百色市2009年初中毕业暨升学考试数学试卷

合集下载

2009年广西桂林百色中考数学试题含参考答案和评分标准

2009年广西桂林百色中考数学试题含参考答案和评分标准

桂林市百色市2009年初中毕业暨升学考试数学试5、下列运算正确的是( )、、选择题(每题 3分,共 36分)1、 —8的相反数是(1 1 A —8B 、8C 、一D 、882、下面几个有理数最大的是( )D 、-1A 、2B 、1C 、- 3353、 如图,在所标识的角中,同勺位角是( )第弓题图D 、/2和/34、右图是一正四棱锥,它是俯视图是(A 、2a b = 2abB 、(-ab)2二a 2b 2C a 2L a 2=2a 2D a 4亠 a 2=26、二次函数y=(x+1)2 +2的最小值是()7、右图是一张卡通图,图中两圆的位置关系是( )A 、相交B 、外离C 、内切D 、内含则a - b 的值为( )A 、 1B 、一 1C 、 29、有20张背面完全一样的卡片,其中 8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北 海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片, 抽中正面是桂林山水卡片的概率是(1 72 A 、B 、C 、D 、420510、如图,在平行四边形 ABCD 中,AC 、BD 为对 =6, BC 边上的高为 4,则图中阴影部分的面积为 A 、 3B 、 6C 、 12D 、 2411、如图所示,在方格纸上建立的平面直角坐标系 ABC 绕点O 按顺时针方向旋转90度,得到△ A /B /O , 坐标为()A 、/ 1 和/ 2B 、/1和/3C 、/ 1 和/ 4 )角线,BC ( )中,将△ 则点A 的A 、( 3 , 1)B 、( 3,2)C 、( 2,3)D 、( 1 , 3)12、如图,正方形 ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动。

如果点Q 从点A 出发,沿图中所示方向按 A T B T 3D -A 滑动到A 止,同时点R 从点B 出发,沿图中所 示方向按B T C T D T A T B 滑动到B 止,在这个过程中,线段 QR 的中点M 所经过的路线围成的图形的面积 为( ) A 、2B 、4—二C 、二D 、慮一1二、填空题(每题 3分,共18分)13、 因式分解:x 2 +3x = _________________ . 14、 据统计,去年我国粮食产量达10570亿斤,用科学记数法表示为 __________ 亿斤。

广西百色市中考数学真题试题(含答案)

广西百色市中考数学真题试题(含答案)

广西百色市2017年初中毕业升学考试试卷数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简15-等于( ) A .15 B .-15 C .15± D .115【答案】A2. 多边形的外角和等于( )A .180︒B .360︒C .720︒D .(2)180n -⋅︒【答案】B3. 在以下一列数3,3,5,6,7,8中,中位数是( )A .3B .5C .5.5D .6【答案】C4. 下列计算正确的是( )A .33(3)27x x -=-B .224()x x -= C.222x x x -÷= D .122x x x --⋅= 【答案】A5. 如图,AM 为BAC ∠的平分线,下列等式错误的是( )A .12BAC BAM ∠=∠ B .BAM CAM ∠=∠ C.2BAM CAM ∠=∠ D .2CAM BAC ∠=∠ 【答案】C6. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( )A .84.410⨯B .94.410⨯ C.9410⨯ D .84410⨯【答案】B7. 如图所示的正三棱术,它的主视图、俯视图、左视图的顺序是( )A .①②③B .②①③ C.③①② D .①③②【答案】D8. 观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是( )A .-121B .-100 C.100 D .121【答案】B9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )A .45︒B .60︒ C. 72︒ D .120︒【答案】C10. 如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .20(31)B .31) C. 200 D .300【答案】A11. 以坐标原点O 为圆心,作半径为2的圆,若直线y x b =-+与O e 相交,则b 的取值范围是( )A .022b ≤<B .2222b -≤≤ C.2323b -<< D .2222b -<<【答案】D12. 关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2 C. 1 D .23 【答案】B第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若分式12x -有意义,则x 的取值范围是 . 【答案】x ≠214. 一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是 .【答案】3515. 下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有 (填序号).【答案】②16. 如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标是 .【答案】(1,3).17. 经过(4,0),(2,0),(0,3)A B C -三点的抛物线解析式是 .【答案】y=﹣38x 2+ 34x+3. 18. 阅读理解:用“十字相乘法”分解因式223x x --的方法.(1)二次项系数212=⨯;(2)常数项 3131(3)-=-⨯=⨯-验算:“交叉相乘之和”;132(1)1⨯+⨯-= 1(1)235⨯-+⨯= 1(3)211⨯-+⨯=- 112(3)5⨯+⨯-=-(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=-,等于一次项系数-1,即22(1)(23)232323x x x x x x x +-=-+-=--,则223(1)(23)x x x x --=+-.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:23512x x +-= .【答案】(x+3)(3x ﹣4).三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19. 10112(3)14cos302π-⎛⎫----︒ ⎪⎝⎭原式3 +2﹣1﹣3. 20. 已知2018a b =+,求代数式222222212a b a b a ab b a b -⋅÷-++-的值. 原式=()()()22a b a b a b a b -+-+g ﹒(a ﹣b )(a+b )=2(a ﹣b ) ∵a=b+2018,∴原式=2×2018=403621. 已知反比例函数(0)k y k x=≠的图象经过点(3,2)B ,点B 与点C 关于原点O 对称,BA x ⊥轴于点A ,CD x ⊥轴于点.D(1)求这个反比例函数的解析式;(2)求ACD V 的面积.(1)将B 点坐标代入函数解析式,得3k =2,解得k=6, 反比例函数的解析式为y=6x; (2)由B (3,2),点B 与点C 关于原点O 对称,得C (﹣3,﹣2).由BA ⊥x 轴于点A ,CD ⊥x 轴于点D ,得A (3,0),D (﹣3,0).S △ACD =12AD•CD=12[3﹣(﹣3)]×|﹣2|=6. 考点:1.反比例函数系数k 的几何意义;2.反比例函数图象上点的坐标特征;3.坐标与图形变化﹣旋转.22. 矩形ABCD 中,,E F 分别是,AD BC 的中点, ,CE AF 分别交BD 于,G H 两点.求证:(1)四边形AFCE 是平行四边形;(2).EG FH =(1)∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∵E 、F 分别是AD 、BC 的中点,∴AE=AD ,CF=BC ,∴AE=CF ,∴四边形AFCE 是平行四边形;(2)∵四边形AFCE 是平行四边形,∴CE ∥AF ,∴∠DGE=∠AHD=∠BHF ,∵AB ∥CD ,∴∠EDG=∠FBH ,在△DEG 和△BFH 中DGE BHF EDG FBH DE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEG ≌△BFH (AAS ),∴EG=FH .23. 甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):次数运动员环数1 23 4 5甲10 8 9 10 8乙10 9 9 a b某同学计算出了甲的成绩平均数是9,方差是2222221[(109)(89)(99)(109)(89)]0.85S=-+-+-+-+-=甲,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙的射击成绩平均数都一样,则a b+=;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出,a b的所有可能取值,并说明理由. (1)如图所示:(2)由题意知,10995a b++++=9,∴a+b=17;(3)∵甲比乙的成绩较稳定,∴S甲2<S乙2,即15[(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]<0.8,∵a+b=17,∴b=17﹣a,代入上式整理可得:a 2﹣17a+71<0,解得:17-5 <a <17+5, ∵a 、b 均为整数,∴a=8时,b=9;a=9时,b=8.24. 某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个,根据题意,得:10224x y x y +=⨯⎧⎨=-⎩ ,解得:128x y =⎧⎨=⎩, 答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a 个,根据题意,得:12×5+8×6+8a+15<150,解得:a <278, 由于a 为整数,∴a=3,答:参与的小品类节目最多能有3个.25. 已知ABC V 的内切圆O e 与,,AB BC AC 分别相切于点,,D E F ,若»»EFDE =,如图1. (1)判断ABC V 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.(1)△ABC 为等腰三角形,∵△ABC 的内切圆⊙O 与AB 、BC 、AC 分别相切于点D 、E 、F ,∴∠CFE=∠CEF=∠BDO=∠BEO=90°, ∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵»»EF DE = ,∴∠EOF=∠DOE ,∴∠B=∠C ,AB=AC ,∴△ABC 为等腰三角形;(2)连接OB 、OC 、OD 、OF ,如图,∵等腰三角形ABC 中,AE ⊥BC ,∴E 是BC 中点,BE=CE ,∵在Rt △AOF 和Rt △AOD 中OD OF OA OA=⎧⎨=⎩ ,∴Rt △AOF ≌Rt △AOD ,∴AF=AD , 同理Rt △COF ≌Rt △COE ,CF=CE=2,Rt △BOD ≌Rt △BOE ,BD=BE ,∴AD=AF ,BD=CF ,∴DF ∥BC ,∴AM AF AE AC = ,∵AE=22AC CE - =42 ,∴AM=42×23=823 .26. 以菱形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a(1)求BC 边所在直线的解析式;(2)设22y MP OP =+,求y 关于a 的函数关系式;(3)当OPM V 为直角三角形,求点P 的坐标.(1)∵A (﹣4,0),B (0,﹣2),∴OA=4,OB=2,∵四边形ABCD是菱形,∴OC=OA=4,OD=OB=2,∴C(4,0),D(0,2),设直线BC的解析式为y=kx﹣2,∴4k﹣2=0,∴k=12,∴直线BC的解析式为y=12x﹣2;(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣12x+2,由(1)知,直线BC的解析式为y=12x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP 2+PM 2=5a 2﹣16a+16+5a 2﹣24a+32=10a 2﹣40a+48=OM 2=16,∴ (舍)或a=2,∴P (5,2﹣5),即:当△OPM 为直角三角形时,点P 2),(4,0).。

2009年中考数学试卷及答案

2009年中考数学试卷及答案

2009年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.如果将收入500元记作500元,那么支出237元记作__________元.2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则EF =__________.3.分解因式:x 2-4=____________________.4.化简:823+=__________.5.二元一次方程组⎩⎨⎧=-=+2332y x y x 的解是__________.6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,则∠ACE =__________°.9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和-3,则m =__________. 10.请写出一个对任意实数都有意义.........的分式.你所写的分式是_____________.(第8题图)A C E DB二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.11.下列图形中,不是..正方体表面展开图的是(第11题图)D C BA12.如图,在⊙O 中,∠BOC =100°,则∠A 等于A .100°B .50°C .40°D .25°13.已知一个多边形的内角和是900°,则这个多边形是A .五边形B .六边形C .七边形D .八边形14.已知下列运算:①()4222y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有A .①②③④B .①②③C .①②④D .①② 15.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积是A .25πB .50πC .100πD .200π17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分的面积是A .4πB .2πC .πD .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121B .61C .41D . 31 B (第17题图)(第12题图)。

[09真题]2009年广西省柳州市初中毕业升学考试数学试卷[word][评分标准]

[09真题]2009年广西省柳州市初中毕业升学考试数学试卷[word][评分标准]

(考试时间共120分钟,全卷满分120分)一、选择题(本大题共6小题,每小题3分,满分18分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分)1.在3,0,2-,2四个数中,最小的数是( ) A .3 B .0 C .2- D .2 2.如图1所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个 3.若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac <4.某学习小组7个男同学的身高(单位:米)为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为( )A .1.65B .1.66C .1.67D .1.70 5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x6.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( ) A .AB=CD B .AB ≤CD C .CD AB > D .AB ≥CDCD BA图1数 学二、填空题(本大题共10小题,每小题3分,满分30分. 请将答案直接填写在题中横线上的空白处)7.计算:2)5(0+-= .8.请写出一个是轴对称图形的图形名称.答: . 9.计算:312-= .10.在图2中,直线AB ∥CD ,直线EF 与AB 、CD 分别相交于点E 、F , 如果∠1=46°,那么∠2= °.11.一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,则再过 秒它的速度为15米/秒. 12.因式分解:22x x -= . 13.反比例函数 xm y 1+=的图象经过点(2,1),则m 的值是 . 14.在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有 个. 15.如图3,︒=∠30MAB ,P 为AB 上的点,且6=AP ,圆P与AM 相切,则圆P 的半径为 .16.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位. 三、解答题(本大题10小题,满分72分.解答应写出必要的文字说明、演算步骤或推理过程)17.(本题满分6分)先化简,再求值:)5()1(3---x x ,其中2=x .图3FED C BA2 1 图218.(本题满分6分)解不等式组⎩⎨⎧>+<+② 392① 31x x ,并把它的解集表示在数轴上.19.(本题满分6分)某学习小组对所在城区初中学生的视力情况进行抽样调查,图4是这些同学根据调查结果画出的条形统计图.请根据图中信息解决下列问题:(1)本次抽查活动中共抽查了多少名学生?(2)请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图5中表示出来. (3)假设该城区八年级共有4000名学生,请估计这些学生中视力低于4.8的学生约有多少人?20.(本题满分6分)如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.得 分 评卷员得 分 评卷员得 分 评卷员2图5图4AD CB图621.(本题满分6分)如图6,正方形网格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.(1)在正方形网格中,作出11AB C △;(不要求写作法) (2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)22.(本题满分6分)如图8,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈) 23.(本题满分8分)如图9, 直线l 与x 轴、y 轴分别交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 出发,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 出发,以每秒2个单位长度的速度沿O →M 的方向运动.已知点QP 、同时出发,当点Q到达点M 时,QP 、两点同时停止运动, 设运动时间为t 秒.(1)设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范围. (2)当t 为何值时,QP 与l 平行?得 分 评卷员得 分 评卷员得 分 评卷员N xyPC AB图8BCA 图724.(本题满分8分)某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.25.(本题满分10分) 如图10,AB 是⊙O 的直径,C 是弧BD 的中点,CE ⊥AB ,垂足为E ,BD 交CE 于点F .(1)求证:CF BF =;(2)若2AD =,⊙O 的半径为3,求BC 的长.得 分 评卷员得 分 评卷员B图1026.(本题满分10分)如图11,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标; (2)以AD 为直径的圆经过点C . ①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上,且以E F A B ,,,四点为顶点的四边形为平行四边形,求点F 的坐标.2009年柳州市初中毕业升学考试数学参考答案及评分标准第Ⅰ卷:一、选择题第Ⅱ卷:二、填空题得 分 评 卷 员图11三、解答题:17. 本小题满分6分.解:原式=533+--x x ·················································································· 2分=22+x ······················································································ 4分 当2=x 时,原式=222+⨯ ································································· 5分=6 ········································································ 6分(说明:如果直接求值,没有进行化简,结果正确扣1分) 18. 本小题满分6分.解: 由①得:13-<x ·············································································· 1分即2<x ··············································································· 2分 由②得:62->x ·········································································· 3分即3->x ·········································································· 4分 ∴原不等式的解集为23<<-x ····························································· 5分 在数轴上表示为:······················ 6分19. 本小题满分6分.解:(1)本次抽查活动中共抽查了2100名学生. ················································· 2分;(2)本次抽查中视力不低于4.8的学生人数为1400人,比例为32,约占67%.所以该城区视力不低于4.8的学生约占67%.扇形统计图表示为:………………………………4分(说明:图中只要标对扇形圆心角为240°,或标明所占比例正确的,都不扣分)(3)抽查知在八年级的学生中,视力低于4.8的学生所占比例为800300,则该城区八年级视力低于4.8的学生人数约为:150********300=⨯人. ························································· 6分 20、本小题满分6分.解法一: ∵AB CD ∥∴︒=∠+∠180C B ············································1分 又∵B D ∠=∠∴︒=∠+∠180D C ········································· 2分2图5阴影部分为视力不低于 4.8人数,占32,约67%AD CB图6∴AD ∥BC 即得ABCD 是平行四边形 ················· 4分 ∴36AB CD BC AD ====, ·························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ·············· 6分 解法二: 连接AC ······················································ 1分∵AB CD ∥∴DCA BAC ∠=∠ ··········································· 2分 又∵B D AC CA ∠=∠=, ··································· 3分 ∴ABC △≌CDA △ ··········································· 4分 ∴36AB CD BC AD ====, ···························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ·············· 6分 解法三: 连接BD ······················································ 1分∵AB CD ∥∴CDB ABD ∠=∠ ············································· 2分 又∵ABC CDA ∠=∠ ∴ADB CBD ∠=∠ ············································· 3分 ∴AD ∥BC 即ABCD 是平行四边形 ······················ 4分 ∴36AB CD BC AD ====, ····························· 5分 ∴四边形ABCD 的周长183262=⨯+⨯= ··············· 6分 (没有经过证明而直接写出结果的给2分,其它解法参照给分) 21. 本小题满分6分. 解:(1)作图如下:························· 2分(2) 线段BC 所扫过的图形如图所示. ················································· 4分 根据网格图知:43AB BC ==,,所以5=AC 线段BC 所扫过的图形的面积221π()4S AC AB =- ··································· 5分 =9π4(2cm ) ·········································· 6分22.本小题满分6分.解:如图8,过点A 作BC AD ⊥,垂足为D根据题意,可得︒=∠60BAD ,︒=∠30CAD ,66=AD ······························ 1分 在Rt △ADB 中,由ADBD BAD =∠tan DCAB图81C 1BBCA图7AD CB图6AD CB图6得36636660tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . ···· 3分 在Rt △ADC 中,由ADCDCAD =∠tan 得322336630tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ·························· 5分∴152.2BC BD CD =+==. ···································· 6分 答:这栋楼高约为152.2 m . (其它解法参照给分) 23、本小题满分8分.解:(1)依题意,运动总时间为428==t 秒,要形成四边形MNPQ ,则运动时间为40<<t . 1分 当P 点在线段NO 上运动t 秒时,t OQ t OP 2 ,6=-=∴12POQ S OP OQ =⋅△=t t 62+- ············· 2分 此时四边形MNPQ 的面积MON POQ S S S =-△△=)6(68212t t +--⨯⨯ =2462+-t t ············································································ 4分∴S 关于t 的函数关系式为2624(04)S t t t =-+<<, ································ 5分(2)当PQ 与l 平行时,NOM △∽POQ △ ··················································· 6分PO NO QO MO = 即 tt -=6628 ································································· 7分 ∴2410=t ,即4.2=t∴当4.2=t 秒时, PQ 与l 平行. ··························································· 8分 (其它解法参照给分) 24、本小题满分8分.解: (1)设该班胜x 场,则该班负)10(x -场. ················································· 1分依题意得: 14)10(3=--x x ··························································· 2分 解之得: 6=x ········································································ 3分图9所以该班胜6场,负4场. ································································ 4分 (2)设甲班胜了x 场,乙班胜了y 场,依题意有:)]10(3[3)10(3y y x x --=-- ······················································· 5分 化简得:53+=x y 即35+=x y ·············································································· 6分 由于y x , 是非负整数,且05x ≤≤,y x >∴4=x ,3=y .所以甲班胜4场,乙班胜3场. ·························································· 8分 答:(1)该班胜6场,负4场.(2)甲班胜4场,乙班胜3场. (其它解法参照给分) 25、本小题满分10分.证明:(1) 连结AC ,如图10 ∵C 是弧BD 的中点∴∠BDC =∠DBC ····································· 1分又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB∴ ∠BCE=∠BAC ∠BCE =∠DBC ···································· 3分 ∴ CF =BF ··········································· 4分 因此,CF =BF .(2)证法一:作CG ⊥AD 于点G ,∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线. ·································· 5分 ∴ CE =CG ,AE =AG ········································································ 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG ∴BE =DG ······················································································ 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 ········································································ 8分又 △BCE ∽△BAC∴ 212BC BE AB ==· ··································································· 9分32±=BC (舍去负值)∴32=BC ·············································································· 10分 (2)证法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , ························· 5分B 图10在Rt ADB △与Rt FEB △中, ∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= ················ 6分 又∵CF BF =, ∴EF CF 3=利用勾股定理得:EF EF BF BE 2222=-= ······················································· 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=2·················································· 8分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF ··············································································· 9分 ∴3222=+=CE BE BC ·························································· 10分 26、本小题满分10分. 解:(1)对称轴是直线:1=x , 点A 的坐标是(3,0). ··················································· 2分 (说明:每写对1个给1分,“直线”两字没写不扣分) (2)如图11,连接AC 、AD ,过D 作轴 y DM ⊥于点M , 解法一:利用AOC CMD △∽△∵点A 、D 、C 的坐标分别是A (3,0),D (1,b a --)、 C (0,b -),∴AO =3,MD =1.由MD OC CM AO =得13ba = ∴03=-ab ·············································································· 3分又∵b a a --⋅--⋅=)1(2)1(02····················································· 4分∴由⎩⎨⎧=-=-0303b a ab 得⎩⎨⎧==31b a ······················································· 5分∴函数解析式为:322--=x x y ·············································· 6分 解法二:利用以AD 为直径的圆经过点C∵点A 、D 的坐标分别是A (3,0) 、D (1,b a --)、C (0,b -),图11∴29b AC +=,21a CD +=,2)(4b a AD --+=∵222AD CD AC =+∴03=-ab …① ··································································· 3分 又∵b a a --⋅--⋅=)1(2)1(02…② ············································ 4分 由①、②得13a b ==, ························································ 5分 ∴函数解析式为:322--=x x y ·················································· 6分(3)如图所示,当BAFE 为平行四边形时则BA ∥EF ,并且BA =EF .∵BA =4,∴EF =4由于对称为1=x ,∴点F 的横坐标为5. ······································· 7分将5=x 代入322--=x x y 得12=y ,∴F (5,12). ··············································· 8分 根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F ,使得四边形BAEF 是平行四边形,此时点F 坐标为(3-,12). ················································································ 9分当四边形BEAF 是平行四边形时,点F 即为点D , 此时点F 的坐标为(1,4-). ····························· 10分 综上所述,点F 的坐标为(5,12), (3-,12)或(1,4-). (其它解法参照给分)图11。

初中毕业升学考试(广西百色卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西百色卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西百色卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】三角形的内角和等于()A.90° B.180° C.300° D.360°【答案】B【解析】试题分析:利用三角形的内角和定理:三角形的内角和为180°即可解本题考点:三角形内角和定理.【题文】计算:23=()A. 5B. 6C. 8D. 9【答案】C【解析】试题分析:根据立方的计算法则计算即可求解.23=8.考点:有理数的乘方.【题文】如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7【答案】B【解析】试题分析:利用平行线的判定方法判断即可.∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6考点:平行线的判定.【题文】在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A. B. C. D.【答案】C【解析】评卷人得分试题分析:用红球的个数除以所有球的个数即可求得抽到红球的概率.考点:概率公式.【题文】今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A.3.89×102 B.389×102 C.3.89×104 D.3.89×105【答案】C【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.考点:科学记数法—表示较大的数.【题文】如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6 D.12【答案】A【解析】试题分析:根据30°所对的直角边等于斜边的一半求解.∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6考点:含30度角的直角三角形.【题文】分解因式:16﹣x2=()A.(4﹣x)(4+x) B.(x﹣4)(x+4) C.(8+x)(8﹣x) D.(4﹣x)2【答案】A【解析】试题分析:直接利用平方差公式分解因式得出答案.16﹣x2=(4﹣x)(4+x).考点:因式分解-运用公式法.【题文】下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′ C.35.5°<35°5′ D.35.5°>35°5′【答案】D【解析】试题分析:根据大单位化小单位乘以进率,可得答案.A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;考点:度分秒的换算.【题文】为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)1234人数(单位:人)14622A.中位数是2 B.平均数是2 C.众数是2 D.极差是2【答案】D【解析】试题分析:根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误考点:(1)极差;(2)加权平均数;(3)中位数;(4)众数.【题文】直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A. x≤3B. x≥3C. x≥﹣3D. x≤0【答案】A【解析】试题分析:首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.考点:一次函数与一元一次不等式.【题文】A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣= C.﹣= D. +=30【答案】B【解析】试题分析:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.考点:由实际问题抽象出分式方程.【题文】如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.3C.2D.2+【答案】C【解析】试题分析:连接CC′,连接A′C交y轴于点D,连接AD,此时AD+CD的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C的长度,从而得出结论.连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,∴A′C=2×A′B=2.考点:(1)轴对称-最短路线问题;(2)等边三角形的性质.【题文】的倒数是.【答案】3【解析】试题分析:直接根据倒数的定义进行解答即可.∵×3=1,∴的倒数是3.考点:倒数.【题文】若点A(x,2)在第二象限,则x的取值范围是.【答案】x<0【解析】试题分析:根据第二象限内点的横坐标小于零,可得答案.由点A(x,2)在第二象限,得x<0考点:点的坐标.【题文】如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=.【答案】65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理【题文】某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.【答案】5【解析】试题分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个考点:由三视图判断几何体.【题文】一组数据2,4,a,7,7的平均数=5,则方差S2= .【答案】3.6【解析】试题分析:根据平均数的计算公式:=,先求出a的值,再代入方差公式S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]进行计算即可.∵数据2,4,a,7,7的平均数=5,∴2+4+a+7+7=25,解得a=5,∴方差s2= [(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6;考点:方差;算术平均数.【题文】观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=____.【答案】a2017﹣b2017【解析】试题分析:根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017考点:(1)平方差公式;(2)多项式乘多项式.【题文】计算: +2sin60°+|3﹣|﹣(﹣π)0.【答案】5【解析】试题分析:本题涉及二次根式化简、特殊角的三角函数值、绝对值、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=3+2×+3﹣﹣1=3++3﹣﹣1=5.考点:(1)实数的运算;(2)零指数幂;(3)特殊角的三角函数值.【题文】解方程组:.【答案】【解析】试题分析:方程组利用加减消元法求出解即可.l试题分析:(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解;(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC ′,最后根据勾股定理即可求得.试题解析:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C(﹣1,2),∴OC==∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′=.考点:(1)待定系数法求反比例函数解析式;(2)坐标与图形变化-旋转.【题文】已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,A F∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.【答案】(1)证明过程见解析;(2)50°【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.【题文】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤102(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【答案】(1)9;(2)36°;(3)【解析】试题分析:(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m&lt;9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得出第一组至少有一名选手被选中的概率.试题解析:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:,即第一组至少有1名选手被选中的概率是【题文】在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?【答案】(1)12米;(2)采用规格为1.00×1.00所需的费用较少【解析】试题分析:(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.试题解析:(1)设这地面矩形的长是xm,则依题意得: x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).因为8250<7680,所以采用规格为1.00×1.00所需的费用较少.考点:一元二次方程的应用.【题文】如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.【答案】(1)证明过程见解析;(2)【解析】试题分析:(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.试题解析:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD ;(2)∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.考点:切线的性质.【题文】正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.【答案】(1)点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2);y=﹣+2x;(2)9.【解析】试题分析:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c ,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+SOCE关于m的函数解析式,根据二次函数的性质即可得出结论.试题解析:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣+2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S △OAE+SOCE=OA•yE+OC•xE=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.考点:二次函数综合题.。

真题广西百色市中考数学真题试题(word版)

真题广西百色市中考数学真题试题(word版)

##市2017年初中毕业升学考试试卷数学第Ⅰ卷〔共60分〕一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简:15-等于〔 〕A .15B .-15C .15±D .1152.多边形的外角和等于〔 〕A .180︒B .360︒C .720︒D .(2)180n -⋅︒3.在以下一列数3,3,5,6,7,8中,中位数是〔 〕A .3B .5C .5.5D .64.下列计算正确的是〔 〕A .33(3)27x x -=-B .224()x x -= C.222x x x -÷= D .122x x x --⋅= 5.如图,AM 为BAC ∠的平分线,下列等式错误的是〔 〕A .12BAC BAM ∠=∠ B .BAM CAM ∠=∠ C.2BAM CAM ∠=∠ D .2CAM BAC ∠=∠6.5月14-15日"一带一路"论坛峰会在隆重如开,促进了我国与世界各国的互联互通互惠,"一带一路"地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为〔 〕A .84.410⨯B .94.410⨯ C.9410⨯ D .84410⨯7.如图所示的正三棱术,它的主视图、俯视图、左视图的顺序是〔 〕〔 〕A .①②③B .②①③ C.③①② D .①③②8.观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是〔 〕A .-121B .-100 C.100 D .1219.九年级〔2〕玉同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是〔 〕A .45︒B .60︒ C. 72︒ D .120︒10.如图,在距离铁轨200米处的B 处,观察由##开往##的"和谐号"动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是〔 〕米/秒.A .20(31)+B .20(31) C. 200 D .30011.以坐标原点O 为圆心,作半径为2的圆,若直线y x b =-+与O 相交,则b 的取值范围是〔 〕A .022b ≤<.2222b -≤2323b -<< D .2222b -<<12.关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是〔 〕 A .3 B .2 C. 1 D .23 第Ⅱ卷〔共90分〕二、填空题〔每题5分,满分20分,将答案填在答题纸上〕13.若分式12x -有意义,则x 的取值范围是. 14.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.15.下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有〔填序号〕.16.如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标是..17. 经过(4,0),(2,0),(0,3)A B C -三点的抛物线解析式是.18.阅读理解:用"十字相乘法"分解因式223x x --的方法.(1)二次项系数212=⨯;(2)常数项 3131(3)-=-⨯=⨯-验算:"交叉相乘之和";132(1)1⨯+⨯-=1(1)235⨯-+⨯=1(3)211⨯-+⨯=-112(3)5⨯+⨯-=-(3)发现第③个"交叉相乘之和"的结果1(3)211⨯-+⨯=-,等于一次项系数-1,即22(1)(23)232323x x x x x x x +-=-+-=--,则223(1)(23)x x x x --=+-.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:23512x x +-=.三、解答题 〔本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.〕19.〔本题满分6分〕 10112(3)14cos302π-⎛⎫----︒ ⎪⎝⎭20. 已知2018a b =+,求代数式222222212a b a b a ab b a b-⋅÷-++-的值.21. 〔本题满分6分〕22. 已知反比例函数(0)k y k x=≠的图象经过点(3,2)B ,点B 与点C 关于原点O 对称,BA x ⊥轴于点A ,CD x ⊥轴于点.D(1)求这个反比例函数的解析式;(2)求ACD 的面积.22.〔本题满分8分〕矩形ABCD 中,,E F 分别是,AD BC 的中点, ,CE AF 分别交BD 于,G H 两点.求证:〔1〕四边形AFCE 是平行四边形;〔2〕.EG FH =23.〔本题满分8分〕甲、乙两运动员的射击成绩〔靶心为10环〕统计如下表〔不完全〕:某同学计算出了甲的成绩平均数是9,方差是2222221[(109)(89)(99)(109)(89)]0.85S =-+-+-+-+-=甲,请作答: (1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙的射击成绩平均数都一样,则a b +=;(3)在〔2〕的条件下,当甲比乙的成绩较稳定时,请列举出,a b 的所有可能取取说明理由.24.〔本题满分10分〕某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?25.〔本题满分10分〕已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若EF DE =,如图1.(1)判断ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.26.〔本题满分12分〕以鞭形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a(1)求BC 边所在直线的解析式;(2)设22y MP OP =+,求y 关于a 的函数关系式;(3)当OPM 为直角三角形,求点P 的坐标.。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案(时间:120分钟 满分:120分)注意事项:1.本试卷分选择题和非选择题两部分,在本试卷上作答无效.2.考题结束后,将本试卷和答题卷一并交回.3.答题前,请认真阅读答题卷上的注意事项.一、选择题(本大题共14题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卷...上对应题目的答案标号涂黑) 1.计算:2-3= ( ) A .-1 B .1 C .5 D .9 答案:A2.计算(a 4)3的结果是 ( )A .a 7B .a 12C .a 16D .a 64答案:B3.已知∠A=37°,则∠A 的余角等于 ( )A .37°B .53°C .63°D .143° 答案:B 4.函数y=23x 中自变量x 的取值范围是 ( ) A .x ≠-3 B .x <-3 C .x >-3 D .x ≥-3答案:A5. (2010广西百色,5,3分)以百色汽车总站为坐标原点,向阳路为y 轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是( )A .(-5,3)B . (4,3)C .(5,-3)D .(-5,-3)(第5题) 答案:C6. (2010广西百色,6,3分)不等式2-x ≤1的解集在数轴上表示正确的是 ( )答案:D7. (2010广西百色,7,3分)如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是( )(第7题)A .B .C .D . 答案:C8. (2010广西百色,8,3分)如图,已知a ∥b ,l 分别与a 、b 相交,下列结论中错误..的是( ) A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠2=∠5(第8题) 答案:D9. (2010广西百色,9,3分)二元一次方程组34,231x y x y +=⎧⎨-=-⎩.的解是( )A .11.x y =⎧⎨=⎩,B .11.x y =-⎧⎨=-⎩,C .22.x y =-⎧⎨=⎩,D .21.x y =-⎧⎨=-⎩,答案:A10. (2010广西百色,10,3分)下列命题中,是假命题的是( )A .全等三角形的对应边相等B .两角和一边分别对应相等的两个三角形全等C .对应角相等的两个三角形全等D .相似三角形的面积比等于相似比的平方 答案:C11. (2010广西百色,11,3分)在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学捐款情况绘制成如图的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是( )A..20元 B .15元 C .12元 D .10元(第11题)答案:D捐款人数42105 25 金额(元)12. (2010广西百色,12,3分)如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE ,CF 为AB 边上的中线,若AD =5,CD =3,DE =4,则BF 的长为( )A .332B .316 C .310 D .38(第12题)答案:B13. (2010广西百色,13,3分)二次函数y=-x2+bx +c的图象如图所示,下列几个结论:)F EDCBA x20415. (2010广西百色,14,3分) 15的倒数是 .答案:516. (2010广西百色,16,3分)截止6月9日,上海世博园入园游览人数累计已达到1080万人次,1080万用科学记数法表示为万.答案:31008.1⨯17. (2010广西百色,17,3分)为了解某班学生的视力情况,从中抽取7名学生进行检查,视力如下:1.21.5 0.9 1.0 1.2 1.2 0.8,则这组数据的中位数是 .答案:1.218. (2010广西百色,18,3分)方程x2=2x-1的两根之和等于 .答案:219. (2010广西百色,19,3分)如图,⊙O的直径为20cm,弦AB=16cm,OD⊥AB,垂足为D.则AB沿射线OD方向平移cm时可与⊙D相切.(第19题)答案:420. (2010广西百色,20,3分)如图,将边长为33+的等边△ABC折叠,折痕为DE,点B与点F重合,EF 和DF分别交AC于点M、N,DF⊥AB,垂足为D,AD=1.设△DBE的面积为S,则重叠部分的面积为 .(用含S的式子表示)(第20题)答案:S三.解答题(本大题共7题,共60分.请将解答过程写在答题卷...上)21. (2010广西百色,21,6分)将下面的代数式化简,再选择你喜欢且有意义的数代入求值.(1a b-+1a b+)÷22aba b-+a-1 答案:_E_C_B解:原式=()()a b a b a b a b ++-+-×()()a b a b ab+-+a-1=2b+a-1 取a =1,b=2(取a=b,a=-b均不得分)原式=22+1-1=1(答案不唯一,只要符合题意即可) 22. (2010广西百色,22,8分)已知矩形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线BD 上的两点,且BF =DE .(1)按边分类,△AOB 是 三角形;(2)猜想线段AE 、CF 的大小关系,并证明你的猜想.(第22题) 答案:(1)等腰(2)猜想:AE =CF证法一:∵四边形是ABCD 矩形∴AD ∥BC 且AD =BC ∴∠ADB =∠CBD ∵DE =BF∴△ADE ≌△CBF (SAS )∴AE =CF 证法二:∵四边形ABCD 是矩形 ∴OA =OC ,OB =OD∵DE =BF ∴OE =OF 又∠AOE =∠COF∴△AOE ≌△COF (SAS ) ∴AE =CF证法三:如图,连结AF 、CE由四边形ABCD 是矩形得OA =OC ,OB =OD ∵DE =BF ∴OE =OF∴四边形AECF 是平行四边形. ∴AE =CF 23. (2010广西百色,23,8分)今年4月14日,青海玉树发生了里氏7.1级大地震,为支援玉树抗震救灾,我市从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队. (1)用树状图表示任意抽取2人所有的可能结果,请你补全这个树状图:乙 甲 丙 丁 O FE D C BA OF ED CB A(2)求任意抽取的2人恰好是一名医生和一名护士的概率. 答案:(1)如图所示:′ (2)解:恰好是一名医生和一名护士的概率是:P=812=2324. (2010广西百色,24,8分)如图,反比例函数y=1k x(x>0)与正比例函数y=k2x 的图象分别交矩形OABC 的BC 边于M (4,1),B (4,5)两点. (1)求反比例函数和正比例函数的解析式;BMN (不含边界)∴k1=4∴反比例函数的解析式为y=4x∵y=k2x 的图象经过点B (4,5) ∴4k 2=5∴k 2=54∴正比例函数的解析式为y=54x(2) 阴影区域BMN (不含边界)内的格点:(3,3)(3,2)所求点的坐标为:(-3,3)、(-3,2)25. (2010广西百色,25,8分)秋季至今年5月,我市出现了严重的旱情,今年4月15日至21日,甲、乙两所中学均告断水,上级立刻组织送水活动,每次送往甲中学7600升、乙中学4000升.已知人均送水量相同,甲中学师生人数是乙中学的2倍少20人.乙甲丙丁乙丙 丁 丙 丙丁 丁甲 甲乙 甲 乙(1)求这两所中学师生人数分别是多少人?(2)若送瓶装水,价格为1元/升;若用消防车送饮用泉水,不需购买,但需配送水塔,容量500升的水塔售价为520元/个.其它费用忽略不记.请你计算第一次给乙中学全部送瓶装水或全部用消防车送饮用泉水的费用各是多少?答案:解:(1)设乙中学有师生x 人,则甲中学有师生(2x -20)人.依题意得7600220x -=4000x解这个方程得x=200经检验x=200是原方程的解,∴2x -20=380 答:甲中学有师生380人,乙中学有师生200人. (2)送瓶装水的费用为:4000×1=4000(元)送饮用泉水的费用为:4000÷500×520=4160(元)26. (2010广西百色,26,10分)如图1,AB 是⊙O 的直径,BC ⊥AB ,垂足为B ,AC 交⊙O 于点D . (1)用尺规作图:过点D 作DE ⊥BC ,垂足为E (保留作图痕迹,不写作法和证明); (2)在(1)的条件下,求证:△BED ∽△DEC ; (3)若点D 是AC 的中点(如图2),求sin∠OCB 的值.图1 图2【解析】(1)要证△BED ∽△DEC ,有一公共角,故只要证明∠C =∠EDB 即可. (2)在Rt△OBC 中,只要找到OB 与OC 的关系即可.由于∠ADB = 90, D是AC 的中点,所以BD 垂直平分AC ,所以△ABC 是等腰直角三角形.答案:(1)如图(2)证明:∵AB 是⊙O 的直径∴∠ADB =∠CDB = 90∴∠CDE +∠EDB = 90 又∵DE ⊥BC ∴∠CED =∠DEB = 90 ∴∠CDE +∠C = 90 ∴∠C =∠EDB ∴△BED ∽△DEC (3)解:∵∠ADB =90, D 是AC 的中点 ∴BD 垂直平分AC∴BC =AB =2OB 设OB =k 则BC =2k∴OC∴sin∠OCB =OB OC =55A B C DOCBC A27. (2010广西百色,27,12分)已知抛物线y =x 2+bx +c的图象过A (0,1)、B (-1,0)两点,直线l :x =-2与抛物线相交于点C ,抛物线上一点M 从B 点出发,沿抛物线向左侧运动.直线MA 分别交对称轴和直线l 于D 、P 两点.设直线PA 为y =kx +m .用S 表示以P 、B 、C 、D 为顶点的多边形的面积. (1)求抛物线的解析式,并用k 表示P 、D 两点的坐标; (2)当0<k ≤1时, 求S 与k 之间的关系式;(3)当k <0时, 求S 与k 之间的关系式.是否存在k 的值,使得以P 、B 、C 、D 为顶点的多边形为平行四(4)若规定k =0时,y=m是一条过点(0,m)且平行于x轴的直线.当k ≤1时,请在下面给出的直角坐标系中画出S 与k 之间的函数图象.求S 的最小值,并说明此时对应的以P 、B 、C 、D 为顶点的多边形的形状.(第27题)答案:解:(1)由题意得1,.10c b c =⎧⎨-+=⎩解之得c =1,b =2所以二次函数的解析式为:y =x 2+2x +1直线y =kx +m .经过点A (0,1) ∴m =1,∴y =kx +1 当x=-2时y =-2k +1 当x=-1时y =-k +1∴P (-2, -2k +1) D (-1, -k +1)(2) 在y =x 2+2x +1中,当x=-2时,y =4-4+1=1 ∴点C 坐标为(-2,1)当0<k ≤1时,CP =1-(-2k +1)=2k , BD =-k +1∴S=212k k -+=12k +12(3)当k <0时, CP =-2k +1-1=-2k , BD =-k +1∴S=212k k --+=32-k +12存在k 当PC ∴当k (4) k⎪⎪⎪⎩⎪⎪⎪⎨⎧-=23(2121k k k S 2112342246M Dx=-2P C B A 1-1O xy MD Px=-2lC BA O x y图象如图所示.由图象可知,S的最小值为S=12.此时对应的多边形是一个等腰直角三角形.。

初一有理数经典试题及答案一

初一有理数经典试题及答案一

初一有理数经典试题及答案一1. (2009年,福建莆田)一2的相反数为_________.【答案】2 【解析】一2的相反数为-(-)=2, 填2.2. (2009年,湖南省邵阳市)-2的绝对值是__________.【答案】2 【解析】|-2|=-(-2)=2.填2.3. (2009年福建省泉州市)写出一个比0小的实数:______答案:如:-1(答案不唯一);4. (2009年福建省泉州市)宝岛台湾的面积约为36 000平方公里,用科学记数法表示约为 平方公里.答案:4106.3⨯5. (2009年福建省泉州市)计算:(-4)÷2= .答案:-2 6. (2009年梅州市)梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .答案:63.610⨯7. (2009年,安徽芜湖中考)已知|a+1|+b -8=0,则a-b=【答案】-9 【解析】由非负数性质,981,8,1.08,01-=--=-∴=-=⎩⎨⎧=-=+b a b a b a8. (2009)为减少全球金融危机对我国经济产生的影响,国务院决定拿出40000亿元以扩大内需,保持经济平稳较大增长. 这个数用科学记数法表示为 亿元.答案:4 × 1049. (2009)三江源实业公司为治理环境污染,8年来共投入23940000元,那么23940000元用科学记数法表示为 元(保留两个有效数字).答案:72.410⨯10. (2009青海)计算:3120092-0⎛⎫+= ⎪⎝⎭; 答案:9 【解析】3120092-0⎛⎫+= ⎪⎝⎭8+1=9 11. (2009年青海)15-的相反数是 ;立方等于8-的数是 . 答案:15;2- 12. (2009年邵阳市)-2的绝对值是__________.答案:2 【解析】 负数的绝对值是它的相反数,所以-2的绝对值是2。

13. (2009年山西省)山西有着丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客,2008年全省旅游总收入739.3亿元,这个数据用科学记数法可表示为 .答案:107.39310⨯14. (2009年山西省)比较大小:2- 3-(填“>”、“=”或“<“).答案:> 【解析】两个负数比较大小,绝对值大的反而小。

2009年 全国 117个地区中考试卷及答案

2009年 全国 117个地区中考试卷及答案

2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案

广西百色市中考数学试卷及答案(考题时间:120分钟;满分120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷非选择题两部分。

答第[卷时,用2B 铅笔把答题卡上对应的答案题号涂黑;打第Ⅱ卷时,用黑色水笔将答案写在答题卡上,在本试卷上作答无效; 2. 考题结束后,将本试卷和答题卡一并收回;3. 答题前,请认真阅读试卷和答题卡上的注意事项。

第Ⅰ卷(选择题)一、选择题(本大题共14题,每小题3分,共42分。

在每小题给出的四个选项中只有一项是符合要求的) 1.2011的相反数是A.-2011B.2011C.12011D. ±2011 答案:A2.五边形的外角和等于A.180°B. 360 °C.540°D.720° 答案:C3下列四个立体图中,它的几何体的左视图是圆的是答案:A4.甲,乙,丙,丁四位同学在四次数学测验中,他们成绩的平均数相同,方差分别为2S 甲=5,5,2S 乙=7.3,2S 丙=8.6,2S 丁=4.5,则成绩最稳定的是A .甲同学 B. 乙同学 C. 丙同学 D. 丁同学 答案:D 5.计算(π-12)0-sin30°= A.12. B. π-1 C. 32D. 13答案:A6两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),侧方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x答案: B7下列命题中是真命题的是A .如果a ²=b ² ,那么a=bB.对角线互相垂直的四边形是菱形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.对应角相等的两个三角形全等 答案:C8如图,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点 E.某同学解析图形后得出以下结论:①∆BCD ≌∆CBE;②∆BAD ≌∆BCD;③∆BDA ≌∆CEA;④∆BOE ≌∆COD;⑤ ∆ACE ≌∆BCE;上述结论一定正确的是DEOBCAA. ①②③B. ②③④C. ①③⑤D. ①③④ 答案:D 9.我们知道:一个正整数p(P>1)的正因数有两个:1和p ,除此之外没有别的正因数,这样的数p 称为素数,也称质数。

初中数学测试题(含答案)

初中数学测试题(含答案)

C A EB F D 相交线与平行线测试题之邯郸勺丸创作一、精心选一选,慧眼识金!(每小题3分,共24分)1.如图所示,∠1和∠2是对顶角的是( )2.如图AB ∥CD 可以得到( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠43.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等4.(2007·北京)如图,Rt △ABC 中,∠ACB=90,DE 过点C 且平行于AB ,若∠BCE=350,则∠A 的度数为( )A .35B .45C .55D .65 5.(2009.重庆)如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=1000,则∠D 等于( ) A .70° B .80° C .90° D .100°6.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )A .第一次左拐30°,第二次右拐30°B .第一次右拐50°,第二次左拐130°C .第一次右拐50°,第二次右拐130°D .第一次向左拐50°,第二次向左拐130°7. 如图所示是“福娃欢欢”的五幅图案,②、③、④、⑤哪一个图案可以通过平移图案①得到( )A .②B .③C .④D .⑤8. (2009.四川遂宁)如图,已知∠1=∠2,∠3=80O ,则∠4=( )O B. 70O C. 60O D. 50O二、耐心填一填,一锤定音!(每小题3分,共24分) 9.(2009.上海)如图,已知a ∥b ,∠1=400,那么∠2的度数等于.10.如图,计划把河水引到水池A 中,先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是_________________________________________.1 2 ab11.如图,直线AB 、CD 相交于点O ,∠1-∠2=64°,则∠AOC=______.12.如图,一张宽度相等的纸条,折叠后,若∠ABC =110°,则∠1的度数为_________.13.把命题“锐角的补角是钝角”改写成“如果……,那么……”的形式是:______________________________________.14.(2007.金华)如图,直线AB ∥CD ,EF ⊥CD ,F 为垂足。

2009年广西桂林市百色市中考数学试题及答案-推荐下载

2009年广西桂林市百色市中考数学试题及答案-推荐下载

20.(本题满分 6 分)先化简,再求值: 1 1 (x2 y2 x y ) ,
其中 x 2,y 3 .
2x x y
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桂林市 百色市2009年初中毕业暨升学考试
数学试卷
一、选择题(每题3分,共36分)
1、-8的相反数是( )
A 、-8
B 、8
C 、18
D 、18
- 2、下面几个有理数最大的是( )
11A 2 B C 3 D 35
--、 、 、、 3、如图,在所标识的角中,同位角是( )
A 、∠1和∠2
B 、∠1和∠3
C 、∠1和∠4
D 、∠2和∠3
4、右图是一正四棱锥,它是俯视图是( )
5、下列运算正确的是( )
A 22
B a b ab +=÷ 22222242、 、(-ab)=a b
C 、a a =2a
D 、a a =2
6、二次函数y=(x+1)2 +2的最小值是( )
A B C D 2、 2 、1 、-3 、 3
7、右图是一张卡通图,图中两圆的位置关系是( )
A 、相交
B 、外离
C 、内切
D 、内含
8、已知21
x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值为( )
A 、 1
B 、-1
C 、2
D 、3
9、有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是( )
1B C D 4A 725、 、 、 、 2058
10、如图,在平行四边形ABCD 中,AC 、BD 为对
角线,BC =6, BC 边上的高为4,则图中阴影部分的
面积为( )
A 、3
B 、6
C 、12
D 、24
11、如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90度,得到△A/B/O,则点A/的坐标为()
A、(3 , 1)
B、(3 , 2)
C、(2 , 3)
D、(1 , 3)
12、如图,正方形ABCD的边长为2, 将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动。

如果点Q从点A出发,沿图中所示方向按A→B→C→D→A 滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR 的中点M所经过的路线围成的图形的面积为()
π-
A、2
B、4-π
C、π
D、1
二、填空题(每题3分,共18分)
13、因式分解:x2 +3x = .
14、据统计,去年我国粮食产量达10570亿斤,用科学记数法表示为亿斤。

15、如图,在一次数学课外活动中,测得电线杆底部B与钢缆固定点C的距离为4米,钢缆与地面的夹角为60度,则这条钢缆在电线杆上的固定点A到地面的距离AB是米(结果保留根号)。

16、在函数y=x的取值范围是。

17、如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为。

18、如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,……,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009 ,得∠A2009 ,则∠A2009=。

三、解答题
19、(本题6分)计算:
100120094sin3022⎛⎫--+-- ⎪⎝⎭-(
20、(本题6分)先化简,再求值:
2211()22x y x y x x y x
+--++ , 其中, y=3 21、(本题8分)如图,在等腰梯形ABCD 中,A D ∥BC ,
对角线AC 、BD 相交于点O 。

(1)图中共有 对全等三角形。

(2)写出你认为全等的一对三角形,并证明
22、(本题8分)2008年11月28日,为扩大内需,国务院决定在全国实施“家电下乡”政策。

第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品,某县一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据统计图中的信息解答下列问题:
(1)该商场一季度彩电销售的数量是 台。

(2)请补全条形统计图和扇形统计图。

23、(本题8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵)。

(1)设初三(1)班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示)。

(2)初三(1)班至少有多少名同学?最多有多少名同学?
24、(本题8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。

(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元。

若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
25、(本题10分)如图,△ABC内接于半圆,AB为直径,过点A 作直线MN,
若∠MAC=∠ABC。

(1)求证:MN是半圆的切线。

(2)设D是弧AC的中点,连结BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG。

(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积。

26、(本题12分)如图已知直线L:
3
3
4
y x
=+,它与x轴、y轴的交点分别为A、B两点。

(1)求点A、点B的坐标。

(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹)。

(3)设92)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式。

(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B,若存在,求出圆心P的坐标,若不存在,请说明理由。

相关文档
最新文档