摩擦系数-时间曲线-纯润滑油
摩擦.磨损.润滑及润滑剂概论
第一章摩擦.磨损.润滑及润滑剂概论摩擦、磨损、润滑的种类及其基本性质│润滑剂及其基本性能指标│润滑剂的种类一、摩擦.磨损.润滑的种类及其基本性质摩擦、磨损、润滑是一种古老的技术,但一直未成为一种独立的学科。
1964年英国以乔斯特(Jost)为首的一个小组,受英国科研与教育部的委托,调查了润滑方面的科研与教育状况及工业在这方面的需求。
于1966年提出了一项调查报告。
这项报告提到,通过充分运用摩擦学的原理与知识,就可以使英国工业每年节约510,000,000英镑,相当于英国国民生产总值的1%。
这项报告引起了英国政府和工业部门的重视,同年英国开始将摩擦、磨损、润滑及有关的科学技术归并为一门新学科--摩擦学(Tribology)。
摩擦学是研究相互作用、相互运动表面的科学技术,也可以说是有关摩擦、磨损及润滑的科学与技术统称为摩擦学(Tribology)。
科学地控制摩擦,中国每年可节省400亿人民币。
故改善润滑、控制摩擦,就能为我们带来巨大的经济利益。
中国工程院咨询研究项目《摩擦学科学及工程应用现状与发展战略研究》调查显示,2006年全国消耗在摩擦、磨损和润滑方面的资金估计为9500亿元,其中如果正确运用摩擦学知识可以节省人民币估计可达到3270亿元,占国内生产总值GDP的1.55%。
美国机械工程学会在《依靠摩擦润滑节能策略》一书中提出,美国每年从润滑方面获得的经济效益达6000亿美元。
1986年,中国的《全国摩擦学工业应用调查报告》指出,根据对我国冶金、石油、煤炭、铁道运输、机械五大行业的调查,经过初步统计和测算,应用已有的摩擦学知识,每年可以节约37.8亿元左右,约占生产总值(5个行业1984年的可计算部分)的2.5%。
润滑油的支出仅是设备维修费用的2%~3%。
实践证明,设备出厂后的运转寿命绝大程度取决于润滑条件。
80%的零件损坏是由于异常磨损引起的,60%的设备故障由于不良润滑引起。
中国每1000美元产值消耗一次性能源(折合石油)为日本的5.6倍,电力为日本的2.77倍,润滑油耗量为日本的3.79倍。
第一章 摩擦学基础知识(润滑)
三、润滑脂及其主要性能 • 组成:基础油+稠化剂+添加剂+澎润土 • 润滑脂的性能指标主要有针入度、滴点、析 油量、机械杂质、灰分、水分等
1)针入度 软硬程度 H(mm)/0.1
h
阻力大小、流动性强弱
标准锥体,150g,25 ℃ ,5s
2)滴点----固体 流体的温度转折点,表示耐热性 3)防水性能; 4)静音性能; 5)种类 A)钙基脂:抗水,适于轻中重载荷; B)钠基脂:高温,但不抗水; C)锂基脂:多用途,最好; D)铝基脂:高度耐水性,航运机械 E)其它特种润滑脂(特种合成油、添加剂、 稠化剂等)
五、添加剂 • 作用越来越大,在润滑脂、合成油中不加添加剂,
六、对润滑剂的要求
较低的摩擦系数 良好的吸附和渗入能力 有一定的黏度 有较高的纯度和抗氧化性 没有腐蚀性 有良好的导热性和较大的热容量
七、润滑装置 单体供油装置 油壶, 油杯,
油枪
油杯
压配式油杯
滴油式油杯
油芯式油杯
油环
油链
• 集中供油装置 a) 简单的少数点位集中供油 b) 设备中心、车间及工厂级集中供油 泵站+(稳压+冷却)+过滤+分配器+工位润滑
η t = η0 ( t0 / t )
m
2、润滑油的粘压特性
• 粘度和压力的关系近 似表示为:
η = η0 e
ap
粘温关系曲线
3、油性—反映在摩擦表面的吸附性能 油性 (边界润滑和粗糙表面尤其重要) 4、闪点—瞬时燃烧和碳化的温度; 闪点 燃点—长时间连续燃烧的温度(高温性能); ; 燃点 5、凝点—冷却,由液体转变为不能流动的临界 凝点 温度; (低温启动性能) 6、极压性(EP), 在重压下表面膜破裂的最大 极压性(EP) 接触载荷,用PB表示,(极限载荷) 7、酸值—限制润滑剂变质后对表面的腐蚀 酸值
边界摩擦和润滑化学作用
09:37:43
(3)氯系极压剂
• 主要品种:含氯29~72%的氯化石蜡等。 • 性能特点:反应活性较高,摩擦系数较小,在极 压条件下可起润滑作用。但遇水即分解HCl,引 起金属腐蚀。 • 作用机理: • ① 有机氯化合物在摩擦下,在金属表面与铁反应 形成氯化亚铁保护膜(层状结构) →而达到减摩 抗磨的作用。 • 而且, 前述各种抗磨极压剂的载荷能力排序如下: 氯系<磷系<硫系
09:37:43
固体润滑添加剂作用机理:
• 将纳米技术应用于润滑领域,使 固体润滑添加剂的颗粒达到纳米 级,是解决现有添加剂存在问题 的一个有效的方法。 • (1)纳米材料粉末近似为球形,它 们起类似“微型球轴承” 的作用, 从而提高了摩擦副表面的润滑性 能(如图3a) 。 • (2)在重载和高温条件下,两摩擦 表面间的颗粒被压平,形成一滑 动系,降低了摩擦和磨损。 图3 纳米材料润滑作用模型
09:37:43
(6)纳米固体型抗磨极压剂-研究热点和发展方向
• 主要品种:一类是具有层状结构的物质,
如石墨、二 硫化钼和氮化硼等 另一类是以胶体硼酸盐、聚四氟乙烯和稀 土化合物。第三类是软金属如铅、铜等。
• 性能特点:固体润滑添加剂有着优良的抗
磨减摩性能,同时较好地解决了有机化合 物添加剂的环保和腐蚀问题,但在使用过 程中的一个最大困难就是它们在润滑油中 的分散稳定性。
09:37:43
(2)磷系抗磨极压剂
• 主要品种:磷酸酯(二苯基磷酸酯)、亚磷酸酯、 次膦酸酯、氨基磷酸盐、磷酸酯胺盐等。 • 性能特点:吸附能力强,反应活性高,抗擦伤性 能和抗烧结作用大。但也可能引起腐蚀反应。 • 作用机理:① 有机磷化合物先吸附在金属表面上 →② 在摩擦下,分解和水解 →③ 摩擦反应形成 无机亚磷酸铁保护膜 →而达到抗磨损的作用。 • 而且, 各种磷系抗磨极压剂的性能排序如下: • 次膦酸酯<磷酸酯<氨基磷酸盐<磷酸酯胺盐
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下。
注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
摩擦磨损及润滑概述.ppt
L-AN68 61.2~74.8 -10 190
L-AN100 90~110
0
210
汽轮机油 L-TSA32 28.8~35.2 -7
180
中G国地B质大1学1专1用20-89 L-TSA46 41.4~50.6
用于重型机床导轨、 矿山机械的润滑
用于汽轮机、发电机等 高速高负荷轴承和各种 小型液体润滑轴作承者: 潘存云教授
▲ “机械-分子说” 两种作用均有
二、摩擦的分类
内 摩 擦——在物质的内部发生的阻碍分子之间相对 运动的现象。
外 摩 擦——在相对运动的物体表面间发生的相互阻 碍作用现象。
静 摩 擦——仅有相对运动趋势时的摩擦。
动 摩 擦——在相对运动进行中的摩擦。
滑动摩擦——物体表面间的运动形式是相对滑动。
滚动摩擦——物体表面间的运动形式是相对滚动。
v
摩擦和流体摩擦的混合状态。混合摩擦
能有效降低摩擦阻力,其摩擦系数比边
潘存云教授研制
界摩擦时要小得多。
边界摩擦和混合摩擦在 工程实际中很难区分,常统 称为不完全液体摩擦。
边界摩擦 f
混合摩擦
在一般机器中,处于后三种情况的混合状态。
称无量纲参数ηn/p为轴承特 性数。 η-动力粘度,p-压强 ,n-每秒转数
节省能源; 观进入微观,由静态进入动态,由定性进入定量,成 为系统综合研究的领域。
减少磨损
降低设备维修次数和费用,节省制造零
件及其所需材料的费用。
中国地质大学专用
ቤተ መጻሕፍቲ ባይዱ
作者: 潘存云教授
§4-1 摩 擦
一、摩擦的机理
▲ “机械说” ——摩擦原因是表面微凸体的相互阻碍作用
▲ “分子说” ——摩擦原因是表面材料分子间的吸力作用
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值.它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数.现综合具体各种材料摩擦系数表格如下。
注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广.3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下。
注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
各种材料摩擦系数表
完美 WORD 格式 .整理各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下。
摩擦系数材料 A 材料 B 干摩擦条件润滑摩擦条件静摩擦滑动摩擦静摩擦滑动摩擦铝铝 1.05-1.35 1.4 0.3铝低碳钢0.61 0.47制动材料铸铁0.4制动材料铸铁(湿)0.2黄铜铸铁0.3砌块木头0.6青铜铸铁0.22青铜钢0.16镉镉0.5 0.05镉低碳钢0.46铸铁铸铁 1.1 0.15 0.07 铸铁橡胶0.49 0.075铬铬0.41 0.34铜铸铁 1.05 0.29铜铜 1.0 0.08铜低碳钢0.53 0.36 0.18 铅铜合金钢0.22 -金刚石金刚石0.10.05 –0.1金刚石金属0.1 -0.15 0.1玻璃玻璃0.9 –0.40.1 –0.09-0.121.0 0.6玻璃金属0.5 –0.2 –0.7 0.3玻璃镍0.78 0.56石墨石墨0.1 0.1石墨钢0.1 0.1石墨(真空)石墨(真空)0.5 –0.8. 专业资料分享.完美 WORD 格式 .整理高硬碳高硬碳0.160.12 –0.14高硬碳钢0.140.11 –0.14铁铁 1.00.15 –0.2铅铸铁0.43皮革木材0.3 –0.4皮革金属(洁净)0.6 0.2皮革金属(潮湿)0.4皮革橡胶(平行纹理)0.61 0.52镁镁0.6 0.08镍镍0.7-1.1 0.53 0.28 0.12 镍低碳钢0.64; 0.178 尼龙尼龙0.15 –0.25橡胶橡胶(平行纹理)0.62 0.48橡胶橡胶(交叉纹理)0.54 0.32 0.072 铂铂 1.2 0.25有机玻璃有机玻璃0.8 0.8有机玻璃钢0.4 –0.4 –0.5 0.5聚苯乙烯聚苯乙烯0.5 0.5聚苯乙烯钢0.3-0.35 0.3-0.35聚乙烯钢0.2 0,2合成橡胶沥青(干)0.5-0.8合成橡胶沥青(湿)0.25-0.75合成橡胶混凝土 ( 干) 0.6-0.85合成橡胶混凝土 ( 湿) 0.45-0.75蓝宝石蓝宝石0.2 0.2 银银 1.4 0.55烧结青铜钢- 0.13固体粒子合成橡胶1.0 –-- 4.0钢铝族元素0.45钢黄铜0.35 0.19 . 专业资料分享.完美 WORD 格式 .整理低碳钢黄铜0.51 0.44低碳钢铸铁0.23 0.183 0.133 钢铸铁0.4 0.21钢铅铜合金0.22 0.16 0.145 硬质合金石墨0.21 0.09 钢石墨0.1 0.1低碳钢铅0.95 0.95 0.5 0.3低碳钢磷族元素化合物0.34 0.173 钢磷族元素化合物0.35硬质合金聚乙烯0.2 0.2硬质合金聚苯乙烯0.3-0.35 0.3-0.35低碳钢低碳钢0.74 0.57 0.09-0.19硬质合金硬质合金0.78 0.420.050.029-0.12 -0.11钢镀锌钢0.5 0.45 - - 聚四氟乙烯钢0.04 0.04 0.04 聚四氟乙烯聚四氟乙烯0.04 0.04 0.04 锡铸铁0.32碳化钨碳化钨0.2-0,25 0.12碳化钨钢0.4 –0.08 –0.6 0.2碳化钨铜0.35碳化钨铁0.8木头木头(洁净)0.25 –0.5木头木头(湿)0.2木头金属(洁净)0.2-0.6木头金属(湿)0.2木头砌块0.6木头混凝土0.62锌锌0.6 0.04锌铸铁0.85 0.21摩擦系数材料 A 材料 B 干摩擦条件润滑摩擦条件静摩擦滑动摩擦静摩擦滑动摩擦注 :表中摩擦系数是试验值,只能作近似参考. 专业资料分享.固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
润滑油的一些相关参数特性说明
润滑油的基础知识密度与相对密度相对密度,是指物质在给定定温度正气密度与标准温度下标准物质的密度之比值。
对石油液体其标准物质是水。
粘度液体流动时内磨擦力的量度叫粘度,粘度值随温度的升高而降低。
大多数润滑油是根据粘度来分牌号的。
粘度一般有5种表示方式,即动力粘度、运动粘度、恩氏粘度、雷氏粘度和赛氏粘度。
动力粘度:表示液体在一定剪切应力下流动时内磨擦力的量度,其值为加于流动液体的剪切应力和剪切速率之比在我国法定计量单位中以帕?秒(Pa•s)为单位。
习惯用厘泊(Cp)为单位,1cp=10-3Pa•s。
运动粘度:表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下液体的动力粘度与其密度之比,在我国法定计量单位中以m2/s为单位。
习惯用厘斯(cst),1cst=1mm2/s。
恩氏粘度:在规定条件下,一定体积的试样从恩格勒粘度计的小孔流出200mL试增所需要的时间(s)与该粘度计测定水的值之比,以0Et表示。
雷氏粘度:在规定条件下,一定体积的试样从雷德乌德粘度计流出50mL试样所需要量的时间,以s为单位。
赛氏粘度:在规定条件下,一定体积的试样从赛波特粘度计流出所需要的时间,以s为单位。
赛氏粘度分为赛氏通用粘度(以SUV表示)和赛氏重油粘度(以SFV表示)。
三、粘度指数粘度指数是表示油品粘度随温度变化这个特性的一个约定量值。
粘度指数高表示油品的粘度随温度变化较小,反之亦然。
四、闪点在规定条件下,加热油品所逸出的蒸气和空气组成的混合物与火焰接触发生瞬间火时的最低温度称为闪点,以℃表示。
闪点的测定方法分为开口杯法和闭口杯法,开口杯法用以测定重质润滑油的闪点;闭口杯法用以测定燃料和轻质润滑油的闪点。
五、凝点试油在规定条件下冷却至停止移动时的最高温度称为凝点,以℃表示。
凝点是评价油品低温性能的项目。
油品的凝点与蜡含量有直接关系,油品中的蜡含量越多,凝点越高。
因此凝点在石油产品加工工艺中可以指导脱蜡工艺操作。
六、倾点倾点是指在规定条件下,被冷却了的试油能流动时的最低温度,以℃表示。
(完整版)各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下。
完美WORD 格式.整理注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1. 1 基本性能2. 2 使用方法3. 3 常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数.现综合具体各种材料摩擦系数表格如下。
注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损.中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广.3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切.使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等.2)作成各种覆盖膜来使用通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一.成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两外表间的摩擦力和作用在其一外表上的垂直力之比值。
它是和外表的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下。
注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载外表间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦外表发生物理、化学反响生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1根本性能2.2使用方法3.3常用材料根本性能1)与摩擦外表能牢固地附着,有保护外表功能固体润滑剂应具有良好的成膜能力,能与摩擦外表形成牢固的化学吸附膜或物理吸附膜,在外表附着,防止相对运动外表之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反响。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,假设采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值.它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下.注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。
在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移.2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广.3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应.要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用.此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。
4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。
使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
各种材料摩擦系数表
各种资料摩擦系数表之巴公井开创作摩擦系数是指两概况间的摩擦力和作用在其一概况上的垂直力之比值.它是和概况的粗拙度有关,而和接触面积的年夜小无关.依运动的性质,它可分为动摩擦系数和静摩擦系数.现综合具体各种资料摩擦系数表格如下.注:表中摩擦系数是试验值,只能作近似参考固体润滑资料固体润滑资料是利用固体粉末、薄膜或某些整体资料来减少两承载概况间的摩擦磨损作用的资料.在固体润滑过程中,固体润滑资料和周围介质要与摩擦概况发生物理、化学反应生成固体润滑膜,降低摩擦磨损.中文名固体润滑资料采纳资料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1. 1 基赋性能2. 2 使用方法3. 3 经常使用资料基赋性能1)与摩擦概况能牢固地附着,有呵护概况功能固体润滑剂应具有良好的成膜能力,能与摩擦概况形成牢固的化学吸附膜或物理吸附膜,在概况附着,防止相对运动概况之间发生严重的熔焊或金属的相互转移.2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才华使摩擦副的摩擦系数小,功率损耗低,温度上升小.而且其抗剪强度应在宽温度范围内不发生变动,使其应用领域较广.3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不发生腐蚀及其他有害的作用物理热稳定是指在没有活性物质介入下,温度改变不会引起相变或晶格的各种变动,因此不致于引起抗剪强度的变动,招致固体的摩擦性能改变.化学热稳定是指在各种活性介质中温度的变动不会引起强烈的化学反应.要求固体润滑剂物理和化学热稳定,是考虑到高温、超高温以及在化学介质中使用时性能不会发生太年夜变动,而时效稳定是指要求固体润滑剂长期放置不蜕变,以便长期使用.另外还要求它对轴承和有关部件无腐蚀性、对人畜无迫害,不污染环境等.4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切.使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采纳环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承坚持架等.2)作成各种覆盖膜来使用通过物理方法将固体润滑剂施加到摩擦界面或概况,使之成为具有一定自润滑性能的干膜,这是较经常使用的方法之一.成膜的方法很多,各种固体润滑剂可通过溅射、电泳堆积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜.3)制成复合或组合资料使用所谓复合(组合)资料,是指由两种或两种以上的资料组合或复合起来使用的资料系统.这些资料的物理、化学性质以及形状都是分歧的,而且是互不成溶的.组合或复合的最终目的是要获得种性能更优越的新资料,一般都称为复合资料.4)作为固体润滑粉末使用将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边办润滑状态等,如MoS2油剂、MoS2油膏、MoS2润滑脂及MoS2水剂等.经常使用资料1)二硫化钼(1)低摩擦特性.(2)高承载能力.(3)良好的热稳定性(4)强的化学稳定性(5)抗辐照性(6)耐高真空性能2)石墨石墨在摩擦状态下,能沿着晶体层间滑移,并沿着摩擦方向定向.石墨与钢、铬和橡胶等的概况有良好的粘附能力,因此,在一般条件下,石墨是一种优良的润滑剂.可是,当吸附膜解吸后,石墨的摩擦磨损性能会变坏.所以,一般倾向于在氧化的钢或铜的概况上以石墨作润滑剂.3)氟化石墨与石墨或二硫化钼相比,它的耐磨性好,这是由于氟碳键的结合能较强所致.层与层之间的距离比石墨年夜很多,因此更容易在层间发生剪切.由于氟的引入,使它在高温、高速、高负荷条件下的性能优于石墨或二硫化钼,改善了石墨在没有水气条件下的润滑性能.4)氮化硼氮化硼是一种新型陶瓷资料,高温、高压下可烧结而成.氮化硼的密度为2.27g/cm3,熔点为3100~3300℃;莫氏硬度为2;在空气中摩擦系数为0.2,而在真空中为0.3;在空气中热安宁性为700°C,而在真空中为1587°C.它耐腐蚀,电绝缘性很好,比电阻年夜于10-6Ω.cm;压缩强度为170MPa;在c轴方向上的热膨胀系数为41×10-6/℃而在d轴方向上为-2.3×10-6;在氧化气氛下最高使用温度为900℃,而在非活性还原气氛下可达2800℃,但在常温下润滑性能较差,故常与氟化石墨、石墨与二硫化钼混合用作高温润滑剂,将氮化硼粉末分散在油中或水中可以作为拉丝或压制成形的润滑剂,也可用作高温炉滑动零件的润滑剂,氮化硼的烧结体可用作具有自润滑性能的轴承、滑动零件的资料.5)氮化硅氮化硅属于六方晶系,是一种陶瓷资料,不具备石墨那样的层状构造,也没有氧化铅那样的塑性流动性,由于粒子硬度高,所以在粉末状态不具有润滑性.但其成形体概况经过适当精加工,由于与其接触的微凸体点数减少可出现出低摩擦系数.据研究结果称,概况精加工至0.05~0.025μm时,摩擦系数可达0.01.氮化硅的而磨性因环境气氛、负荷、速度等条件及概况粗拙度分歧而变动.在干摩擦条件下耐磨性良好.6)聚四氟乙烯聚四氟乙烯有很好的化学安宁性和热稳定性.在高温下与浓酸、浓碱、强氧化剂均不发生反应,即使在王水中煮沸,其重量及性能都没有变动.而且它在很宽的温度范围和几乎所有的环境气氛下,都能坚持良好化学安宁性、热稳定性以及润滑性.聚四氟乙烯具有各向异性的特性,在滑动摩擦条件下,也能发生良好的定向.它的摩擦系数比石墨、MoS2都低.一般聚四氟乙烯对钢的摩擦系数常引用为0.04,在高负荷条件下,摩擦系数会降低到0.016.7)尼龙尼龙的摩擦系数随负荷的增加而降低,在高负荷条件下,摩擦系数可以降至0.1~0.15左右;在摩擦概况存在有油或水时,摩擦系数有更年夜的下降趋势.尼龙的摩擦系数还随着速度的增加或概况温度的升高而下降.尼龙的耐磨损性好,特别是在有年夜量灰尘、泥砂的环境中,它所暗示出来的耐磨损性是其他塑料无法与之相比的.在摩擦概况上有泥砂、灰尘或其他硬质类资料存在时,尼龙的耐磨性比轴承钢、铸铁甚至比经淬火概况镀铭的碳钢还要好.在应用尼龙资料时,要特别注意选择与其相互对摩的资料.在摩擦界面有硬质微粒存在时,尼龙的耐磨损性是一般钢材不能与之相比的.如用尼龙轴瓦取代表铜轴瓦时,被磨损的是轴,轴是不容易更换零件,它被磨损后会带来严重后果.尼龙的缺点是:吸潮性强、吸水性年夜、尺寸稳定性差,这在铸型尼龙暗示得更为突出.尼龙的热传导系数小,热膨胀系数年夜,加之摩擦系数也不算低,因此最好用于有油至少是少油润滑和有特殊冷却装置的条件下.8)聚甲醛聚甲醛是一种不透明乳白色的结晶性线型聚合物,具有良好的综合性和差色性的高熔点、高结晶性的热塑性工程塑料,是塑料中力学性能与金属较为接近的品种之一,它的尺寸稳定性好,耐水、耐冲击、耐油、耐化学药品及耐磨性等都非常优良.它的摩擦系数和磨耗量较低,适用于长期经受摩擦滑动的部件,如机床导轨.在运动部件中使用时不需使用润滑剂,具有优良的自润滑作用.9)聚酰亚胺均苯型聚酰亚胺的长期使用温度为260°C,具有优良的耐摩擦、耐磨损性能和尺寸稳定性.它具有优良的耐油和耐有机溶剂性,能耐一般的酸,但在浓硫酸和发烟硝酸等强氧化剂作用下会发生氧化降解,在高温下仍具有优良的介电性能.但它不耐碱,本钱也较高.它在惰性介质中,在高负荷和高速下的磨损量极小.10)聚对羟基苯甲酸酯聚对羟基苯甲酸酯是全芳香族的聚酯树脂.分子结构是直链状的线性分子,但结晶度很高(年夜于90%),使它难以熔融流动,因而具有热固性树脂的成型特性.它与金属的性能接近,是目前塑料中热导率和空气中的热稳定性最高的品种,在高温下还出现与金属相似的非粘性流动.它是一种摩擦系数极低的自润滑资料,摩擦系数可到达0.005,甚至比用润滑油、脂润滑时的还低.它可作为耐腐蚀泵、超音速飞机外壳钛合金的涂层资料.但其热塑成型较为因难,需用高速高能锻成型,或是采纳等离子喷涂及一般金属加工方法加工.11)软金属金、银、锡、铅、镁、铟等软金属可作为固体润滑剂使用.软金属可以独自或是和其他润滑剂一起使用.其应用方法有二种,一是以薄膜的形式应用,既将铅、锌、锡等低熔点软金属、合金作为干膜那样使用,铜和青铜等虽然其实不是低熔点,有时也可这样使用.另一种使用方法是将软金属添加到合金或粉末合金中作为润滑成份以利用其润滑效果,如一般的白色合金(轴承合金)、油膜轴承合金(Kelmet)等就含有铅、锑、锌、锡、铟等软金属,又如烧结合金摩擦资料与电刷资料集流环和触点等也可使用含软金属如银、时间:二O二一年七月二十九日时间:二O二一年七月二十九日。
各种材料摩擦系数表
各种材料摩擦系数表摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。
它是和表面的粗糙度有关,而和接触面积的大小无关。
依运动的性质,它可分为动摩擦系数和静摩擦系数。
现综合具体各种材料摩擦系数表格如下.注:表中摩擦系数是试验值,只能作近似参考固体润滑材料固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料.在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。
中文名固体润滑材料采用材料固体粉末、薄膜等作用减少摩擦磨损使用物件齿轮、轴承等目录1.1基本性能2.2使用方法3.3常用材料基本性能1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。
2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。
而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。
3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。
化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。
要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。
此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等.4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切.使用方法1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。
摩擦与润滑基础知识
第八章摩擦和润滑第一节摩擦与润滑机理当两个紧密接触的物体沿着它们的接触面作相对运动时,会产生一个阻碍这种运动的阻力,这种现象叫摩擦,这个阻力就叫做摩擦力。
摩擦力与垂直载荷的比值叫做摩擦系数。
摩擦定律可描述如下:(1)摩擦力与法向载荷成正比:F∝P(2)摩擦力与表面接触无关,即与接触面积大小无关。
(3)摩擦力与表面滑动速度的大小无关。
(4)静摩擦力(有运动趋向时)F S大于动摩擦力F K,即Fs>F K。
摩擦定律公式:F=f·P或 f=F/P式中F——摩擦力f——摩擦系数;P——法向载荷,即接触表面所受的载荷;载荷机器中凡是互相接触和相互之间有相对运动的两个构件组成的联接称为“运动副”(也可称为“摩擦副”),如滚动轴承里的滚珠与套环;滑动轴承的轴瓦与轴径等等。
任何机器的运转都是靠各种运动副的相对运动来实现,而相对运动时必然伴随着摩擦的发生。
摩擦首先是造成不必要的能量损失,其次是使摩擦副相互作用的表面发热、磨损乃至失效。
磨损是运动副表面材料不断损失的现象,它引起了运动副的尺寸和形状的变化,从而导致损坏。
例如油在轴承内运转,轴承孔表面和轴径逐渐磨损,间隙逐渐扩大、发热,使得机器精度和效率下降,伴随着产生冲击载荷,摩擦损失加大,磨损速度加剧,最后使机器失效。
润滑是在相对运动部件相互作用表面上涂有润滑物质,把两个相对运动表面隔开,使运动副表面不直接发生磨擦,而只是润滑物质内部分子与分子之间的摩擦。
所以,摩擦是运动副作相对运动时的物理现象,磨损是伴随摩擦而发生的事实,润滑则是减少摩擦、降低磨损的重要措施。
第二节摩擦分类摩擦有许多分类法。
1. 按摩擦副运动状态分静磨擦:一个物体沿着另一个物体表面有相对运动趋势时产生的摩擦,叫做静摩擦。
这种摩接力叫做静摩擦力。
静摩擦力随作用于物体上的外力变化而变化。
当外力克服了最大静摩擦力时,物体才开始宏观运动。
动磨擦:一个物体沿着另一个物体表面相对运动时产生的摩擦叫做动摩擦。
地铁车辆合成闸瓦的研制及制动性能1∶1台架试验
地铁车辆合成闸瓦的研制及制动性能1∶1台架试验文国富;尹彩流;王秀飞;蓝奇【摘要】根据地铁车辆合成闸瓦存在的问题,设计了新型摩擦材料配方,采用干法生产工艺制造了新型的地铁车辆合成闸瓦.对研制的合成闸瓦进行制动性能1∶1台架试验,包括摩擦磨损性能试验、坡道试验和洒水试验.研究结果表明:所研制的合成闸瓦在80 km·h-1速度下的最大制动距离、最长制动时间和踏面最高温度分别为161.9 m、15.4 s和118℃,平均摩擦系数为0.294~0.303,试验结束后测得停车制动磨耗量0.73 cm3 /MJ.合成闸瓦制动过程中无噪音、火花和难闻气味.研制的地铁车辆合成闸瓦具有冲击强度高、压缩强度和压缩模量适中、吸水率和吸油率低、磨损量低和摩擦性能稳定等优点,完全能够满足地铁车辆制动的使用要求.【期刊名称】《广西民族大学学报(自然科学版)》【年(卷),期】2015(021)003【总页数】4页(P82-85)【关键词】合成闸瓦;制动性能;摩擦系数【作者】文国富;尹彩流;王秀飞;蓝奇【作者单位】广西民族大学摩擦材料研究所,广西南宁 530006;广西民族大学摩擦材料研究所,广西南宁 530006;广西民族大学摩擦材料研究所,广西南宁 530006;广西民族大学摩擦材料研究所,广西南宁 530006【正文语种】中文【中图分类】U270.35为满足经济发展与交通运输的城际化需求,地铁和轻轨车辆不断增加,运营速度也不断提高,而车辆的制动动能与车速呈平方关系,随着车辆速度的提高,其动能不断增加,制动非常频繁,所以对车辆的制动装置及其制动闸瓦的摩擦磨损性能提出了更苛刻要求[1].地铁闸瓦的制动性能直接影响地铁车辆运营的安全,目前存在的主要问题有裂纹、金属镶嵌、湿态摩擦系数不稳定等问题[2-4],传统的普通型合成闸瓦制动材料已很难满足制动要求.早在2001年任翠纯工程师[5]研制地铁车辆制动闸瓦取代进口并在广州地铁一号线上试装,取得较好效果.日本的狄野智久[6]通过在合成闸瓦中插入铸铁块增大车轮与钢轨间的黏着系数改善了闸瓦的耐热性能和雨雪天气下摩擦系数下降的问题.宋大伟等[7]采用干法生产工艺研制国产合成闸瓦并在南京地铁1号装车试用并取得良好效果.然后,从目前的参考文献资料来看,我国目前应用于城市轨道车辆的制动闸瓦依靠进口较多,性能指标和实际应用效果和国外发达国家相比还是有很大差距.国内的摩擦材料研究人员和相关生产企业,急需自主生产出性价比高的城市轨道列车制动闸瓦,以满足国内需求.为满足地铁车辆制动要求,本文研究了一种新的地铁闸瓦材料,并对制备的地铁制动合成闸瓦进行制动性能1∶1台架试验,通过对试验结果进行分析,探索其各种因素对地铁闸瓦制动性能影响,为闸瓦制动性能的最优化提供依据,具有现实意义和经济价值.1 合成闸瓦的制备1.1 原材料及配方黏合剂:采用腰果壳油改性的酚醛树脂作为黏合剂,并加入丁腈橡胶进行软化处理,达到合成闸瓦所需要的硬度值,固化剂为六次甲基四胺.增强纤维:使用具有高强、耐热性纤维包括碳纤维、钢纤维和海泡石纤维作为增强体,这些纤维之间的耦合作用使摩擦材料具有一定的强度和韧性,在承受热冲击、剪切、拉伸、压缩等作用下不至于出现裂纹,断裂,崩缺等机械损伤.填料:填料的主要作用是摩擦材料的摩擦磨损性能进行多方面的调节使材料能够更好地满足各种工况条件下的制动要求.不同填料来调节摩擦材料的硬度、密度、结构密实度、制品外观,以及改善制动噪声等性能.本研究中使用的填料有:氧化铁粉,鳞片石墨,铬铁矿粉,沉淀硫酸钡,钾长石粉,有机摩擦粉.地铁合成闸瓦原材料配方如表1所示.表1 合成闸瓦原材料配方(wt.%)Tab.1 Raw materials recipe of composite brake shoe(wt.%)腰果壳油改性酚醛树脂丁腈橡胶六次甲基四胺碳纤维海泡石纤维钢纤维其他填料1.2 制造工艺干法生产工艺是应用最广泛的摩擦材料生产工艺形式.在干法工艺中黏合剂和填料均为粉末,将按比例配好的原材料投加到混料机中,进行充分搅拌.达到均匀混合后,将物料放出,得到粉状的混合物料;采用预成形工艺制成冷坯后再进行热压成形,制成所需形状、尺寸和性能的摩擦材料.本研究冷压成形压力为22±2MPa,热压成形压力为22±2MPa,压制温度为160±10℃,保温时间为30±3min,固化热处理温度为180±50℃,保温时间为4±0.5h.地铁合成闸瓦的工艺流程如图1所示.图1 地铁车辆合成闸瓦的工艺流程图Fig.1Process flow diagram of composite brake shoe for metro1.3 性能测试对制造完成的地铁车辆合成闸瓦进行物理和机械性能测试.密度试验方法按GB/T 1033-2008规定进行测试,样品尺寸为10mm×10mm×10mm;洛氏硬度试验方法按洛氏硬度GB/T 3398.2-2008规定进行,样品尺寸为50mm×50mm×25mm;冲击强度试验方法按GB/T1043.1-2008规定进行,样品尺寸为(120±1)mm×(15±0.2)mm×(10±0.2)mm;压缩强度和压缩模量按GB/T 1041-2008规定进行测试,样品尺寸均为(10.4±0.2)mm×(10.4±0.2)mm×(20±0.5)mm.吸水性和吸油性试验按GB/T 1034-1998规定进行,样品尺寸为40mm×40mm×10mm.制动性能测试采用1∶1制动动力试验台进行,测试中模拟的轴重为14.0T,湿度68%,车轮直径840mm.磨合试验以制动初速度80km/h,闸瓦压力28KN,初始温度小于50℃,连续进行10次磨合试验后,观察磨合面积,使磨合面大于85%.停车制动试验:闸瓦制动压力为35.0kN,进行单次制动停车试验,依次记录制动距离及时间,瞬时摩擦系数,车轮踏面温度,平均摩擦系数.试验时制动初速度顺序如下:80km/h、60km/h、40km/h、20km/h、20km/h、40km /h、60km/h、80km/h.试验前后分别对闸瓦称重,两者的差值即为磨耗量.静摩擦系数试验:闸瓦压力5±0.2KN,闸瓦压紧车轮后,对车轮施加转矩直至车轮转动,记录车轮开始转动瞬间的摩擦系数作为静摩擦系数.2 试验结果与分析2.1 物理、力学性能试验根据1.3中的测试要求对地铁合成闸瓦进行物理、力学性能分析,如表2所示.从表2中可以看出,所制造的地铁合成闸瓦的各项物理和力学性能指标到达了TB/T 2403-2010的要求.表2 合成闸瓦的理化性能Tab.2 Physics and chemistry properties of composite brake shoe密度/g·cm-3洛氏硬度/HRR冲击强度kJ/cm2压缩强度/MPa压缩模量/MPa吸水率/%吸油率/%2.2 台架制动试验结果为了考察所研制合成闸瓦的制动摩擦磨损性能,结合地铁车辆的实际运营条件,干态和湿态下制动试验在中铁隆昌铁路器材有限公司1∶1制动动力试验台进行测试,得到不同制动初速度下的实际制动距离、实际制动时间、踏面最高温度和停车制动磨耗量等数据.由表3可知,在干态条件下所研制的合成闸瓦在80km·h-1速度下的最大实际制动距离、最长实际制动时间和以及面最高温度分别为161.9m、15.4s和118℃,平均摩擦系数为0.294~0.303,试验结束后测得停车制动磨耗量0.73cm3/MJ,完全满足80km·h-1速度下紧急制动距离小于248m、车轮踏面最高温度小于390℃、重车制动的磨耗量小于1.5cm3/MJ和平均摩擦系数为0.3左右的使用要求[3].在湿态条件下,制动距离为219.3~278.8m,制动时间为19.8~24.8m,平均摩擦系数为0.216~0.280,踏面最高温度为81℃~124℃.表3 合成闸瓦1∶1制动试验台测试结果Tab.3 Results of composite brake shoe under 1∶1brake bench test初速度(km/h) 80 60 40 20 20 40 6080实制动干态 225 93.1 34.2 7.8 7.6 33.7 89.5 198.7距离(m)湿态219.3 122.3 63.9 13.0 14.3 78.6 0150.0 278.7制动时干态 20.4 11.6 6.6 3.1 3.1 6.5 11.2 18.3间(s)湿态 19.8 14.8 11.8 4.7 5.3 14.1 17.7 24.8平均摩擦干态 0.321 0.341 0.374 0.324 0.325 0.376 0.352 0.329系数湿态 0.280.277 0.269 0.269 0.263 0.270 0.282 0.286踏面最高干态 72 64 49 23 23 49 70 99温度(℃)湿态 124 72 48 47 44 54 68 81停车制动磨耗量(cm3/MJ)0.73备注制动过程无噪声、无振动、无火花和无难闻气味图2为合成闸瓦分别在20km、40km、60km和80km初始制动速度与摩擦系数之间的关系曲线.从图2可以看出,在各种制动速度下,制动过程平稳.图2 不同制动速度下的摩擦系数—速度曲线Fig.2 Friction coefficient-speed curve of different brake speeds图3坡道连续制动试验的摩擦系数——时间曲线,试验条件为轴重为14.0t、制动压力为8.0KN和制动平均速度为40km·h-1时,持续时间10min.从图中可以看出,在制动过程中,摩擦系数从0.39减少到0.28,满足规定时间内坡道匀速连续制动摩擦系数≥0.21的要求;制动盘踏面最高温度为250℃,摩擦系数缓慢下降,且从1~10min过程中动摩擦系数较为平稳.图3 坡道连续制动试验的摩擦系数—时间曲线Fig.3 friction coefficient-time curve of continually gradient brake test所研制地铁合成闸瓦的静摩擦系数随实验次数变化如图4所示.由图4可知,经过5次试验,静摩擦系数平均值为0.336,满足≥0.25的技术要求,稳定可靠.图4 合成闸瓦的静摩擦系数Fig.4Static friction coefficient of composite brake shoe以上数据均能满足地铁车辆用合成闸瓦的技术参数要求.同时,制动过程中无噪音、无振动、火花和难闻气味.试验完成后,经检验车轮表面无金属镶嵌、热斑、热裂纹、异常磨耗等损伤,闸瓦无偏磨、无剥离、无龟裂、掉渣和掉块等现象.合成闸瓦制动试验前后照片如图5(a)和(b)所示.图5 合成闸瓦制动前后摩擦表面照片(a)实验前;(b)试验后Fig.5 Surface images of composite brake shoe before(a)and after(b)experiment3 结论以腰果壳油改性酚醛树脂和丁腈橡胶作为黏合剂,碳纤维、钢纤维和海泡石纤维为增强纤维,氧化铁粉、鳞片石墨、铬铁矿、硫酸钡、钾长石、摩擦粉等为填料,经高速混合后,通过冷压和热压成形及固化热处理工艺制备地铁车辆用合成闸瓦完全可行;研制的地铁车辆合成闸瓦具有冲击强度高、韧性好、压缩强度和压缩模量适中、吸水率低、吸油率低等性能特征;经1∶1台架试验证明:在车辆制动过程中,具有摩擦性能稳定,且磨损率低等优点,完全能够满足地铁车辆制动的使用要求. [参考文献]【相关文献】[1]吴磊,温泽峰,金学松.轮轨摩擦温升有限元分析[J].铁道学报,2008,30(3):19-25. [2]李广刚.国产闸瓦在南京地铁的扩大应用[J].现代城市轨道交通,2012,4:18-20. [3]巫红波,王明娟,吕劲松.广州地铁二号线车辆闸瓦与车轮磨耗异常分析及改进[J].电力机车与城轨车辆,2006,29(5):51-52.[4]ZHU Zhen-cai,PENG Yu-xing,SHI Zhi-yuan,et al.Three-dimensional Transient Temperature Field of Brake Shoe During Hoist’s Emergency Braking[J].Applied Thermal Engineering,2009,29(5-6):932-937.[5]任翠纯.地铁车辆制动闸瓦国产化的研制与试验[J].铁道车辆,2001,39(10):5-9. [6]狄野智久,彭惠民.日本东京地铁车辆用闸瓦的研发[J].国外机车车辆工艺,2011(2):7-10.[7]宋大伟,韩莎莎,李亚东,等.南京地铁1号线国产闸瓦试验研究[J].城市轨道交通研究,2010(3):38-40.。