第二章有理数

合集下载

第二章有理数及其运算第一讲有理数(教案)

第二章有理数及其运算第一讲有理数(教案)
-运算顺序的掌握:难点在于混合运算中,运算顺序容易混淆,导致计算错误。
-突破方法:通过具体案例,强调运算顺序的重要性,并引导学生用括号明确运算顺序。
-实际应用题的解决:难点在于如何将实际问题抽象成有理数运算问题,以及如何列式和计算。
-突破方法:提供多样化的实际应用题,引导学生逐步学会提取信息、建立数学模型并解决问题。
2.培养学生运用有理数进行逻辑推理,提高逻辑思维能力,增强数学抽象素养。
3.培养学生熟练掌握有理数的运算,提高运算速度和准确性,强化数学运算素养。
4.引导学生通过解决实际问题,培养数据分析素养,提高解决问题的能力。
5.激发学生主动探究有理数性质和运算规律的意识,培养数学探究素养,增强创新精神。
6.培养学生合作交流、分享学习心得的习惯,提高数学交流素养,增进团队合作意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数比的数,如分数、整数。它是数学运算的基础,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数运算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

2024年人教版七年级上册教学设计第二章 有理数的运算第二章 有理数的运算

2024年人教版七年级上册教学设计第二章  有理数的运算第二章  有理数的运算

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数的运算”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题.“数与代数”是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.在小学阶段,学生认识了正有理数,掌握了正有理数的四则运算,在初中阶段,学生将认识负数,进一步学习有理数的四则运算.在“数与代数”中,运算是核心内容.“引进一种新的数,就要研究相应的运算;定义一种运算,就要研究相应的运算律”,这是代数的核心思想.在数系、运算法则和运算律(即对任何数都成立的通性)中获得的知识,可以方便地迁移到“以字母表示数”后的学习内容中去.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题和提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材七年级上册第二章“有理数的运算”,本章包括三个小节:2.1有理数的加法与减法;2.2有理数的乘法与除法;2.3有理数的乘方.本单元主要从加、减、乘、除的运算顺序去研究有理数的相关运算及运算律,主要的探究方法是举例验证、归纳总结.在有理数的运算中,加法与乘法着重在探究符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算.减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算.乘方是几个相同因数的乘积,因此可以利用乘法运算.这些运算之间相互联系,最后总结如何利用法则及运算律简化有理数的混合运算并解决实际问题.科学记数法与乘方有关,因而可进一步加以介绍.近似数在实际问题中有广泛的应用,在本单元作进一步的认识.利用计算器计算分两次安排,一次在加减乘除运算之后,一次在乘方运算之后.学会了使用计算器进行有理数的运算,较复杂的计算就可以用计算器完成.本单元重点是有理数的运算和运算法则;难点是在理解运算法则的基础上,养成良好的运算习惯.实际上,运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,这也是在整个“数与代数”领域中需要注意的问题.本单元教学主要是围绕有理数运算这个核心展开的,教学中一定要重视运算技能的训练,包括养成良好的运算习惯等.三、单元学情分析本单元内容是人教版教材数学七年级上册第二章有理数的运算.在“数与代数”中,有理数的运算是重要内容之一.学生之前已经学习了加数的运算和有理数的概念(数轴、相反数、绝对值),所以要有意识地把非负有理数的运算与有理数的运算结合起来.在本单元的学习过程中,有理数的运算的关键是符号法则和绝对值运算.通过新旧知识结合,再利用日常生活经验、数轴的几何直观等,将正数与负数的运算归结到非负数之间的运算,进而定义有理数的运算,得出运算法则,并运用有理数的运算法则解决简单的问题.本单元的知识及其思想方法也是后续学习的基础.四、单元学习目标1.经历有理数加、减、乘、除、乘方运算法则的获得过程,理解乘方的意义,掌握有理数的加、减、乘、除、乘方以及简单的混合运算,让学生体会转化与分类讨论的数学思想方法,培养学生的运算能力与抽象概括能力.2.理解有理数的运算律,并能用运算律进行简便运算,培养学生的运算能力和推理能力.3.能够运用有理数的运算解决简单的实际问题,培养学生的数学建模能力与应用意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难、由浅入深、循序渐进,突出基础知识、基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本单元的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

七年级上册第二章有理数知识点汇总

七年级上册第二章有理数知识点汇总

第二章有理数及其运算一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3, 5.2也可写作+3,+5.2;零既不是正数,也不是负数。

或2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线; 数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a )右边的数总比左边的数大,b )正数都大于零,c )负数都小于零,d )正数大于一切负数3. 相反数知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值知识点:数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作∣a ∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a. 若a=0,则∣a∣=0. 若a<0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

二、有理数的运算1. 有理数的加法知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

第二章 有理数及其运算知识梳理

第二章 有理数及其运算知识梳理

第二章有理数及其运算一、正负数1.【正数】:像+1.8,+420、+30、+10%等带大于0的数叫做正数。

为了强调正数,前面加上“+”号,也可以省略不写。

2.【负数】:像-3、-4754、-50、-0.6、-15%等小于0的数叫做负数。

负数前面的“-”号不能省略。

3.【零】:既不是正数也不是负数,它是正数与负数的分界点。

判断:-a一定是负数吗?二、用正负数表示相反意义的量:1.判断下列表述是否是相反意义的量(1)气温零上5℃表示为+5℃,那么-3℃表示气温下降3℃。

(2)购进50斤苹果与卖出-50斤苹果。

2.“某种机器零件规定其直径误差不得超过±0.8mm”这是什么意思?三、有理数及其分类:1.【定义】:整数与分数统称为有理数(注意:所有的有限小数和无限循环小数都可以化为分数。

)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数2.请把下列各数填入相应的集合中7,-9.25,,157,212-75%,31.25,-(-6.5),负数集合:{ …}非负数集合:{ …}整数集合:{ …}分数集合:{ …}1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

注意:①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度三者缺一不可;③原点的位置、正方向的取向、单位长度的大小的选定,都是根据实际需要而定的。

2.数轴与数的关系(1)任意一个有理数,都可以用数轴上的一点表示,但数轴上的一点不一定表示有理数,它可能表示无理数。

(2)数轴上的数,左边的数总要小于右边的数。

正数>0 ,负数<0,正数>负数。

负数绝对值(数字)越大,数值越小。

一般地,设 a 是一个正数,则数轴上表示数 a 在原点的____边,与原点的距离是____个单位长度;表示数(定义)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0(性质)-a 的点在原点的____边,与原点的距离是____个单位长度.(3)最小的非负整数 ;最小的正有理数 ;最大的负整数 ;1.概念:只有符号不同的两个数叫相反数;在任意一个数的前面添上一个“-”号,就变为这个数的相反数。

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

2. 有理数的减法
减法法则:减去一个数,等于加上这个数的相反数.
3. 有理数的乘法
(1) 乘法法则
乘法的交换律
(2) 乘法的运算律 乘法的结合律
乘法的分配律
4. 有理数的除法
除法法则:除以一个数,等于乘这个数的倒数.
5. 有理数的乘方 求几个相同因数的积的运算,叫做乘方.
6. 有理数的混合运算
a 幂
考点讲练 考点1: 有理数的运算
例1 计算:
解:
1. 把减法转化为加法 时,要注意符号; 2. 对几个有理数相加 减的题目,要注意观 察,将哪些数放在一 起会使计算简便.
= 21 - 27 + 30 - 10 = 14.
注意符号问题
= -2×12×12 = -288.
先确定商的符号, 再把绝对值相除
注意:1. 底数或因数 是带分数时,要先将 带分数化成假分数; 2. 区分 -24 与 (-2)4.
练一练
1. 计算:(1) -3 + 8 - 7 - 15; (2) 23 - 6×(-3) + 2×(-4);
答案:(1) -17. (3) -3.3.
(2) 33.
考点2: 科学记数法
例2 (保定模拟考) 地球与太阳的最远距离约为 15 200
1 400 000 000 000 元,比上年增长 4.5%,其中数据
1 400 000 000 000 用科学记数法表示为( A )
A. 1.4×1012
B. 0.14×1013
C. 1.4×1013
D. 14×1011
考点3: 近似数
例3 用四舍五入法对 0.030 47 取近似值,精确到
0.001 的结果是(D )

七年级数学上册第二章 有理数及其运算知识点

七年级数学上册第二章 有理数及其运算知识点

第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。

(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。

第二章有理数及其运算知识点总结

第二章有理数及其运算知识点总结

第二章 有理数及其运算知识点一、有理数的定义与分类: 1、像5,1.2,12,… 这样的数叫做正数,可以在正数前加“+”号,如:5+, 1.2+,12+,… 在正数前面加上“-”号的数叫做负数,如:10-,3-,… 2、0既不是正数,也不是负数。

3、整数、分数和有理数:(1)整数:正整数、零和负整数。

(2)分数:正分数和负分数统称分数。

(3)有理数:整数和分数统称有理数。

4、有理数的分类:(1)按定义分: (2)按性质分:正数和0统称非负数;正整数和0统称非负整数。

负数和0统称非正数;负整数和0统称非正整数。

二、数轴1、规定了原点、单位长度和正方向的直线叫做数轴。

2、任何一个有理数都可以用数轴上的一个点表示。

注意:数轴上的点不都表示有理数。

3、数轴的三要素: 、 、 。

在数轴上,右边的数总比左边的数大。

最小的正整数是 1 ,最大的负整数是 -1 。

三、相反数1、如果两个数只有符号不同,那么我们称这两个数互为相反数,特别地,0的相反数是0。

本质:只有符号不同,其它不变。

※ x +y 的相反数是 -(x+y ) ,a -b 的相反数是 b-a2、正数的相反数是 负数 ,负数的相反数是 正数 ,相反数等于它本身的数是 0 。

3、在数轴上,表示互为相反数的两个点,位于原点的两侧且与原点的距离相等。

4、若a 与b 互为相反数,则有0a b +=。

5、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)6、相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。

⎪ ⎪⎪⎩⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧⎩⎪ ⎨ ⎧ 有理数四、有理数比较大小的各种方法:(1)数轴上两个点表示的数,右边的总比左边的大。

(2)正数大于0,负数小于0,正数大于负数。

(3)两个负数比较大小,绝对值大的反而小。

五、绝对值1、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章有理数的运算2.1有理数的加法与减法2.1.1有理数的加法(2课时)第1课时有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.一、导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?二、探究新知一个小球作左右方向的运动,我们规定向左为负,向右为正.师:根据题意列出对应的式子:(1)如果小球先向右运动3米,再向右运动5米,那么两次运动后总的运动结果是什么?(2)如果小球先向左运动5米,再向左运动3米,那么两次运动后总的结果是什么?加数加数和(+3)+(+5)=+8,(-5)+(-3)=-8)师:你从上面的两个算式中发现了什么?归纳:同号两数相加,取相同的符号,并把绝对值相加.(3)如果小球先向右运动5米,再向左运动3米,那么两次运动后总的结果是什么?(4)如果小球先向右运动3米,又向左运动5米,两次运动后小球从起点向__左__运动了__2__米.加数加数和(+5)+(-3)=+2,(+3)+(-5)=-2)师:你从上面的两个算式中发现了什么?归纳:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(5)小球先向右运动5米,再向左运动5米,小球从起点向__左(右)__运动了__0__米.师:观察,你又有什么发现?归纳:互为相反数的两个数相加得0.总结归纳:有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.三、课堂练习试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-6)+(-5);(3)(+3)+(-7);(4)(+9)+(-4);(5)(+8)+(-8);(6)(-3)+0;(7)0+(+2);(8)0+0.【答案】(1)7(2)-11(3)-4(4)5(5)0(6)-3(7)2(8)0学生逐题口答后,师生共同得出.方法总结:1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第28页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.四、课堂小结五、课后作业教材P28练习第1,2,3,4题.本节课主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时有理数加法的运算律及运用1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点有理数加法运算律的运用.难点能运用有理数加法运算律来简化加法运算.一、导入新课问题1:在小学中我们学过哪些加法的运算律?加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).问题2:加法的运算律是不是也可以扩充到有理数范围?二、探究新知探究活动(一)1.计算(口算):(1)39+15=__54__,15+39=__54__;(2)(-98)+(-12)=__-110__,(-12)+(-98)=__-110__;(3)(-24)+(+24)=__0__,(+24)+(-24)=__0__;(4)(-23)+(+17)=__-6__,(+17)+(-23)=__-6__.问题3:通过以上的运算结果,你发现了什么?归纳加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变,加法交换律:a+b=b+a.探究活动(二)2.填空:(1)(-15)+(+26)+(+9)=[__(-15)__+__(+26)__]+(+9)=(-15)+[__(+26)__+__(+9)__]=__20__.(2)(-2)+(-12)+(+12)=[__(-2)__+__(-12)__]+(+12)=(-2)+[__(-12)__+__(+12)__]问题4:请你们猜想一下结合律在有理数加法中仍然成立么?使用这些运算律有什么好处呢?请小组开始讨论.归纳加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.加法的结合律:(a +b )+c =a +(b +c ).师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.例1 计算:16+(-25)+24+(-35). 【答案】-20 例2 灵活运用运用加法交换律和结合律做简便运算 (1)(-25)+(+56)+(-39)+(+28); (2)(-1.9)+3.6+(-10.1)+1.4;(3)13 +(-34 )+(-13 )+(-14 )+1819 ; (4)(-337 )+12.5+(-1647 )+(-2.5).【答案】(1)20 (2)-7 (3)-119(4)-10问题:回顾以上各题的解答,思考:将怎样的加数结合在一起,可使运算简便? 总结归纳:1.一般地,总是先把正数或负数分别结合在一起相加; 2.有相反数的可先把相反数相加,能凑整的可先凑整; 3.有分母相同的,可先把分母相同的数结合相加. 师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂练习 1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.上周五股民新买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)【答案】1.(1)-10 (2)-3 2.34元 四、课堂小结1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?五、课后作业教材P30练习第1,2,3题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的运算律在有理数范围内是否适用?”接着让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.2.1.2有理数的减法(2课时)第1课时有理数的减法1.掌握有理数的减法法则;2.能运用有理数的减法法则进行运算;3.渗透转化思想,培养运算能力.重点有理数的减法法则.难点有理数减法法则的推导.一、导入新课师:出示温度计,提出问题:1.你能从温度计上看出5℃比-5℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式5-(-5)=10.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了5-(-5)=10,而我们还知道5+(+5)=10.即5-(-5)=5+(+5).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则:减去一个数,等于加上这个数的相反数用符号表示:a-b=a+(-b).注意:减法在运算时有2个要素要发生变化: ①减号变加号;②减数变成它的相反数. 三、课堂练习师:出示教材P32例4. (1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)(-312 )-514.【答案】(1)2 (2)-7 (3)12 (4)-834计算(口答): (1)6-9;(2)(+4)-(-7); (3)(-5)-(-8); (4)(-2.5)-5.9; (5)1.9-(-0.6); (6)-25 -(45 );(7)0-(-5); (8)0-5.【答案】(1)-3 (2)11 (3)3 (4)-8.4 (5)2.5 (6)-65(7)5 (8)-5师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材32页练习. 四、课堂小结小结:谈谈本节课的收获. 思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?五、课后作业教材P32练习第1,2题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索.法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.第2课时 有理数的加减混合运算1.熟练掌握有理数的加法和减法运算法则;2.能进行有理数的加减混合运算,培养学生的计算能力.重点1.有理数的加减混合运算;2.将加减法统一成加法的省略括号的形式并读出来.难点1.有理数的加减混合运算;2.将加减法改写成省略括号和加号的形式并读出来.一、导入新课一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?学生回答.二、探究新知师:投影展示教材例5.计算(-20)+(+3)-(-5)-(+7).学生完成.说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.师:提出新的问题,可否将其先统一成加法,然后再进行运算?学生讨论后回答.师:让学生尝试新的思路,然后与刚才的方法相比较.师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.让学生再重新尝试做一做.之后师生共同归纳方法:有理数加减法的混合运算可以统一成加法运算.探索统一成加法以后的省略括号的书写形式及读法.师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否可看作-20,3,5,-7这四个数的和,为书写简便,可以写成省略括号和加号的形式:-20+3+5-7.可以读作(1)负20,正3,正5,负7的和.(2)负20加3加5减7.注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.例6计算:14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.探究:在数轴上,点A,B分别表示数a,b.对于下列各组数a=2,b=6;a=0,b=6;a=2:b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?三、课堂小结小结:谈谈你这节课的收获.四、课后作业教材P34练习第1,2题.在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.2.2有理数的乘法与除法2.2.1有理数的乘法(2课时)第1课时有理数的乘法1.掌握有理数的乘法法则;2.能利用乘法法则正确进行有理数乘法运算.重点运用有理数的乘法法则正确进行计算.难点有理数乘法法则的探索过程及对法则的理解.一、导入新课师:由于长期干旱,水库放水抗旱,每天水位下降2米,已经放了3天,现在水位20米,问放水抗旱前水库水位多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、探究新知1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,__积逐次递减3__.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=__-6__,3×(-3)=__-9__.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:__左右两个因数相乘,其中一个因数为3,若另一个因数逐次减少1,乘积也相应减少3__.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=__-3__,(-2)×3=__-6__,(-3)×3=__-9__.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0__.规律:__随着后一乘数逐次减1,积逐次加3__.(4)按照(3)中的规律,填空,并总结归纳.(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.结论:__负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积__.2.师生共同归纳总结有理数的乘法法则,并用文字叙述.(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.讨论:(1)若a<0,b>0,则ab<0;(2)若a<0,b<0,则ab>0;(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.教师出示例2,引导学生完成.4.倒数计算并观察结果有何特点?(1)12×2; (2)(-0.25)×(-4). 【答案】(1)1 (2)1要点:有理数中,乘积是1的两个数互为倒数. 思考:数a (a ≠0)的倒数是什么?(a ≠0时,a 的倒数是1a)巩固:口答,说出下列各数的倒数:1,-1,13 ,-13 ,5,-5,0.75,-213 .例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km ,气温的变化量为-6℃,攀登3 km 后,气温有什么变化?解:(-6)×3=-18. 答:气温下降18℃. 三、课堂练习 计算: (1)4×(-9); (2)-11×5; (3)(-0.3)×(-0.6);(4)(-12 )×23 ;(5)-98×0; (6)(-0.2)×(-13).【答案】(1)-36 (2)-55 (3)0.18 (4)-13 (5)0 (6)115四、课堂小结1.有理数乘法法则;2.有理数乘法的求解步骤; 3.乘积是1的两个数互为倒数. 五、课后作业教材P40练习第1,2,3题.本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时 有理数乘法的运算律及多个有理数相乘1.正确理解乘法交换律、结合律和分配律,能用字母表示运算律; 2.能运用运算律较熟练地进行乘法运算; 3.掌握多个有理数相乘的运算方法.重点1.掌握多个有理数相乘的计算方法以及乘法运算律,能运用乘法运算律进行简便运算.2.运用有理数的乘法解决问题.难点逆用乘法分配律进行简便运算.一、导入新课1.有理数的乘法法则是什么?2.小学时候大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc).(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac.(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad.3.几个不为0的数相乘:确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×3×(-0.5)×(-7),2×(-2)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负因数个数为奇数时,积为__负__;当负因数个数为偶数时,积为__正__.结论1:几个不等于0的数相乘,积的符号由__负因数的个数__决定;结论2:有一个乘数为0,则积为__0__;三、课堂练习下列各式中用了哪条运算律?如何用字母表示?1.(-4)×8=8×(-4).乘法交换律:a×b=b×a.2.[(-8)+5]+(-4)=(-8)+[5+(-4)]. 加法结合律:(a +b )+c =a +(b +c ). 例3 用两种方法计算 (14 +16 -12)×12. 比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?计算:-47 ×3.59-47 ×2.41+47×(-3).师:这道题直接进行计算显然比较麻烦,同学们想一想,有没有简便方法呢?生:同学相互讨论完成. 四、课堂小结小结:这节课你有什么收获? 1.乘法的运算律;2.多个有理数相乘积的符号规律. 五、课后作业教材P43练习第1,2题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.2.2.2 有理数的除法(2课时)第1课时 有理数的除法1.了解有理数除法的定义;2.经历有理数除法法则的探索过程,会进行有理数的除法运算; 3.会化简分数.重点正确运用除法法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、导入新课1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、探究新知(一)有理数除法法则的推导师提出问题:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 → 8÷(-4)=____; 6×(-6)=-36 → -36÷6=____; (-35 )×(45 )=-1225 → -1225 ÷(-35)=____; -8×9=-72 → -72÷9=____.问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 与小学学过的除法法则一样,对于有理数除法,得到有理数除法法则(一): 除以一个不等于0的数,等于乘这个数的倒数. 用字母表示为a ÷b =a ·1b(b ≠0).师指出,有理数除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:法则(1)所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);法则(2)揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例4. 计算: (1)(-36)÷9;(2)(-1225 )÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例5. 化简下列分数: (1)-123 ;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.三、课堂练习 计算: (1)24÷(-6);(2)(-4)÷12 ;(3)0÷34 ;(4)(-78 )÷(-47).【答案】(1)-4 (2)-8 (3)0 (4)4932教师分析,学生口述完成. 四、课堂小结小结:谈谈本节课的收获.(有理数的除法法则) 五、课后作业教材P45练习第1,2题,P48习题第6,8题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则(二)计算;2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法.然后统一用乘法的运算律解决问题.第2课时 有理数的加减乘除混合运算1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算; 2.能运用法则解决实际问题.重点有理数四则混合运算的方法与技巧 难点如何按有理数的运算顺序,正确而合理地进行计算.一、导入新课问题1:小学的四则混合运算的顺序是怎样的? 问题2:我们目前都学习了哪些运算? 二、探究新知教师投影出示教材P45页例6 (1)(-12557 )÷(-5);(2)-2.5÷58 ×(-14).你能尝试解决这两个问题吗?学生尝试解决,然后交流,师生再共同分析.教师提出问题,进行有理数的乘除混合运算,运算顺序是怎样的?学生讨论后回答:乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)问题1:下列式子含有哪几种运算?先算什么,后算什么?归纳:有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的运算.三、课堂练习教师投影展示教材P46例7.教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.教师出示例8.例8某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?提示,可记盈利为正数,亏损为负数.本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.教师布置学生练习:教材47页练习题.学生独立完成,然后同学交流,教师安排学生板演.布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材47页练习3.四、课堂小结小结:说说你本节课的收获.五、课后作业教材P47习题2.2第4,9,10题.在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是符号出现问题,尤其是两个负数相加经常和乘法中的负负得正混淆,异号两数相加也往往弄错符号.究其原因还是因为没有完全熟练掌握,形成能力.因此,在教给学生解题方法的同时,还要着重强调易错点,不断加强训练,才能确保计算准确无误.2.3有理数的乘方2.3.1乘方(2课时)第1课时有理数的乘方1.理解有理数乘方的意义;2.能正确进行有理数乘方运算;3.让学生经历探索乘方的有关规律的过程.重点理解有理数乘方的意义.难点理解有理数乘方的意义,熟练进行有理数的乘方运算.一、导入新课师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的体积为2×2×2=8(cm3).2×2,2×2×2都是相同因数的乘法.生思考回答,为了简便,我们可以将它们记作什么,读作什么?同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?a·a·a·a·a·a可以记作什么?读作什么?学生讨论交流后教师进一步提出:师:怎么表示a·a·…·a,\s\do4(几个a)) (n为正整数)呢?生归纳总结:可以记作a n,读作a的n次方.师:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说,a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).二、探索新知师:求n个相同因数的积的运算,叫作乘方.乘方的结果叫作幂,相同的因数叫作底数,相同的因数的个数叫作指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.师:出示教材例1.提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗?学生进行交流讨论,尝试解决.然后师生共同完成例1.师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?。

第二章 有理数及其运算知识点精华版

第二章   有理数及其运算知识点精华版

第二章有理数及其运算知识点一、有理数:整数和分数统称为有理数。

正整数(非负整数)正整数整数0正有理数负整数(非正整数)正分数有理数正分数有理数 0 负整数分数负有理数负分数负分数注意:正负数表示具有相反意义的量(具有相反意义的量,只要求意义相反,而不要求数量一定相等,负号“-”本身就表示意义相反的意思)。

0既不是正数也不是负数。

二、数轴三要素:原点、单位长度、正方向。

1、两方向无限延伸;三要素缺一不可;原点的选定、正方向的取向、单位长度大小的确定,都是根据实际情况需要规定的。

2、画法:一条直线——取一点为原点——正方向,用箭头表示(一般规定向右)3、所有有理数都可以用数轴上的点来表示,但数轴上的点并不是都表示有理数数。

4、数轴上的点,右边的数 > 左边的数。

正数 > 0 > 负数三、绝对值1、相反数:只有符号不同的两个数,互为相反数。

0的相反数是0.表示方法:a的相反数可表示为-a。

(根据相反数的意义,只改变原来的符号即可得到原来的相反数,在一个数前面加负号,即求它的相反数。

)-(-2)=2,-(+2)=-22、绝对值:数轴上表示数a的点与原点的距离,记作∣a∣。

a (a>0) 正数的绝对值是它本身∣a∣= 0 (a=0) 0的绝对值是0-a (a<0) 负数的绝对值是的相反数(注意:∣a∣≥ 0)3、两个负数比较大小,绝对值大的反而小。

四、有理数的加法同号相加,取相同符号,∣∣+∣∣。

a+0=a.绝对值不等——取∣∣大的加数的符号,∣大∣-∣小∣异号相加绝对值相等——互为相反数的两个数相加得04、加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)5、简便原则:①互为相反数的两数先相加②同号数先相加③能凑成整数(整十、整百)的数先相加④同分母的分数线相加五、有理数的减法(注意符号的改变)减法是加法的逆运算。

(加数=和-另一加数)减去一个数等于加上这个数的相反数:a-b=a+(-b)减法运算时,先把减号变加号,把减数变加数六、有理数的加减混合运算1、运用减法法则将有理数混合运算中的减法变加法。

《第二章有理数及其运算》归纳总结

《第二章有理数及其运算》归纳总结
②异号相加 若a>0,b<0,︱a︱>︱b︱, 则a+b=︱a︱-︱b︱ 若a>0,b<0,︱a︱<︱b︱, 则a+b= - (︱b︱-︱a︱)
若a、b互为相反数,则a+b= 0 ③与0相加 a是任一个有理数,则a+0= a
2)有理数减法法则
减去一个数, 等于加上这个数的相反数.
即 a-b=a+(-b)
课后作业
完成练习册本课时的习题
例:分别求出数轴上两点间的距离: ①表示2的点与表示-7的点; ②表示-3的点与表示-1的点.
解:①︱2-(-7)︱=︱2+7︱=︱9︱=9 ②︱-3-(-1)︱=︱-3+1︱=︱-2︱=2
3)有理数的乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘;
任何数同0相乘,都得0.
① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
2.运算顺序
1)有括号,先算括号里面的; 2)先算乘方,再算乘除,
最后算加减; 3)对只含乘除,或只含加减的
运算,应从左往右运算.
3.有理数的运算律
1)加法交换律 a+b=b+a
2)加法结合律(a+b)+c=a+(b+c)
3)乘法交换律
ab=ba
4)乘法结合律 (ab)c=a(bc) 5)分 配 律 a(b+c)=ab+ac
一、有理数的基本概念
1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7பைடு நூலகம்有理数大小的比较 8.科学记数法、近似数与有效数字

初一数学第二章知识点总结

初一数学第二章知识点总结

初一数学第二章知识点总结一、有理数的基本概念1. 有理数的定义:有理数是可以表示为两个整数的比的数,形式为a/b,其中a和b 是整数,且b≠0。

2. 有理数的分类:- 正有理数:大于0的有理数。

- 负有理数:小于0的有理数。

- 零:既不是正数也不是负数的有理数。

3. 有理数的性质:- 封闭性:加法、减法、乘法和除法(除数不为零)在有理数集内封闭。

- 加法和乘法的交换律、结合律。

- 减法和除法的逆元存在性。

二、有理数的运算1. 加法运算:- 同号相加:取相同的符号,绝对值相加。

- 异号相加:取绝对值较大的数的符号,绝对值相减。

- 任何数与零相加等于原数。

2. 减法运算:- 减去一个数等于加上这个数的相反数。

3. 乘法运算:- 同号得正,异号得负,绝对值相乘。

- 任何数与零相乘等于零。

4. 除法运算:- 除以一个不等于零的数等于乘以这个数的倒数。

- 零除以任何非零数等于零。

5. 混合运算:- 先乘除后加减。

- 同级运算从左到右进行。

三、绝对值与有理数比较1. 绝对值:- 绝对值表示一个数距离零的距离,用符号“| |”表示。

- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。

2. 有理数的比较:- 正数大于零,负数小于零。

- 两个负数比较大小,绝对值大的反而小。

四、有理数的简化1. 简化的概念:- 简化是有理数分数形式的最简表示,即分子和分母没有公因数。

2. 简化的方法:- 找出分子和分母的最大公因数,然后分子分母都除以这个数。

五、分数的加减乘除1. 分数的加法:- 需要找到公共分母,然后按照同分母分数的加法规则进行计算。

2. 分数的减法:- 同样需要找到公共分母,然后按照同分母分数的减法规则进行计算。

3. 分数的乘法:- 分子乘分子,分母乘分母。

4. 分数的除法:- 分子乘分母的倒数。

六、小数与有理数的互化1. 小数转化为有理数:- 根据小数点后的位数,将小数乘以10的相应次方,转化为分数形式。

2024年人教版七年级上册教学设计第二章 有理数的运算有理数的乘法与除法

2024年人教版七年级上册教学设计第二章  有理数的运算有理数的乘法与除法

2.2.1有理数的乘法第1课时有理数乘法法则课时目标1.经历探究有理数乘法法则的过程,认识有理数乘法法则的合理性,发展观察、归纳、猜想、验证的能力.2.掌握有理数乘法的运算法则,会求一个数的倒数.3.能利用有理数的乘法解决简单的实际问题,体会数学与现实世界的联系,增强数学的应用意识.学习重点理解有理数的乘法法则以及倒数的概念.学习难点有理数乘法法则的探究过程以及对法则的理解.课时活动设计情境引入如图,有甲、乙两座水库,甲水库的水位每天升高3cm,乙水库的水位每天下降3cm.如果用“+”号表示水位的上升,用“-”号表示水位的下降,请用算式表示,4天后甲、乙两座水库水位的总变化量分别是多少?4天后,甲水库水位的总变化量:3×4=12(cm);乙水库水位的总变化量:(-3)×4=?议一议:(-3)×4=(-3)+(-3)+(-3)+(-3)=-12.那么4×(-3)=?(-4)×(-3)=?(-4)×0=?设计意图:通过实际问题,引出本节课要解决的问题,给出有理数相乘的几种情况,为下面的学习作铺垫.探究新知探究有理数乘法法则观察下面的乘法算式,你能发现什么规律?(1)3×3=9,3×2=6,3×1=3,3×0=0;(2)3×3=9,2×3=6,1×3=3,0×3=0.学生自主探究,请两名同学代表回答.对于(1)中的算式,随着后一个乘数逐次递减1,积逐次递减3.对于(2)中的算式,随着前一乘数逐次递减1,积逐次递减3.问题1:对于(1)中算式,要使这个规律在引入负数后仍然成立,那么当后一个乘数从0减小为-1时,积应该怎样变化?填空并说一说它的变化规律: 3×(-1)=-3,3×(-2)=-6,3×(-3)=-9.问题2:对于(2)中算式,要使这个规律在引入负数后仍然成立,那么当前一个乘数从0减小为-1时,积应该怎样变化?填空并说一说它的变化规律: (-1)×3=-3,(-2)×3=-6,(-3)×3=-9.学生分小组交流讨论,从符号和绝对值两个角度分别观察上述所有等式,你能发现什么规律?师生总结:正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也为负数.积的绝对值等于乘数的绝对值的积.根据上面总结出的规律,计算下面的算式.(-3)×3=-9,(-3)×2=-6,(-3)×1=-3,(-3)×0=0.观察上面的算式,随着后一个乘数的变化,积是怎样变化的?解:随着后一个乘数逐次递减1,积逐次增加3.根据发现的规律计算下面算式,从积的符号和算式的符号观察,可以得到什么结论?(-3)×(-1)=3,(-3)×(-2)=6,(-3)×(-3)=9.教师引导学生归纳出如下结论:负数乘负数,积为正数,且积的绝对值等于乘数的绝对值的积.与有理数加法类似,有理数相乘,也既要确定积的符号,又要确定积的绝对值.即①先判断是同号、异号或是同0相乘;②再确定积的符号;③最后将绝对值相乘.一般地,我们有如下的有理数乘法法则:两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.任何数与0相乘,都得0.有理数乘法法则也可以表示如下:设a,b为正有理数,c为任意有理数,则(+a)×(+b)=a×b,(-a)×(-b)=+(a×b);(-a)×(+b)=-(a×b),(+a)×(-b)=-(a×b);c×0=0,0×c=0.显然,两个有理数相乘,积是一个有理数.设计意图:类比非负数的乘法法则,引导学生自己发现有理数乘法法则并总结,提高学生的思维能力和归纳总结能力.典例精讲例1计算:(1)8×(-1);(2)-(3)-解:(1)8×(-1)=-(8×1)=-8.(2)-=1.(3)-×=1021.总结:在例1(2)中,-我们说-12和-2互为倒数,一般地,在有理数中仍然有:乘积是1的两个数互为倒数.例2用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每登高1km气温的变化量为-6℃.登高3km后,气温有什么变化?解:(-6)×3=-18.答:登高3km后,气温下降18℃.设计意图:通过例题讲解,从中归纳出倒数的概念,培养学生灵活应用的能力和总结归纳的能力.通过练习获取学生掌握知识的反馈信息,对于存在的问题及时解决.巩固训练1.计算(-1)×4的结果为(A)A.-4B.4C.-3D.32.-12020的倒数是(A)A.-2020B.-12020C.2021D.120203.有理数12,0,1,-3,任取两个数相乘,所得的积中最小是-3.4.计算:(1)-5×(+3);(2)-4×(-8);(3)(-3)×56;(4)-1解:(1)-5×(+3)=-(5×3)=-15.(2)-4×(-8)=+(4×8)=32.(3)(-3)×5=-3×=-52.(4)-1×=920.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结1.有理数乘法法则:(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.乘积是1的两个数互为倒数.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第40页练习第1,2,3题,第47页习题2.2第1,2,3题.2.七彩作业.教学反思第2课时有理数的乘法运算律课时目标1.经历有理数乘法运算律的归纳、概括的过程,能用乘法运算律进行简化运算,培养学生的抽象能力与运算能力.2.在探究和交流的过程中,发展学生观察、猜想、归纳、概括的能力.学习重点有理数的乘法运算律.学习难点熟练利用乘法运算律进行简化运算.课时活动设计回顾引入思考:(1)有理数的乘法法则是什么?(2)进行有理数乘法运算的运算步骤是什么?(3)小学学过哪些乘法的运算律?(4)小学学过的乘法运算律,在有理数范围内仍然适用吗?设计意图:通过复习乘法法则及乘法的运算步骤,为本节课的学习作铺垫;复习小学学过的运算律,并提出问题“有理数范围内是否仍然适用”,激发学生的探究欲望.探究新知探究有理数乘法运算律师生活动:小组谈论,设计研究思路.问题1:计算下列各式,并观察比较各组算式所得的积相同吗?(1)(-4)×8=-32,8×(-4)=-32.(2)(-5)×(-7)=35,(-7)×(-5)=35.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:一般地,在有理数乘法中,两个数相乘,交换乘数的位置,积不变.乘法交换律:ab=ba.问题2:计算下列各式,并观察比较各组算式所得的积相同吗?(1)[(-3)×2]×(-5)=(-6)×(-5)=30,(-3)×[2×(-5)]=(-3)×(-10)=30;(2)(-4)×-×(-6)=2×(-6)=-12,(-4)××(−6)=(-4)×3=-12.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:在有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.乘法结合律:(ab)c=a(bc).根据乘法交换律和结合律,多个有理数相乘,可以任意交换乘数的位置,也可以先把其中的几个数相乘.问题3:计算下列各式,并观察比较各组算式所得的积相同吗?+-=-1,(-6)×12+(-6)×=-1.换几组乘数再试一试,结果仍是这样吗?思考:你能得到什么结论?你能用语言表达这一结论吗?结论:一般地,在有理数中,一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.乘法对加法的分配律(简称分配律):a(b+c)=ab+ac.设计意图:类比非负数的乘法运算律和有理数加法运算律,通过举例验证,引导学生掌握有理数的乘法运算律,培养学生的抽象概括能力,发展学生的数学思维.典例精讲例(1)计算2×3×0.5×(-7);(2)14+1612.解:(1)2×3×0.5×(-7)=(2×0.5)×[3×(-7)]=1×(-21)=-21.(2)解法14+16-12312+212-612×12=-112×12=-1.解法14+1612×12=14×12+16×12-12×12=3+2-6=-1.设计意图:通过引导学生运用乘法运算律进行乘法运算,感受乘法运算律为运算带来的便捷,体会数学学习的一致性,培养学生的计算能力,发展学生的数学思维.巩固训练1.算式78×25×87=25×78×87,运用了(A)A.乘法交换律和乘法结合律B.分配律C.乘法交换律和分配律D.乘法结合律和分配律2.计算:(1)(-10)×-13118+73-0.75;(3)(+16)×(-72.8)×0×-823解:(1)原式=(-10)×13×6=-10×(-2)=20.(2)原式=(-24)×118+(-24)×73+(-24)×-34.(3)原式=0.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结有理数乘法法则:1.乘法交换律:ab=ba.2.乘法结合律:(ab)c=a(bc).3.乘法对加法的分配律:a(b+c)=ab+ac.设计意图:回顾本节课内容,加深学生对本节课知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第43页练习第1题,第47页习题2.2第4题.2.七彩作业.第2课时有理数的乘法运算律有理数的乘法运算律:(1)交换律:ab=ba.(2)结合律:(ab)c=a(bc).(3)乘法对加法的分配律:a(b+c)=ab+ac.教学反思第3课时多个有理数的乘法课时目标1.掌握多个有理数乘法运算的方法.2.掌握多个有理数相乘的符号法则.学习重点熟练计算多个有理数相乘.学习难点多个有理数相乘结果的符号确定.课时活动设计复习回顾有理数乘法的运算法则和运算律有哪些?设计意图:回顾上节课的内容,为本节课的学习作铺垫.探究新知探究多个有理数的乘法计算并观察下面各式的积,它们的积是正的还是负的?(1)1×2×3×4=24;(2)(-1)×2×3×4=-24;(3)(-1)×(-2)×3×4=24;(4)(-1)×(-2)×(-3)×4=-24;(5)(-1)×(-2)×(-3)×(-4)=24.通过上面的计算,请填写下表:思考:多个不为0的有理数相乘,那么积的符号与负的乘数的个数之间有什么关系?学生先独立思考,然后小组讨论,并发表见解.结论:几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.如果有乘数为0,那么积有什么特点?几个数相乘,如果其中有乘数为0,那么积为0.这样,遇到多个不为0的数相乘,可以先用上面的结论确定积的符号,再把乘数的绝对值相乘作为积的绝对值.设计意图:通过类比,让学生发现、总结多个有理数相乘积的符号规律,培养学生的推理能力和运算能力.典例精讲例1不计算,说出下列各式积的符号.(1)-6×(-4)×(-9)×(-8)×(+7);(2)6×(-4)×9×(-8)×(-7);(3)-5×(-4)×(-9)×(-3)×(-7).解:(1)正.(2)负.(3)负.例2计算:(1)(-3)×56×(2)(-5)×6×5×1.解:(1)(-3)×56×-3×56×95×=-98.(2)(-5)×6××14=5×6×45×14=6.设计意图:通过例题,练习学生多个有理数的乘法运算,理解并掌握多个有理数乘法运算的方法.培养学生的计算能力,发展学生的数学思维.巩固训练计算:(1)-×87×13×-(3)(-1)×-×512×32×0×(-9).解:(1)原式=712×87×13×32=13.(2)原式=78×24-34×24=21-18=3.(3)原式=0.设计意图:通过练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结1.几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数;几个数相乘,如果其中有乘数为0,那么积为0.2.遇到多个不为0的数相乘,可以先用上面的结论确定积的符号,再把乘数的绝对值相乘作为积的绝对值.设计意图:回顾本节课内容,加深学生对本节课的知识的理解,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第43页练习第2题,第47页习题2.2第5题.2.七彩作业.第3课时多个有理数的乘法多个不为0的有理数相乘,积的符号与负的乘数的个数的关系:当负的乘数有奇数个时,积为负;当负的乘数有偶数个时,积为正.几个数相乘,如果其中有乘数为0,那么积为0.教学反思2.2.2有理数的除法第1课时有理数除法法则课时目标1.经历探究有理数除法法则的过程,体会归纳、类比的数学思想方法,培养学生的数学抽象能力.2.掌握有理数除法的运算法则,会进行有理数的除法运算,培养学生的运算能力.学习重点有理数的除法运算,理解除法与乘法的互逆关系.学习难点有理数除法法则的探究过程以及熟练运算.课时活动设计回顾引入1.你能叙述有理数的乘法法则吗?2.满足什么条件的两个数互为倒数?设计意图:通过回顾有理数的乘法法则和倒数,引入本节课要学习的内容,为进一步学习有理数的除法做准备.探究新知探究有理数除法法则根据除法是乘法的逆运算,完成下列计算:(1)8×9=72,72÷9=8,72×19=8.(2)2×(-3)=-6,(-6)÷2=-3,(-6)×12=-3.(3)(-4)×2=-8,(-8)÷(-4)=2,(-8)×=2.思考:(1)观察上面各组算式的计算结果以及算式的特点,你能得到什么结论?(2)请再举出具有上述特点的两组算式,并检验你的结论.学生回答问题,尝试归纳,教师适时进行点拨.师生总结有理数的除法法则:除以一个(不等于0的数),等于乘这个数的倒数.这个法则也可以表示为两个有理数相除(除数不为0),商是一个有理数.思考:(1)观察上面的式子,结合有理数乘法积的符号规律,谈一谈如何确定商的符号?(2)0除以任何一个不等于0的数,结果等于多少?结论:两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.设计意图:通过让学生观察、对比,让学生感受有理数的乘法与除法之间的联系,并总结除法法则,充分经历由特殊到一般这一归纳概括有理数除法法则的过程,培养学生的抽象能力,发展学生的数学核心素养.典例精讲例1计算:(1)(-36)÷9;(2)-解:(1)(-36)÷9=-(36÷9)=-4.(2)-=--=45.例2化简:(1)-23;(2)-45-12.解:(1)-23=(-2)÷3=-(2÷3)=-23.(2)-45-12=(-45)÷(-12)=45÷12=154.提示:带有分数线的数可以理解为分子除以分母.在例2中,我们得到-23=-23,这表明-23是负分数,因而是有理数;反过来看,-23=-23,又表明-23可以写成-23这样两个整数相除的形式.一般地,根据有理数的除法,形如p,q是整数,q≠0)的数都是有理数;有理数又都可以写成上述形式(整数可以看成分母为1的分数).这样,有理数就是形如(p,q 是整数,q≠0)的数.设计意图:通过例题讲解,引导学生思考有理数除法运算的计算过程,体会有理数的除法法则,明白运算的算理,培养学生的运算能力和说理能力.巩固训练1.计算:(1)-14(2)(-8.7)÷2.9.解:(1)原式=--.(2)原式=-(8.7÷2.9)=-3.2.化简:(1)-364;(2)-45-60.解:(1)原式=(-36)÷4=-(36÷4)=-9.(2)原式=(-45)÷(-60)=45÷60=4560=34.设计意图:通过设置练习,不仅能使学生的新知得到巩固,也能使学生的思维能力得到有效提高.课堂小结有理数除法法则:1.除以一个不等于0的数,等于乘这个数的倒数,也可以表示为a÷b=a·1(b≠0).2.两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.3.0除以任何一个不等于0的数,都得0.设计意图:学生通过归纳总结,可进一步加深对有理数除法法则的理解,提高学生概括总结及表达的能力.课堂8分钟.1.教材第45页练习第1,2题,第47页习题2.2第6,8题.2.七彩作业.教学反思第2课时有理数的加减乘除混合运算课时目标1.理解有理数的减法转化成加法、有理数的除法转化成乘法的意义,能熟练进行有理数的加、减、乘、除混合运算.2.经历把有理数减法转化成加法、有理数的除法转化成乘法运算的过程,体会转化的数学思想方法,培养学生的运算能力.学习重点有理数的加、减、乘、除混合运算.学习难点混合运算中的运算顺序及运用运算律进行简便运算.课时活动设计回顾引入1.请大家说一说小学学过的四则运算顺序.2.有理数的加、减、乘、除运算法则各是什么?设计意图:回顾以前学过的四则运算顺序和有理数的加、减、乘、除法则,为本节课的学习作铺垫.探究新知大家能根据小学学过的混合运算,说一说什么是有理数的混合运算吗?学生自主探讨,教师引导学生进行总结.总结:一个运算中,含有有理数的加、减、乘、除等多种运算,称为有理数的混合运算.问题:式子3+50÷2×中含有哪几种运算?根据小学学过的混合运算说一说先算什么,后算什么?教师按下图进行分析,向学生讲解.有理数的加、减、乘、除混合运算顺序与小学所学的混合运算一样,先算乘除,再算加减,同级运算从左往右依次计算.如有括号,先算括号里面的.请同学们尝试自己计算上面的算式.教师提示:可将除法转化为乘法.解:3+50÷2×--1=3+50×12×.设计意图:通过小学学过的混合运算顺序进行讲解,有利于学生理解.让学生经历探索有理数的混合运算顺序的过程,加深学生对有理数混合运算顺序的理解.典例精讲例1计算:(1)-8+4÷(-2);(2)(-7)×(-5)-90÷(-15).解:(1)-8+4÷(-2)=-8+(-2)=-10.(2)(-7)×(-5)-90÷(-15)=35-(-6)=35+6=41.例2某公司去年1月—3月平均每月亏损1.5万元,4月—6月平均每月盈利32万元,7月—10月平均每月盈利21.7万元,11月—12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?解:记盈利额为正数,亏损额为负数.由(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7可知,这个公司去年全年盈利173.7万元.计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多.例如,可以用计算器计算例2中的(-1.5)×3+32×3+21.7×4+(-2.3)×2.如果计算器带符号键,只需按键①⑤③③②③②①⑦④②③②,显示结果为173.7,就可以得到答案173.7.设计意图:通过例题,让学生学会运用有理数的混合运算法则,并会用计算器计算复杂的算式.巩固训练计算:(1)-2.5÷58×4(2)-4×12÷.解:(1)原式=-52×85×.(2)原式=-4×12×(-2)×2=8.学生自主完成,教师订正并给予评价.设计意图:通过设置练习,不仅能使学生的新知得到及时巩固,也能使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理运用.课堂小结本节课我们研究了有理数的混合运算,请同学们带着以下问题进行总结:1.有理数的加、减、乘、除混合运算的运算顺序.2.运算过程中符号的确定.3.这节课还有哪些收获呢?设计意图:学生通过自主反思,可以加深对有理数加、减、乘、除混合运算的理解,及时总结反思,感悟知识的获取过程,提高学生归纳总结及表达的能力.课堂8分钟.1.教材第47页练习第1,2,3题,第47页习题2.2第9,10,11题.2.七彩作业.第2课时有理数的加减乘除混合运算有理数加减乘除混合运算顺序与小学所学混合运算一样,先算乘除,再算加减,同级运算从左往右依次计算.如有括号,先算括号里面的.教学反思。

七年级第二章有理数知识点

七年级第二章有理数知识点

七年级第二章有理数知识点有理数在初中数学中是比较重要的知识点之一,是指可以用分数形式表示的数。

在七年级数学的第二章中,学生们将学习有理数的概念、有理数的运算以及有理数的比较等知识点。

本文将为大家详细介绍这些知识点。

一、有理数的概念
有理数包括正数、负数和零,它们可以表示为分数的形式。

例如1、-2、3/4、-5/6、0等都是有理数。

学生们需要掌握有理数的概念以及与无理数的区别。

二、有理数的运算
有理数的运算包括加法、减法、乘法和除法四种基本运算。

其中,加法和减法是同一类型的运算,乘法和除法也是;加法和乘法是分配律,减法和除法不是。

在进行有理数的运算时,需要注意以下几点:
1.同号相加、异号相减、两数相乘结果的符号由乘数的符号决定。

2.除数不为0,除以正数等于乘以倒数,除以负数等于乘以负数的倒数。

3.几个正数相乘或几个负数相乘,乘积的符号与因数的符号相同。

4.加法和乘法满足交换律和结合律,减法和除法不满足交换律和结合律。

三、有理数的比较
在比较两个有理数大小时,可以将它们化为相同分母的分数进行比较。

对于正数和负数的比较,必须先将它们转化为同为负数或同为正数的形式,然后再比较它们的绝对值大小。

对于零与非零的比较,零小于任何非零的有理数。

比较两个有理数大小,还可以根据符号、整数部分和小数部分三个方面进行。

综上所述,有理数是初中数学中比较重要的知识点。

学生们需要在学习过程中注意掌握有理数的概念和运算规律,以及灵活运用各种比较方法。

只有深入地理解和掌握这些知识点,才能够在日后的数学学习中更好地应用它们。

第二章 有理数的运算 小结(第2课时) 课件(共30张PPT) 人教版数学七年级上册

第二章 有理数的运算 小结(第2课时) 课件(共30张PPT)  人教版数学七年级上册

有理数运算律 在有理数乘法中,两个数相乘,交换乘数的位置,积 不变. 乘法交换律:ab=ba. 在有理数乘法中,三个数相乘,先把前两个数相乘, 或者先把后两个数相乘,积不变. 乘法结合律:(ab)c=a(bc).
有理数运算律 在有理数乘法中,一个数与两个数的和相乘,等于把 这个数分别与这两个数相乘,再把积相加. 分配律:a(b+c)=ab+ac.
=- 41; 12
求得运算结果
(3)
–7 9
÷
2 3

1 5

1 3
×(-4)2.
7 71 解:原式 = 9 ÷ 15 - 3 ×16
7 15 16 =× -
97 3
5 16 =-
33
=-11. 3
观察题目特征 明确运算顺序 正确使用法则 求得运算结果
辨一辨
下列计算是否正确?
(1)

2 3
学以致用
练习 1 红、黄、蓝三支足球队进行比赛,比赛结果是:红队胜黄队, 比分为 4∶2;蓝队胜黄队,比分为 3∶1;红队负蓝队,比分为 2∶3.如 果进球数记为正,失球数记为负,那么三队的净胜球数各是多少?
分析:因为红队胜黄队,比分为 4∶2; 所以红队净胜球+4+(-2);黄队净胜球-4+(+2); 因为蓝队胜黄队,比分为 3∶1; 所以蓝队净胜球+3+(-1);黄队净胜球-3+(+1); 因为红队负蓝队,比分为 2∶3; 所以红队净胜球+2+(-3);蓝队净胜球-2+(+3).
解:金属丝先伸长,后缩短; 0.002×(30-20)+ 0.002×(5-30)
=0.002×(-15) =-0.03 答:最后的长度比原长度约伸长-0.03 mm.
课堂小结
1. 本章知识结构图

第二章《有理数及其运算》知识梳理

第二章《有理数及其运算》知识梳理

第二章《有理数及其运算》知识梳理正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

第二章有理数的意义与运算

第二章有理数的意义与运算

第二章 有理数的意义与运算1、有理数的意义:(1)有理数:整数和分数统称为有理数(2)有理数的分类。

注意①0既不是正数,也不是负数,它是一个中性数,是正数和负数的分界点。

②自然数:自然数是指0和正整数,既0、1、2、3、4、…2、几个概念:(1)数轴:①原点、正方向、单位长度是数轴的三要素,缺一不可。

②数轴的用途:用数轴表示数:所有的实数都可以用数轴上的点来表示,数轴上的任一点都表示一个实数,实数和数轴上的点是一一对应的。

用数轴可以表示两个数大小。

(2)相反数:①定义:只有符号不同的两个数,其中一个是另一个的相反数,0的相反数是0。

②特点:相反数是两个数之间的一种相互关系,是成对出现的,缺一不可。

③性质:㈠ 任何一个数都有一个相反数,并且只有一个相反数。

㈡正数的相反数是负数,负数的相反数是正数,0的相反数是0。

㈢互为相反数的两个数之和为0,和为0的两个数互为相反数。

④求法:求一个数的相反数只需在这个数前面加上一个负号就可以了。

(3)绝对值:①几可意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作a 。

②代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

③数a 的绝对的表示:a = ⎪⎩⎪⎨⎧<-=>)0()(0)0(a a a a a (4)有效数字:①精确度:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。

②定义:在近似数中,从左边第一个不是零的数字起,到由四舍五入到的数位止,所有的数字,都叫做这个数的有效数字,一共包含的数字的个数,叫做有效数字的个数。

③用法:在对一个数取近似数时,近似程度经常用保留几个有效数字来表示。

(5)科学记数法:把一个数写成±a ×10n 形式(其中1≤a <10,n 是整数),这种记数法叫科学记数法,具体记数的方法为:①a 是只有一位整数的数。

②当原数≥1时,n是正整数,n 等于原数的整数位数减1,如31400=3.14×104;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),如0.000035=3.5×10-5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 某工厂赢利了10万元记作+10万元,那么它亏损了8万元应记为 .3.下列各数中,哪些是正数?哪些是负数?+1;-25;5;0;722;-3.14;0.001;-994.“一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?5.在中国地形图上,在珠穆朗 玛峰和吐鲁番盆地处都标有表明它们的高度的数,如图所示.这个数通常称为海拔高度,它是相对于海平面来说的.请说出图中所示的数8848和-155表示的实际意义。

海平面的高度用什么数表示?先让学生相互讨论,探索解题方法; 教师再指名学生回答。

三、课堂小结 为了表示具有相反意义的量, 我们引进了象-5,-2,-237,-3.6这样的数, 这是一种新数,那就是负数。

注意: 0既不是正数,也不是负数。

四、随堂练习 课本P16 T1-4 五、课堂作业 课本P17 T1-4学生分小组讨论,探索解题方法。

本课教育评注(课堂设计理念,实际教学效果及改进设想)正整数,零和负整数统称整数(integer),正分数和负分数统称分数(fraction).整数和分数统称有理数(rational number).口答下列各题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?2.你能对以上各种数作出一张分类表吗(要求不重复不遗漏)?让学生把自己作出的分类表与如下的分类表比较:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.把一些数放在一起,就组成一个数的集合,简称数集(set ofnumbers).所有的有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,如此等等.三、实践应用例1把下列各数中的整数和分数分别填在表示整数集合和分数集合的圈里:让学生口述教师活动内容、方式学生活动方式、内容旁注例2把下列各数填入表示它所在的数集的圈里:四、交流反思师生共同讨论,概括有理数的分类,让学生充分感受分类的数学思想方法,理解分类可有多种标准,但应注意不重复、不遗漏。

五、随堂练习1.下列各数中,哪些是整数,哪些是分数?哪些是正数,哪些是负数?2.把下列各数填入表示它所在的数集的圈里:教师活动内容、方式学生活动方式、内容旁注3.下面的大括号表示一些数的集合,把第4、5两题中的各数填入相应的大括号里:正整数集:{ ...};负整数集:{ ...};正分数集:{ ...};负分数集:{ ...};正有理数集:{ ...};负有理数集:{ ...}.4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数、第100个数、第200个数、第201个数是什么吗?本课教育评注(课堂设计理念,实际教学效果及改进设想)向右,每隔一个单位长度取一点,依次标上1、2、3…;从原点向左,每隔一个单位长度取一点,依次标上-1、-2、-3…(如下图).像这样规定了原点、正方向和单位长度的直线叫做数轴(number axis).在数轴上画出表示有理数的点,可以先由这个数的符号确定它在数轴上原点的哪一边(正数在原点的右边,负数在原点的左边),再在相应的方向上确定它与原点相距几个单位长度,然后画上点.例如,表示-4.5的点,应在原点的左边4.5个单位处.而数轴上的原点就表示数零.口答:下列图形是数轴的是().通过上述提问,引导学生得出:构成数轴的三个要素——原点、正方向和单位长度,缺一不可.三、实践应用:例 1 画出数轴,并在数轴上画出表示下列各数的点:解:如图所示.让学生口述教师活动内容、方式学生活动方式、内容旁注例2 指出数轴上A、B、C、D、E各点分别表示什么数.四、交流反思:引导学生总结:要正确地画出数轴,那么数轴的三个要素——原点、正方向和单位长度,缺一不可;画出了数轴,那么任何有理数都可用数轴上的点表示.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系.它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.五、随堂练习:课本P20的练一练六、布置作业:课本P22 T1-2本课教育评注(课堂设计理念,实际教学效果及改进设想)课题§2.2数轴2-2 课时2-2 授课时间班级课型新授授课人教学目标1.能进一步掌握数轴的三个要素,并正确画出数轴;2.学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.会利用数轴比较有理数的大小;4.学生通过对温度计的观察,探索有理数与数轴上的点的对应关系,初步感受“数形结合”思想。

教学重、难点重点:由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;难点:会利用数轴比较有理数的大小。

教、学具投影片,小黑板预习要求1.阅读课本P20-212.完成课本P20的议一议。

教师活动内容、方式学生活动方式、内容旁注一、创设情境:复习提问:1.指出数轴上的点A、B、C、D分别表示什么数.2.画出数轴,并在数轴上画出表示下列各数的点:再按数轴上从左到右的顺序,将这些数重新排列成一行.3.指出在数轴上表示下列各数的点分别位于原点的哪边,与原点距离多少个单位长度.让学生相互交流,并作答。

教师活动内容、方式学生活动方式、内容旁注二、新知讲解:在小学里,我们已学会比较两个正数的大小,那么,引进负数以后,怎样比较任意两个有理数的大小呢?例如,1与-2哪个大?-3与-4哪个大?想一想:1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上为怎样的情形?把温度计横过来放,就好比一条数轴.从中能否发现在数轴上怎样比较两个有理数的大小?让学生从讨论中发现,在数轴上表示的两个数,右边的数总比左边的大.由此容易得到以下的有理数大小的比较法则:正数都大于零,负数都小于零,正数大于负数.三、实践应用:在数轴上画出表示这些数的点,再比较大小,结果怎样?例2比较下列各数的大小:解将这些数分别在数轴上表示出来(如图).可以看出例3观察数轴,能否找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.让学生分小组相互交流,并作答。

教师活动内容、方式学生活动方式、内容旁注四、交流反思:师生共同总结:1.在数轴上表示的两个数,右边的数总比左边的大;2.正数都大于零,负数都小于零,正数大于负数.五、随堂练习:1.课本P21的练一练;2.下列各式是否正确:3.用“<”或“>”填空4.下表是某年一月份我国几个城市的平均气温,请将各城市按平均气温从高到低的顺序排列.六、布置作业:课本P22 T3-5本课教育评注(课堂设计理念,实际教学效果及改进设想)课题§2.3绝对值与相反数课时3-1 授课时间班级课型新授授课人教学目标1.理解有理数的绝对值概念,并掌握其表示方法;2.熟练掌握求一个有理数的绝对值的方法;3.渗透数形结合等思想方法,培养学生的概括能力.教学重、难点重点:理解有理数的绝对值概念,并掌握其表示方法;难点:熟练掌握求一个有理数的绝对值的方法。

教、学具投影片,小黑板预习要求1.阅读课本P23-25;2.完成课本P24的例题。

教师活动内容、方式学生活动方式、内容旁注一、创设情境:1.让学生画一条数轴,并在数轴上标出下列各数:在讨论数轴上的点与原点的距离时,只需要观察它与原点之间相隔多少个单位长度,与位于原点何方无关.2.两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米.揭示生活中确实存在只需考虑距离的问题.这里的5叫做+5的绝对值,4叫做-4的绝对值.教师活动内容、方式学生活动方式、内容旁注二、新知讲解:我们把在数轴上表示a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|.例如,在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作|-6|=|6|=6口答:(1)|+6|=,|0.2|=,|+8.2|=;(2)|0|=;(3)|-3|=,|-0.2|=,|-8.2|=.由绝对值的意义,结合上面口答结果,引导学生归纳出:1.一个正数的绝对值是它本身;2.零的绝对值是零;3.一个负数的绝对值是它的相反数.由此可以看出,不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数).即对任意有理数a,总有这是一条重要的性质.三、实践应用例1求下列各数的绝对值:让学生口述教师活动内容、方式学生活动方式、内容旁注例2化简:四、交流反思和学生一起归纳本节课主要内容:1.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零.2.从数轴看,一个数a的绝对值就是数轴上表示数a的点到原点的距离.3.要注意一个数的绝对值不可能是负数.五、巩固练习1.课本P25练习2.求下列各数的绝对值:-5,4.5,-0.5,+1,0.3.填空:(1)-3的符号是______, 绝对值是____;(2)符号是“+”号,绝对值是7的数是_____;(3)10.5的符号是_____, 绝对值是______;(4)绝对值是5.1,符号是“-”号的数是_____.六、布置作业课本P29习题2.3P29 T1本课教育评注(课堂设计理念,实际教学效果及改进设想)课题§2.3绝对值与相反数课时3-2 授课时间班级课型新授授课人教学目标1.理解相反数的意义,掌握求一个已知数的相反数;2.培养学生的观察、归纳与概括的能力.3. 引导学生在数轴上画出表示互为相反数的点,让学生探索相反数的特征,进一步感觉数形结合思想.教学重、难点重点:理解相反数的意义,掌握求一个已知数的相反数;难点:在数轴上画出表示互为相反数的点,让学生探索相反数的特征。

教、学具投影片,小黑板预习要求3.阅读课本P25-27;4.完成课本P26的例题。

教师活动内容、方式学生活动方式、内容旁注一、创设情境:1.在数轴上表示下列各数,并分别写出它们的绝对值:2.让学生在数轴上画出表示以下两对数的点:-6 和6 , 1.5 和-1.5.请同学们观察后回答:这两对点,各有哪些相同? 哪些不同?你还能写出两对具有上述特点的数来吗?二、新知讲解:通过上面的讨论,让学生归纳上面的两对数和这两对数在数轴上对应的两组点的特点:(1)这两对数中,每一对数,只有符号不同;(2)这两对数所对应的两组点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.像以上这样只有符号不同的两个数称互为相反数(opposite number).例如:-6 和6 , 1.5 和-1.5就是称互为相反数.学生完成-6和6位于原点两旁,且与原点的距离相等,也就是说,它们相对于原点的位置只有方向不同,1.5和-1.5也是这样.教师活动内容、方式学生活动方式、内容旁注三、实践应用例1分别写出下列各数的相反数:解 5的相反数是-5.-7的相反数是7.+11.2的相反数是-11.2.我们通常在一个数的前面添上"-"号,用这个新数表示原来那个数的相反数.例如,-4,+5.5、0的相反数为:-(-4)= 4,-(+5.5)= -5.5,-0=0.同样,在一个数前面添上"+"号,表示这个数本身.例如,+(-4)= -4,+(+12)=12,+0=0.例2化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3);(4)-(-20).解:(1)-(+10)= -10.(2)+(-0.15)= -0.15.(3)+(+3)= +3 = 3.(4)-(-20)= 20.四、交流反思1.相反数的概念,a的相反数是-a;2.简化多重符号的法则,负号个数是奇数,结果为负;负号个数为偶数,结果为正.五、检测反馈1.填空:让学生口述让学生总结教师活动内容、方式学生活动方式、内容旁注2.化简下列各数:3.判断下列语句是否正确,为什么?(1)符号相反的两个数叫做互为相反数.(2)互为相反数的两个数不一定一个是正数、一个是负数.(3)相反数和我们以前学过的倒数是一样的.4.分别写出下列各数的相反数:5.画出数轴,在数轴上表示下列各数及它们的相反数:6.化简下列各数:(1)-(-16);(2)-(+25);(3)+(-12);(4)+(+2.1);(5)-(+33);(2)+(-0);(1)-[-(+3)];(2)+[-(+15)].六、布置作业课本P29-30 T2-4本课教育评注(课堂设计理念,实际教学效果及改进设想)课题§2.3绝对值与相反数课时3-3 授课时间2005.9.13 班级初一(6)班课型新授授课人陈言富教学目标1.掌握利用绝对值比较两个负数的大小及有理数大小比较的一般方法;2.在具体进行两个负数的大小比较中,培养学生的推理论证能力,并渗透数学中数形结合与转化的思想方法.教学重、难点通过学生自己用数轴上的点来表示负数,探索负数绝对值大小与它所对应的点到原点距离的关系,直观上感受两个负数大小比较法则的合理性.教、学具投影片,小黑板预习要求1.阅读课本P28-29的内容;2.完成课本P28-29的议一议。

相关文档
最新文档