平方6.比较一2.4,一0.5,一(一2),一3的大小,下列正确的是( ) A.一3>一2.4>一(一2)> 一0.5 B.一(一2)> 一3>一2.4>一0.5C.一(一2)> 一0.5>一2.4>一3 D.一3>一(一2)> 一2.4>一0.57.一个数的平方是81,则这个数是( ) A.9±B.9 C.一9 D.928.一(一4)3等于( ) A.一12 B.12 C.一64 D.649.有理数a、b在数轴上的位置如图所示,则a+b的值( ) A.大于0 B.小于0 C.等于0 D.大于610.若ab<0,且a 一b>0,则下列选项中,正确的是 ( )A .a<0,b<0B .a<0.b>0C .a>0,b<0D .a>0.b>0二、填空题(共24分)11.如果收入1 000元记作+1 000元,那么一600元表示_______________. 12.135-的相反数是_________,倒数是__________,绝对值是__________.13.比一3大的负整数是_________,比3小的非负整数是_________ .14.在数轴上,与原点距离为5个单位的点有_________个,它们是_________ 15.比较大小:一4.8_________一3.8;18-_________ (一2)3.16.320a b ++-=,则a+6=_________.17.—24=_________ (一2)4=_________,31(1)2- =_________.18.太阳直径为1 390 000 km ,用科学记数法表示为_________.三、解答题(共46分)19.把下列各数分别填人相应的集合里.—5,34-,0,—3.14,227,—12,+1.99,—(—6)(1)正数集合:{ …}(2)负数集合:{ …}(3)整数集合:{ …}(4)分数集合:{ …}20.在数轴上表示下列各数,并把它们按照从小到大的顺序排列.2,一l ,一1.5,0,3-,132.21.计算:(1)24+(一14)+(一16)+8:(2)4139 17575 -+-+;(3)112 542(4)429 -⨯÷-⨯(4)157()(36) 2912-+⨯-(5)227(3)65-⨯--⨯+(6)411110.563⎡⎤⎛⎫----⨯⨯ ⎪⎢⎥⎝⎭⎣⎦22.若8,5m n ==,求m+n 的值23.根据某地实验测得的数据表明,高度每增加1 km ,气温大约下降6℃,已知该地地面 温度为21℃.(1)高空某处高度是8 km ,求此处的温度是多少;(2)高空某处温度为一24 ℃,求此处的高度.24.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶纪录如下(单位:km)+10,一9,+7,一15,+6,一14,+4,一2(1)A在岗亭何方?距岗亭多远?(2)若摩托车行驶1 km耗油0.05 L,这一天共耗油多少升? 25.如果a>0,b<0, 且a b<,试比较a,b,—a, —b的大小参考答案1.B 2.C3.C4.B 5.A 6.C7.A 8.D 9.A 10.C11.支出.600元12.135516-13513.一2:一1 0 ,1 ,2 14.2±515.<<16.-117.-6 1627 8 -18.1.39×106km19.322(1),, 1.99,(6)47-+--(2)5, 3.14,12---(3)5,0,12,(6)----322 (4), 3.14,, 1.9947--+20.13 1.510232 --<-<-<<<21.(1)2(2)2(3)6(4)一19(5)一5(6)一2 22.±3或±1323.(1)-27℃(2)7.5 km24.(1)A在岗亭的南边,距岗亭13 km(2)3.35 L25.b<-a<a<-b。

七年级数学上第二章有理数单元测试题(苏科版附答案)

七年级数学上第二章有理数单元测试题(苏科版附答案)

七年级数学上第二章有理数单元测试题(苏科版附答案)第二章有理数单元测试一、单选题(共10题;共30分) 1.下列各组数中:①-52和(-5)2;②(-3)3和-33;③-(-0.3)5和0.35;④0100和0200;⑤(-1)3和-(-1)2 .相等的共有() A、2组 B、3组 C、4组 D、5组 2.计算�4×2的结果是() A、-6 B、-2 C、8 D、-8 3.2015的倒数是() A、-2015 B、- C、D、2015 4.计算(1���)•( + + + )�(1����)•( + + )的结果是() A、 B、 C、 D、 5.计算(�25)÷ 的结果等于() A、- B、-5 C、-15 D、- 6.下列说法中,正确的是() A.所有的有理数都能用数轴上的点表示 B.有理数分为正数和负数 C.符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数 7.�5的相反数是() A.5 B.15 C.� 15 D.�5 8.已知a>b且a+b=0,则() A.a<0 B.b>0 C.b≤0 D.a>0 9.下列各数中,比�2小的数是() A.�3 B.�1 C.0 D.2 10.如果向北走3m,记作+3m,那么�10m表示() A、向东走10m B、向南走10m C、向西走10m D、向北走10m 二、填空题(共8题;共39分) 11.已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b�c=________ 12.在数�5,1,�3,5,�2中任选两个数相乘,其中最大的积是________ 13.若a<0,b<0,|a|<|b|,则a�b________ 0. 14.�2倒数是________ ,�2绝对值是________ 15.计算:1�(�3)=________ 16.如果水库的水位高于正常水位lm时,记作+1m,那么低于正常水位2m时,应记作________. 17.若|a�1|=4,则a=________. 18.计算:�(+ )=________,�(�5.6)=________,�|�2|=________,0+(�7)=________.(�1)�|�3|=________.三、解答题(共6题;共31分) 19.把下列各数分别填入相应的大括号里:�5.13,5,�|�2|,+41,�227 , 0,�(+0.18),34 .正数集合{ };负数集合{ };整数集合{ };分数集合{ }.20.若|a|=5,|b|=3,①求a+b的值;②若a+b<0,求a�b的值.21.若|a|=4,|b|=2,且a<b,求a�b的值.22.小明在初三复习归纳时发现初中阶段学习了三个非负数,分别是:①a2;②a;③|a|(a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2)2+|x+y�1|=0,求xy的值.请你利用三个非负数的知识解答这个问题23.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,�4,+13,�10,�12,+3,�13,�17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格中的数.答案解析一、单选题 1、【答案】C 【考点】有理数的乘方【解析】【分析】首先计算出各组数的值,然后作出判断.【解答】①-52=-25,(-5)2=25;②(-3)3=-27和-33=-27;③-(-0.3)5=0.00729,0.35=0.00729;④0100=0200=0;⑤(-1)3=-1,-(-1)2=-1.故②③④⑤组相等.故选C.【点评】本题主要考查有理数乘方的运算.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. 2、【答案】D 【考点】有理数的乘法【解析】【解答】解:原式=�(4×2) =�8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案. 3、【答案】C 【考点】倒数【解析】【解答】解:2015的倒数是.故选:C.【分析】根据倒数的定义可得2015的倒数是. 4、【答案】C 【考点】有理数的混合运算【解析】【解答】解:设 + + =a,原式=(1�a)(a+ )�(1�a�)a=a+ �a2�a�a+a2+ a= ,故选C 【分析】设 + + =a,原式变形后计算即可得到结果. 5、【答案】C 【考点】有理数的除法【解析】【解答】解:∵(�25)÷ =(�25)× =�15,∴(�25)÷ 的结果等于�15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(�25)÷ 的结果等于多少即可. 6、【答案】A 【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;�3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解. 7、【答案】A 【考点】相反数【解析】【解答】解:�5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果. 8、【答案】D 【考点】有理数的加法【解析】【解答】解:∵a>b且a+b=0,∴a>0,b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断. 9、【答案】A 【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知�3<�2.故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比�2小的数是�3. 10、【答案】B 【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么�10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出�10m的意义.二、填空题 11、【答案】2或0 【考点】有理数的混合运算【解析】【解答】解:∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴a=�1,b=�2,c=�3或a=1,b=�2,c=�3,则a+b�c=2或0.故答案为:2或0 【分析】先利用绝对值的代数意义求出a,b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果. 12、【答案】15 【考点】有理数的乘法【解析】【解答】解:根据题意得:(�5)×(�3)=15,故答案为:15 【分析】根据题意确定出积最大的即可. 13、【答案】>【考点】有理数的减法【解析】【解答】解:∵a<0,b<0,|a|<|b| ∴a�b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小. 14、【答案】- ;2 【考点】绝对值,倒数【解析】【解答】解:�2的倒数为�,�2的绝对值为2.故答案为�;2.【分析】分别根据倒数的定义以及绝对值的意义即可得到答案. 15、【答案】4 【考点】有理数的减法【解析】【解答】解:1�(�3) =1+3 =4.故答案为:4.【分析】根据有理数的减法法则,求出1�(�3)的值是多少即可. 16、【答案】�2m 【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:�2m.故答案为:�2m 【分析】弄清楚规定,根据规定记数低于正常水位2m. 17、【答案】5或�3 【考点】绝对值【解析】【解答】解:∵|a�1|=4,∴a�1=4或a�1=�4,解得:a=5或a=�3.故答案为:5或�3.【分析】依据绝对值的定义得到a�1=±4,故此可求得a的值. 18、【答案】�;5.6;�2;�7;�4 【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=�;原式=5.6;原式=�2;原式=�7;原式=�1�3=�4,故答案为:�;5.6;�2;�7;�4 【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题 19、【答案】【解答】解:正数集合{ 5,+41,34};负数集合{�5.13,�|�2|,�227,�(+0.18)};整数集合{ 5,�|�2|,+41,0};分数集合{�5.13,�227,�(+0.18),34} 【考点】有理数【解析】【分析】按照有理数的分类填写: 20、【答案】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,∴a+b=8或2或�2或�8;(2)∵a=±5,b=±3,且a+b<0,∴a=�5,b=±3,∴a�b=�8或�2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5,|b|=3,那么a=±5,b=±3,再分4种情况分别计算即可;(2)由于a=±5,b=±3,且a+b<0,易求a=�5,b=±3,进而分2种情况计算即可. 21、【答案】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∵a<b,∴a=�4,b=±2,∴a�b=�4�2=�6,或a�b=�4�(�2)=�4+2=�2,所以,a�b 的值为�2或�6.【考点】有理数的减法【解析】【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后根据有理数的减法运算法则进行计算即可得解. 22、【答案】解:∵(x+2)2+|x+y�1|=0,∴x+2=0x+y-1=0,解得x=-2y=3,∴xy=(�2)3=�8,即xy的值是�8.【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y�1|=0,然后根据偶次方的非负性,以及绝对值的非负性,可得x+2=0,x+y�1=0,据此求出x、y的值各是多少,再把它们代入xy ,求出xy的值是多少即可. 23、【答案】解:(1)0+15�4+13�10�12+3�13�17=�25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2)|+15|+|�4|+|+13|+|�10|+|�12|+|+3|+|�13|+|�17|=87(千米),87×0.1=8.7(升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,出车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值,如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量. 24、【答案】解:∵�3+7+5=�3+12=9,∴三个数的和为9,第三行中间的数是9�(9+5)=�5,最中间的数是9�(�3+9)=3,第二列最上边的数是9�(�5+3)=9+2=11,第一行的第一个数是9�(�3+11)=9�8=1,第一列的第二个数是9�(1+9)=�1.【考点】有理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

苏科版七年级上册数学第二章有理数测试卷(二)

苏科版七年级上册数学第二章有理数测试卷(二)

初一数学第二章有理数测试卷(二)(满分:100分时间:60分)一、选择题(20分)1.下列说法中,不正确的是( ) A.0既不是正数,也不是负数B.0的相反数是0C.0是最小的数D.0的绝对值是02.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是( )A.a>c>b B.a>b>cC.a<c<b D.a<b<c3.下列说法中,正确的是( )A.-12与2互为相反数B.任何负数都小于它的相反数C.数轴上表示-a的点一定在原点左边D.5的相反数是︱一5︱4.从数6,-1,15,-3中,任取三个不同的数相加,所得到的结果中最小的是( ) A.-3 B.-1 C.3 D.25.下列算式中,运算结果为负数的是( ) A.-(-3) B.︱-3︱C.2×(-32) D.(-3)26.下列说法中,错误的是( ) A.若n个有理数的积是0,则其中至少有一个数为0B.倒数等于它本身的有理数是±1C.任何有理数的平方都大于0D.-l的奇数次幂等于-17.(-1)11-(-3)2×2的值是( ) A.-17 B.17 C.-13 D.-198.树叶上有许多气孔,在阳光下,这些气孔一边排出氧气和蒸腾水分,一边吸入二氧化碳。

已知一个气孔每秒钟能吸进2500亿个二氧化碳分子,用科学记数法表示2500亿,结果是( ) A.2.5×1010B.2.5×104C.2.5×1012D.2.5×1011 9.下列说法中,正确的是( ) A.两数相除,商一定小于被除数B.两数相乘,积一定大于每个因数C.一个数除以它的倒数,其商就等于这个数的平方D.一个数乘它的相反数,其积一定是一个负数10.有理数a、b互为相反数,c是绝对值为1的负数,则a+b+c的值为( ) A.1 B.-1 C.±l D.0二、填空题(13分)11.在有理数-3,7.2,213,-34,0,0.02中,属于正数集合的是,属于负数集合的是.12.若把长江的水位比警戒水位低0.8m记作-0.8m,则+1.1m表示的意思是.13.-1.2的相反数是,倒数是,绝对值是.14.若83500000000=8.35×10n,则n=.15.水池中的水位在某天中八个不同时刻的变化情况为(规定上升为正,单位:cm):+3,-6,-1,+5,-4,+2,-3,-2,则这八天中,水池水位最终的变化情况是.16.比较大小:3.14×l053140000,-34-(-3)4,(-1)2n (-1)2n+1(n是正整数).17.用3,4,-6,10算“24点”,写出的等式是.18.拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,如此反复,那么,这样捏合次后刚好可拉出128根细面条.三、操作题(4分)19.先把下列各数在数轴上表示出来,再按从小到大的顺序排列起来:3.5,-(-2),-1,-212.四、计算题(32分)20.312 43⎛⎫-+--⎪⎝⎭;21.(-25)-(-18)-(+5)+(+12);22.1510.5 364⎛⎫⎛⎫-+----⎪ ⎪⎝⎭⎝⎭;23.2131 2354 5252⎛⎫⎛⎫⎛⎫+-+++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;24.(-12)×(-4)2;25.(-98)×(-0.125)+98×18+(-98)×54;26.-22-17×[2-(-3)2];27.-25-(-1)4×(-3)3+(-33)×(-3).五、解答题(31分)28.少儿银行办理了7笔储蓄业务:取出9.5元,存入5.1元,取出8.3元,存入12.5元,存入25元,取出7元,取出10.25元,银行现款增加或减少了多少元?29.光在真空中的传播速度约为300000km/s,那么光在一天中传播的距离有多远?(结果用科学记数法表示)30.某检修组沿线检修线路,约定从A地到B地方向为正.某天,该组所走的各段路程记录如下(单位:km):+10,-3,+4,-2,-8,+13,-2,+12,+7,+5.(1)收工时,他们距出发点A地有多远?(2)若他们所乘的工程车每千米耗油0.5kg,则从出发到收工,工程车共耗油多少? 31.下表列出了国外几个城市与北京的时差(正数表示同一时刻比北京时间早的时数).若现在是北京时间10月5日上午10:00.(1)求现在纽约的时间;(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?城市时差/时纽约-13巴黎-7东京+1芝加哥-1432.小王上周五在股市以收盘价每股25元买进某公司的股票1000股,在接下来的一周交易日内,他记下该股票每日收盘价比前一天的涨跌情况(单位:元):星期一二三四五每股涨跌+2 -0.5 +1.5 -1.8 +0.8(1)星期二收盘时,该股票每股多少元?(2)本周内,该股票收盘时的最高价、最低价分别是多少?(3)已知买人股票与卖出股票均需支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?参考答案1.C 2.C 3.B 4.D 5.C 6.C 7.D 8.D 9.C10.B 11.7.2,213,0.02 -3,-3412.高于警戒水位1.1m13.1.2 -561.2 14.10 15.下降6cm 16.<=>17.答案不唯一,如4-(-6)÷3×10=24或10-4-3×(-6)=24或[4+10+(-6)]×3=24或10-[3×(-6)+4]=2418.7 19.数轴表示略,-212<-1<-(-2)<3.520.-371221.0 22.-171223.0 24.-8 25.-98 26.-327.52 28.增加了7.55元29.2.592×1010km30.(1)36km (2)33kg31.(1)因为北京时间比纽约时间早13h,所以现在纽约时间是10月4日晚上9时(2)因为北京时间比巴黎时间早7h,所以现在巴黎时19是10月5日凌晨3时,因此不合适32.(1)26.5元(2)28元26.2元(3)因为周五收盘时,每股的价格为27元,所以收益为1740(元)。

苏科版七年级数学上册第二章有理数测试题及答案

苏科版七年级数学上册第二章有理数测试题及答案

比零小的数◆知识平台1.正数、负数的概念:大于0的数叫正数;在正数前面加“-”号的数叫负数.2.有理数的分类(1)按整数、分数分:有理数(2)按数的正负分:有理数◆思维点击有理数的概念和分类:要求在理解基础上进行记忆.对负数的理解:在现实生活中,为了能表达具有相反意义的量,所以引进了负数,在正数前加上“-”就得负数.对有理数“0”的理解:①0既不是正数,也不是负数;②0•除了表示一个也没有外,还表示正数与负数的分界,在实际问题中有明确意义.◆考点浏览有理数的有关概念和有理数的分类,大多以填空、判断、选择题的形式出现.例1 把下列各数填在相应的集合内.7,-5,,,0,- ,,-1 ,151,-32正数集合{ };负数集合{ };正整数集合{ }整数集合{ };负整数集合{ };分数集合{ }【解析】正数包括正整数、正分数,负数包括负整数、负分数.整数包括正整数、负整数以及零.分数包括正分数、负分数,小数属于分数.零既不是正数,也不是负数,零是整数、偶数、有理数.答案是:正数集合{7,,,151…};•负数集合{-5,,- ,-1 ,-32…};正整数集合{7,151…};整数集合{7,-5,0,151,-32…};负整数集合{-5,-32…};分数集合{,,- ,,-1 …}.例2 下列说法中正确的是()A.在有理数中,零的意义仅表示没有;B.一个数不是负数就是正数C.正有理数和负有理数组成全体有理数;D.零是整数【解析】零的一个基本作用表示没有,零又是正负数的界限.答案是D.◆在线检测1.如果零上8℃记作8℃,那么零下5℃记作__________.2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________.3.如果向西走6米记作-6米,那么向东走10米记作_________.4.如果产量减少5%记作-5%,那么20%表示_________.5.判断题:(1)一个整数不是正数就是负数.()(2)最小的整数是零.()(3)负数中没有最大的数.()(4)自然数一定是正整数.()(5)有理数包括正有理数、零和负有理数.()6.下列说法中正确的是()A.有最小的正数;B.有最大的负数;C.有最小的整数;D.有最小的正整数7.零是()A.最小的正数B.最大的负数C.最小的有理数D.整数8.下列一组数:-8,,-3 ,2 ,中负分数有()A.1个B.2个C.3个D.4个9.把下列各数填在相应的集合内.-3,7,- ,,0,,,.整数集合{ …};负数集合{ …}.10.在下表适当的空格里打上“∨”号.整数分数正数负数自然数有理数1-1211.一零件的长度在图纸上标为10±(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少最小不少于多少实际生产时,测得一零件的长为毫米,问此零件合格吗12.在明尼苏达州的一个城市,1月1日上午6:00的温度是-30华氏度,•在接下来的8小时里,温度上升了38华氏度,在紧接之后的12小时里,温度下降了12•华氏度,最后4小时内,温度上升了15华氏度,那么在1月2日上午6:00的温度是多少13.在美国有记载的最高温度是℃(约合134F),发生在1913年7月10•日加利福尼亚的死亡之谷.有记载的最低温度是℃(约合-80F)是在1971年1月23日.(1)以摄氏度为单位,有记录的最高温度和最低温度相差多少(2)以华氏度为单位,有记录的最高温度和最低温度相差多少答案1.-5℃2.-3℃3.10米4.增产20%5.(1)×(2)×(3)∨(4)•×(5)∨6.D 7.D 8.B 9.略10.略11.毫米毫米•12.11华氏度13.℃214F)。

苏科版七年级数学上册第二章有理数综合测试卷

苏科版七年级数学上册第二章有理数综合测试卷

新苏科版七年级数学上册第二章有理数综合测试卷一、选择题 :1.以下说法正确的选项是()A .全部的整数都是正数B .不是正数的数必定是负数C. 0 不是最小的有理数 D .正有理数包含整数和分数2.1的相反数的绝对值是()211B .2C.一 2A .- D .223.实数 a, b 在数轴上的对应点以下图,则以下不等式中错误..的是()A .aB. a b 0. ab 0D. a b 0 1Cba b04.在数轴上,原点及原点右侧的点表示的数是()A .正数B.负数C.非正数D.非负数5.假如一个有理数的绝对值是正数,那么这个数必然是()A .是正数B .不是 0C.是负数D.以上都不对6.以下各组数中,不是互为相反意义的量的是()A .收入 200 元与支出20 元B.上涨 l0 米和降落7 米C.超出 0.05mm 与不足 D .增大 2 岁与减少 2 升7.以下说法正确的选项是()A .- a 必定是负数;B .a定是正数;C.a必定不是负数; D .-a必定是负数8.假如一个数的平方等于它的倒数.那么这个数必定是()A .0B.1C.- 1 D.± 19.假如两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A .互为相反数但不等于零B .互为倒数C.有一个等于零 D .都等于零10.若 0< m<1, m、 m2、1的大小关系是()A .m < m 2<1B . m 2< m <1C .1< m < m2D . 1<m 2< mmmmm11. 4604608 取近似值,保存三个有效数字,结果是()A .4.60 × 106B .4600000C . 4.61 ×106D . 4.605 × 10612.以下各项判断正确的选项是()A .a + b 必定大于 a - bB .若- ab < 0,则 a 、 b 异号C .若 a 3= b 3,则 a = bD .若 a 2= b 2,则 a = b 13.以下运算正确的选项是()1 31A .- 22÷(一 2) 2= lB .2 =- 8327C .- 5÷1× 3=-25D . 3 1×(-)- 6 3×=-.3544222()14.若 a =- 2× 3 ,b =(- 2×3),c =-(2× 4),则以下大小关系中正确的选项是A .a > b > 0B . b > c >aC . b >a > cD . c > a > b15.若 x = 2,y = 3,则 x y 的值为()A .5B .- 5C .5或1D .以上都不对二、填空题1.某地气温不稳固,开始是6℃,一会儿高升 4℃,再过一会儿又降落 1l ℃,这时气温是____ 。

苏教版七年级上第二章《有理数》单元检测试卷含答案解析.doc

苏教版七年级上第二章《有理数》单元检测试卷含答案解析.doc

苏教版七年级上第二章《有理数》单元检测试卷含答案解析班级: ____________姓名:____________一、单选题 (每小题 4 分,共 6 题,共 24 分 )1、 2017 的倒数是()1B.﹣ 2017 C. 2017 D. 2017A.20172、实数 a, b 在数轴上的对应点的位置如图所示,把﹣ab, 0 按照从小到大的顺序排列,正确的是()A.﹣ a <b<0B. 0<﹣ a <b C. b< 0<﹣a D. 0< b<﹣a3、已知 a=﹣ 2,则代数式 a+1 的值为()A.﹣3B.﹣2C.﹣1D. 14、下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是 0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1.其中正确的有()A.2 个B.3个C.4个D.多于 4 个5、下列各数:﹣5,, 4.11212121212 , 0,22, 3.14 ,其中无理数有()3 7A.1 个B.2个C.3 个D.4 个6、已知 ab≠ 0,则a b+ 的值不可能的是()a bA.0 B. 1 C.2D.﹣2二、填空题 (每小题 3 分,共 10 题,共 30 分 )7、如图是一个程序运算,若输入的x 为﹣ 5,则输出 y 的结果为 ______.8、试举一例,说明“ 两个无理数的和仍是无理数” 是错误的:.9、中国人最先使用负数,魏晋时期的数学家刘徽在“ 正负术” 的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为________.----210、如果 |y ﹣ 3|+ ( 2x ﹣ 4)=0,那么 3x﹣y的值为.11、把下列各数填在相应的大括号里(将各数用逗号分开):﹣4, 0.62 ,22, 18, 0,﹣ 8.91 , +100 7正数: {_______________________}负数: {_________________}整数: {______________________}分数: {_____________________} .12、若 a、b 互为相反数, c、d 互为倒数, |m|=2 ,则 a b 2+m﹣3cd=______.4m13、有理数 a、 b、c 在数轴上的位置如图所示,化简|a+b| ﹣ |a ﹣ c|+|b ﹣ c| 的结果是___________.14、在学习了《有理数及其运算》以后,小明和小亮一起玩“ 24 点”游戏,规则如下:从一副扑克牌(去掉大、小王)中任意抽取 4 张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24 或﹣ 24,其中红色扑克牌代表负数,黑色扑克代表正数,J, Q, K 分别代表 11, 1, 13.现在小亮抽到的扑克牌代表的数分别是:3,﹣ 4,﹣ 6, 10.请你帮助他写出一个算式,使其运算结果等于24 或﹣ 24:.15、若有理数a、b,满足 a b , a b 0 和 ab 0 ,试用“ <”号连接 a 、b、a b:____16、 1 加上它的1得到一个数,再加上所得数的 1 又得到一个数,再加上这个数的1 又得2 3 4到一个数,以此类推,一直加到上一个数的1,那么最后得到的数为 ____ 2011三、解答题 (共 5 题,共46分)17、 (6 分 )已知快递公司坐落在一条东西向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1km 到达 A 店,继续向东骑行2km 到达 B 店,然后向西骑行5km到达 C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1cm表示 1km,画出数轴,并在数轴上表示出 A、B、 C 三个店的位置;(2) C 店离 A 店有多远?(3)快递员一共骑行了多少千米?---- 2----18、 (6 分 )已知 a 的 2 倍比 b 的相反数少4.(1)求 4+4a+2b 的值;5 (2a+b)﹣3(2a+b)+2a﹣b表示整数吗?若是,是奇数还(2)若 b 为负整数,代数式2是偶数,若不是,请说明理由.19、 (10 分 )小红爸爸上星期五买进某公司股票1000 股,每股 27 元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了 1.5 ‰的手续费,卖出时还需付 1.5 ‰的手续费和1‰的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,请你对他的收益情况进行简单的评价?20、 (10 分 )( 1)请用“>” 、“<” 、“ =”填空:2①3+2 2×3×2;②(3)2+( 2)2 2× 3× 2;2 22 ×5×5;③5+5④(﹣2)2+(﹣2)2 2 ×(﹣2)×(﹣2)(2)观察以上各式,请猜想a2+b2与 2ab 的大小;(3)请你借助完全平方公式证明你的猜想.----21、 (14 分 )数学问题:计算数列8, 5, 2,前 n 项的和.探究问题:为解决上面的问题,我们从最简单的问题进行探究.探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第一项,用a1表示;排在第二位的数称为第二项,用a2表示;:排在第n 位的数称为第n 项,用 a n表示,并称 a n为数列的通项,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数叫做等差数列,这个常数叫等差数列的公差,公差通常用 d 表示.(1)根据以上表述:可得: a2 =a1+d, a3=a1+2d, a4 =a1+3d,;则通项 a n=__________________;(2)已知数列 8,5, 2,为等差数列,请判断﹣ 100 是否是此等差数列的某一项,若是,请求出是第几项;若不是,说明理由;探究二: 200 多年前,数学王子高斯用他独特的方法快速计算出1+2+3+ +100 的值.我们从这个算法中受到启发,用先方法计算数列1,2, 3,, n0的前 n 项和;1 2 +n - 1+nn+n- 1+ +2+1n+1 n ()( +1)( 1)(+1)( 1)n+ 可知 1+2+3+ +n=2.由 n n+ + n(3)请你仿照上面的探究方式,解决下面的问题:若 a1, a2, a3, a n为等差数列的前n 项,前 n 项和 S n=a1+a2+a3+ +a n.n()n-1证明: S n=na1+2d.解决问题:( 4)计算:数列8, 5, 2,前n项的和S n(写出计算过程).答案解析一、单选题 (每小题 4 分,共 6 题,共 24 分 )1【答案】A【解析】 2017 得到数是1 20172【答案】 A【解析】∵ b< 0< a, |a| > |b| ,---- 4----∴﹣ a< b< 0.故选: A.3【答案】 C【解析】当 a=﹣2时,原式 =﹣2+1=﹣1,4【答案】 A【解析】①正确,符合有理数定义;②错误,还有 0;③错误,没有最大的有理数,也没有最小的有理数;④正确,符合绝对值的性质;⑤错误,存在 0 时错误;5【答案】 A【解析】无理数有,共 1个,3故选 A.6【答案】 B【解析】①当 a、 b 同号时,原式 =1+1=2;或原式 =﹣1﹣1=﹣2;②当 a、 b 异号时,原式 =﹣1+1=0.故a+b的值不可能的是 1. a b二、填空题 (每小题 3 分,共 10 题,共 30 分 )7【答案】 -10【解析】根据题意可得,y=[x+4 ﹣(﹣ 3)] ×(﹣ 5),当 x=﹣5时,y=[ ﹣5+4﹣(﹣ 3) ] ×(﹣ 5)=(﹣ 5+4+3)×(﹣ 5)=2×(﹣ 5)=﹣10.8【答案】220 等(互为相反数的两个无理数之和)答案不唯一【解析】如果两个无理数互为相反数,----则这两个无理数的和就不是无理数如2 2 0 ,答案不唯一.∴两个无理数的和仍是无理数是错误的.故答案为:∵2 2 0 ,0 是有理数,9 【答案】﹣3【解析】图②中表示( +2) +(﹣ 5)=﹣3.10 【答案】 3.【解析】∵ |y ﹣3|+ (2x ﹣4) 2=0, ∴ y =3, x=2.∴ 3x ﹣y=3×2﹣3=6﹣3=3.【答案】11 0.62 ,22, 18, +100;﹣ 4,﹣ 8.91 ;﹣ 4, 18, 0,+100; 0.62 ,22,﹣ 8.91 77【解析】正数: {0.62 ,22, 18,+100} ;7负数: { ﹣4,﹣ 8.91} ;整数: { ﹣4, 18, 0, +100} ;22分数: {0.62 ,,﹣ 8.91} ;12 【答案】1【解析】由题意得: a+b=0, cd=1, m=2或﹣ 2,则原式 =0+4﹣3=113 【答案】﹣ 2a【解析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出( a+b ),( a ﹣c ),( b ﹣c )的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.解:根据图形, c < b < 0< a ,且 |a| < |b| <|c| ,∴ a +b < 0,a ﹣c > 0,b ﹣c > 0,∴原式 =(﹣ a ﹣b )﹣( a ﹣c ) +(b ﹣c ),=﹣a ﹣b ﹣a+c+b ﹣c , =﹣2a 14【答案】 3× {10 ﹣ [ ﹣ 4﹣(﹣ 6)]}=24 (答案不唯一) 【解析】 3×{10 ﹣[ ﹣4﹣(﹣ 6) ]}=24 .----6 ----15【答案】 ba a b【解析】该题考查的是比大小.∵ a b , ab 0 ,∴ a 0 , b 0∴ a 0 , a b 0∵a b 0 ,∴ a b ,∴ a b故 ba a b .16【答案】 1006【解析】该题考查的是实数运算.根据题意得: 1 1 1 1 1 1 1 1 12 3 4 20111 3 5 20122 4 2011=120122=1006 .三、解答题 (共 5 题,共 46 分 )【答案】( 1)如图所示:17(2)3km;(3)10km【解析】 1)根据题意画出数轴,在数轴上表示出A、B、 C 三点即可;(2)根据数轴上两点间的距离公式即可得出结论;(3)把各数的绝对值相加即可.解:( 1)如图所示:(2)C 店离 A 店: 1﹣(﹣ 2) =3km;(3)快递员一共行了: |1+|+|2|+| ﹣5|+|2|=10km18【答案】( 1)b( 2)﹣ 2b﹣2为偶数.【解析】( 1)∵a的 2 倍比 b 的相反数少 4,----∴2a=﹣b﹣4,∴4+4a+2b=4+(﹣ b﹣4) +2b =b;(2)5( 2a+b)﹣ 3( 2a+b)+2a﹣b 2=5(﹣ b﹣4+b)﹣ 3(﹣ b﹣4+b) +(﹣ b﹣4﹣b) 2=﹣10+12﹣2b﹣4=﹣2b﹣2.∵b为负整数,∴﹣ 2b﹣2也为整数,又﹣ 2b﹣2=2(﹣ b﹣2),∴﹣ 2b﹣2为偶数.19【答案】( 1)34.5 ( 2)周二最高, 35.5 元;周五最低, 26 元( 3)小红的爸爸赔了【解析】( 1)27+4+4.5﹣1=35.5 ﹣1=34.5 ;(2)由表可知,周二最高, 27+4+4.5=35.5 元,周五最低, 35.5 ﹣1﹣2.5 ﹣6=26元;(3)∵ 26< 27,∴小红的爸爸赔了.【答案】( 1)①>;②>;③ =;④ =;20( 2)a2 +b2≥2ab;( 3)见解析【解析】( 1)①∵32+22=13,2×3×2=12 ,2 2> 2×3×2,∴3+2故答案为:>;②∵(3)2+(2)2=5,2×3×2=2 6= 24,∴(3)2+( 2 )2>2×3× 2 ,故答案为:>;---- 8----③∵52+52 =50, 2×5×5=50 ,22∴5+5 =2×5×5,故答案为: =;④∵(﹣ 2) 2+(﹣ 2) 2=8, 2× (﹣ 2) × (﹣ 2) =8,∴(﹣ 2) 2+(﹣ 2) 2=2× (﹣ 2) × (﹣ 2),故答案为: =;( 2)a 2 +b 2≥2ab ;( 3)证明:∵( a+b ) 2≥0,22∴a﹣2ab+b ≥0,22∴a +b ≥2ab .21【答案】见解析【解析】( 1)答案为: a n =a 1 +(n ﹣1) d ( 2)﹣ 100 是此数列的某一项.理由如下:∵在通项公式a n =a 1 +(n ﹣1) d 中, a n =﹣100, a 1=8,d=5﹣8=﹣3,∴ 8﹣3(n ﹣1)=﹣100,解之得: n=37即:﹣ 100 是此数列的第 37 项( 3)证明:∵S n =a 1+a 2 +a 3+ +a n ﹣1+a n ①∴S n =a n +a n ﹣1+a n ﹣2++a 2+a 1 ②则:① +②得: 2S n =n ( a 1+a n ),又∵a n =a 1 +(n ﹣1) d , ∴ 2S n =n[a 1+a 1+(n ﹣1) d] ,n ()n-1∴S =na +2d .n1( 4)∵a 1=8,d=﹣3,n ()n-1∴由前 n 项和的公式 S n =na 1+2d 得:3n ()n-1S n =8n ﹣219n 3n 2∴S n =219n 3n 2 即:此数列前 n 项的和 S n =2.-------- 10----。

苏教版七年级数学上册第二章有理数单元测试及答案(完整资料).doc

苏教版七年级数学上册第二章有理数单元测试及答案(完整资料).doc

【最新整理,下载后即可编辑】七年级数学第二章有理数单元测试姓名 得分 1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 .2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 .3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += . 5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

6、最大的负整数与最小的正整数的和是_________ 。

7、()1-2003+()20041-= 。

8、若x 、y 是两个负数,且x <y ,那么|x | |y | 9、若|a |+a =0,则a 的取值范围是10、若|a |+|b |=0,则a = ,b =二、精心选一选:(每小题3分,共24分.请将你的选择答案填在下表中.)1( )A 0B -1C 1D 0或1 2、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 5 3、计算:(-2)100+(-2)101的是( )A 2100B -1C -2D -2100 4、两个负数的和一定是( )A 负B 非正数C 非负数D 正数 5、已知数轴上表示-2和-101的两个点分别为A ,B ,那么A ,B 两点间的距离等于( )A 99B 100C 102D 103 6、31-的相反数是( )A -3B 3 C31 D31-7、若x >0,y <0,且|x|<|y |,则x +y 一定是( ) A 负数 B 正数 C 0 D 无法确定符号8、一个数的绝对值是3,则这个数可以是( )A 3B 3-C 3或3-D 31 9、()34--等于( )A 12-B 12C 64-D 64 10、,162=a 则a 是( )A 4或4-B 4-C 4D 8或8- 三、计算题(每小题4分,共32分)1、()26++()14-+()16-+()8+2、()3.5-+()2.3-()5.2--()8.4+-3、()8-)02.0()25(-⨯-⨯4、⎪⎭⎫⎝⎛-+-127659521()36-⨯5、 ()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷3114310 6、8+()23-()2-⨯7、81)4(2033--÷- 8、100()()222---÷⎪⎭⎫ ⎝⎛-÷32 四、(5分)m =2,n =3,求m+n 的值 五、(5分)已知a 、b 互为相反数,c 、d 互为负倒数(即1cd =-),x 是最小的正整数。

苏科版七年级数学上册 第二章 有理数 单元检测试题

苏科版七年级数学上册  第二章  有理数 单元检测试题

第二章有理数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 已知代数式(x−a)2+b的值恒为正,那么b的值应该为()A.负数B.非负数C.非正数D.正数2. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103. 下列说法中,正确的是()A.任何实数的平方都是正数B.正数的倒数必小于这个正数C.绝对值等于它本身的数必是非负数D.零除以任何一个实数都等于零4. 下列计算正确的是()÷(−7)=7×(−7) B.(−2)+2=4A.17C.(−3)−(+3)=0D.2−8=2+(−8),√2,−π中,无理数的个数有()5. 实数−2,0.3,17A.1个B.2个C.3个D.4个6. a、b互为倒数,x、y互为相反数,且y≠0,则(a+b)(x+y)−ab−x的值为()yA.−1B.0C.1D.无法确定7. 数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A.17个或18个 B.17个或19个C.18个或19个D.18个或20个8. 下列式子中,−(−3),−|−3|,−(−2)3,3−5,−1−5,是负数的有( ) A.1个 B.2个C.3个D.4个9. 在0、1、−3、4这四个数中,是负数的是( ) A.4B.0C.−3D.1二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , ) 10. −125 的相反数是________,倒数是________,绝对值是________.11. 下列各数3.1415926,√9,1.212212221⋯,17,2−π,−2020,√43中,无理数有________个.12. 若(m −4)2+|5−n|=0,则m +n =________.13. 在数轴上,有一点M 表示的数是−5,则它到原点的距离是________.14. 若|x −3|+(y +2)2=0,则x −2y =________.15. 若|2x −1|+|3y −4|=0,则x +y =________.16. 已知|5x −y +9|与(3x +y −1)2互为相反数,则x +y =________.17. |a +1|与|b −2|互为相反数,则a =________,b =________.18. 从−1中减去−34,−23,与−12的和,列式为:________,所得的差是________.三、解答题(本题共计7 小题,共计66分,)19. (−7)×(−0.25)×(−4).20. 计算:(1)(−12557)÷(−5);(2)−23÷94×(−23)2.21. 若|x−2|+(3y+2)2=0,求x+y的值.22. 已知|a|=5,|b|=3,回答下列问题:(1)由|a|=5,可得a=________;由|b|=3,可得b=________;(2)求a⋅b的值.23. 一根木棍原长为m米,如果从第一天起每天折断它的一半.(1)请写出木棍第一天,第二天,第三天的长度分别是多少?(2)试推断第n天木棍的长度是多少?24. 某粮油店有8袋大米,以每袋50千克为准,超过的千克记作正数,不足的千克记作负数,它们分别为:−2,+1,+4,+6,−3,−4,+5,−3.(1)最重的一袋大米与最轻的一袋大米相差多少千克?(2)这8袋大米总共重多少?25. 某地区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“−”表示出库):+50、−45、−33、+48、−49、−36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】D【解答】解:∵(x−a)2+b的值恒为正,(x−a)2的值最小为0,∴b的值应该为正数.故选D.2.【答案】B【解答】解:根据科学记数法的定义可知,4 400 000 000=4.4×109.故选B.3.【答案】C【解答】解:对于A,由于0的平方是0,而不是正数,故A错误;对于B,由于1的倒数是1,故B错误;对于C,由绝对值的性质可知,绝对值等于它本身的数必是非负数,故C正确;对于D,当除数为0时,没有意义,故D错误.故选C.4.【答案】D【解答】解:17÷(−7)=17×(−17),故A错误,(−2)+2=2−2=0,故B错误,(−3)−(+3)=−3−3=−6,故C错误,2−8=2+(−8),D正确。

苏科版数学七年级上册第二章《有理数》单元测试(含答案)

苏科版数学七年级上册第二章《有理数》单元测试(含答案)
Nhomakorabea.
64
3. 用“>”或“<”填空: − − 3
− (−3.1) ; − 7 − 6 .
8
7
4. 数轴上到原点的距离为1 2 的点表示的有理数是
.
3
5. 设是 a 最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则 a-b+c=
.
6. 用科学记数法表示 51200000=
.
7. 计算: − 22 +(− 2)2 − −1 3 (4)2 =
属于非负整数的共有 ( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
12. 在一个数的前面加上一个“-”号,就可以得到一个( )
A. 负数
B. 非正数
C. 正数或负数
D. 原数的相反数
13. 下列各组数中,互为相反数的是( )
A. 2 与 1 2
B. (−1)2 与 1 C. −1与 (−1)2
的有理数之和为 19,求 A + H + M + Q + X 的值.
2/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
参考答案
一、填空题(每空 3 分,共 48 分)
1. 3 的相反数为 − 3 ; − 2 1 的倒数为 − 3
3
7
; −( − 2)3 = 8
.
2. 绝对值等于 2 的数为 2
.
7. 计算: − 22 +(− 2)2 − −1 3 (4)2 = 3
− 16 . 9
8. 若 a、b 互为相反数,c、d 互为倒数,则 a+b+cd+1= 2 .
9. 在 − 24 中,底数为 2 ,指数为 4 ,乘方的结果为 −16

苏科版七年级数学上册第二章 有理数 单元测试卷

苏科版七年级数学上册第二章 有理数 单元测试卷

第二章 有理数 单元测试卷(时间:90分钟 满分:100分)一、选择题(每题2分,共16分)1.-0.2的倒数是 ()A .0.2B .5C .-0.2D .-52.下列式子的结果是负数的是 ()A .B .-(-3)C .(-3)2D .-(-1)20213--3.下列计算正确的是 () A .0-(-8)=- 8 B .(-3)-(-9)=-12C .D .(-48)+(-8)=-65933255⎛⎫⨯-=- ⎪⎝⎭4.人均蛋白质日摄入量75克.某人活了71岁(按26000日计算),用科学记数法表示,这个人一生摄入蛋白质总量应是 ( ) A .1.95×106克 B .1.95×105克C .19.5×106克D .19.5×105 克5.小丽手中有4张卡片,分别印有数字-5,-3,4,9,现从中抽取三张,并把卡片上的数字相乘,其中所得积最小的三张卡片印有的数字是 ()A .-5,-3,4B .-5,-3,9C .-5,4,9D .-3,4,96.若a=-22,b=(-2) 2,c=(-2)3÷(-1+5),则a ,b ,c 的大小关系是 () A .a <b <c B .a <c <bC .c <a <bD .c <b <a7.若ab≠o ,则不可能是 ( )a ba b-A .0B .1C .2D .-28.如图,数轴上A 、B 、C 、D 四点对应的有理数分别是整数a 、b 、c 、d ,且有c -2a=8,则原点应是( )A .A 点B .B 点C .C 点D .D 点二、填空题(每题3分,共30分)9.的绝对值是_________.14-10.如果运进粮食200 t 记作+200 t ,那么-80 t 表示______________.11.数轴上到原点的距离为的点所表示的数为________.32412.若,则b a =_________.()2230a b -++=13.有三个连续整数,它们的和与它们的积相等,这三个数可以是________(写一组即可).14.某天上午的温度是5℃,中午上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是________℃.15.若a 、b 互为相反数c 、d 互为倒数,则(a+b -2cd) 3=_________.16.如图,是一个简单的数值计算程序,当输入的x 的值为5,则输出的结果为______.17.北京国际数学家大会会标如图所示,它由4个相同的直角三角形拼成,直角边长如果是4和7,则大正方形的面积是________.18.定义:a 是不为1的有理数,我们把称为a 的差倒数,如2的差倒数是11a-,-1的差倒数是.已知,a 2是a 1的差倒数,a 3是1112=--()11112=--113a =-a 2的差倒数,a 4是a 3的差倒数……依次类推,则a 2021=_________.三、解答题(共54分)19.(每题5分,共20分)计算:(1) (2)()510.4741.53166----()9113010156⎛⎫-+⨯-⎪⎝⎭(3)()()()220091162418⎛⎫÷---⨯-+- ⎪⎝⎭(4)()2322351535⎛⎫---⨯-÷- ⎪⎝⎭20.(6分)在“2,-3,4,-5,6”五个数中,任选四个数,利用有理数的混合运算,使四个数的运算结果为24(每个数只能用一次).写出你的两个算式及计算过程.21.(6分)现有一张光盘可存储500兆字节信息,这个容量相当于5 000本书的内容.中国国家图书馆藏书量约2亿册,若制成光盘,成本低,占地小,试求出大约制成多少张光盘.(结果用科学记数法表示)22.(6分)从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(克)-5-20136袋数143453(1)这批样品的平均质量比标准质量多还是少?用你学过的方法合理解释.(2)若标准质量为450克,则抽样检测的总质量是多少?23.(6分)某出租车一天下午以鼓楼为出发地,在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+12.(1)将最后一名乘客送到目的地,出租车离鼓楼出发地多远?在鼓楼的什么方向?(2)若每千米的价格是2.4元,司机一个下午的营业额是多少?24.(10分)今年元月份李老师到银行并户,存入1000元钱,以后的每月根据收入情况存入一笔钱,下表为李老师从2月份到7月份的存款情况:(特别提醒,超出上月记为正,不足记为负)月份234567与上一月比较(元)-200+450+400-300-100+150根据记录,从2月份至7月份中,_______月份存入的钱最多,为________元,_______月份存入的钱最少,为________元,截至7月份,存折上共有_______元(不要求写计算过程,直接填结果).参考答案1.D 2.A 3.C 4.A 5.C 6.B 7.B 8.C 9.1410.运出粮食80 t 11. 12.9324±13.答案不唯一,如:-1,0,1或1,2,3 14.-1 15.-816.17.653218.3419.(1)原式=. ()510.47 1.534126466⎛⎫++--=-=- ⎪⎝⎭(2)原式=()()()91130303027253010156⨯--⨯-+⨯-=-+-=- (3)原式=()()116216182178⎛⎫÷---⨯+-=-+-=- ⎪⎝⎭(4)原式=()491251539205625---⨯-÷=-+-=20.选2,-3,4,6,则6-(-3)×(2+4)=6-(-18)=24;选2,4,-5,6,则6-2-4×(-5)=4-(-20)=24,答案不唯一. 21.200 000 000÷5 000=40 000=4×10 4(张),大约制成4×104张光盘. 22.(1) -5×1+(-2)×4+0×3+1×4+3×5+6×3=-5-8+0+4+15+18=24(克),24÷20=1.2(克)>0,这批样品的平均质量比标准质量多. (2)450×20+24=9 024(克),抽检的总质量是9 024克. 23.(1)+9-3-5+4-8+6-3-6-4+12=2(千米),在鼓楼的东面,离鼓楼2千米.(2)93548636412++-+-+++-+++-+-+-++=9+3+5+4+8+6+3+6+4+12=60(千米),60×2.4=144(元),司机一个下午的营业额是144元.24.4 1650 2800 8700。

苏科版七年级数学上册第二章 有理数 单元测试卷5套卷

苏科版七年级数学上册第二章 有理数 单元测试卷5套卷

17.(1)0 (2) 1 61 (3)一 4(4) 41
64
6
18.解:故 a b c 3 1 . 3
19.解:如答图所示.
20.解:[5 一(一 2)]÷6×1= 7 ≈1.17(千米). 6
21.解:6×2+5×0 一 4×2=4(分),所以七年级(5)班得 4 分.
22.解 l(1)小虫最后回到了出发点 O (2)小虫距离出发点 O 最远是 16 cm.
23. 2008 2009
第二章 有理数 单元测试卷
(时间:90 分钟 满分:100 分)
一、选择题(每题 2 分,共 16 分)
1.-0.2 的倒数是
A.0.2
B.5
C.-0.2
2.下列式子的结果是负数的是
A. 3
B.-(-3)
C.(-3)2
D.-5
()
()
D.-(-1)2021
3.下列计算正确的是 A.0-(-8)=- 8
()
A.一 3 B.3 C.一 10 D.10
5. a 与 一 2 互 为 相 反 数 , 那 么 a 等 于
()
A.一 2
B.2
C. 1 2
6.若 a a ,则 a 一定是
D. 1 2
()
A.正数
B.负数
C.非负数
7.4.7 ( 8.9) 7.5+( 6)的值等于
A.12.1
B.0.1
9. 1 的绝对值是_________. 4
10.如果运进粮食 200 t 记作+200 t,那么-80 t 表示______________.
11.数轴上到原点的距离为 2 3 的点所表示的数为________. 4

苏科版七年级上《第二章有理数》单元检测题(有答案)

苏科版七年级上《第二章有理数》单元检测题(有答案)

第一学期苏科版七年级数学上册第二章有理数单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列四个式子中,计算结果最小的是()A.(−2)2B.(−3)×22C.−42÷(−2)D.−32−12.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为()A.3.2×107LB.3.2×106LC.3.2×105LD.3.2×104L4.下列关于零的说法中,正确的个数是()①零是正数;②零是负数;③零既不是正数,也不是负数;④零仅表示没有.A.1个B.2个C.3个D.4个5数轴上的点A到原点的距离是5,则点A表示的数为()A.−5B.5C.5或−5D.2.5或−2.56.一个数是10,另一个数比10的相反数小2,则这两个数的和为()A.18B.−2C.−18D.27.现有四种说法:①−a表示负数;②若|x|=−x,则x<0;③绝对值最小的有理数是0;④若|a|=|b|,则a=b;⑤若a<b<0,则|a|>|b|,其中正确的是()A.2个B.3个C.4个D.5个8.若新运算“”定义为:ab=b2−2a,则23=()A.3B.4C.5D.−69.下列说法中正确的是()A.0是最小的整数B.最大的负有理数是−1C.两个负数绝对值大的负数小D.有理数a的倒数是1a10.下列说法中,正确的是()A.正有理数和负有理数统称有理数B.一个有理数不是整数就是分数C.零不是自然数,但它是有理数D.正分数、零、负分数统称分数二、填空题(共 10 小题,每小题 3 分,共 30 分)11.已知:(a+2)2+|b−5|=0,则a−b=________.12.在+8.3,−6,−0.8,−(−2),0,12中,整数有________个.13.写出一个关于有理数加法的算式,使得和比每一个加数都小,这个算式可以为________.14.若x的相反数是3,|y|=5,则x+y的值为________.15.0的相反数是________,23的相反数是________.16.有理数a、b在数轴上的位置如图所示,则下列各式成立的是________(只填序号)①a+b>0;②a−b>0;③|b|>a;④ab<0.17.若(x−2)2+|2y+1|=0,则x+y=________.18.有一颗高出地面10米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行的路径是每向上爬行4米又向下滑行1米,它想爬到树顶至少爬行________米.19.绝对值不大于2.5的整数有________,它们的和是________.20.若a是最小的正整数,b是绝对值最小的整数,c的绝对值是12,则2a2−3bc+4c2的值是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.计算:(1)(−6)÷(−4)÷(−115);(2)(−16)÷[(−116)÷(−164)];(3)(−5)÷(−127)×45×(−214)÷7.22. a,b互为相反数,c,d互为倒数,且x的绝对值是5,求x−(a+b+cd)+ |(a+b)−4|+|3−cd|的值.23.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,−4,+13,−10,−12,+3,−13,−17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?24.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+(c−5)2=0.(1)a=________,b=________,c=________.(2)若将数轴折叠,使得点A与点C重合,则点B与数________表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=________,BC=________.(用含t的代数式表示)(4)请问:3BC−AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.25. 某检修小组乘汽车检修公路道路.向东记为正.某天自A地出发.所走路程(单位:千米)为:+2,−5,+4,−2,−4,−3,+28;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.06升,则今天共耗油多少升?26.如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;5;0.4这三个数时,这三次输入的结果分别是多少?9(2)你认为当输入什么数时,其输出的结果是0?(3)你认为这的“有理数转换器”不可能输出什么数?答案1.B2.D3.C4.A5.A6.B7.A8.C9.C10.B11.−712.313.(−1)+(−2).14.2或−815.0−2316.①②④17.3218.1219.−2,−1,0,1,2020.321.解:(1)原式=−(6÷4÷65),=−(6×14×56),=−54;(2)原式=(−16)÷(116×64)=−16÷4=−4;(3)原式=−(5×79×45×94×17)=−1.22. 解:∵a,b互为相反数,c,d互为倒数,且x的绝对值是5,∴a+b=0,cd=1,x=±5,当x=5时,原式=5−(0+1)+|0−4|+|3−1|=5−1+4+2=10;当x=5时,原式=−5−(0+1)+|0−4|+|3−1|=−5−1+4+2=0;所以x−(a+b+cd)+|(a+b)−4|+|3−cd|的值为10或0.23.解:(1)根据题意:规定向东为正,向西为负:则(+15)+(−4)+(+13)+ (−10)+(−12)+(+3)+(−13)+(−17)=−25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|−4|+|+13|+|−10|+|−12|+|+3|+|−13|+|−17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升.24.−3−1533t+2t+6(4)∵AB=3t+2,BC=t+6,∴3BC−AB=3(t+6)−(3t+2)=3t+18−3t−2=16.∴3BC−AB的值为定值16.25.他们不能回到出发点,在A地东边,距离A地20千米远;②|+2|+|−5|+|+4|+|−2|+|−4|+|−3|+|+28|=2+5+4+2+4+3+28=48(千米),48×0.06=2.88(升).答:今天共耗油2.88升26.解:(1)∵3>2,∴输入3时的程序为:(3−5)=−2<0,∴−2的相反数是2>0,2的倒数是12,∴当输入3时,输出12;∵59<2.∴输入59时的程序为:59<2,∴5 9的相反数是−59,|−59|=59,∴当输入59时,输出59;∵0.4<2,∴输入0.4时的程序为:0.4<2,0.4的相反数为−0.4,−0.4的绝对值是|−0.4|=0.4∴当输入0.4时,输出0.4.(2)∵输出数为0,0的相反数及绝对值均为0,当输入5的倍数时也输出0.∴应输入0或5n(n为自然数);(3)由图表知,不管输入正数、0或者负数,输出的结果都是非负数.所以输出的数应为非负数.。

苏科版七年级上册数学第二章有理数测试

苏科版七年级上册数学第二章有理数测试

一、选择题(每题2分,共20分)1、|-2|的相反数是( )A.-12B.12C.2 D.-22、在0,-1,-2,-3,5,3.8,215,16中,非负整数的个数是( )A、1个B、2个C、3个D、4个3、下列说法中,正确..的是( )A、没有最大的正数,但有最大的负数;B、最大的负整数是-1;C、有理数包括正有理数和负有理数;D、一个有理数的平方总是正数;4、在数轴上与-3的距离等于4的点表示的数是( )A、1B、-7C、1或-7D、无数个5、设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c= ( )A、1B、0C、1或0D、2或06、下列判断错误..的是( )A、若a为正数,则a>0B、若a为负数,则-a>0C、若-a为正数,则a>0D、若-a为负数,则a>07、下列各数中互为相反数的是( )A、12与0.2 B、13与-0.33 C、-2.25与124D、5与-(-5)8、下列说法:①圆周率π是无限不循环小数,它不是有理数;②负整数和负分数统称为负有理数;③正有理数和负有理数组成全体有理数;④284不是整数,而是分数;其中正确..的有( )A、1个B、2个C、3个D、4个9、下列说法正确..的是( )A、两个不同的有理数可以对应数轴上同一个点;B、数轴上的点只能表示整数;C、任何有理数的绝对值一定不是负数;D、互为相反数的两个数一定不相等;10、从数轴上观察,不小于...-3而且不超过...4的正整数...有( )A、5个B、6个C、7个D、8个二、填空题(每题2分,共24分)1、在数轴上点A表示-7,点B、C表示的数的绝对值相等,符号相反,且点B与点A之间的距离是2,则点C表示的数是___________.2、数轴上离开原点132个单位长度的点所表示的数是__________.。

苏科版七年级上册数学第二章有理数检测试卷(六)测试题(含答案)

苏科版七年级上册数学第二章有理数检测试卷(六)测试题(含答案)

第二章 有理数 检测试卷(六)测试题(含答案)一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a ≠,则22b a ≠D .两个负数比较大小,大的反而小 2.如果一个数的绝对值等于它的相反数,那么这个数( ) A .必为正数 B .必为负数 C .一定不是正数 D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0πab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.3 5.a 为有理数,则下列各式成立的是( )A .02>aB .012<-aC .0)(>--aD .012>+a 6.如果一个数的平方与这个数的绝对值相等,那么这个数是( )A .0B .1C .-1D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( ) A .它有四个有效数字3,0,8,6 B .它有五个有效数字3,0,8,6,0 C .它精确到0.001 D .它精确到百分位8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( ) A .2ab ab a << B .ab a ab <<2 C .a ab ab <<2 D .ab ab a <<2 9. 下列各组运算中,其值最小的是( )A .2)23(--- B .)2()3(-⨯- C .22)2()3(-÷- D .)2()3(2-⨯- 10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分)11.绝对值小于n (n 是正整数)的整数共有___________个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版初中数学七年级上册第二章《有理数》检测试卷
满分:100分 时间:45分钟
姓名 班级 得分
一、填空题(每空3分,共48分)
1. 3的相反数为 ;31
2-的倒数为 ; 3
2)(--= . 2. 绝对值等于2的数为 ;平方得
64
25的数为 .
3. 用“>”或“<”填空: --)1.3(--; 87- 7
6-. 4. 数轴上到原点的距离为321的点表示的有理数是 . 5. 设是a 最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c = .
6. 用科学记数法表示51200000= .
7. 计算:=⨯---+-232234122)()( .
8. 若a 、b 互为相反数,c 、d 互为倒数,则a +b +cd +1= .
9. 在42-中,底数为 ,指数为 ,乘方的结果为 .
10. 已知a >0,b <0, 且a <b ,则a +b 0.(填“>”或“<”号) 二、选择题(每题3分,共18分)
11. 有下列各数:10,67.6-,0,90-,0.01,3
1-,)3(--,2--,)4(2--.其中,属于非负整数的共有 ( )
A. 1个
B. 2个
C. 3个
D. 4个
12. 在一个数的前面加上一个“-”号,就可以得到一个( )
A. 负数
B. 非正数
C. 正数或负数
D. 原数的相反数
13. 下列各组数中,互为相反数的是( )
A. 2与2
1 B.2)1(-与1 C. 1-与2)1(- D. 2与2- 14. 若两个数的和为负数,则下列结论正确的是( )
A. 两数都是负数
B. 只有一个是负数
C. 至少有一个是负数
D. 两数都是非负数
15. 三个数的和大于0,积小于0,那么这三个数中负数有( )
A. 0个
B. 1个
C. 2个
D. 3个
16. 下列运算正确的是( ) A.1)2(222=-÷- B. 27
18)3
12(3-=- C.2553315-=⨯÷- D. 5.3225.3436)25.3(413-=⨯--⨯ 三、计算题(17—22每题4分, 23、24每题5分,共34分)
17. 1571812-+-; 18.
)43()13()7(43-⨯---⨯;
19. )481()121613141(-÷+--
; 20. [])4()2(483---÷;
21. []4222)2(9465)5(2)3(-⨯÷⨯
----;22. []
24)2(231)5.01(1--⨯⨯---;
23. 有资料表明:某地区高度每增加100米,气温下降0.8 ℃.某天上午10点整测得山脚和山顶的气温分别为2.2 ℃和0.2 ℃,你知道这个山峰有多高吗?
24. 在一排方格
中,每个方格中除-13和7外,其余字母各表示一个有理数,已知其中任何3个连续方格中的有理数之和为19,求X Q M H A ++++的值.。

相关文档
最新文档