人教版八年级下学期数学期末试卷20

合集下载

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

最新人教版2022-2022年八年级下期末考试数学试卷(含答案)

八年级(下)期末(qī mò)数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合(fúhé)题目要求的)1.下列(xiàliè)图形中,既是中心对称图形,又是轴对称图形的是()A.菱形(línɡ xínɡ)B.平行四边形C.等边三角形D.梯形2.如图,OA是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N,若ON=8cm,则OM长为()A.4cm B.5cm C.8cm D.20cm3.如果n边形的内角和等于外角(wài jiǎo)和的3倍,那么n的值是()A.5 B.6 C.7 D.84.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形6.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC7.点P在x轴上,且到y轴的距离(jùlí)为5,则点P的坐标是()A.(5,0) B.(0,5) C.(5,0)或(﹣5,0) D.(0,5)或(0,﹣5)8.直线(zhíxiàn)y=kx+9k+10一定(yīdìng)经过点()A.(0,10)B.(1,19)C.(9,10)D.(﹣9,10)9.如图,线段(xiànduàn)AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4 B.4.5 C.4.8 D.510.在直角坐标系中,一只电子青蛙从原点出发,每次可以向上(xiàngshàng)或向下或向左或向右跳动一个单位,若跳三次,则到达的终点有几种可能()A.12 B.16 C.20 D.6411.如图,一次函数y=kx+b的图象与坐标轴的交点坐标分别为A(0,2),B(﹣3,0),下列说法:①y随x的增大而减小;②b=2;③关于x的方程kx+b=0的解为x=2;④关于x的不等式kx+b<0的解集x<﹣3.其中说法正确的有()A.1个B.2个C.3个D.4个12.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有()千米到达甲地.A.70 B.80 C.90 D.100二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.函数(hánshù)y=的自变量x的取值范围(fànwéi)是.14.默写角平分线的性质(xìngzhì)定理的逆定理:.15.点P(m﹣1,2m﹣4)在第三象限(xiàngxiàn),则m的取值范围是.16.已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.17.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE 折叠后,点B落在AD边的F点上,则DF的长为.18.点P(x,y)经过某种变换后得到点P′(﹣y+1,x+2),我们把点P′(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2021的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤19.(6分)我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充(bǔchōng)完整;(3)已知该校有1000人,请根据样本估计全校最喜欢足球(zúqiú)的人数是多少?20.(6分)已知函数(hánshù)y=kx+2k+1(k不为(bù wéi)零),(1)若函数(hánshù)图象经过点A(1,4),求k的值;(2)若这个一次函数图象不经过第一象限,求k的取值范围.21.(8分)如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.22.(8分)如图,在矩形ABCD中,AD>AB,过对角线的中点O作BD的垂线EF,交AD于点E,交BC于点F.(1)求证:四边形BEDF是菱形;(2)若AB=3,AD=4,求AE的长.23.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为12?若存在,请直接出点P的坐标;若不存在,请说明(shuōmíng)理由.24.(10分)某商店销售A型和B型两种型号(xínghào)的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x 台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少(duōshǎo)台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售(xiāoshòu)总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.25.(8分)在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点(zhōnɡ diǎn),连接EF,试证明EF⊥BD.26.(12分)如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标(zuòbiāo)及直线L的解析式;(2)在(1)的条件(tiáojiàn)下,如图②所示,设Q为AB延长线上一点(yī diǎn),作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角(zhíjiǎo)顶点在第一、二象限内作等腰直角△OBF和等腰直角(zhíjiǎo)△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.八年级(下)期末(qī mò)数学试卷参考答案一、选择题(本大题共12小题(xiǎo tí),每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.A;2.C;3.D;4.B;5.D;6.D;7.C;8.D;9.C;10.B;11.B;12.A;二、填空题(本大题共6小题(xiǎo tí),每小题3分,共18分)13.x≥;14.角的内部到角的两边距离(jùlí)相等的点在角平分线上;15.m<1;16.8;17.6;18.(1,4);三、解答题(本大题共8小题,共66分.解答应(dā yìng)写出文字说明、证明过程或演算步骤19、20、21、22、23、24、25、26、内容总结(1)14.角的内部到角的两边距离相等的点在角平分线上(2)18.(1,4)。

2020年人教版八年级下学期数学期末测试题 (含答案)

2020年人教版八年级下学期数学期末测试题 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。

2020年人教版八年级下学期数学期末测试卷 (含答案)

2020年人教版八年级下学期数学期末测试卷 (含答案)

人教版八年级下册数学期末测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 12 小题,每题 3 分,共计36分)1. 下列计算正确的是()=1 B.√4−√3=1 C.√6÷√3=2 D.√4=±2A.√2√22. 函数y=√x−3中,自变量x的取值范围是()A.x<0B.x≥0C.x≥3D.x<33. 关于一次函数y=−2x+3,下列结论正确的是()A.图象过点(1, −1)B.图象经过一、二、三象限时,y<0C.y随x的增大而增大D.当x>324. 下列说法不正确的有()①三内角之比是1:2:3的三角形是直角三角形;②三内角之比为3:4:5的三角形是直角三角形;③三边之比是3:4:5的三角形是直角三角形;④三边a,b,c满足关系式a2−b2=c2的三角形是直角三角形.A.1个B.2个C.3个D.4个5. 如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.486. 已知一次函数y=kx−m−2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<07. 已知△ABC的三边之长分别为a,1,3,则化简|9−2a|−√9−12a+4a2的结果是( )A.12−4aB.4a−12C.12D.−128. 某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,439. 某班同学在探究弹簧长度跟外力的关系变化时,实验记录得到的数据如表:则y关于x的函数图象是()A. B.C. D.10. 下列命题中:①对角线互相平分的四边形是平行四边形;②对角线相等的四边形是矩形;③一组对角相等,一组对边平行的四边形是平行四边形;④对角线平分一组对角的平行四边形是菱形;⑤对角线相等且互相垂直的四边形是正方形.其中正确的命题有()个A.1B.2C.3D.411. 如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(m, n),且2m+n=6,则直线AB的解析式是()A.y=−2x−3B.y=−2x−6C.y=−2x+3D.y=−2x+612. 如图,已知在△ABC中,∠BAC=90∘,D,E,F分别是△ABC三边的中点,AB=4√5,AC=2√5,则下列判断中不正确的是()A.AE=DFB.S△ADE=10C.四边形ADEF是矩形D.CE=5卷II(非选择题)二、填空题(本题共计 6 小题,每题 3 分,共计18分)=________.13. 计算:2√8÷√1214. 如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影拼成一个正方形,那么新正方形的边长是________.,a⋆b=ab−b2.15. 规定a#b=√a⋅√b+√ab(1)3#5=________;(2)2⋆(√3−1)=________.16. 如图所示,在格点图中,以格点A、B、C、D、E、F为顶点,你能画出________个平行四边形.并在图中画出来________.17.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是________,DC边上的高AF的长是________.的图象相交于A,C两点,AB⊥x 18.如图,正比例函数y=x与反比例函数y=1x轴于B,CD⊥x轴于D,则四边形ABCD的面积为________.三、解答题(本题共计 8 小题,共计66分)19.(6分) 计算下列各小题.(1)√27√3−√8×√23(2)√12−√6÷√2+(1−√3)2.20.(6分) 若a,b,c满足的关系是√2a−5b+5+c+√3a−3b−c=√5−a+b+√a−b−5.求:(1)a,b,c的值;(2)√a−b⋅√c的值.x+2与x轴交于点A,与y轴交于点B,直线l2:y=−2x+ 21.(8分) 已知直线l1:y=12b经过点B且与x轴交于点C.(1)b=________;(答案直接填写在答题卡的横线上)(2)画出直线l2的图象;(3)求△ABC的面积.22.(8分) 甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?23.(8分) 已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=√5.(1)求平行四边形ABCD的面积S;平行四边形ABCD(2)求对角线BD的长.24.(8分) 如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行。

人教版八年级下册数学期末试题(附答案)

人教版八年级下册数学期末试题(附答案)

2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

初二数学下册期末考试试卷(含-答案)人教版

初二数学下册期末考试试卷(含-答案)人教版

明.)20。

如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。

(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。

21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。

下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。

如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。

点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。

八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。

2020人教版八年级下册数学《期末测试题》附答案

2020人教版八年级下册数学《期末测试题》附答案
人教版数学八年级下学期
期末测试卷
一、选择题(每小题3分,共计30分)
1.若关于x的方程 是一元二次方程,则m的取值范围是()
A. .B. .C. D. .
2.下列各曲线中,不表示 是 的函数是().
A. B. C. D.
3.下列各组数中能作为直角三角形的三边长是()
A.7,24,25B. ,2, C.2,5,6D.13,14,15
27.已知:在平面直角坐标系中,点 为坐标原点,直线 分别交 轴, 轴于点 , ,点 在第一象限,连接 , ,四边形 是正方形.
(1)如图1,求直线 的解析式;
(2)如图2,点 分别在 上,点 关于 轴的对称点为点 ,点 在 上,且 ,连接 , ,设点 的横坐标为 , 的面积为 ,求 与 之间的函数关系式,并直接写出自变量 的取值范围;
【解析】
【分析】
先解方程求出第三边,再根据三角形三边关系确定第三边,然后求出周长即可.
【详解】解:

∵2+3<6,则x=3舍去,
∵2+5>6,则x=5成立,
则周长为2+5+6=13,
故选C.
【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法和三角形的三边关系是解决本题的关键.
9.如图,菱形 的对角线 , 相交于点 ,点 为 的中点,连接 ,若 , ,则 的面积是()
10.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离 (米)与时间 (分钟)之间的函数关系如图所示.其中说法正确的是()
A. 甲的速度是60米/分钟B. 乙的速度是80米/分钟
C. 点 的坐标为 D. 线段 所表示的函数表达式为

2020年人教版八年级下册数学《期末考试试卷》含答案

2020年人教版八年级下册数学《期末考试试卷》含答案
【详解】解:可由一组对边平行且相等判定四边形是平行四边形, 可添加AD=BC;因为其一组对边平行,要使其为平行四边形,添加对边相等即可.
故答案为AD=BC,AB∥DC, ∠A=∠C, ∠B=∠D等
【点睛】此题考查了平行四边形的判定,为开放性试题,答案不唯一,要掌握平行四边形的判定方法.两组对边平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
平均数
方差


3.2
(2)若你是教练,根据以上信息,你会选择谁参加射击比赛,理由是什么?
21. 已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF
求证:四边形BECF是平行四边形.
22.如图,在平面直角坐标系 中,直线 与 轴交于点 ,与双曲线 在第二象限内交于点 (-3, ).
⑴求 和 的值;
16. 如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F AC上一点,E为AB中点.
(1)▱ABCD的周长是;
(2)EF+BF的最小值为.
【答案】(1)8;(2)
【解析】
试题分析:根据平行四边形有一组邻边相等得到四边形ABCD为菱形,然后计算四边形的周长;根据菱形的性质可知点B与点D关于AC对称,从而可知BF=DF,则EF+BF=EF+DF,当点D、F、E共线时,EF+BF有最小值,然后根据等边三角形的性质以及直角三角形的勾股定理得出最小值.
14.在函数y= (m -3)x -2(m是常数)中, y随着x的增大而增大,则m的取值范围是______.
15.如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要添加的一个条件是:____.(填一个你认为正确的条件即可,不再添加任何线段与字母)

数学八年级下学期《期末测试卷》附答案

数学八年级下学期《期末测试卷》附答案

人教版数学八年级下学期期末测试卷学校________ 班级________ 姓名________ 成绩________本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3 2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =73.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表: 成绩(分)35 39 42 44 45 48 50人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A .4B .3C .2D .15.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .177.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .39.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y 的值随x 的增大而增大,其中正确结论的个数是( ) A .1B .2C .3D .410.如图,点E ,F 是▱A B C D 对角线上两点,在条件①D E =B F ;②∠A D E =∠C B F ;③A F =C E ; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F 是平行四边形,可添加的条件是( )A .①②③B .①②④C .①③④D .②③④11.如图,矩形A B C D 中,A B =1,B C =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为.15.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了 件.17.如图,在矩形A B C D 中,B C =20C m ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P 和点Q 的速度分别为3C m /s 和2C m /s ,则最快 s 后,四边形A B PQ 成为矩形.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为 . 三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 成绩人数x部门八年级0 0 1 11 1九年级 1 0 0 7(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 52.1 请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为;(2)可以推断出年级学生的体质健康情况更好一些,理由为.(至少从两个不同的角度说明推断的合理性).22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.23.如图,直线l与x轴交于点A ,与y轴交于点B (0,2).已知点C (﹣1,3)在直线l上,连接OC .(1)求直线l的解析式;(2)P为x轴上一动点,若△A C P的面积是△B OC 的面积的2倍,求点P的坐标.24.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表: x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(1)如图1,在正方形A B C D 中,E是A B 上一点,F是A D 延长线上一点,且D F=B E.求证:C E =C F;(2)如图2,在正方形A B C D 中,E是A B 上一点,G是A D 上一点,如果∠GC E=45°,请你利用(1)的结论证明:GE=B E+GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E是A B上一点,且∠D C E=45°,B E=4,则D E=.②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.参考答案本试卷满分120分,考试时间90分钟一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.代数式√2−x+1x−3中自变量x的取值范围是()A .x≤2B .x=3C .x<2且x≠3D .x≤2且x≠3【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解析】由题意得,2﹣x≥0且x﹣3≠0,解答x≤2且x≠3,所以,自变量x的取值范围是x≤2.故选:A .2.以A 、B 、C 三边长能构成直角三角形的是()A .A =1,B =2,C =3 B .A =32,B =42,C =52C .A =√2,B =√3,C =√5D .A =5,B =6,C =7【分析】根据勾股定理的逆定理对各个选项逐一代入计算,看是否符合A 2+B 2=C 2即可.【解析】A 、∵12+22≠32,∴不符合A 2+B 2=C 2.∴不能构成直角三角形.B 、∵A =32,B =42,C =52,∴A =9,B =16.C =25,∵92+162≠252,不符合A 2+B 2=C 2,∴不能构成直角三角形.C 、√22+√32=√52,符合A 2+B 2=C 2,∴能构成直角三角形.D 、52+62≠72,不符合A 2+B 2=C 2,∴不能构成直角三角形.故选:C .3.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数(人)2566876根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解. 【解析】该班人数为:2+5+6+6+8+7+6=40, 得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=45,平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425.故错误的为D . 故选:D . 4.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 其中正确的有( )个. A .4B .3C .2D .1【分析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解析】∵四边相等的四边形一定是菱形,∴①正确; ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确; 其中正确的有2个.故选:C .5.若直线y =kx +B 经过一、二、四象限,则直线y =B x ﹣k 的图象只能是图中的( )A .B .C .D .【分析】由直线经过的象限结合四个选项中的图象,即可得出结论. 【解析】∵直线y =kx +B 经过一、二、四象限, ∴k <0,B >0, ∴﹣k >0,∴选项B 中图象符合题意. 故选:B .6.如图,菱形A B C D 中,∠B =60°,A B =4,则以A C 为边长的正方形A C EF 的周长为( )A .14B .15C .16D .17【分析】根据菱形得出A B =B C ,得出等边三角形A B C ,求出A C 的长,根据正方形的性质得出A F =EF =EC =A C =4,求出即可. 【解析】∵四边形A B C D 是菱形, ∴A B =B C , ∵∠B =60°,∴△A B C 是等边三角形, ∴A C =A B =4,∴正方形A C EF 的周长是A C +C E +EF +A F =4×4=16, 故选:C .7.已知一等腰三角形的底边长为10C m ,腰长为13C m ,则底边上的高为( ) A .12C mB .5C mC .1203C mD .1013C m【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.【解析】如图:A B =A C =13C m ,B C =10C m . △A B C 中,A B =A C ,A D ⊥B C ; ∴B D =D C =12B C =5C m ;Rt △A B D 中,A B =13C m ,B D =5C m ; 由勾股定理,得:A D =√AB 2−BD 2=12C m . 故选:A .8.如图所示的”赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为A ,较短直角边长为B .若A B =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3【分析】由题意可知:中间小正方形的边长为:A ﹣B ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解析】由题意可知:中间小正方形的边长为:A ﹣B , ∵每一个直角三角形的面积为:12A B =12×8=4, ∴4×12A B +(A ﹣B )2=25, ∴(A ﹣B )2=25﹣16=9, ∴A ﹣B =3, 故选:D .9.对于函数y =﹣2x +2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、三象限;③它的图象必经过点(﹣2,2);④y的值随x的增大而增大,其中正确结论的个数是()A .1B .2C .3D .4【分析】根据一次函数的性质对各小题进行逐一判断即可.【解析】因为函数y=﹣2x+2,所以①当x>1时,y<0,正确;②它的图象经过第二、一、四象限,错误;③它的图象必经过点(﹣2,﹣2),错误;④y的值随x的增大而减小,错误;故选:A .10.如图,点E,F是▱A B C D 对角线上两点,在条件①D E=B F;②∠A D E=∠C B F;③A F=C E; ④∠A EB =∠C FD 中,添加一个条件,使四边形D EB F是平行四边形,可添加的条件是()A .①②③B .①②④C .①③④D .②③④【分析】若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以.【解析】由平行四边形的判定方法可知:若是四边形的对边平行且相等,可证明这个四边形是平行四边形,①不能证明对边平行且相等,只有②③④可以,故选:D .11.如图,矩形A B C D 中,A B =1,B C =2,点P从点B 出发,沿B →C →D 向终点D 匀速运动,设点P走过的路程为x,△A B P的面积为S,能正确反映S与x之间函数关系的图象是()A .B .C .D .【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解析】由题意知,点P从点B 出发,沿B →C →D 向终点D 匀速运动,则当0<x≤2,s=12 x,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始是直线一部分,最后为水平直线的一部分.故选:C .12.如图,直线y=23x+4与x轴、y轴分别交于点A 和点B ,点C 、D 分别为线段A B 、OB 的中点,点P为OA 上一动点,当PC +PD 最小时,点P的坐标为()A .(﹣3,0)B .(﹣6,0)C .(−32,0) D .(−52,0)【分析】(方法一)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,结合点C 、D ′的坐标求出直线C D ′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A 、B 的坐标,再由中点坐标公式求出点C 、D 的坐标,根据对称的性质找出点D 关于x轴的对称点D ′的坐标,根据三角形中位线定理即可得出点P为线段C D ′的中点,由此即可得出点P的坐标.【解析】(方法一)作点D 关于x轴的对称点D ′,连接C D ′交x轴于点P,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点, ∴点C (﹣3,2),点D (0,2). ∵点D ′和点D 关于x 轴对称, ∴点D ′的坐标为(0,﹣2). 设直线C D ′的解析式为y =kx +B ,∵直线C D ′过点C (﹣3,2),D ′(0,﹣2), ∴有{2=−3k +b −2=b ,解得:{k =−43b =−2,∴直线C D ′的解析式为y =−43x ﹣2.令y =−43x ﹣2中y =0,则0=−43x ﹣2,解得:x =−32, ∴点P 的坐标为(−32,0). 故选C .(方法二)连接C D ,作点D 关于x 轴的对称点D ′,连接C D ′交x 轴于点P ,此时PC +PD 值最小,如图所示.令y =23x +4中x =0,则y =4, ∴点B 的坐标为(0,4);令y =23x +4中y =0,则23x +4=0,解得:x =﹣6,∴点A 的坐标为(﹣6,0).∵点C 、D 分别为线段A B 、OB 的中点,∴点C (﹣3,2),点D (0,2),C D ∥x轴,∵点D ′和点D 关于x轴对称,∴点D ′的坐标为(0,﹣2),点O为线段D D ′的中点.又∵OP∥C D ,∴点P为线段C D ′的中点,∴点P的坐标为(−32,0).故选:C .二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在试题相应的位置上)13.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为3或﹣2,对应的n值为﹣2或3,该组数据的中位数是3.【分析】利用平均数和众数的定义得出m的值,进而利用平均数的定义求出n的值,从而求得中位数即可.【解析】∵一组数据4,3,2,m,n的众数为3,平均数为2,∴m的值可能为3,∴4+3+2+3+n=2×5,解得n=﹣2.同理m可能是﹣2,n可能是3,所以该组数据排序为:﹣2,2,3,3,4,所以中位数为3,故答案为:3或﹣2,﹣2或3,3.14.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为y=﹣2x+5.【分析】直接根据”上加下减,左加右减”的原则进行解答.【解析】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)x﹣1=﹣2x+5.故答案为:y=﹣2x+515.在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离(B C )有5米.则旗杆的高度12米.【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和B C 构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度.【解析】设旗杆的高度为x米,根据题意可得:(x+1)2=x2+52,解得:x=12,答:旗杆的高度为12米.故答案为:12米.16.甲和乙同时加工一种产品,他们的工作量与工作时间的关系如图所示,则当甲加工了这种产品70件时,乙加工了280件.【分析】根据图象可以求出甲、乙的工作效率,乙的用时与甲加工70件所用的时间相等,再根据工作量=工作效率×工作时间,求出答案.【解析】甲的工作效率为:50÷5=10件/分,乙的工作效率为:80÷2=40件/分因此:40×(70÷10)=280件,故答案为:28017.如图,在矩形A B C D 中,B C =20C m,点P和点Q分别从点B 和点D 出发,按逆时针方向沿矩形A B C D 的边运动,点P和点Q的速度分别为3C m/s和2C m/s,则最快4s后,四边形A B PQ成为矩形.【分析】根据矩形的性质,可得B C 与A D 的关系,根据矩形的判定定理,可得B P=A Q,构建一元一次方程,可得答案.【解答】解;设最快x秒,四边形A B PQ成为矩形,由B P=A Q得3x=20﹣2x.解得x=4,故答案为:4.18.在▱A B C D 中,∠A =30°,A D =4√3,连接B D ,若B D =4,则线段C D 的长为4或8.【分析】作D E⊥A B 于E,由直角三角形的性质得出D E=12A D =2√3,由勾股定理得出A E=√3D E=6,B E=√BD2−DE2=2,得出A B =A E﹣B E=4,或A B =A E+B E=8,即可得出答案.【解析】作D E⊥A B 于E,如图所示:∵∠A =30°,∴D E=12A D =2√3,∴A E=√3D E=6,B E=√BD2−DE2=√42−(2√3)2=2,∴A B =A E﹣B E=4,或A B =A E+B E=8,∵四边形A B C D 是平行四边形,∴C D =A B =4或8;故答案为:4或8.三.解答题(共7小题)19.计算:√12−(2+√3)(2−√3)+√27÷√12.【分析】原式利用二次根式性质,二次根式除法法则,以及平方差公式计算即可求出值. 【解析】原式=√22−(4﹣3)+√94=√22−1+32=√2+12.20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点. (1)在图1中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠A B C 的度数.【分析】(1)根据勾股定理作出边长为√5的正方形即可得;(2)连接A C ,根据勾股定理逆定理可得△A B C 是以A C 、B C 为腰的等腰直角三角形,据此可得答案.【解析】(1)如图1所示:(2)如图2,连A C ,则BC=AC=√12+22=√5,AB=√12+32=√10,∵(√5)2+(√5)2=(√10)2,即B C 2+A C 2=A B 2,∴△A B C 为直角三角形,∠A C B =90°,∴∠A B C =∠C A B =45°.21.某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,过程如下,请补充完整.收集数据从八、九两个年级各随机抽取20名学生,进行了体质健康测试,测试成绩(百分制)如下:八年级78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77九年级93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 人数x部门八年级0 0 1 11 7 1九年级 1 0 0 7 10(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 8152.1请将以上两个表格补充完整;得出结论(1)估计九年级体质健康优秀的学生人数为108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.(至少从两个不同的角度说明推断的合理性).【分析】整理、描述数据:根据八、九年级各的20名学生的成绩即可补全表格;分析数据:根据众数的定义即可得;(1)总人数乘以样本中九年级体质优秀人数占九年级人数的比例即可得;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些.【解析】整理、描述数据:40≤x≤49 50≤x≤59 60≤x≤69 70≤x≤79 80≤x≤89 90≤x≤100 八年级0 0 1 11 7 1九年级 1 0 0 7 10 2分析数据两组样本数据的平均数、中位数、众数、方差如下表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级78 80.5 81 52.1(1)估计九年级体质健康优秀的学生人数为180×10+220=108人,故答案为:108;(2)可以推断出九年级学生的体质健康情况更好一些,理由为两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.故答案为:九年级;两年级学生的平均数基本相同,而九年级的中位数以及众数均高于八年级,说明九年级学生的体质健康情况更好一些.22.如图,在▱A B C D 中,E、F分别为边A B C D 的中点,B D 是对角线,过A 点作A G∥D B 交C B 的延长线于点G.(1)求证:D E∥B F;(2)若∠G=90,求证:四边形D EB F是菱形.【分析】(1)根据平行四边形的性质得到D F=B E,A B ∥C D ,根据平行四边形的判定定理证明四边形D EB F是平行四边形,根据平行四边形的性质证明结论;(2)根据矩形的判定定理得到四边形A GB D 是矩形,根据直角三角形的性质得到ED =EB ,证明结论.【解答】(1)证明:∵四边形A B C D 是平行四边形,∴A B =C D ,A B ∥C D ,∵E、F分别为边A B 、C D 的中点,∴D F=B E,又A B ∥C D ,∴四边形D EB F是平行四边形,∴D E∥B F;(2)∵A G∥D B ,A D ∥C G,∴四边形A GB D 是平行四边形,∵∠G=90°,∴平行四边形A GB D 是矩形,∴∠A D B =90°,又E为边A B 的中点,∴ED =EB ,又四边形D EB F是平行四边形,∴四边形D EB F是菱形.23.如图,直线l 与x 轴交于点A ,与y 轴交于点B (0,2).已知点C (﹣1,3)在直线l 上,连接OC .(1)求直线l 的解析式;(2)P 为x 轴上一动点,若△A C P 的面积是△B OC 的面积的2倍,求点P 的坐标.【分析】(1)利用待定系数法求直线l 的解析式;(2)利用直线l 的解析式确定A 点坐标,再计算出S △A C P =2S △B OC =2,设P (t ,0),根据三角形面积公式得到12•|t ﹣2|×3=4,然后解方程求出即可的P 点坐标. 【解析】(1)设直线l 的解析式y =kx +B ,把点C (﹣1,3),B (0,2)代入解析式得,{b =2−k +b =3, 解得k =﹣1,B =2,∴直线l 的解析式:y =﹣x +2;(2)把 y =0代入y =﹣x +2得﹣x +2=0,解得:x =2,则点A 的坐标为(2,0),∵S △B OC =12×2×1=1,∴S △A C P =2S △B OC =2,设P (t ,0),则A P =|t ﹣2|,∵12•|t ﹣2|×3=2,解得t =103或t =23, ∴P (103,0)或(23,0).24.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【分析】(1)根据题意可以设出y 与x 的函数关系式,然后根据表格中的数据,即可求出日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解析】(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =kx +B , {15k +b =2520k +b =20, 解得,{k =−1b =40, 即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y =﹣x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元), 即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(1)如图1,在正方形A B C D 中,E 是A B 上一点,F 是A D 延长线上一点,且D F =B E .求证:C E =C F ;(2)如图2,在正方形A B C D 中,E 是A B 上一点,G 是A D 上一点,如果∠GC E =45°,请你利用(1)的结论证明:GE =B E +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形A B C D 中,A D ∥B C (B C >A D ),∠B =90°,A B =B C =12,E 是A B 上一点,且∠D C E =45°,B E =4,则D E = 10 .②如图4,在△A B C 中,∠B A C =45°,A D ⊥B C ,且B D =2,A D =6,求△A B C 的面积.【分析】(1)根据正方形的性质,可直接证明△C B E≌△C D F,从而得出C E=C F;(2)延长A D 至F,使D F=B E,连接C F,根据(1)知∠B C E=∠D C F,即可证明∠EC F=∠B C D =90°,根据∠GC E=45°,得∠GC F=∠GC E=45°,利用全等三角形的判定方法得出△EC G≌△FC G,即GE=GF,即可得出答案GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中利用勾股定理即可求解;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E的垂线,垂足是E,过C 作A G的垂线,垂足是G,B E和GC 相交于点F,B F=6﹣2=4,设GC =x,则C D =GC =x,FC =6﹣x,B C =2+x.在直角△B C F中利用勾股定理求得C D 的长,则三角形的面积即可求解.【解析】(1)证明:如图1,在正方形A B C D 中,∵B C =C D ,∠B =∠C D F,B E=D F,∴△C B E≌△C D F,∴C E=C F;(2)证明:如图2,延长A D 至F,使D F=B E,连接C F,由(1)知△C B E≌△C D F,∴∠B C E=∠D C F.∴∠B C E+∠EC D =∠D C F+∠EC D即∠EC F=∠B C D =90°,又∵∠GC E=45°,∴∠GC F=∠GC E=45°,∵C E=C F,∠GC E=∠GC F,GC =GC ,∴△EC G≌△FC G,∴GE=GF,∴GE=D F+GD =B E+GD ;(3)①过C 作C F⊥A D 的延长线于点F.则四边形A B C F是正方形.A E=AB ﹣B E=12﹣4=8,设D F=x,则A D =12﹣x,根据(2)可得:D E=B E+D F=4+x,在直角△A D E中,A E2+A D 2=D E2,则82+(12﹣x)2=(4+x)2,解得:x=6.则D E =4+6=10.故答案是:10;②作∠EA B =∠B A D ,∠GA C =∠D A C ,过B 作A E 的垂线,垂足是E ,过C 作A G 的垂线,垂足是G ,B E 和GC 相交于点F ,则四边形A EFG 是正方形,且边长=A D =6,B E =B D =2,则B F =6﹣2=4,设GC =x ,则C D =GC =x ,FC =6﹣x ,B C =2+x .在直角△B C F 中,B C 2=B F 2+FC 2,则(2+x )2=42+x 2,解得:x =3.则B C =2+3=5,则△A B C 的面积是:12A D •B C =12×6×5=15.。

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)

人教版2020年八年级下数学期末考试卷(含答案)姓名:_____________。

总分:_____________一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()。

A。

x>0.B。

x≥-2.C。

x≥2.D。

x≤22.矩形具有而菱形不具有的性质是()。

A。

两组对边分别平行。

B。

对角线相等。

C。

对角线互相平分。

D。

两组对角分别相等3.下列计算正确的是()。

A。

4×2÷=4.B。

+=-15.C。

4-2×=2.D。

4÷2+=64.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()。

A。

1.B。

-1.C。

3.D。

-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()。

工资(元)。

2 000.2 200.2 400.2 600人数(人)。

1 3 4 2A。

2400元、2400元。

B。

2400元、2300元。

C。

2200元、2200元。

D。

2200元、2300元6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()。

A。

AB∥DC,AD∥BC。

B。

AB=DC,AD=BCC。

AO=CO,BO=DO。

D。

AB∥DC,AD=BC7.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()。

A。

24.B。

16.C。

4.D。

28.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD长()。

A。

2.B。

3.C。

4.D。

19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()。

10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()。

A。

xm。

D。

x>3二、填空题(每小题3分,共24分)11.计算。

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

新人教版八年级数学(下册)期末试卷(附参考答案)

新人教版八年级数学(下册)期末试卷(附参考答案)

新人教版八年级数学(下册)期末试卷(附参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)13x x =,则x=__________2.函数32y x x =-+x 的取值范围是__________. 3.4的平方根是 .4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、B6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.2、23x -<≤3、±2.4、2≤a+2b ≤5.5、706、8三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、112x;15.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

2020人教版八年级下册数学《期末考试试卷》含答案

2020人教版八年级下册数学《期末考试试卷》含答案

2020⼈教版⼋年级下册数学《期末考试试卷》含答案⼈教版数学⼋年级下学期期末测试卷⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 3.函数3y x =-中⾃变量x 的取值范围是() A. 3x < B. 3x ≤ C. 3x > D. 3x ≥4.将⼀个n 边形变成(n +1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°5.设正⽐例函数y=mx 的图象经过点A(m ,4),且y 的值随x 的增⼤⽽增⼤,则m=( )A. 2B. -2C. 4D. -46.⼀次函数y =kx -(2-b)的图像如图所⽰,则k 和b 的取值范围是( )A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<27.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 63⽶B. 33⽶C. 6⽶D. 3⽶10.如图,将矩形纸⽚ABCD沿其对⾓线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 2511.如图,在平⾯直⾓坐标系中,正三⾓形OAB的顶点B的坐标为(2,0),点A在第⼀象限内,将△OAB 沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是()A. 打六折B. 打七折C. 打⼋折D. 打九折14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使?ABCD为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④⼆、填空题(本⼤题共6 ⼩题,共18 分)15.当m=________时,函数y=-(m-2)2m3x-+(m-4)是关于x的⼀次函数.16.如图,在△ABC中,AB=5,BC=7,EF是△ABC的中位线,则EF的长度范围是________.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.20.如图,已知菱形OABC 的顶点O(0,0),B(2,2),则菱形的对⾓线交点D 的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D 的坐标为_____.三、解答题(本⼤题共 6 ⼩题,共 60 分)21.如图,左右两幅图案关于y 轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm ) Ax<150 B 150≤x <155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间的学⽣有多少⼈23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.24.顺次连接四边形各边中点所得的四边形叫中点四边形.回答下列问题:(1)只要原四边形两条对⾓线______,就能使中点四边形是菱形;(2)只要原四边形的两条对⾓线______,就能使中点四边形是矩形;(3)请你设计⼀个中点四边形为正⽅形,但原四边形⼜不是正⽅形的四边形,把它画出来.25.王华同学要证明命题“对⾓线相等的平⾏四边形是矩形”是正确的,她先作出了如图所⽰的平⾏四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在平⾏四边形ABCD中,,求证:平⾏四边形ABCD是.(1)在⽅框中填空,以补全已知和求证;(2)按王晓的想法写出证明过程;证明:26.如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)⽅程组2226x yx y-=+=的解是______;(2)当y1>0与y2>0同时成⽴时,x的取值范围为_____;(3)求△ABC的⾯积;(4)在直线y1=2x-2的图像上存在异于点C的另⼀点P,使得△ABC与△ABP的⾯积相等,请求出点P的坐标.答案与解析⼀、选择题(本⼤题共 14 ⼩题,共 42 分)1. 为了解我市参加中考的15 000名学⽣的视⼒情况,抽查了1 000名学⽣的视⼒进⾏统计分析,下⾯四个判断正确的是()A. 15000名学⽣是总体B. 1000名学⽣的视⼒是总体的⼀个样本C. 每名学⽣是总体的⼀个个体D. 以上调查是普查【答案】B【解析】【详解】总体是参加中考的15 000名学⽣的视⼒情况,故A 错误;1000名学⽣的视⼒是总体的⼀个样本,故B 正确;每名学⽣的视⼒情况是总体的⼀个样本,故C 错误;以上调查应该是抽查,故D 错误;故选B .2.若点P (a ,b )在第⼆象限内,则a ,b 的取值范围是()A. a <0,b >0B. a >0,b >0C. a >0,b <0D. a <0,b <0 【答案】A【解析】【分析】点在第⼆象限的条件是:横坐标是负数,纵坐标是正数.【详解】解:因为点P (a ,b )在第⼆象限,所以a <0,b >0,故选A .【点睛】本题考查了平⾯直⾓坐标系中各象限点的坐标的符号特征,第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).3.函数y =中⾃变量x 的取值范围是() A. 3x <B. 3x ≤C. 3x >D. 3x ≥【答案】B【解析】试题分析:根据⼆次根式的意义,被开⽅数是⾮负数.所以3﹣x≥0,解得x≤3.故选B.考点:函数⾃变量的取值范围.4.将⼀个n边形变成(n+1)边形,内⾓和将( )A. 减少180°B. 增加90°C. 增加180°D. 增加360°【答案】C【解析】【分析】利⽤多边形的内⾓和公式即可求出答案.【详解】解:n边形的内⾓和是(n﹣2)?180°,n+1边形的内⾓和是(n﹣1)?180°,因⽽(n+1)边形的内⾓和⽐n边形的内⾓和⼤(n﹣1)?180°﹣(n﹣2)?180=180°.故选C.5.设正⽐例函数y=mx的图象经过点A(m,4),且y的值随x的增⼤⽽增⼤,则m=()A. 2B. -2C. 4D. -4【答案】A【解析】【分析】直接根据正⽐例函数的性质和待定系数法求解即可.【详解】解:把x=m,y=4代⼊y=mx中,可得:m=±2,因为y的值随x值的增⼤⽽增⼤,所以m=2,故选:A.【点睛】本题考查了正⽐例函数的性质:正⽐例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第⼀、三象限,y值随x的增⼤⽽增⼤;当k<0时,图象经过第⼆、四象限,y值随x的增⼤⽽减⼩.也考查了⼀次函数图象上点的坐标特征.6.⼀次函数y=kx-(2-b)的图像如图所⽰,则k和b的取值范围是()A. k>0,b>2B. k>0,b<2C. k<0,b>2D. k<0,b<2 【答案】B 【解析】【分析】根据⼀次函数的图象经过⼀、三、四象限列出b的不等式,求出b及k的取值范围即可.【详解】∵⼀次函数y=kx-(2-b)的图象经过⼀、三、四象限,∴k>0,-(2-b)<0,解得b<2.故选B.【点睛】本题考查的是⼀次函数的性质,熟知⼀次函数的图象与系数的关系是解答此题的关键.7.在数学活动课上,⽼师让同学们判定⼀个四边形门框是否为矩形,下⾯是某合作⼩组的四位同学的拟订⽅案,其中正确的是( )A. 测量对⾓线是否互相平分B. 测量两组对边是否分别相等C. 测量⼀组对⾓是否为直⾓D. 测量两组对边是否相等,再测量对⾓线是否相等【答案】D【解析】【分析】根据矩形和平⾏四边形的判定推出即可得答案.【详解】A、根据对⾓线互相平分只能得出四边形是平⾏四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平⾏四边形,故本选项错误;C、根据⼀组对⾓是否为直⾓不能得出四边形的形状,故本选项错误;D、根据对边相等可得出四边形是平⾏四边形,根据对⾓线相等的平⾏四边形是矩形可得出此时四边形是矩形,故本选项正确;故选D.【点睛】本题考查的是矩形的判定定理,矩形的判定定理有①有三个⾓是直⾓的四边形是矩形;②对⾓线互相平分且相等的四边形是矩形;③有⼀个⾓是直⾓的平⾏四边形是矩形.牢记这些定理是解题关键.8.向最⼤容量为60升的热⽔器内注⽔,每分钟注⽔10升,注⽔2分钟后停⽌1分钟,然后继续注⽔,直⾄注满.则能反映注⽔量与注⽔时间函数关系的图象是( )A. B.C. D.【答案】D【解析】【详解】注⽔需要60÷10=6分钟,注⽔2分钟后停⽌注⽔1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注⽔4分钟,排除C.故选D.9.如图,已知菱形ABCD的周长是24⽶,∠BAC=30°,则对⾓线BD的长等于()A. 3B. 3⽶C. 6⽶D. 3⽶【答案】C【解析】【分析】由菱形ABCD的周长是24⽶,∠BAC=30°,易求得AB=6⽶,△ABD是等边三⾓形,继⽽求得答案.【详解】解:∵菱形ABCD的周长是24⽶,∠BAC=30°,∴AB=AD=24÷4=6(⽶),∠DAB=2∠BAC=60°,∴△ABD是等边三⾓形,∴BD=AB=6⽶.故选C.【点睛】此题考查了菱形的性质以及等边三⾓形的判定与性质.注意证得△ABD是等边三⾓形是解此题的关键.10.如图,将矩形纸⽚ABCD 沿其对⾓线AC 折叠,使点B 落到点B′的位置,AB′与CD 交于点E ,若AB=8,AD=3,则图中阴影部分的周长为()A. 16B. 19C. 22D. 25【答案】C【解析】【分析】⾸先由四边形ABCD 为矩形及折叠的特性,得到B′C=BC=AD ,∠B′=∠B=∠D=90°,∠B′EC=∠DEA ,得到△AED ≌△CEB′,得出EA=EC ,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,即矩形的周长解答即可.【详解】解:∵四边形ABCD 为矩形,∴B′C=BC=AD ,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA ,△AED 和△C EB′中,'''BE C DEA B DB C AD ∠=∠??∠=∠??=?,∴△AED ≌△CEB′(AAS);∴EA=EC ,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC ,=AD+DE+EC+EA+EB′+B′C ,=AD+DC+AB′+B′C ,=22,故选:C .【点睛】本题主要考查了图形的折叠问题,全等三⾓形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的⾓是解题的关键.11.如图,在平⾯直⾓坐标系中,正三⾓形OAB 的顶点B 的坐标为(2,0),点A 在第⼀象限内,将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为()A. 3)B. 3)C. 3)D. 3)【答案】D【解析】【分析】根据等边三⾓形的性质和平移的性质即可得到结论.【详解】解:∵△OAB是等边三⾓形,∵B的坐标为(2,0),∴A(13),∵将△OAB沿直线OB的⽅向平移⾄△O′B′A′的位置,此时点B′的横坐标为5,∴A′的坐标(43,故选:D.【点睛】本题考查了坐标与图形变化-平移,在平⾯直⾓坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三⾓形的性质,含30°⾓的直⾓三⾓形的性质.求出点A′的坐标是解题的关键.12.在平⾯直⾓坐标系中,⼀矩形上各点的纵坐标不变,横坐标变为原来的12,则该矩形发⽣的变化为( )A. 向左平移了12个单位长度 B. 向下平移了12个单位长度C. 横向压缩为原来的⼀半D. 纵向压缩为原来的⼀半【答案】C∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,纵坐标保持不变,∴该正⽅形在纵向上没有变化.⼜∵平⾯直⾓坐标系中,⼀个正⽅形上的各点的坐标中,横坐标变为原来的12,∴此正⽅形横向缩短为原来的12,即正⽅形横向缩短为原来的⼀半.故选C. 13.某商店在节⽇期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款⾦额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所⽰,则超过500元的部分可以享受的优惠是( )A. 打六折B. 打七折C. 打⼋折D. 打九折【答案】C【解析】【分析】设超过200元的部分可以享受的优惠是打n 折,根据:实际付款⾦额=500+(商品原价-500)×10折扣,列出y 关于x 的函数关系式,由图象将x=1000、y=900代⼊求解可得.【详解】设超过500元的部分可以享受的优惠是打n 折,根据题意,得:y=500+(x-500)?10n ,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×10n ,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.【点睛】本题主要考查⼀次函数实际应⽤,理解题意根据相等关系列出实际付款⾦额y 与商品原价x 间的函数关系式是解题的关键.14. ⼩明在学习了正⽅形之后,给同桌⼩⽂出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 中选两个作为补充条件,使?ABCD 为正⽅形(如图),现有下列四种选法,你认为其中错误的是()A. ①②B. ②③C. ①③D. ②④【答案】B【解析】【详解】A 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当②∠ABC=90°时,菱形ABCD 是正⽅形,故此选项正确,不合题意;B 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,⽆法得出四边形ABCD 是正⽅形,故此选项错误,符合题意;C 、∵四边形ABCD 是平⾏四边形,当①AB=BC 时,平⾏四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正⽅形,故此选项正确,不合题意;D 、∵四边形ABCD 是平⾏四边形,∴当②∠ABC=90°时,平⾏四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正⽅形,故此选项正确,不合题意.故选C .⼆、填空题(本⼤题共 6 ⼩题,共 18 分)15.当m =________时,函数y =-(m -2)2m 3x -+(m -4)是关于x 的⼀次函数.【答案】-2【解析】【详解】∵函数y =-(m -2)23x m -+(m -4)是⼀次函数,∴()23120m m ?-=??--≠??,∴m =-2.故答案为-216.如图,在△ABC 中,AB =5,BC =7,EF 是△ABC 的中位线,则EF 的长度范围是________.【答案】1<EF<6【解析】【详解】∵在△ABC中,AB=5,BC=7,∴7-5<AC<7+5,即2<AC<12.⼜∵EF是△ABC的中位线,∴EF=12AC∴1<EF<6.17.⼀次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.【答案】(0,-1)【解析】【分析】由图象经过点M,故将M(-1,-2)代⼊即可得出k的值.【详解】解:∵⼀次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代⼊得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).【点睛】本题考查待定系数法求函数解析式,难度不⼤,直接代⼊即可.18.如图,在平⾯直⾓坐标系中,△ABC的顶点都在⽅格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为________.【答案】(2,5)【解析】【详解】∵将△ABC先向右平移4个单位长度,再向下平移1个单位长度,∵图形可知点A的坐标为(-2,6),∴则平移后的点A1坐标为(2,5).19.如图,四边形ABCD是菱形,O是两条对⾓线的交点,过O点的三条直线将菱形分成阴影和空⽩部分.当菱形的两条对⾓线的长分别为10和6时,则阴影部分的⾯积为_________.【答案】15【解析】【分析】根据中⼼对称的性质判断出阴影部分的⾯积等于菱形的⾯积的⼀半,即可得出结果.【详解】解:∵O是菱形两条对⾓线的交点,菱形ABCD是中⼼对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形ONCG,四边形OEDM≌四边形OFBN,∴阴影部分的⾯积=12S菱形ABCD=12×(12×10×6)=15.故答案为15.【点睛】本题考查了中⼼对称,菱形的性质,熟记性质并判断出阴影部分的⾯积等于菱形的⾯积的⼀半是解题的关键.20.如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对⾓线交点D的坐标为____;若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.【答案】(1). (1,1)(2). (-1,-1).【解析】【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对⾓线交点D的坐标为(-1,-1),故答案为(1,1);(-1,-1)【点睛】本题考查了旋转的性质及菱形的性质,利⽤旋转的性质得出OD旋转的周数是解题关键.三、解答题(本⼤题共6 ⼩题,共60 分)21.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴⾓左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴⾓左右端点的坐标;(2)从对称的⾓度来考虑,说⼀说你是怎样得到的;(3)直接写出右图案中的嘴⾓左右端点关于原点的对称点的坐标.【答案】(1)左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1);(2)见解析;(3) (-2,-1),(-4,-1).【解析】【分析】(1)根据图形的位置关系可知:将右图案向左平移6个单位长度得到左图案等.(2)根据题意可知,这两个图是关于y轴对称的,所以根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”可知左图案的左右眼睛的坐标和嘴⾓左右端点的坐标;(3)根据“两点关于原点对称,横坐标互为相反数,纵坐标互为相反数”求解即可.【详解】(1)左图案中的左眼睛坐标为(-4,3),右眼睛坐标为(-2,3),嘴⾓的左端点坐标为(-4,1),右端点坐标为(-2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变..(3) (-2,-1),(-4,-1).【点睛】主要考查了平⾯直⾓坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.22.为了了解江城中学学⽣的⾝⾼情况,随机对该校男⽣、⼥⽣的⾝⾼进⾏抽样调查.已知抽取的样本中,男⽣、⼥⽣的⼈数相同,根据所得数据绘制成如图所⽰的统计图表.组别⾝⾼(cm)A x<150B 150≤x<155C 155≤x<160D 160≤x<165E x≥165根据图表中提供的信息,回答下列问题:(1)在样本中,男⽣⾝⾼的中位数落在________组(填组别序号),⼥⽣⾝⾼在B组的⼈数有________⼈;(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有________⼈,⾝⾼⼈数最多的在________组(填组别序号);(3)已知该校共有男⽣500⼈、⼥⽣480⼈,请估计⾝⾼在155≤x<165之间学⽣有多少⼈【答案】(1)D;12;(2)16;C;(3)⾝⾼在155≤x<165之间的学⽣约有541⼈.【解析】【分析】从频数分布直⽅图可得到男⽣的总⼈数,则中位数是第20、21个⼈⾝⾼的平均数,⼥⽣与男⽣⼈数相同,由此可得到题(1)的答案;结合上步所得以及各组的⼈数可求出⾝⾼在150≤x<155的总⼈数和⾝⾼最多的组别,从⽽解决(2);对于(3),可根据两幅统计图得到男⼥⽣⾝⾼在155≤x<165之间的学⽣的百分率,从⽽使问题得以解决.【详解】解:(1)因为在样本中,共有男⽣2+4+8+12+14=40(⼈),所以中位数是第20、21个⼈⾝⾼的平均数,⽽2+4+12=18⼈,所以男⽣⾝⾼的中位数位于D组,⼥⽣⾝⾼在B组的⼈数有40×(1-30%-20%-15%-5%)=12(⼈).(2)在样本中,⾝⾼在150≤x<155之间的⼈数共有4+12=16(⼈),⾝⾼⼈数最多的在C组;(3)500×121440?+480×(30%+15%)=541(⼈),故估计⾝⾼在155≤x<165之间的学⽣约有541⼈.【点睛】本题主要考查从统计图表中获取信息,中等难度,解题的关键是要读懂统计图.23.已知y是x的⼀次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个⼀次函数的关系式;(2)在如图所⽰的平⾯直⾓坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.【答案】(1)y=5x-4;(2)详见解析;(3)-4≤y≤6.【解析】【分析】(1)设函数解析式y=kx+b,将题中的两个条件代⼊即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运⽤两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤6.【详解】解:(1)设函数的关系式为y=kx+b,。

2020年人教版八年级(下)期末数学试卷及答案

2020年人教版八年级(下)期末数学试卷及答案

八年级(下)期末数学试卷一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=53.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.936.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.367.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或二、填空题9.若实数a、b满足|a+1|+=0,则的值为.10.化简:=.11.数集5、7、6、6、6的众数为,平均数为.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为cm.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是.三、解答题(一)17.计算:×()18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题1.二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.下列计算正确的是()A.2= B.= C.4﹣3=1 D.3+2=5【考点】二次根式的加减法;二次根式的性质与化简.【分析】直接利用二次根式加减运算法则分别化简求出答案.【解答】解:A、2=2×=,故此选项正确;B、+无法计算,故此选项错误;C、4﹣3=,故此选项错误;D、3+2无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【专题】数形结合.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.6.菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36【考点】菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4cm×9cm=18cm2,故选:B.【点评】本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.7.一次函数y=2x+4的图象与y轴交点坐标()A.(2,0) B.(﹣2,0)C.(0,﹣4)D.(0,4)【考点】一次函数图象上点的坐标特征.【分析】求与y轴的交点坐标,令x=0可求得y的值,可得出函数与y轴的交点坐标【解答】解:令x=0,代入y=2x+4解得y=4,∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),故选D.【点评】本题主要考查函数与坐标轴的交点坐标,掌握求函数与坐标轴交点的求法是解题的关键,即与x轴的交点令y=0求x,与y轴的交点令x=0求y.8.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为()A.4 B.16 C. D.4或【考点】勾股定理.【专题】分类讨论.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题9.若实数a、b满足|a+1|+=0,则的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,所以=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简:=2.【考点】二次根式的性质与化简.【专题】计算题;二次根式.【分析】原式化为最简二次根式即可.【解答】解:==2,故答案为:2【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.11.数集5、7、6、6、6的众数为6,平均数为6.【考点】众数;算术平均数.【分析】根据众数和平均数的概念求解.【解答】解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.【点评】本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.12.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是乙(填“甲”或“乙“).【考点】方差.【分析】直接根据方差的意义求解.【解答】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为x≥0.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】观察函数图形得到当x≥0时,一次函数y=ax+b的函数值不小于2,即ax+b≥2.【解答】解:根据题意得当x≥0时,ax+b≥2,即不等式ax+b≥2的解集为x≥0.故答案为x≥0.【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm,则CD的长为5 cm.【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:有勾股定理得,AB===10cm,∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.15.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是2.【考点】轴对称-最短路线问题;菱形的性质.【分析】连接BD,根据菱形的对角线平分一组对角线可得∠BAD=∠ADC=60°,然后判断出△ABD 是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB 的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.【点评】本题考查了轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质,熟记性质与最短路线的确定方法找出点P的位置是解题的关键.16.正方形A1B1C1O,A2B2C2B1、A3B3C3B2,…,按如图的方式放置,点A1、A2、A3,…和点C1、C2、C3,…分别在直线y=x+1和x轴上,则点B2015的纵坐标是22014.【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】规律型.【分析】根据直线解析式先求出OA1=1,得出B1的纵坐标是1,再求出B2的纵坐标是2,B3的纵坐标是22,得出规律,即可得出结果.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,即B1的纵坐标是1,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=2=21,即B2的纵坐标是2,同理得:A3C2=4=22,即B3的纵坐标是22,…,∴点B2015的纵坐标是22014;故答案为:22014.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出B1、B2、B3的纵坐标得出规律是解决问题的关键.三、解答题(一)17.计算:×()【考点】二次根式的混合运算.【分析】首先利用单项式与多项式的乘法,然后进行化简即可.【解答】解:原式=﹣=6﹣2=4.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一定要把二次根式化为最简二次根式的形式.18.如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质可知:AE∥CF,又因为AE=CF,所以四边形AECF是平行四边形,所以AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,题目比较简单.四、解答题(二)19.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】计算题.【分析】(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.【点评】此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.20.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.【考点】矩形的判定与性质;三角形中位线定理.【专题】证明题.【分析】由DE、DF是△ABC的中位线,可证得四边形DECF是平行四边形,又由在Rt△ABC中,∠ACB=90°,可证得四边形DECF是矩形,根据矩形的对角线相等,即可得EF=CD.【解答】证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.【点评】此题考查了矩形的判定与性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.21.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD 于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA (SSS);(2)易证AF=CF,设DF=x,则有AF=4﹣x,然后在Rt△ADF中运用勾股定理就可求出DF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=DC.由折叠可得:EC=BC,AE=AB,∴AD=EC,AE=DC,在△ADE与△CED中,,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.【点评】本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定、轴对称的性质等知识,解决本题的关键是明确折叠的性质,得到相等的线段,角.五、解答题(三)22.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.【考点】菱形的判定;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定,平行四边形的性质,平行线的性质,等边对等角的性质,等角对等边的性质,熟练掌握平行四边形与菱形的关系是解题的关键.24.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.【考点】一次函数的应用.【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50;(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点评】本题考查了一次函数的应用,分类讨论是解题关键.六、附加题25.(1)如图,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直线边经过点B,另一条直角边交边DC于点E,求证:PB=PE.(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC的延长线于点E,PB=PE还成立吗?若成立,请证明,若不成立,请说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据圆内接四边形的性质,可得∠PBC+∠PEC=180°,根据补角的性质,可得∠PED=∠PDE,根据等腰三角形的判定,可得答案;(2)根据正方形的性质,可得BC=CD,∠ACB=∠ACD=45°,根据全等三角形的判定与性质,可得∠PBC=∠PDC,PB=PD,根据三角形的内角和,可得∠PBC=∠PEC,根据等腰三角形的判定,可得答案.【解答】(1)证明:如图1,连接PD,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°.在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.∵∠BPE,∠BCD,∠PBC,∠PEC是圆内接四边形的内角,∠BPE+∠BCD=180°,∴∠PBC+∠PEC=180°,∴∠PED=∠PDE,∴PD=PE,∴PB=PE;(2)仍然成立,理由如下:连接PD,如图2:,∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD=45°,在△PBC和△PDC中,,∴△PBC≌△PDC (SAS),∴∠PBC=∠PDC,PB=PD.若BC与PE相交于点O,在△PBO和△CEO中,∠POB=∠EOC,∠OPB=∠OCE,∠PBC=180°﹣∠OPB﹣∠POB,∠PEC=180°﹣∠EOC﹣∠OCE,∴∠PBC=∠PEC,∴∠PEC=∠PDC,∴PD=PE,∴PB=PE.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,圆内接四边形的性质,补角的性质,等腰三角形的判定.。

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整)

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整)

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.21a+8a=__________.3.若214x x x++=,则2211x x ++= ________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.学校需要添置教师办公桌椅A 、B 两型共200套,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)求A ,B 两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、D6、D7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、84、255.56、42.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、-33a +,;12-.3、(1)102b -≤≤;(2)2 4、()1略;()2BEF 67.5∠=.5、(1)略;(2略;(3)BD=1.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年春盘龙一中八年级下学期期末考试数学试卷
答卷时间:120分钟 满分:120分 2011.6.25
一、选择题(每小题3分,共36分) 1.在式子2
2,
2,,
3,1y x x ab
b
a c
b
a --π
中,分式的个数为( )
A .2个
B .3个
C .4个
D .5个
2.下列运算正确的是( )
A .
y
x y y
x y --
=-- B .
3
232=
++y
x y x
C .
y
x y
x y x +=++22 D .
y
x y x x y -=-+12
2
3.若A (a ,b )、B (a -1,c )是函数x
y 1-=的图象上的两点,且a <0,则b 与c 的大
小关系为( )
A .b <c
B .b >c
C .b=c
D .无法判断 4.如图,已知点A 是函数y=x 与y=
x
4的图象在第一象限内的交点,
点B 在x 轴负半轴上,且OA=OB ,则△AOB 的面积为( )
A .2
B .
2
C .2
2
D .4
5.如图,在三角形纸片ABC 中,AC=6,∠A=30º,∠C=90º,将∠A 沿DE 折叠,使点A 与点B 重合,则折痕DE 的长为( )
A .1
B .
2
C .3
D . 2
6.△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ; ②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13
:12:5::=c b a ,其中能判断△ABC 是
直角三角形的个数有( )
A .1个
B .2个
C .3个
D .4个
7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条
A
B O
y
x
A
B
C
D
E
对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是( )
A .①
B .②
C .③
D .④ 8.如图,已知
E 是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )
A .20º
B .25º
C .30º
D .35º 9.某班抽取6名同学进行体育达标测试,成绩如下:80,90, 75,80,75,80. 下列关于对这组数据的描述错误的是( )
A .众数是80
B .平均数是80
C .中位数是75
D .极差是15
10.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是( )
A .33吨
B .32吨
C .31吨
D .30吨 11.如图,直线y=kx (k >0)与双曲线y=
x
1交于A 、B 两点,BC ⊥x
轴于C ,连接AC 交y 轴于D ,下列结论:①A 、B 关于原点对称;②△ABC 的面积为定值;③D 是AC 的中点;④S △AOD =2
1. 其中正确结论
的个数为( )
A .1个
B .2个
C .3个
D .4个
12.如图,在梯形ABCD 中,∠ABC=90º,AE ∥CD 交BC 于E ,O 是AC 的中点,AB=3,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB ; ③S △ADC =2S △ABE ;④BO ⊥CD ,其中正确的是( )
A .①②③
B .②③④
C .①③④
D .①②③④ 二、填空题(每小题4分,共16分)
13.某班学生理化生实验操作测试的成绩如下表:
A
B
E
D
C
A B C D O
x
y
A
B
C E
D
O
则这些学生成绩的众数为: . 14.观察式子:
a
b 3,-
2
5a b ,
3
7a b ,-
4
9a b ,……,根据你发现的规律知,第8个式子
为 .
15.已知梯形的中位线长10cm ,它被一条对角线分成两段,这两段的差为4cm ,则梯形的两底长分别为 .
16.如图,直线y=-x+b 与双曲线y=-
x
1(x <0)交于点A ,与x
轴交于点B ,则OA 2
-OB 2
= .
三、解答题(共6题,共46分) 17.( 6分)解方程:
11)1(22
2
=-+-
+x
x x x
18. (7分) 先化简,再求值:
2
1324
46222--
+-∙
+-+a a
a a a a a ,其中3
1=
a

19.(7分)如图,已知一次函数y=k 1x+b 的图象与反比例函数y=x
k 2的图象交于A (1,-3),
B (3,m )两点,连接OA 、OB .
(1)求两个函数的解析式; (2)求△ABC 的面积.
A
B O x
y
A
B
O
x
y
20.(8分)小军八年级上学期的数学成绩如下表所示:
(1)计算小军上学期平时的平均成绩;
(2)如果学期总评成绩按扇形图所示的权重计算,问小军上学期的总评成绩是多少分?
21.(8分)如图,以△ABC 的三边为边,在BC 的同侧作三个等边△ABD 、△BEC 、△ACF .
(1)判断四边形ADEF 的形状,并证明你的结论;
(2)当△ABC 满足什么条件时,四边形ADEF 是菱形?是矩形?
22.(10分)为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y (毫克)与时间x (分钟)成正比,药物喷洒完后,y 与x 成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.
(1)求喷洒药物时和喷洒完后,y 关于x 的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
A F
E
D
C
B
10
8
O
x y (分钟)
(毫克)
B D
A
F
E G
C
四、探究题(本题10分)
23.如图,在等腰Rt △ABC 与等腰Rt △DBE 中, ∠BDE=∠ACB=90°,且BE 在AB 边上,取AE 的中点F,CD 的中点G,连结GF.
(1)FG 与DC 的位置关系是 ,FG 与DC 的数量关系是 ; (2)若将△BDE 绕B 点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.
五、综合题(本题12分)
24.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x
2于点D ,过D 作两坐
标轴的垂线DC 、DE ,连接OD .
(1)求证:AD 平分∠CDE ;
(2)对任意的实数b (b ≠0),求证AD ·BD 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
B
A
C。

相关文档
最新文档