浙教版2018届中考数学解题技巧与方法训练专题汇编(含答案)
【浙教版】2018年中考数学难题突破专题十基于PISA理念测试题含答案
难题突破专题十基于PISA理念测试题PISA是国际学生评估项目的缩写,是一项由经济合作与发展组织统筹的学生能力测试项目.PISA类测试可强化对考生知识面,综合分析,创新素养等方面的考查,测试的重点是考生全面参与社会的知识与技能,发现和提出简单数学问题,初步懂得应用所学的数学知识、技能和基本数学思想进行独立思考.PISA测试题是中考命题的最新方向.1 [2015·嘉兴] 小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图Z10-1①),侧面示意图为图②.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图③),侧面示意图为图④.已知OA=OB=24 cm,O′C⊥CA于点C,O′C=12 cm.图Z10-1(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?(3)如图④,垫入散热架后,要使显示屏O′B′与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?例题分层分析(1)根据题意可得:O′C=12 cm,AO′=AO=24 cm,O′C⊥CA于C,所以sin∠CAO′=________,从而可求得∠CAO′=________.(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=________cm,由C,O′,B′三点共线可得CB′=________cm,所以显示屏的顶部B′比原来升高了________cm.(3)没有旋转之前O′B′与水平线的夹角为________度,要使显示屏O′B′与水平线的夹角保持120°,则还需按顺时针方向旋转________度.2 [2015·丽水] 某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运动时间为t(秒),经过多次测试后,得到如下部分数据:(1)当t为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?(3)乒乓球落在桌面上弹起,y与x满足y=a(x-3)2+k.①用含a的代数式表示k;②球网高度为0.14米,球桌长×2米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.图Z10-2例题分层分析(1)根据表格中数据直接可知当t=________秒时乒乓球达到最大高度.(2)以点A为原点,以桌面中线为x轴,乒乓球运动方向为正方向,建立平面直角坐标系,根据表格中数据先画出大致图象,根据图象的形状,可判断y是x的________函数.可设函数表达式为____________.选一个点代入即可求得函数表达式为________________,然后将y=0代入即可求得乒乓球落在桌面上时,与端点A的水平距离.(3)①由(2)得乒乓球落在桌面上时,得出对应点坐标,只要利用待定系数法求出函数解析式即可;②由题意可得,扣杀路线在直线y=110x上,由①得y=a(x-3)2-14a,进而利用根的判别式求出a的值,进而求出x的值.专题训练1.[2016·金华] 一座楼梯的示意图如图Z 10-3所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ,现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度为1米,则地毯的面积至少需要( )米2米2C .(4+4tan θ)米2D .(4+4tan θ)米2图Z 10-3 图Z 10-42.[2015·绍兴] 如图Z 10-4,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE =∠PAE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS3.[2015·绍兴] 挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z 10-5中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )A .②号棒B .⑦号棒C .⑧号棒D .⑩号棒图Z 10-5 图Z 10-64.[2015·绍兴] 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图Z 10-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图②,则此时A ,B 两点之间的距离是________cm .5.[2016·江西]已知不等臂跷跷板AB 长为3 m ,当AB 的一端点A 碰到地面时(如图Z 10-7①),AB 与地面的夹角为30°,当AB 的另一端点B 碰到地面时(如图②),AB 与地面的夹角的正弦值为13,那么跷跷板AB 的支撑点O 到地面的距离OH=________m.图Z10-76.[2016·绍兴] 如图Z10-8①,小敏利用课余时间制作了一个脸盆架,图②是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40 cm,脸盆的最低点C到AB的距离为10 cm,则该脸盆的半径为________cm.图Z10-87.[2016·余干二模] 如图Z10-9是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横截面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°,则垂直支架CD的长度为________厘米.(结果保留根号)图Z10-98.[2015·金华] 图Z10-10①是一张可以折叠的小床展开后支撑起来放在地面上的实物图,此时点A,B,C在同一直线上,且∠ACD=90°.图②是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是________;(2)若AB∶BC=1∶4,则tan∠CAD的值是________.图Z10-109.[2016·舟山] 太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图Z10-11②所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈,cos18°≈,tan18°≈,sin36°≈,cos36°≈,tan36°≈图Z10-1110.[2017·赤峰]王浩同学用木板制作一个带有卡槽的三角形手机架,如图Z10-12①所示.已知AC=20 cm,BC =18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°=,cos50°=,tan50°=图Z10-1211.[2016·临夏州] 图Z10-13①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈,cos20°≈,tan20°≈(1)求AB的长(精确到0.01米);(2)若测得ON =0.8米,试计算小明头顶由N 点运动到M 点的路径MN ︵的长度.(结果保留π)图Z 10-1312.[2017·威海] 图Z 10-14①是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能.玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好.假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算.如图②,AB ⊥BC ,垂足为点B ,EA ⊥AB ,垂足为点A ,CD ∥AB ,CD =10 cm ,DE =120 cm ,FG ⊥DE ,垂足为点G . (1)若∠θ=37°50′,则AB 的长约为________cm ; (参考数据:sin37°50′≈,cos37°50′≈,tan37°50′≈ (2)若FG =30 cm ,∠θ=60°,求CF 的长.图Z 10-1413.[2017·常德] 图Z 10-15①和②分别是某款篮球架的实物图与示意图,已知底座BC =0.60米,底座BC 与支架AC 所形成的的角∠ACB =75°,支架AF 的长为2.50米,篮板顶端F 点到篮筐D 的距离FD =1.35米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮筐D 到地面的距离(精确到0.01米).(参考数据:cos75°≈,sin75°≈,tan75°≈,3≈图Z 10-15参考答案例1 【例题分层分析】(1)12 30° (2)123 36 (36-12 3) (3)90 30解:(1)∵O ′C ⊥CA 于C ,OA =OB =24 cm ,∴sin ∠CAO ′=O′C O′A =O′C OA =1224=12,∴∠CAO ′=30°.(2)过点B 作BD ⊥AO 交AO 的延长线于D , ∵sin ∠BOD =BDOB ,∴BD =OB ·sin ∠BOD ,∵∠AOB =120°,∴∠BOD =60°, ∴BD =OB ·sin ∠BOD =24×32=12 3. ∵O ′C ⊥OA ,∠CAO ′=30°,∴∠AO ′C =60°, ∵∠AO ′B ′=120°,∴∠AO ′B ′+∠AO ′C =180°, ∴B ′,O ′,C 三点共线,∴O ′B ′+O ′C -BD =24+12-12 3=36-12 3, ∴显示屏的顶部B ′比原来升高了(36-12 3)cm.(3)显示屏O ′B ′应绕点O ′按顺时针方向旋转30°. 理由:∵显示屏O ′B ′与水平线的夹角仍保持120°, ∴∠EO ′F =120°, ∴∠FO ′A =∠CAO ′=30°, ∵∠AO ′B ′=120°, ∴∠EO ′B ′=∠FO ′A =30°,∴显示屏O ′B ′应绕点O ′按顺时针方向旋转30°. 例2 【例题分层分析】 (1) (2)二次 y =m (x -1)2+y =-15(x -1)2+解:以点A 为原点,以桌面中线为x 轴,乒乓球运动方向为正方向,建立平面直角坐标系. (1)由表格中的数据,可得t =(秒). 答:当t 为秒时,乒乓球达到最大高度.(2)由表格中数据,可画出y 关于x 的图象,根据图象的形状,可判断y 是x 的二次函数.可设y =m (x -1)2+.将(0,代入,可得m =-15.∴y =-15(x -1)2+.当y =0时,x 1=52,x 2=-12(舍去),即乒乓球与端点A 的水平距离是52米.(3)①由(2)得乒乓球落在桌面上时,对应的点为(52,0),代入y =a (x -3)2+k ,得a ×(52-3)2+k =0,化简整理,得k =-14a .②由题意可知,扣杀路线在直线y =110x 上.由①,得y =a (x -3)2-14a .令a (x -3)2-14a =110x ,整理,得20ax 2-(120a +2)x +175a =0.当Δ=(120a +2)2-4×20a ×175a =0时符合题意. 解方程,得a 1=-6+3510,a 2=-6-3510.当a 1=-6+3510时,求得x =-352,不符合题意,舍去. 当a 2=-6-3510时,求得x =352,符合题意. 答:当a =-6-3510时,能恰好将球沿直线扣杀到点A .专题训练 1.D3.D [解析] 按照条件中的游戏规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒,第7次应拿走⑦号棒,第8次应拿走③号棒,第9次应拿走④号棒,第10次应拿走①号棒,因此,本题应该选D .4.18[解析] 设OH =x m ,∵当AB 的一端点A 碰到地面时,AB 与地面的夹角为30°,∴AO =2x m .∵当AB 的另一端点B 碰到地面时,AB 与地面的夹角的正弦值为13,∴BO =3x m .则AO +BO =2x +3x =3,解得x =35.故答案为:35.6.25 [解析] 如图,设圆的圆心为O ,连结OA ,OC ,OC 与AB 交于点D ,设⊙O 的半径为R cm.易知OC ⊥AB ,∴AD =DB =12AB =20 cm ,∠ADO =90°,在Rt △AOD 中, ∵OA 2=OD 2+AD 2, ∴R 2=202+(R -10)2, ∴R =25.故答案为25.7.38 3 [解析] ∵支架CD 与水平面AE 垂直,∴∠DCE =90°.在Rt △CDE 中,∠DCE =90°,∠CED =60°,DE =76厘米,∴CD =DE ·sin ∠CED =76×sin60°=38 3(厘米).故答案为38 3.8.(1)三角形的稳定性和四边形的不稳定性 (2)8159.解:∵∠BDC =90°,BC =10米,sin B =CDBC ,∴CD =BC ·sin B ≈10×=(米). ∵在Rt △BCD 中,∠BCD =90°-∠B =90°-36°=54°, ∴∠ACD =∠BCD -∠ACB =54°-36°=18°, ∴在Rt △ACD 中,tan ∠ACD =ADCD ,∴AD =CD ·tan ∠ACD ≈×=≈(米).故改建后南屋面边沿增加部分AD 的长约为1.9米. 10.解:过点A 作AD ⊥BC 于D ,得AD =AC sin50°=20×=16,CD =AC cos50°=20×=12.∵BC =18,∴BD =BC -CD =6.∵AB 2=AD 2+DB 2=162+62=292,172=289<292,∴王浩同学能将手机放入卡槽AB 内.11.解:(1)过B 作BE ⊥AC 于E ,则AE =AC -BD =-=(米),∠AEB =90°,所以AB =AE sin ∠ABE=错误!≈(米). (2)∠MON =90°+20°=110°,所以MN ︵的长度是110π×180=2245π(米). 12.解:(1).(2)如图,过M 点作MN ∥AB ,过点E 作EP ∥AB ,交CB 于点P ,分别延长ED ,BC ,两线交于点K , ∴MN ∥EP ,∴∠1=∠2.∵AB ⊥BK ,EP ∥AB ,∴KP ⊥EP ,∴∠2+∠K =90°.∵∠θ+∠1=90°,∴∠K =∠θ=60°.在Rt △FGK 中,∠KGF =90°,sin K =GF KF, ∴KF =GF sin 60°=20 3(cm). 又∵CD ∥AB ,AB ⊥BK ,∴CD ⊥CK .在Rt △CDK 中,∠KCD =90°,tan K =CD CK, ∴CK =CD tan 60°=10 33(cm). ∴CF =KF -CK =50 33(cm). 13.解:如图,过点A 作AM ⊥FE 交FE 的延长线于M ,∵∠FHE =60°,∴∠F =30°.在Rt △AFM 中,FM =AF ·cos F =AF ·cos30°=×32≈(米). 在Rt △ABC 中,AB =BC ·tan ∠ACB =BC ·tan75°≈×=(米). ∴篮板顶端F 点到地面的距离为FM +AB =+=(米),∴篮筐D 到地面的距离为-FD =-=≈(米).。
2018年浙江中考数学复习方法技巧专题一:数形结合思想训练(含答案)
方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
2018年全国各地中考数学压轴题汇编:选择、填空(浙江专版)(解析卷)
2018年全国各地中考数学压轴题汇编(浙江专版)选择、填空参考答案与试题解析一•选择题(共18小题)1. (2018?杭州)如图,已知点P是矩形ABCD内一点(不含边界),设/ PAD=0i, / PBA=0 2,Z PCB=0 3,Z PDC=0 4,若/ APB=8C°,/ CPD=50,贝9()A .( 0i+M) — (伦+依)=30°B.(他+M) — ( 0i+釘=40C. ( 0i+ E2)-( (3+ (4) =70°D. ( 0i+ E2) + ( (3+(4) =180解:••• AD // BC,Z APB=80,•••/ CBP=Z APB -Z DAP=80 -(,ABC( 2+80 —(,又•••△ CDP 中,Z DCP=180 —Z CPD—Z CDP=130 —(,•••Z BCD( 3+130°—(,又•••矩形ABCD 中,Z ABC + Z BCD=180,•- (+800— (+(+130°- (=180°即((+() — ( (+() =30°,故选:A.2.(2018?宁波)如图,在△ ABC 中,Z ACB=90,Z A=30°,AB=4,以点B 为圆心,BC 长为半径画弧,交边AB 于点D ,贝A 匚的长为( )•••/ B=60°, BC=2故选:C .(2018?嘉兴)如图,点C 在反比例函数y±(x >0)的图象上,过点C 的直 A ,B ,且AB=BC ,△ AOB 的面积为1,贝U k 的值为B. 2 C . 3 D . 4解:设点A 的坐标为(a ,0), •••过点C 的直线与x 轴,y 轴分别交于点A, B ,且AB=BC ,△ AOB 的面积为1, k•••点 C (-a , —), •••点B 的坐标为(0, “二)解得,k=4, 故选:D .X2 27T180 = _5•••「的长为B .y解:•••/ ACB=90 , AB=4,/ A=30° , D 'J n3. 线与x 轴,y 轴分别交于点A .吉nA . 14.(2018?杭州)如图,在△ ABC 中,点D 在AB 边上,DE // BC ,与边AC 交 于点E ,连结BE .记△ ADE , △ BCE 的面积分别为S i , S 2 ()A .若 2AD >AB ,贝U 3S i >2S 2 B .若 2AD >AB ,贝U 3S iv 2S 2C .若 2AD v AB ,贝U 3S i > 2S 2D .若 2AD v AB ,贝U 3S i v 2S 2解:•••如图,在△ ABC 中,DE // BC ,AD(「)此时3S i > S2+S^BDE ,而S2+S^BDE v 2S 2.但是不能确定3S i 与2S 2的大小, 故选项A 不符合题意,选项B 不符合题意.若 2AD v AB '即需 v 寺时,S I + S Q +S ARDF <書, 此时 3S i v S 2+S/DE v 2S 2,故选项C 不符合题意,选项D 符合题意. 故选:D .一k 1k?5. ( 20i8?r 波)如图,平行于x 轴的直线与函数尸‘ (ki > 0, x > 0), 7(k 2>0, x >0)的图象分别相交于A , B 两点,点A 在点B 的右侧,C 为x 轴上Si •••若2AD > AB ,即卡〉〒时,的一个动点,若△ ABC 的面积为4,则ki - k 2的值为(C. 4解:••• AB // x 轴, ••• A , B 两点纵坐标相同.设 A (a, h ), B (b , h ),贝U ah=k i , bh=k 2.I 1 ii. Ilt S A ABc =—AB?y A 右(a - b ) h 右(ah- bh ) 右 (k i - k 2) =4, z z z z • k i — k 2=8.故选:A .6. (2018?杭州)四位同学在研究函数 y=x 2+bx+c (b , c 是常数)时,甲发现当 x=i 时,函数有最小值;乙发现-1是方程x 2+bx+c=0的一个根;丙发现函数的最 小值为3; 丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误 的,则该同学是( ) A .甲B .乙解:假设甲和丙的结论正确,贝U•抛物线的解析式为y=x 2 - 2x+4. 当 x= - 1 时,y=x 2 - 2x+4=7, •乙的结论不正确; 当 x=2 时,y=x 2 - 2x+4=4, • 丁的结论正确.•••四位同学中只有一位发现的结论是错误的,C .丙D .丁B .— 8•••假设成立.故选:B.7. (2018?温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3, b=4,则该矩形的面积为(8. (2018?宁波)在矩形ABCD内,将两张边长分别为a和b (a>b)的正方形B. 249953V D • —解:设小正方形的边长为X,•.•a=3, b=4,••• AB=3+4=7,在Rt A ABC 中,AC2+BC2=AB2,即(3+x) 2+ (x+4) 2=72,整理得,x2+7x - 12=0,—7 97 T 97解得X=- 或x= (舍去),~2~2•I该矩形的面积=(了+3)(+4) =24,C.故选:B.B纸片按图1图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S i,图2中阴影部分的面积为S2•当AD - AB=2时,S2 - S i的值为()A . 2a B. 2b C. 2a- 2b D . - 2b解:S i= (AB —a) ?申(CD —b) (AD —a) = (AB —a) ?an (AB —b) (AD —a), S2=AB (AD —a) + (a—b)(AB —a),S2 —S i=AB (AD —a) + (a —b)( AB —a) — ( AB —a) ?a—( AB —b)( AD —a) = (AD —a) (AB —AB +b) + (AB —a) (a— b —a) =b?AD —ab-b?AB+ab=b(AD —AB ) =2b.故选:B.9. (2018?温州)如图,点A , B在反比例函数yy (x >0)的图象上,点C, D在反比例函数y=±(k>0)的图象上,AC // BD // y轴,已知点A , B的横坐标分A. 4B. 3C. 2 D .-;解:•••点A , B在反比例函数y=—(x >0)的图象上,点A , B的横坐标分别为1, 2,•••点A的坐标为(1, 1),点B的坐标为(2, f-),••• AC // BD // y 轴,则k的值为(•••点C , D 的横坐标分别为1, 2,•••点C ,D 在反比例函数y 二丄(k >0)的图象上, •••点C 的坐标为(1,k ),点D 的坐标为(2,丄-),解得:k=3.10. ( 2018?嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两 队赛一场),胜一场得3分,平一场得1分,负一场得分,某小组比赛结束后, 甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连 续奇数,则与乙打平的球队是( ) A .甲B .甲与丁C .丙D .丙与丁解:•••甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是 四个连续奇数,•••甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁 得分1分,0胜1平,•••甲、乙都没有输球,•甲一定与乙平,•••丙得分3分,1胜0平,乙得分5分,1胜2平, •与乙打平的球队是甲与丁. 故选:B .11. ( 2018?湖州)如图,已知在厶ABC 中,/ BAC >90°点D 为BC 的中点, 点E 在AC 上,将△ CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是(S MBD =*二 X(2 - 1)=—,AC=k S A OACC .△ ADF和厶ADE的面积相等B. AB=2DED . △ ADE和厶FDE的面积相等解:如图,连接CF,•••点D是BC中点,••• BD=CD ,由折叠知,/ ACB= / DFE, CD=DF ,••• BD=CD=DF ,•••△BFC是直角三角形,•••/ BFC=90,••• BD=DF,•••/ B= / BFD,•••/ EAF= / B+Z ACB= / BFD + Z DFE= / AFE,••• AE=EF,故A 正确,由折叠知,EF=CE,••• AE=CE,••• BD=CD,••• DE是厶ABC的中位线,••• AB=2DE,故B 正确,••• AE=CE,--S A ADE=S A CDE,由折叠知,△CDE^AA FDE,二S A CDE=S A FDE,S A ADE=S A FDE,故D 正确,当AD==AC时,△ ADF和厶ADE的面积相等12. ( 2018?召兴)利用如图1的二维码可以进行身份识别•某校建立了一个身份 识别系统,图2是某个学生的识别图案,黑色小正方形表示 1,白色小正方形表 示0,将第一行数字从左到右依次记为 a ,b ,c ,d ,那么可以转换为该生所在班 级序号,其序号为a x 23+b x 22+C X 21+d x 20,如图2第一行数字从左到右依次为0,1,0,1,序号为0X 23+1 X 22+0X 21+1 X 20=5,表示该生为5班学生.表示6 班学生的识别图案是( )20=10,不符合题意; B 、 第一行数字从左到右依次为 0, 1, 1, 0,序号为0X 23+1 X 22+1 X 21+0X20=6, 符合题意;C 、 第一行数字从左到右依次为1, 0, 0, 1,序号为1X 23+0 X 22+0 X 21+1 X 20=9, 不符合题意;D 、 第一行数字从左到右依次为0, 1, 1, 1,序号为0 X 23+1 X 22+1X 21+1 X 20=7, 不符合题意;••• C选项不一定正确, 解:A 、第一行数字从左到右依次为 1、0、 1、0,序号为 1x 23+0X 22+1 X 21+0x13.(2018?湖州)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下 列尺规作图考他的大臣:① 将半径为r 的。
浙江2018中考真题压轴汇编
浙江2018中考真题压轴汇编一、单选题6.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A. x+842B. 10x+42015C. 10x+8415D. 10+42015【来源】浙江省杭州市临安市2018年中考数学试卷【答案】B【解析】【分析】先求出15人的总成绩,再用15个人的总成绩除以15即可得整个组的平均成绩.【详解】15个人的总成绩105×84=10420,所以整个组的平均成绩为:再除以15可求得平均值为10x+42015,故选B.【点睛】本题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.7.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A. 2B. 3C. 4D. 5第1 页【答案】D【解析】试题分析:由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程25y;23y,消去y可得:,则35z,即三个球体的重量等于五个正方体的重量.故选D.考点:一元一次方程的应用.8.如图,⊙O的半径6,以A为圆心,为半径的弧交⊙O于B、C点,则()A. 6√3B. 6√2C. 3√3D. 3√2【来源】【答案】A【解析】试题分析:根据垂径定理先求一半的长,再求的长.解:如图所示,设与相交于D点.∵6,∴△是等边三角形.又根据垂径定理可得,平分,利用勾股定理可得√62−32=3√3所以26√3.故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△是等边三角形,为后继求解打好基础.9.如图直角梯形中,∥,⊥,2,3,将腰以D为中心逆时针旋转90°至,连、,则△的面积是()A. 1B. 2C. 3D. 不能确定【来源】浙江省杭州市临安市2018年中考数学试卷【答案】A【解析】【分析】如图作辅助线,利用旋转和三角形全等证明△与△全等,再根据全等三角形对应边相等可得的长,即△的高,然后得出三角形的面积.【详解】如图所示,作⊥交延长线于F,作⊥,∵以D为中心逆时针旋转90°至,∴∠∠90°,,又∵∠∠90°,第3 页在△与△中,{∠xxx=∠xxx∠xxx=∠xxx=90°xx=xx,∵2,3,∴﹣3﹣2=1,∴1,∴△的面积是:12××12×2×1=1,故选A.【点睛】本题考查梯形的性质和旋转的性质,熟知旋转变换前后,对应点到旋转中心的距离相等、每一对对应点与旋转中心连线所构成的旋转角相等是解题的关键.同时要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.10.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A. 19B. 16C. 13D. 23【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为39=13.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,已知在△中,∠>90°,点D为的中点,点E在上,将△沿折叠,使得点C恰好落在的延长线上的点F处,连结,则下列结论不一定正确的是()A. B. 2C. △和△的面积相等D. △和△的面积相等第5 页【来源】浙江省湖州市2018年中考数学试题【答案】C【解析】分析:先判断出△是直角三角形,再利用三角形的外角判断出A正确,进而判断出,得出是△的中位线判断出B正确,利用等式的性质判断出D正确.详解:如图,连接,∵点D是中点,由折叠知,∠∠,,∴△是直角三角形,∴∠90°,∴,故A正确,由折叠知,,∴是△的中位线,∴2,故B正确,∴S△△,由折叠知,△≌△△,∴S△△,∴S△△,故D正确,∴C选项不正确,第 7 页故选:C .点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.12.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,长为半径画弧,G 是两弧的一个交点; ③连结. 问:的长是多少?大臣给出的正确答案应是( )A. √3rB. (1+√22)r C. (1+√32)r D. √2r【来源】浙江省湖州市2018年中考数学试题 【答案】D【解析】分析:如图连接,,,.在直角三角形即可解决问题; 详解:如图连接,,,. ∵是⊙O 直径, ∴∠90°,在△中,2r ,∠30°, ∴√3, ∴∠90°,∴√xx 2−xx 2=√(√3x )2−x 2=√2,故选:D .点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.在平面直角坐标系中,已知点M ,N 的坐标分别为(﹣1,2),(2,1),若抛物线2﹣2(a≠0)与线段有两个不同的交点,则a 的取值范围是( )A. a ≤﹣1或14≤a <13B. 14≤a <13C. a ≤14或a >13D. a ≤﹣1或a ≥14【来源】浙江省湖州市2018年中考数学试题 【答案】A【解析】分析:根据二次函数的性质分两种情形讨论求解即可; 详解:∵抛物线的解析式为22.观察图象可知当a <0时,1时,y ≤2时,满足条件,即3≤2,即a ≤-1;第 9 页当a >0时,2时,y ≥1,且抛物线与直线有交点,满足条件, ∴a ≥14,∵直线的解析式为1353,由{x=−13x +53x=xx 2−x +2,消去y 得到,32-21=0,∵△>0, ∴a<13,∴14≤a <13满足条件,综上所述,满足条件的a 的值为a ≤-1或14≤a <13,故选:A .点睛:本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.14.如图,点A ,B 在反比例函数x =1x(x >0)的图象上,点C ,D 在反比例函数x =xx(x >0)的图象上,轴,已知点A ,B 的横坐标分别为1,2,△与△的面积之和为32,则k 的值为( ) A. 4 B. 3 C. 2 D. 32【来源】浙江省温州市2018年中考数学试卷 【答案】B【解析】分析: 首先根据两点的横坐标,求出两点的坐标,进而根据 y 轴,及反比例函数图像上的点的坐标特点得出两点的坐标,从而得出的长,根据三角形的面积公式表示出S △△的面积,再根据△与△的面积之和为32,列出方程,求解得出答案.详解: 把1代入x =1x得:1, ∴A(1,1),把2代入x =1x得:12,∴B(2, 12),∵ y 轴, ∴C(1)(2,k2)∴1k 212,∴S △12(1)×1, S △12(k 2-12)×1,又∵△与△的面积之和为32,∴12(1)×1+12(k 2-12)×1=32,解得:3;故答案为B.点睛: 此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.15.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若3,4,则该矩形的面积为()A. 20B. 24C. 994D. 532【来源】浙江省温州市2018年中考数学试卷【答案】B【解析】分析: 设小正方形的边长为x,则矩形的一边长为(),另一边为(),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入的值,得出x2+712,再根据矩形的面积公式,整体代入即可.详解: 设小正方形的边长为x,则矩形的一边长为(),另一边为(),根据题意得:2(2)=()(),化简得:20,又∵ a = 3 ,b = 4 ,∴x2+712;∴该矩形的面积为=()()=(3)(4)2+712=24.故答案为:B.点睛: 本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.第11 页16.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1,则图中转折点P的坐标表示正确的是()A. (5,30) B. (8,10) C. (9,10) D. (10,10)【来源】浙江省金华市2018年中考数学试题【答案】C【解析】分析:先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.详解:如图,过点C作⊥y轴于D,∴5,50÷2-16=9,40-30=10,∴P(9,10);故选C.点睛:此题考查了坐标确定位置,根据题意确定出9,10是解本题的关键.17.如图,两根竹竿和斜靠在墙上,量得∠α,∠β,则竹竿与的长度之比为()A. tan xtan x B. sin xsin xC. sin xsin xD. cos xcos x【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:在两个直角三角形中,分别求出、即可解决问题;详解:在△中,xxxxxx,在△中,xxxxxx,∴:xxxxxx :xxxxxx=sin xsin x,故选B.点睛:本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.18.如图,将△绕点C顺时针旋转90°得到△.若点A,D,E在同一条直线上,∠20°,则∠的度数是()A. 55°B. 60°C. 65°D. 70°【来源】浙江省金华市2018年中考数学试题【答案】C【解析】分析:根据旋转的性质和三角形内角和解答即可.详解:∵将△绕点C顺时针旋转90°得到△.∴∠∠20°,∠∠90°,,∴∠90°-20°=70°,第13 页∵点A,D,E在同一条直线上,∴∠∠180°,∵∠∠∠180°,∴∠∠20°,∵∠90°,∴∠∠90°,∠∠45°在△中,∠∠∠180°,即45°+70°+∠180°,解得:∠65°,故选C.点睛:此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.19.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【来源】浙江省金华市2018年中考数学试题【答案】D【解析】分析:A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当35时的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当70时的值,将其与120比较后即可得出结论D错误.综上即可得出结论.详解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,,将(25,30)、(55,120)代入,得:第15 页{25x +x=3055x +x=120 ,解得:{x=3x=−45, ∴345(x ≥25),当35时,345=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x ≥50时,,将(50,50)、(55,65)代入,得: {50x +x=5055x +x=65, 解得:{x=3x=−100 ,∴3100(x ≥50),当70时,3100=110<120,∴结论D 错误.故选D .点睛:本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.20.如图,点x 在反比例函数x =x x(x >0)的图象上,过点x 的直线与x 轴,x 轴分别交于点x ,x ,且xx =xx ,xxxx 的面积为1,则x的值为()A. 1B. 2C. 3D. 4【来源】2018年浙江省舟山市中考数学试题【答案】D【解析】【分析】过点C作xx⊥x轴,设点x(−x,0),x(0,x).xx= xx,则xx=xx=x,xx=2xx=2x,得到点C的坐标,根据xxxx的面积为1,得到x,x的关系式,即可求出x的值.【解答】过点C作xx⊥x轴,设点x(−x,0),x(0,x).xx=xx,则xx=xx=x,xx=2xx= 2x,得到点C的坐标为:(x,2x).xxxx的面积为1,xx=1,xx=2,即12x=x⋅2x=2xx=4.故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.21.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某第17 页小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲B. 甲与丁C. 丙D. 丙与丁【来源】2018年浙江省舟山市中考数学试题【答案】B【解析】【分析】4个队一共要比4×(4−1)=6场比赛,每个队都要进2行3场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是7,5,3,1.进行分析即可.【解答】4个队一共要比4×(4−1)=6场比赛,每个队都要进行3场2比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是7,5,3,1.所以,甲队胜2场,平1场,负0场.乙队胜1场,平2场,负0场.丙队胜1场,平0场,负2场.丁队胜0场,平1场,负2场.与乙打平的球队是甲与丁,故选B.【点评】首先确定比赛总场数,然后根据“各队的总得分恰好是四个连续的奇数”进行分析是完成本题的关键.22.如图,一个函数的图象由射线xx、线段xx、射线xx组成,其中点x(−1,2),x(1,3),x(2,1),x(6,5),则此函数( )A. 当x<1时,x随x的增大而增大B. 当x<1时,x随x的增大而减小C. 当x>1时,x随x的增大而减小D. 当x>1时,x随x的增大而减小【来源】浙江省义乌市2018年中考数学试题【答案】A【解析】分析:观察函数图象,结合各点坐标即可确定出各选项的正误.详解:由点x(−1,2),x(1,3)可知,当x<1时,x随x的增大而增大,故A正确;由x(1,3),x(2,1)知,当1<x<2时,x随x的增大而减小,故B错误;由x(2,1),x(6,5)知,当x>2时,x随x的增大而增大,故C、D 错误.故选A.点睛:本题主要考查的是函数的图象,数形结合是解题的关键.23.学校门口的栏杆如图所示,栏杆从水平位置xx绕x点旋转到第19 页xx位置,已知xx⊥xx,xx⊥xx,垂足分别为x,x,xx=4m,xx=1.6m,xx=1m,则栏杆x端应下降的垂直距离xx为( ) A. 0.2m B. 0.3m C. 0.4m D. 0.5m【来源】浙江省义乌市2018年中考数学试题【答案】C【解析】分析:根据题意得△∽△,根据相似三角形的性质可求出的长.详解:∵xx⊥xx,xx⊥xx,∴xx xx =xxxx∵4m ,1.6m ,1m,∴xx=xx·xxxx =1.6×14=0.4x.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△∽△是解题关键.24.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为x,x,x,x,那么可以转换为该生所在班级序号,其序号为x×23+x×22+ x×21+x×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】B【解析】【分析】根据班级序号的计算方法一一进行计算即可.【解答】A. 第一行数字从左到右依次为1,0,1,0,序号为1×23+ 0×22+1×21+0×20=10,表示该生为10班学生.B. 第一行数字从左到右依次为0,1,1,0,序号为0×23+ 1×22+1×21+0×20=6,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为1×23+ 0×22+0×21+1×20=9,表示该生为9班学生.D. 第一行数字从左到右依次为0,1,1,1,序号为0×23+ 1×22+1×21+1×20=7,表示该生为7班学生.故选B.【点评】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.第21 页25.若抛物线x=x2+xx+x与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. (−3,−6)B. (−3,0)C. (−3,−5)D. (−3,−1)【来源】浙江省义乌市2018年中考数学试题【答案】B【解析】分析:根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.详解:∵某定弦抛物线的对称轴为直线1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为(2)2-2(1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为(1+2)2-1-3=(1)2-4.当3时,(1)2-4=0,∴得到的新抛物线过点(-3,0).故选:B.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.26.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( ) A. 16张 B. 18张 C. 20张 D. 21张【来源】2018年浙江省绍兴市中考数学试卷解析【答案】D【解析】【分析】每张作品都要钉在墙上,要用4个图钉,相邻的可以用同一个图钉钉住两个角或者四个角,相邻的越多,用的图钉越少,把这些作品摆成长方形,使四周的最少.【解答】A. 16=1×16=2×8=4×4,最少需要图钉(4+1)(4+1)=25枚.B. 18=1×18=2×9=3×6,最少需要图钉(3+1)(6+1)= 28枚.C. 20=1×20=2×10=4×5,最少需要图钉(4+1)(5+1)=30枚.第23 页D. 21=1×21=3×7,最少需要图钉(4+1)(7+1)=32枚.还剩余枚图钉.故选D.【点评】考查学生的空间想象能力以及动手操作能力,通过这道题使学生掌握空间想象能力和动手能力,并且让学生能够独立完成类似问题的解决.27.若抛物线x=x2+xx+x与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (−3,−6)B. (−3,0)C. (−3,−5)D. (−3,−1)【来源】2018年浙江省绍兴市中考数学试卷解析【答案】B【解析】【分析】根据抛物线x=x2+xx+x与x轴两个交点间的距离为2,对称轴为直线x=1,求得抛物线与x轴两个交点分别为(0,0),(2,0).用待定系数法求出抛物线的解析式,根据平移规律求得平移后的抛物线解析式,再把点的坐标代入进行验证即可.【解答】抛物线x=x2+xx+x与x轴两个交点间的距离为2,对称轴为直线x=1,可知抛物线x=x2+xx+x与x轴两个交点分别为(0,0),(2,0).代入得:{x=04+2x+x=0.解得:{x=−2x=0.抛物线的方程为:x=x2−2x=(x−1)2−1.将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:x=(x−1+2)2−1−3.即x=(x+1)2−4.当x=−3时,x=0.抛物线过点(−3,0).故选B.【点评】考查待定系数法求二次函数解析式,二次函数的图形与性质,以及平移规律.掌握待定系数法求二次函数解析式是解题的关键.28.如图,是圆锥的母线,为底面半径,已知6,圆锥的侧面积为15π2,则∠的值为()A. 34B. 35C. 45D. 53【来源】浙江省衢州市2018年中考数学试卷【答案】B【解析】分析:先根据扇形的面积公式12•R求出母线长,再根据锐角三角函数的定义解答即可.第25 页详解:设圆锥的母线长为R,由题意得15π=π×3×R,解得5,∴圆锥的高为4,.∴∠35故选B.点睛:本题考查了圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.29.如图,是⊙O的直径,弦⊥于E,连接,过点O作⊥于F,若8,2,则的长度是()A. 3B. √6C. 2.5D. √5【来源】浙江省衢州市2018年中考数学试卷【答案】D【解析】分析:根据垂径定理得出的长,进而利用勾股定理得出的长,再利用相似三角形的判定和性质解答即可.详解:连接,∵是⊙O的直径,弦⊥于E,8,2.在△中,222,即2+42=(2)2解得:3,∴3+2=5,∴5+3=8.在△中,√xx2+xx2=√42+82=4√5.∴∠∠90°.∵∠∠C,∴xx xx =xxxx,即xx4=54√5,解得:√5.故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出的长.二、填空题30.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).【来源】北师大版数学七上课堂练习:1.2展开与折叠【答案】【解析】分析:结合正方体的平面展开图的特征,只要折叠后能第27 页围成正方体即可,答案不唯一.本题解析:如图:31.已知:22322×23,33832×38,441542×415,552452×524,…,若10x x 102×x x 符合前面式子的规律,则.【来源】浙江省杭州市临安市2018年中考数学试卷【答案】109【解析】【分析】观察不难发现,一个整数加上以这个整数为分子,整数的平方减1作为分母的分数,等于这个整数的平方乘以这个分数,然后求出a 、b ,再相加即可得解.【详解】∵22322×23,33832×38,441542×415,552452×524,…, 10b a 102×b a , ∴10,102-1=99,∴10+99=109,故答案为:109.【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.32.如图,已知△的内切圆⊙O 与边相切于点D ,连结,.若∠40°,则∠的度数是.【来源】浙江省湖州市2018年中考数学试题【答案】70°第 29 页【解析】分析:先根据三角形内心的性质和切线的性质得到平分∠,⊥,则∠12∠20°,然后利用互余计算∠的度数. 详解:∵△的内切圆⊙O 与边相切于点D ,∴平分∠,⊥,∴∠12∠12×40°=20°, ∴∠90°-∠70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.33.如图,在平面直角坐标系中,已知抛物线2(a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线2(a >0)交于点B .若四边形是正方形,则b 的值是.【来源】浙江省湖州市2018年中考数学试题【答案】﹣2【解析】分析:根据正方形的性质结合题意,可得出点B 的坐标为(-x 2x ,-x 2x ),再利用二次函数图象上点的坐标特征即可得出关于b 的方程,解之即可得出结论.详解:∵四边形是正方形,∴点B的坐标为(-x2x ,-x2x).∵抛物线2过点B,∴x 2x (-x2x)2,解得:b1=0(舍去),b22.故答案为:-2.点睛:本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.34.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形的边长为√65,此时正方形的而积为5.问:当格点弦图中的正方形的边长为√65时,正方形的面积的所有可能值是(不包括5).【来源】浙江省湖州市2018年中考数学试题【答案】9或13或49.【解析】分析:共有三种情况:①当√13,2√13时,满足222,此时√13,可得正方形的面积为13;②当8,1时,满足222,此时7,可得正方形的面积为49;③当7,4时,满足222,此时3,可得正方形的面积为9.详解:①当√13,2√13时,满足222,此时√13,可得正方形的面积为13.②当8,1时,满足222,此时7,可得正方形的面积为49;③当7,4时,满足222,此时3,可得正方形的面积为9.故答案为:9或13或49.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.x+4与x轴、y轴分别交于A,B两点,35.如图,直线x=−√33C是的中点,D是上一点,四边形是菱形,则△的面积为.【来源】浙江省温州市2018年中考数学试卷【答案】2√3【解析】分析: 根据直线于坐标轴交点的坐标特点得出两点的坐标,得出,的长,根据C是的中点,从而得出的长,根据菱形的性质得出2∥;设出D点的坐标,进而得出E点的坐标,从而得出的长,在△中利用勾股定理建立关于x的方程,求解得出x的值,然后根据三角形的面积公式得出答案.详解: 把0代入y = −√3x + 4 得出4,3∴B(0,4);第31 页∴4;∵C是的中点,∴2,∵四边形是菱形,∴2∥,把0代入y = −√33x + 4 得出4√3,∴A(4√3,0);∴4√3,设D(x,-√33x+4) ,∴E( √332),延长交于点F,∴√332,在△中利用勾股定理得:x2+(-√33x+2)2=22,解得:x1=0(舍),x2=√3;∴1,∴S△12··2√3.故答案为:2√3.点睛: 本题考查了一次函数图象上点的坐标特征:一次函数,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-x,x 0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式.也考查了菱形的性质.36.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若所在的直2,则该圆的半径为.线经过点M,5,小正六边形的面积为49√32【来源】浙江省温州市2018年中考数学试卷【答案】8.【解析】分析: 设两个正六边形的中心为O,连接,过点O作⊥于点G,⊥于点H,如图所示:很容易证出三角形是一个等边三角形,边长的长,,而且面积等于小正六边形的面积的3,故三角形2的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出的长,进而得出的长,,在△中,根据勾股定理得的长,设为x,,根据正六边形的性质及等腰三角形的三线和一可以得出,的长,进而得出的长,在△中,根据勾股定理得关于x的方程,求解得出x的值,从而得出答案.详解: 设两个正六边形的中心为O,连接,过点O作⊥于点G,⊥于点H,如图所示:很容易证出三角形是一个等边三角形,边长7√3,而且面积等于小,正六边形的面积的32第33 页。
2018届中考浙江数学复习精炼课时36 选择题解题策略.docx
1 - (2017济孕中考#的倒数是(A )A ■ 6 B. -6 C.| D.2•在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和 梯形的是(D )3.若点(一2 ‘ yj ,(―1 ‘ y 2) ' (1 ' y3)在反比例函数的图象上'则下列结论中正确的是(D )A - ”>丁3>旳 B. ”今2今3C •力>”>旳 D. y 3>yi>y 2 唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁D ))A ・3 B. -3 C. ±3 D.任意实数 J6 -如图,一次函数yi=kix+b 的图象和反比例函数y 2=_7的图象交于A (1 ‘ 2),B ( —2,—1)两点,若 yi<y2 5则x 的取值范围是(D )A • x<\ B. x<—2C • —2<x<0 或兀>1 D. x<—2 或 0<xvl7 •如果0<a<l ,那么下列说法正确的是(B )A •/比。
大B •/比。
小C ・/与。
相等D-a 与a 的大小不能确定第三编 课时36选择题解题策略A) 4・(2017金华中考)某校举行以”激情五月 四名同学,则甲、乙同学获得前两名的概率是( 5 •分式将的值为零,则x 的值为(AB) D)8 -下列根式是最简二次根式的是(B )A.-\/8aB.-\/a 2+Z>2C.寸O.lx9 • (2017德州中考)下列图形中‘既是轴对称图形又是中心对称图形的是(D )10. (2017南京中考)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有 4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(D )A -三棱柱B.四棱柱C •三棱锥D.四棱锥11 • (2017苏州中考)关.于x 的一元二次方程x 2-2x+k=0有两个相等的实数根,则k 的值为(A )A • 1 B. -1 C. 2 D. -212 • (2017青岛中考)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE 丄BC >垂足为点E ,AB =萌,AC = 2,BD=4,则 AE 的长为(D )A 芈B.j C 卑 D.畔13.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是(D ) A • ab>0 B. a~b>0C • a+b>0 D. |a| —|b|>014 •在同一平面直角坐标系中,函数y=ax?+bx 与y=bx+a 的图象可能是(C )15. (2017夭津中考).如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连结PG ,则PG 的长为(D )A , B才丁 6 b 1—:(第]3题图))A - 1 B,V2 C.书D.^5‘J16• (2017枣庄中考)如图,在7?/AABC中,ZC=90°,以顶点A为圆心,适当长为半径画弧,分别交AC, AB于点M,N,再分别以点M,N为圆心,大于*MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4 > AB = 15 -则厶ABD的面积是(B )A • 15 B. 30 C. 45 D. 6017•如图,有一块矩形纸片ABCD ' AB = 8 > AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将ZkAED沿DE向右翻折,AE与BC的交点为F,则ACEF的面积为(C )E C E CA.|B.|C. 2D. 41& 如图,AABC为直角三角形,ZC=90°,BC=2 cm - ZA=30°,四边形DEF.G为矩形,DE=2^3 cm > EF=6 cm.,且点C,B,E,F在同一直线上,点B与点E重合.7?rAABC以每秒1 cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设7?rAABC与矩形DEFG的重叠部分的面积为y cm2,运动时间为x.s,能反映y xro?与x s之间函数关系的大致图象是(A )19.(包头中考)如图‘直线中点,点P为OA上一动点.PC+PD的值最小时点P的坐标为(C )A • (―3,0) B. (-6 ‘ 0)20. (2017青岛中考)如图‘ AB是©O的直径,C,D,E在OO上 > 若ZAED=20°>则ZBCD的度数为B )A • 100°B. 110°C. 115°D. 120°。
浙江省18年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用含近9年中考真题试题_1162
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。
2018年中考数学方法技巧:专题四-构造法训练(含答案)
5.如图F4-3,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<x的解为________.方法技巧专题四构造法训练构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:1.构造方程;2.构造函数;3.构造图形.一、选择题图F4-11.如图F4-1,OA=OB=OC,且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°2.已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是()A.6B.3C.-3D.03.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足() A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>2二、填空题4.如图F4-2,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于________.图F4-213图F4-36.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.7.[2016·成都]如图F4-△4,ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB =________.图F4-48.如图F4-5,在四边形ABCD中,AB∥DC,E是AD的中点,EF⊥BC于点F,BC=5,EF=3.图F4-5(1)若AB=DC,则四边形ABCD的面积S=________;(2)若AB>DC,则此时四边形ABCD的面积S′________S(用“>”或“=”或“<”填空).三、解答题9.如图F4-6,直立于地面上的电线杆A B,在阳光下落在水平地面和坡面上的影子分别是BC,CD,测得BC=6m,CD=4m,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度.(结果保留根号)图F4-6参考答案1.C[解析]以点O为圆心,以OA为半径作⊙O.∵OA=OB=OC,∴点B,C在⊙O上.∴∠AOB=2∠ACB=60°.故选C.注:此题构造了圆.2.A[解析](1)当m=n时,(m-1)2+(n-1)2=2(m-1)2.此时当m=1时,有最小值0.而m=1时,代入原方程求得a=.=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-)2-3.∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值.∴(m-1)2+(n-1)2的最小值=4(2-)2-3=6.故选A.5.3<x<6[解析]作直线OA,易知直线OA的解析式为y=x.由图可知,不等式kx+b>0的解为x<6;不等式kx+b<x的解为x>3.所以不等式0<kx+b<x的解为3<x<6.注:此题构造了一次函数y=x.7.[解析]如图,作直径AE,连结CE,则∠ACE=90°.32∵不满足条件a≥2,∴舍去此种情况.(2)当m≠n时,∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的方程x2-2ax+2=0的两个根.∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+11212注:此题根据两个等式构造了一个一元二次方程.3.D[解析]一元二次方程(x-1)(x-2)=m(m>0)的两根实质上是抛物线y=(x-1)(x-2)与直线y=m两个交点的横坐标.如图所示,显然α<1且β>2.故选D.注:此题构造了二次函数.4.15[解析]分别将线段AB,CD,EF向两端延长,延长线构成一个等边三角形,边长为8.则EF=2,AF=4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.131133136.x1=-4,x2=-1[解析]根据方程的特点联想二次函数的顶点式.将函数y=a(x+m)2+b的图象向左平移2个单位得函数y=a(x+m+2)2+b的图象,因此将方程a(x+m)2+b=0的解x1=-2,x2=1分别减去2,即得所求方程的解.注:此题构造了二次函数.392∴=.∴AB=.∴AB==.∴AB=BE×tan E=(6+43)×3∵AH⊥BC,∴∠AHB=90°.∴∠ACE=∠AHB.∵∠B=∠△E,∴ABH∽△AEC.AB AH AE·AHAE AC AC∵AC=24,AH=18,AE=2OC=26,18×2639242注:此题构造了直角三角形.8.(1)15(2)=[解析](1)平行四边形的面积等于底乘高;(2)如图,连结BE,并延长BE交CD的延长线于点G,连结CE.易证△EAB≌△EDG.∴BE=EG.∴S四边形ABCD=△SBCG=2△SBCE=BC·EF=15.注:此题根据平行线间线段的中点构造了全等三角形.9.解:如图,延长AD交BC的延长线于E,过点D作DF⊥BE于F.∵∠BCD=150°,∴∠DCF=30°.∵CD=4,∴DF=2,CF=2 3.由题意得∠E=30°,∴DC=DE.∴CE=2CF=43.∴BE=BC+CE=6+4 3.3=23+4.答:电线杆的高度为(23+4)m.注:此题构造了直角三角形.三角函数只能应用于直角三角形中,因此用三角函数解决四边形或斜三角形的问题时,必须构造直角三角形.。
2018年浙江省中考数学《第34讲:归纳、猜想》课后练习含答案
B组
9. (2015 ·十堰 )如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火
柴棍.如果搭建正三角形和正六边形共用了
2016 根火柴棍,并且正三角形的个数比正六边
形的个数多 6 个,那么能连续搭建正三角形的个数是 ( )
第 9 题图
A . 222
B . 280
C. 286
D. 292
10.如图,在标有刻度的直线 l 上,从点 A 开始, 以 AB= 1 为直径画半圆,记为第 1 个半圆;
以 BC= 2 为直径画半圆,记为第 2 个半圆;
以 CD =4 为直径画半圆,记为第 3 个半圆;
以 DE = 8 为直径画半圆,记为第 4 个半圆,
…按此规律 ,继续 画半圆,则第 4 个半圆 的面积是第 3 个 半圆面积的
课后练习 34 归纳、猜想与说理型问题
A组
1.图 1 为雅婷左手拿着 3 张深灰色与 2 张浅灰色的牌叠在一起的情形.以下是她每次
洗牌的三个步骤:步骤一:用右手拿出叠在最下:将右手拿的 2 张牌依序交错插入左手拿的 3 张牌之间,如图 3.
步骤三:用左手拿着颜色顺序已改变的 5 张牌,如图 4.
第 1 题图
若依上述三个步骤洗牌,从图 1 的情形开始洗牌若干次后,其颜色顺序会再次与图
1
相同,则洗牌次数可能为下列何者? ( )
A. 18
B . 20
C. 25
D. 27
2. (2017 ·重庆 )下列图形都是由同样大小的菱形按照一定规律所组成的,其中第
1 个图
形中一共有 3 个菱形, 第 2 个图形中一共有 7 个菱形, 第 3 个图形中一共有 13 个菱形, …,
按此规律排列下去,第 9 个图形中菱形的个数为 ( )
2018届中考数学习题分项版解析汇编(第02期)专题3.4反比例函数(含解析)
专题3.4 反比例函数一、单选题1.【黑龙江省哈尔滨市2018年中考数学试题】已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B. 0 C. 1 D. 2【答案】D点睛:本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.2.【江苏省无锡市2018年中考数学试题】已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A. m+n<0 B. m+n>0 C. m<n D. m>n【答案】D【解析】分析:根据反比例函数的性质,可得答案.详解:y=−的k=-2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.点睛:本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.3.【江苏省淮安市2018年中考数学试题】若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C. 2 D. 6【答案】A【解析】分析:根据待定系数法,可得答案.详解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.点睛:本题考查了反比例函数图象上点的坐标特征,利用函数图象上点的坐标满足函数解析式是解题关键.4.【湖北省黄石市2018年中考数学试卷】已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A. x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D. x<﹣1或0<x<4【答案】B点睛:本题考查了一次函数与反比例函数的交点问题,能熟记函数的性质和图象是解此题的关键.5.【湖北省宜昌市2018年中考数学试卷】如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S 是受力面积,则p1,p2,p3,的大小关系正确的是()A. p1>p2>p3 B. p1>p3>p2 C. p2>p1>p3 D. p3>p2>p1【答案】D【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.点睛:此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.6.【山东省威海市2018年中考数学试题】若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A. y1<y2<y3 B. y3<y2<y1 C. y2<y1<y3 D. y3<y1<y2【答案】D点睛:此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.7.【浙江省湖州市2018年中考数学试题】如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2) B.(﹣1,2) C.(1,﹣2) D.(﹣2,﹣1)【答案】A点睛:此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.8.【山东省聊城市2018年中考数学试卷】春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过集中喷洒药物,室内空气中的含药量最高达到B.室内空气中的含药量不低于的持续时间达到了C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【解析】分析: 利用图中信息一一判断即可.详解: A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.点睛:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.9.【浙江省宁波市2018年中考数学试卷】如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A. 8 B. C. 4 D.【答案】A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.10.【云南省昆明市2018年中考数学试题】如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A. 2 B. C. D.【答案】B【解析】分析:如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;详解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,由△FOC∽△OBA,可得,∴,∴OB=,AB=,∴A(,),∴k=.故选:B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.【湖南省郴州市2018年中考数学试卷】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A. 4 B. 3 C. 2 D. 1【答案】B【详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+2)×2=3,∴S△AOB=3,故选B.【点睛】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.12.【吉林省长春市2018年中考数学试卷】如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k 的值为()A. 4 B. 2 C. 2 D.【答案】A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x轴,∴C(,2),把C(,2)代入y=得k=×2=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.13.【湖南省怀化市2018年中考数学试题】函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.【答案】B点睛:本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.二、填空题14.【上海市2018年中考数学试卷】已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是_____.【答案】k<1【解析】【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【详解】∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1,故答案为:k<1.【点睛】本题考查了反比例函数y=(k≠0,k为常数)的图象与性质,反比例函数的图象是双曲线,k>0时,图象位于一、三象限,k<0时,图象位于二、四象限,熟知这些相关知识是解题的关键.15.【山东省东营市2018年中考数学试题】如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.【答案】点睛:此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.【广西钦州市2018年中考数学试卷】如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于_____.【答案】9【解析】【分析】设出点A坐标,根据函数关系式分别表示各点坐标,根据割补法表示△BEF的面积,构造方程.∵S△BEF=7,∴2k1+﹣+k2=7,又∵k2=﹣k1,∴k1+×(﹣)=7,∴k1=9故答案为:9【点睛】本题是反比例函数综合题,解题关键是设出点B坐标继而表示出相关各点,应用面积的割补法构造方程.17.【湖北省荆门市2018年中考数学试卷】如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.【答案】【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=(负数舍去),∴k=ab=2,故答案为:2.【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.【湖北省孝感市2018年中考数学试题】如图,在平面直角坐标系中,正方形的顶点的坐标为,18.点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.【答案】7详解:如图,过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-1-x-,x=-2,∴D(-2,-3),CH=DG=BM=1-=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E(-,-4),∴EH=2-=,∴CE=CH-HE=4-=,∴S△CEB=CE•BM=××4=7.故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.19.【湖南省邵阳市2018年中考数学试卷】如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是_____.【答案】4【解析】【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【详解】∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,∴S△AOB=|k|=2,又∵函数图象位于一、三象限,∴k=4,故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,运用数形结合思想、正确理解k的几何意义是解此类问题的关键.20.【湖北省随州市2018年中考数学试卷】如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.【答案】3【详解】如图,过点A作AD⊥x轴,垂足为D,∵tan∠AOC==,∴设点A的坐标为(3a,a),∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,∴a=3a﹣2,得a=1,∴1=,得k=3,故答案为:3.【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【山东省烟台市2018年中考数学试卷】如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.【答案】-3详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.22.【江苏省盐城市2018年中考数学试题】如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________【答案】4【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.详解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴E(2a,),∵△BDE的面积为1,∴•a•(-)=1,解得k=4.故答案为4.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.23.【四川省内江市2018年中考数学试卷】已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).【答案】5π﹣10一个顶点是B、C的正方形的边长为2,橄榄形的面积为:=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.故答案为:5π﹣10.点睛:问题主要用过考查橄榄形的面积的计算来考查反比例函数图形的应用,关键是要分析出其图象特点,再结合性质作答.24.【山东省威海市2018年中考数学试题】如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE 的面积为S2,当S1>S2时,点P的横坐标x的取值范围为__.【答案】﹣6<x<﹣2.点睛:本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【湖南省张家界市2018年初中毕业学业考试数学试题】如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.【答案】12点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.26.【广西壮族自治区桂林市2018年中考数学试题】如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在第一象限的图像交于点E,∠AOD=30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________【答案】【解析】分析:过E作EF⊥x轴,垂足为F,则EF=1,易求∠DEF=30°,从而DE=,根据ΔODE的面积是求出OD=,从而OF=3,所以k=3.详解:如图,过点E作EF⊥x轴,垂足为点F,∵点E的纵坐标为1,∴EF=1,∵ΔODE的面积是,∴OD=,∵四边形OABC是矩形,且∠AOD=30°,∴∠DEF=30°,∴DF=∴OF=3,所以点E的坐标为(3,1),把点E的坐标代入反比例函数的解析式,可得k=3.故答案为3.点睛:本题是正方形和反比例函数的综合试题,解题过程中涉及解直角三角形,确定反比例函数的解析式等,确定点E的坐标是解题关键.27.【四川省眉山市2018年中考数学试题】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(-10,0),对角线AC和OB相交于点D且AC·OB=160.若反比例函数y=(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE∶S△OAB=________ .【答案】1:5【解析】分析:作CG⊥AO,BH⊥AO,根据菱形和三角形的面积公式可得S△OAC=S菱形=40,从而得OA=10,CG=8,在Rt△OGE中,根据勾股定理得OG=6,AG=4,即C(-6,8),根据全等三角形的性质和中点坐标公式可得B(-16,8),D(-8,4),将D代入反比例函数解析式可得k,设E(a,8),将点E坐标代入反比例函数解析式,可得E(-4,8);根据三角形面积公式分别求得S△OCE和S△OAB,从而得S△OCE:S△OAB.详解:作CG⊥AO,BH⊥AO,∵BO·AC=160,∴S菱形=·BO·AC=80,∴S△OAC=S菱形=40,∴·AO·CG=40,∵A(-10,0),∴OA=10,∴CG=8,又∵D在反比例函数上,∴k=-8×4=-32,∵C(-6,8),∴E(a,8),又∵E在反比例函数上,∴8a=-32,∴a=-4,∴E(-4,8),∴CE=2,∴S△OCE=·CE·CG=×2×8=8,S△OAB=·OA·BH=×10×8=40,∴S△OCE:S△OAB=8:40=1:5.故答案为:1:5.点睛:本题主要考查了反比例函数图象上点的坐标特征以及菱形性质的运用,解题时注意:菱形的对角线互相垂直平分.三、解答题28.【湖南省湘西州2018年中考数学试卷】反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1); B点坐标为(3,1);(2) P点坐标为(,0).【解析】【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).【点睛】本题考查了用待定系数法求反比例函数的解析式、最短路径问题,熟练掌握待定系数法求函数解析式是解题的关键.29.【湖南省长沙市2018年中考数学试题】如图,在平面直角坐标系xOy中,函数y=(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点M分别作x轴和y轴的垂线,垂足分别为A,B.(1)求∠OCD的度数;(2)当m=3,1<x<3时,存在点M使得△OPM∽△OCP,求此时点M的坐标;(3)当m=5时,矩形OAMB与△OPQ的重叠部分的面积能否等于4.1?请说明你的理由.【答案】(1)∠OCD=45°;(2)M(2,);(3)不存在.理由见解析.详解:(1)设直线PQ的解析式为y=kx+b,则有,解得,∴y=-x+m+1,令x=0,得到y=m+1,∴D(0,m+1),令y+0,得到x=m+1,∴C(m+1,0),∴OC=OD,∵∠COD=90°,∴∠OCD=45°.(2)设M(a,),∵△OPM∽△OCP,∴,∴OP2=OC•OM,当m=3时,P(3,1),C(4,0),OP2=32+12=10,OC=4,OM=,∴,∴10=4,∴4a4-25a2+36=0,(4a2-9)(a2-4)=0,∴a=±,a=±2,∵1<a<3,∴a=或2,当a=时,M(,2),PM=,CP=,,(舍去)当a=2时,M(2,),PM=,CP=,∴,成立,∴M(2,).(3)不存在.理由如下:当m=5时,P(5,1),Q(1,5),设M(x,),OP的解析式为:y=x,OQ的解析式为y=5x,①当1<x<5时,如图1中,∴E(,),F(x,x),S=S矩形OAMB-S△OAF-S△OBE=5-x•x-••=4.1,化简得到:x4-9x2+25=0,△<O,∴没有实数根.②当x≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.点睛:本题考查反比例函数综合题、矩形的性质、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题.30.【浙江省台州市2018年中考数学试题】如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).(1)求m,k的值;(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.【答案】(1)m=2,k=4;(2)AB=3.详解:(1)∵函数y=x的图象过点P(2,m),∴m=2,∴P(2,2),∵函数y=(x>0)的图象过点P,∴k=2×2=4;(2)将y=4代入y=x,得x=4,∴点A(4,4).将y=4代入y=,得x=1,∴点B(1,4).∴AB=4-1=3.点睛:本题考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.31.【四川省达州市2018年中考数学试题】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.【答案】(1)E(2,3);(2);(3).【解析】分析:(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CF,即可得出结论;(3)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.详解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.32.【山东省淄博市2018年中考数学试题】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【答案】(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.33.【北京市2018年中考数学试卷】在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.(1)求的值;(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.【答案】(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.详解:(1)解:∵点(4,1)在()的图象上.∴,∴.(2)① 3个.(1,0),(2,0),(3,0).②.当直线过(4,0)时:,解得.当直线过(5,0)时:,解得.当直线过(1,2)时:,解得.当直线过(1,3)时:,解得∴综上所述:或.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.34.【湖北省襄阳市2018年中考数学试卷】如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.【答案】(1)反比例函数的解析式为y1=﹣;直线解析式为y2=﹣x﹣3;(2);﹣4<x<0或x>1【详解】(1)把A(﹣4,1)代入得k=﹣4×1=﹣4,∴反比例函数的解析式为,把B(m,﹣4)代入得﹣4m=﹣4,解得m=1,则B(1,﹣4),把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,∴直线解析式为y2=﹣x﹣3;(2)AB=,观察图象可知当﹣4<x<0或x>1时,y1>y2.【点睛】本题考查了反比例函数与一次函数的交点问题,涉及到待定系数法,数形结合思想的应用,两点间的距离,熟练掌握待定系数法是解本题的关键.35.【湖北省恩施州2018年中考数学试题】如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE 的面积.【答案】(1)k=2; C(1,2);(2)8.详解:(1)令-2x+4=,则2x2-4x+k=0,∵直线y=-2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16-8k=0,解得k=2,∴2x2-4x+2=0,解得x=1,∴y=2,即C(1,2);点睛:此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.36.【山东省聊城市2018年中考数学试卷】如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.(1)求,的值;(2)求所在直线的表达式;(3)求的面积.【答案】(1)m=1,n=2.(2)y=-x+5;(3)详解:(1)由A(1,4),B(4,m)是函数(x>0)图象上的两点,∴4=,k1=4,∴(x>0)∴m=.∵(x<0)的图象和(x>0)的图象关于y轴对称,∴点A(1,4)关于y轴的对称点A1(-1,4)在(x<0)的图象上,∴4=,k2=-4,∴由点C(-2,n)是函数图象上的一点,∴n=2.(2设AB所在直线的表达式为y=kx+b,将A(1,4),B(4,1)分别代入y=kx+b,得解这个二元一次方程组,得.∴AB所在直线表达式为:y=-x+5(3)自A,B,C三点分别向x轴作垂线,垂足分别为A′,B′,C′,CC′=2,AA′=4,BB′=1,C′A′=3,A′B′=3,C′B′=6.∴′=×(2+4)×3+×(1+4)×3-×(2+1)×6=点睛:本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.37.【2018年湖南省湘潭市中考数学试卷】如图,点M在函数y=(x>0)的图象上,过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.(1)若点M的坐标为(1,3).①求B、C两点的坐标;②求直线BC的解析式;(2)求△BMC的面积.【答案】(1)①B(,3),C(1,1);②y=﹣3x+4;(2)【解析】分析:(1)把点M横纵坐标分别代入解析式得到点B、C坐标,应用待定系数法求BC解析式;(2)设出点M坐标(a,b),利用反比例函数性质,ab=3,用a、b表示BM、MC,求△BMC的面积.详解:(1)①∵点M的坐标为(1,3)且B、C函数(x>0)的图象上∴点C横坐标为1,纵坐标为1,点B纵坐标为3,横坐标为∴点C坐标为(1,1),点B坐标为②设直线BC解析式为把B、C点坐标代入得解得∴直线BC解析式为:点睛:本题考查反比例函数比例系数的几何意义、数形结合数学思想,解答过程中要注意用字母表示未知量,根据题意列出方程.38.【江苏省泰州市2018年中考数学试题】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.(1)设a=2,点B(4,2)在函数y1、y2的图象上.①分别求函数y1、y2的表达式;②直接写出使y1>y2>0成立的x的范围;(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.。
2018年浙江省中考数学《第41讲:课本题改编型问题》总复习讲解
第41讲 课本题改编型问题类型一 以题改题-情景不变,内容改变例1 课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC 中,∠B =30°,AD 和DE 是△ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD =BD ,DE =CE ,设∠C =x °,试画出示意图,并求出x 所有可能的值;(3)如图3,△ABC 中,AC =2,BC =3,∠C =2∠B ,请画出△ABC 的三分线,并求出三分线的长.【解后感悟】本题的母题在浙教版教材八上第63页探究活动.问题通过课本题再赋予新的定义,进行了类比探究,丰富问题内含.考查了学生学习的理解能力及动手创新能力,知识方面重点考查三角形内角、外角间的关系及等腰三角形知识,是一道体现能力的题目.(浙教版教材八上,第86页第16题)1.已知△ABC 中,AB =AC ,点E 、F 分别是直线BC ,AC 上的点,直线AE 、BF 相交于点P ,且CF =k·BE ,∠BAC =α.(1)若点E 、F 分别是边BC ,CA 上的点.①如图1,k =1,α=60°,求∠APF 的度数;②如图2,k =3,α=120°,求∠APF 的度数;(2)如图3,若点E 在边BC 上,点F 在CA 的延长线上,k =3,α=120°,求∠APF的度数.类型二 以题生题-借助习题,拓展问题例2 (2015·温州)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G.Pick ,1859~1942)证明了格点多边形的面积公式:S =a +12b -1,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S表示多边形的面积.如图,a =4,b =6,S =4+12×6-1=6. (1)请在图1中画一个格点正方形,使它内部只含有4个格点,并写出它的面积;(2)请在图2中画一个格点三角形,使它的面积为72,且每条边上除顶点外无其他格点......【解后感悟】本题的母题在浙教版教材八下第103页课题学习.本题是应用与设计作图,关键是理解皮克公式,根据题意求出a 、b 的值.(浙教版教材八下,第132页第11题)2.(2017·湖州)已知正方形ABCD 的对角线AC ,BD 相交于点O.(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F.若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH 交CE于点F ,交OC 于点G.若OE =OG ,①求证:∠ODG =∠OCE ;②当AB =1时,求HC 的长.类型三 借景编题-利用材料,设置问题例3 如图的一座拱桥,当水面宽AB 为12m 时,桥洞顶部离水面4m ,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是________________________________________________________________________.【解后感悟】本题的母题在浙教版教材九上第17页探究活动.此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.(浙教版教材九下,第10页第5题)3.(2015·衢州)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间...处有一条60cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A .144cmB .180cmC .240cmD .360cm类型四 多题联题-利用习题,组合编题例4 已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s(km )与时间t(h )的函数关系的图象,根据图象解答下列问题.(1)A 比B 后出发几个小时?B 的速度是多少?(2)在B 出发后几小时,两人相遇?【解后感悟】本题的母题在浙教版教材八上第166页第2题和第165页例2.本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.(浙教版教材九上,第149页第5题和第136页第6题)4.锐角△ABC 中,BC =6,S △ABC =12,两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y(y >0),当x =,公共部分面积y最大,y最大值=.类型五以题换题-结构不变,情景改变例5(2016·绍兴)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【解后感悟】本题的母题在浙教版教材九上第24页例1.此题主要通过例题的方法去解决新问题,正确表示出函数解析式是解题关键.(浙教版教材九下,第23页第5题;浙教版教材九上,第148页第2题)5.如图是一只球沿着斜面向下运动的截面图,球的半径为0.24m,接触点为B,BC=6m,斜面坡角为α=20°,求球最高点A离地面的距离AH. (精确到0.1m) (参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【课本改变题】教材母题--浙教版教材八下,第127页第4题提出问题:(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由;综合运用:(3)在(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,求图中阴影部分的面积.【方法与对策】本题通过课本题逐步深化,借助课本题模型联系前后知识和方法设置问题,绍兴市中考对该课本题也改编过.本题考查了三角形的综合知识.用到全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.这是中考课本题改编题的常用题型.【求最值时,忽视自变量的取值范围】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得的利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元;(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?第41讲 课本题改编型问题【例题精析】例1 (1)如图2作图. (2)如图3 ①、②作△ABC.①当AD =AE 时,∵2x +x =30+30,∴x =20.②当AD =DE 时,∵30+30+2x +x =180,∴x =40. (3)如图4,CD 、AE 就是所求的三分线.设∠B =α,则∠DCB =∠DCA =∠EAC =α,∠ADE =∠AED =2α,此时△AEC ∽△BDC ,△ACD ∽△ABC ,设AE =AD =x ,BD =CD =y ,∵△AEC ∽△BDC ,∴x ∶y =2∶3,∵△ACD ∽△ABC ,∴2∶x =(x +y)∶2,所以联立得方程组⎩⎪⎨⎪⎧x ∶y =2∶3,2∶x =(x +y )∶2,解得⎩⎨⎧x =2510,y =3510,即三分线长分别是2510和3510.例2 (1)画法不唯一,如答图1或2. (2)画法不唯一,如答图3或4.例3 由题意可得出:y =a(x +6)2+4,将(-12,0)代入得出,0=a(-12+6)2+4,解得:a =-19,∴选取点B 为坐标原点时的抛物线解析式是:y =-19(x +6)2+4.故答案为:y =-19(x +6)2+4.例4 (1)由图可知,A 比B 后出发1小时;B 的速度:60÷3=20(km /h );(2)由图可知点D(1,0),C(3,60),E(3,90),设OC 的解析式为s =kt ,则3k =60,解得k =20,所以s=20t ,设DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =0,3m +n =90,解得⎩⎪⎨⎪⎧m =45,n =-45,所以s =45t -45,由题意得⎩⎪⎨⎪⎧s =20t ,s =45t -45,解得⎩⎪⎨⎪⎧t =95,s =36,所以,B 出发95小时后两人相遇.例5 (1)由已知可得:AD =6-1-1-1-122=54m ,则S =1×54=54m 2, (2)设AB =x m ,则AD =⎝⎛⎭⎫3-74x m ,∵3-74x>0,∴0<x<127,设窗户面积为S ,由已知得:S =AB·AD =x ⎝⎛⎭⎫3-74x =-74x 2+3x =-74⎝⎛⎭⎫x -672+97,当x =67m 时,且x =67m 在0<x<127的范围内,S 最大值=97m 2>1.05m 2,∴与课本中的例题比较,现在窗户透光面积的最大值变大.【变式拓展】1.(1)①∵AB =AC ,α=60°,∴△ABC 为等边三角形.∵k =1,∴CF =BE ,∵⎩⎪⎨⎪⎧BC =AB ,∠BCF =∠ABE ,CF =BE ,∴△ABE ≌△BCF ,∴∠CBF =∠BAE ,∴∠APF =∠BAE +∠ABP =∠CBF +∠ABP =60°;②∵CF =3·BE ,∴CF BE =3,∵AB =AC ,α=120°,∴BC AB =3.∵⎩⎪⎨⎪⎧CF BE =BC AB ,∠BCF =∠ABE ,∴△ABE ∽△BCF ,∴∠CBF =∠BAE ,∴∠APF =∠BAE +∠ABP =∠CBF +∠ABP =30°. (2)∵⎩⎪⎨⎪⎧CF BE =BC AB ,∠BCF =∠ABE ,∴△ABE ∽△BCF ,∴∠CFB =∠AEB ,又∵∠CAE =∠ FAP ,∴∠APF =∠C =30°.2. (1)如题图1中,∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°,∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE ,∴△DOG ≌△COE(ASA),∴OE =OG . (2)①证明:如题图2中,∵OG =OE ,∠DOG =∠COE =90°,OD =OC ,∴△ODG ≌△OCE ,∴∠ODG =∠OCE.②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC =∠ACB =45°,∵EH ⊥BC ,∴∠BEH =∠EBH =45°,∴EH =BH =1-x ,∵∠ODG =∠OCE ,∴∠BDC -∠ODG =∠ACB -∠OCE ,∴∠HDC =∠ECH ,∵EH ⊥BC ,∴∠EHC =∠HCD =90°,∴△CHE∽△DCH ,∴EH HC =HC CD ,∴HC 2=EH·CD ,∴x 2=(1-x)·1,解得x =5-12或-5-12(负值舍弃),∴HC =5-12. 3. B 4.3 6 5.过点B 作BE ⊥AH ,BF ⊥CH ,在Rt △OBE 中,cos 20°=OE OB =OE 0.24,∴OE =0.24×cos 20°≈0.23.在Rt △BCF 中,sin 20°=BF BC =BF 6,∴BF =6×sin 20°≈2.04,∴AH =AO +OE +EH =0.24+0.23+2.04=2.51≈2.5m .【热点题型】【分析与解】(1)∵四边形ABCD 是正方形,∴AB =DA ,∠ABE =90°=∠DAH.∴∠HAO +∠OAD =90°.∵AE ⊥DH ,∴∠ADO +∠OAD =90°.∴∠HAO =∠ADO.∴△ABE ≌△DAH(ASA),∴AE =DH.(2)EF =GH.将FE 平移到AM 处,则AM ∥EF ,AM =EF.将GH 平移到DN 处,则DN ∥GH ,DN =GH.∵EF ⊥GH ,∴AM ⊥DN ,根据(1)的结论得AM =DN ,所以EF =GH ;(3)∵四边形ABCD 是正方形,∴AB ∥CD ,∴∠AHO =∠CGO ,∵FH ∥EG ,∴∠FHO=∠EGO ,∴∠AHF =∠CGE ,∵∠A =∠C =90°,∴△AHF ∽△CGE ,∴AF CE =FH EG =FO OE=12,∵EC =2,∴AF =1,过F 作FP ⊥BC 于P ,根据勾股定理得EF =17,∵FH ∥EG ,∴FO FE =HO HG ,根据(2)知EF =GH ,∴FO =HO.∴S △FOH =12FO 2=12×(13EF)2=1718,S △EOG =12EO 2=12×(23EF)2=6818,∴阴影部分面积为8518.【错误警示】(1)销售量y(件):1000-10x ;销售玩具获得利润w(元):-10x 2+1300x -30000; (2)-10x 2+1300x -30000=10000,解之得:x 1=50,x 2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润. (3)根据题意得⎩⎪⎨⎪⎧1000-10x ≥540,x ≥44,解之得:44≤x ≤46,w =-10x 2+1300x -30000=-10(x -65)2+12250,∵a =-10<0,对称轴x =65,∴当44≤x ≤46时,y 随x 增大而增大.∴当x =46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.。
2018年浙教版初三数学中考复习题含答案
()
1
3
3
3
3
A. 4
B. 5
C. 7
D. 8
10、如图,在 X 轴上有两点 A(-3,0)和点 B(4,0),有一动点 C 在线段 AB 上从点 A 运动到点 B
(不与点 A,B 重合),以 AC 为底边作等腰△AEC 交反比例函数 y
2 (x 0) 图象于点 x
E,以 BC 为 底边作等腰三角形△BFC 交反比例函数 y 4 (x 0) 图象于点 F,连接 EF, x
租房奖励,规定前 1000 户(含第 1000 户)每户每天奖励 8 元,1000 户以后每户每天补助
5 元,按租房 400 天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
23.(本题 12 分)在平面直角坐标系中,已知抛物线 y
1 x2 2
bx c
x
的图像与 轴交于
点 A(-2,0),点 B(6,0),与 y 轴交于点 C,顶点为 D.
数学试卷
友情提示: 1.全卷共 4 页,有三大题,24 小题.全卷满分 150 分,考试时间 120 分钟. 2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3.请仔细审题,细心答题,相信你一定会有出色的表现!
卷Ⅰ
一、选择题(本题有 10 小题,每小题 4 分,共 40 分,每小题只有一个选项是正确的.不
)
A. 5
B. 6
C. 7
D. 8
8、如图,⊙O 是△ABC 的外接圆,连接 OA、OB,∠C =40°,则∠OAB 的度数为
()
A.30°
B.40°
C.50°
D.80°
9、如图,AC 是菱形 ABCD 的对角线,点 M、N 分别在 AD、BC 上,BM、MN 分别交
【中考汇编】浙江省2018年中考数学二轮复习:题型研究针对演练 汇编 110页含答案
浙江省2018年中考二轮复习:题型研究针对演练汇编目录浙江省2018年中考数学复习题型研究题型01数学思想方法类型1分类讨论思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型2数形结合思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型3方程与函数思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型4转化思想针对演练含答案浙江省2018年中考数学复习题型研究题型01数学思想方法类型5整体思想针对演练含答案浙江省2018年中考数学复习题型研究题型02二次函数性质综合题类型1二次项系数确定型针对演练含答案浙江省2018年中考数学复习题型研究题型02二次函数性质综合题类型2二次项系数不确定型针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型1图象类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型2最值类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型3几何类针对演练含答案浙江省2018年中考数学复习题型研究题型03函数实际应用题类型4抛物线类针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型1新法则运算学习型针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型2新概念学习型针对演练含答案浙江省2018年中考数学复习题型研究题型04新定义与阅读理解题类型3新解题方法型针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型1动点问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型2平移变换问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型3折叠问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型4旋转变换问题针对演练含答案浙江省2018年中考数学复习题型研究题型05几何探究题类型5类比拓展探究问题针对演练含答案题型一 数学思想方法 类型一 分类讨论思想针对演练1. 已知直角三角形两边的长a 、b 满足|a -2|+b 2-3=0,则第三边长为_________.2. 若关于x 的方程kx 2+2(k +1)x +k -1=0有实数根,则k 的取值范围是________. 3. 已知正方形ABCD ,以CD 为边作等边△CDE,则∠AED 的度数是_________.4. A ,B 两地相距450千米,甲、乙两车分别从A ,B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是________.5. 如果四个整数中的三个分别是2,4,6,且它们的中位数也是整数,那么它们的中位数是________.6. (2017襄阳)在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为________.7. 如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,那么满足条件的点P 共有________个.第7题图8. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.9. 在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD·DC,则∠BCA 的度数为________. 10. (2017杭州)已知△ABC 的三个顶点为A(-1,-1),B (-1,3),C(-3,-3),将△ABC 向右平移m(m>0)个单位后,△ABC 某一边的中点恰好落在反比例函数y =3x 的图象上,则m 的值为________.11. 如图,在Rt △ABC 中,∠C =90°,翻折∠C,使点C 落在斜边AB 上某一点D 处,折痕为EF(点E 、F 分别在边AC 、BC 上)当AC =3,BC =4时,AD 的长为________.第11题图12. (2017鄂州)如图,AC ⊥x 轴于点A ,点B 在y 轴的正半轴上,∠ABC =60°,AB =4,BC =23,点D 为AC 与反比例函数y =kx 的图象的交点,若直线BD 将△ABC 的面积分成1∶2的两部分,则k 的值为________.第12题图13. 如图,直线y =3x +3交x 轴于点A ,交y 轴于点B ,过A ,B 两点的抛物线交x 轴于另一点C(3,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的点Q 的坐标;若不存在,请说明理由.第13题图答案1. 1或7 【解析】由非负数的性质知,a -2=0且b 2=3,∴a =2,b =3,①当a 为斜边时,则由勾股定理得,第三边为1;②当a 为直角边时,则由勾股定理得,第三边为7.2. k≥-13 【解析】当k =0时,方程为2x -1=0,x =12,方程有实根;当k≠0时,方程为一元二次方程,方程要有实数根,则[2(k +1)]2-4k(k -1)≥0,即k≥-13,综上所述,k 的取值范围是k≥-13.3. 15°或75° 【解析】①当点E 在正方形ABCD 外部时,AD =DE ,则∠AED =180°-(90°+60°)2=15°;②当点E 在正方形ABCD 内部时,AD =DE ,则∠AED =180°-(90°-60°)2=75°.4. 2或2.5 【解析】①相遇前:120t +80t +50=450,解得t =2;②相遇后:120t +80t -50=450,解得t =2.5.5. 3或4或5 【解析】①当数据为2,2,4,6时,中位数为3;②当数据为2,4,4,6时,中位数为4;③当数据为2,4,6,6时,中位数为5.6. 15°或105° 【解析】⊙O 的半径为1,弦AB =1,∴OA =OB =AB ,∴△AOB 是等边三角形,∠OAB =60°,∵弦AC =2,∴∠OAC =45°.如解图①,此时∠BAC=∠BAO-∠CAO=60°-45°=15°;如解图②,∠BAC =∠BAO+∠CAO=60°+45°=105°.第6题解图7. 6 【解析】当以AB 为斜边时,∠APB =90°,与坐标轴有3个交点;当∠PAB=90°时,与y 轴有一个交点;当∠PBA=90°时,与x 轴,y 轴各有1个交点.∴满足条件的点P 共有6个.8. 248或296 【解析】设第一次购书原价为a 元,则第二次购书原价为3a 元,易知第一次购书原价必然不超过100元,否则两次付款必然大于229.4,故分类讨论如下: ①若a≤100且3a≤100,显然a +3a≤200<229.4,舍去;②若a≤100且100<3a≤200,则a +0.9×3a=229.4,解得a =62,所以两次购书原价和为4a =4×62=248元;③若a≤100且3a >200,则a +0.7×3a =229.4,解得a =74, 所以两次购书原价和为4a =4×74=296元.综上所述:两次购书的原价和为248元或296元.9. 65°或115° 【解析】①如解图①,当△ABC 为锐角三角形时,△ABD ∽△CAD ,∠BCA =∠BAD =90°-25°=65°;②如解图②,当△ABC 为钝角三角形时,∠BCA =∠CDA +∠CAD=90°+∠B =90°+25°=115°.图①图②第9题解图10. 0.5或4 【解析】依题可得:有两种可能,即AC 、AB 中点落在反比例函数y =3x 的图象上.①若为AC 中点(-2,-2)向右平移m 个单位后落在y =3x 的图象上,则有点(m -2,-2)在y =3x 的图象上,代入得-2=3m -2,∴-2m +4=3,∴m =0.5;②若为AB 中点(-1,1)向右平移m 个单位后落在y =3x 图象上,则有点(m -1,1)在y =3x 的图象上,代入得1=3m -1,∴m -1=3,∴m =4.所以m为0.5或4. 11. 1.8或2.5 【解析】有两种情况:①若CE∶CF=3∶4,如解图①所示.∵CE ∶CF =AC∶BC,∴EF ∥AB.由折叠性质可知,CD ⊥EF ,∴CD ⊥AB ,即此时CD 为AB 边上的高.在Rt △ABC 中,AC =3,BC =4,∴AB =5,∴cosA =0.6,AD =AC·cosA =3×0.6=1.8;②若CF∶CE=3∶4,如解图②所示.∴△CE F∽△CBA,∴∠CEF =∠B.由折叠性质可知,∠CEF +∠EC D =90°,又∵∠A+∠B=90°,∴∠A =∠ECD,∴AD =CD.同理可得:∠B=∠FCD,CD =BD ,∴此时AD =BD =12×5=2.5.综上所述,AD 的长为1.8或2.5.第11题解图①第11题解图②12. -8或-4 【解析】如解图,过点C 作CM⊥AB 于点M ,在Rt △CBM 中,BC =23,∠ABC=60°,∴BM =3,CM =3,∴S △ABC =12A B ·CM =12AC ·AO =6,∵BD 将S △ABC 分成1∶2的两部分,则AD =13AC 或AD =23AC ,∵点D 在反比例函数y =k x 上,∴k =-13AC ·OA =-4或k =-23AC ·OA =-8.第12题解图 13. 解:(1)设抛物线的表达式为y =ax 2+bx +c , ∵直线y =3x +3交x 轴于点A ,交y 轴于点B , ∴点A 的坐标为(-1,0),点B 的坐标为(0,3), 又∵抛物线经过A ,B ,C 三点,点C 的坐标为(3,0), ∴⎩⎪⎨⎪⎧a -b +c =09a +3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =2c =3, ∴抛物线的表达式为y =-x 2+2x +3;(2)∵y=-x 2+2x +3=-(x -1)2+4, ∴该抛物线的对称轴为直线x =1.设点Q 的坐标为(1,m),则AQ =4+m 2,BQ =1+(3-m )2,AB =10.当AB =AQ 时,10=4+m 2,解得m =±6, ∴点Q 的坐标为(1,6)或(1,-6);当AB =BQ 时,10=1+(3-m )2,解得m 1=0,m 2=6, ∴点Q 的坐标为(1,0)或(1,6),但当点Q 的坐标为(1,6)时,点A ,B ,Q 在同一条直线上,∴舍去; 当AQ =BQ 时,4+m 2=1+(3-m )2,解得m =1, ∴点Q 的坐标为(1,1).∴抛物线的对称轴上存在点Q(1,6),(1,-6),(1,0),(1,1),使△ABQ 是等腰三角形.第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练1. 二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有( )第1题图A. ①②B. ①③C. ②③D. ①②③2. 若m、n(其中n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b<a,则m,n,b,a的大小关系是( )A. m<a<b<nB. a<m<n<bC. b<n<m<aD. n<b<a<m3. (2017凉山州)小明和哥哥从家里出去买书,从家出来走了20分钟到一个离家1000米的书店,小明买了书后随即按原速返回;哥哥看了20分钟书后,用15分钟返回家.下面的图形中哪一个表示哥哥离家时间与距离之间的关系( )m<0的图象分别交x轴、y轴于点M,N,线段MN上两点在x轴的垂4. 如图,函数y=mx-4m()足分别为A1,B1,若OA1+OB1>4,则△OAA1的面积S1与△OBB1的面积S2的大小关系是( )第4题图A. S1>S2B. S1=S2C. S1<S2D. 不确定5. 如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_________.第5题图6. 我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图,在一个边长为1的正方形纸板上,依次贴上面积为12,14,18,…,12n 的矩形彩色纸片(n 为大于1的整数).请你用“数形结合”的思想,依数形变化的规律,计算12+14+18+…+12n =________.第6题图7. 如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x (x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.第7题图8. 如图,矩形ABCD 的长AD =5 cm ,宽AB =3 cm ,长和宽都增加 x cm ,那么面积增加y cm 2. (1)写出y 与x 的函数关系式;(2)当增加的面积y =20 cm 2时,求相应的x 是多少?第8题图9. (2017丽水)如图①,在△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A -C -B 运动,点Q 从点A 出发以a(cm/s)的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ 的面积为y(cm 2),y 关于x 函数图象由C 1,C 2两段组成,如图②所示.(1)求a 的值;(2)求图②中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时,△APQ 的面积大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.第9题图答案1. B 【解析】∵b 2-4ac>0,∴4ac<b 2;当x =-1时,y<0,即a -b +c<0,∴a +c<b ;∵x=-b2a>1,a <0,∴-b<2a ,2a +b>0.故正确的有①③. 2. D 【解析】∵1-()x -a ()x -b =0,∴1=()x -a ()x -b ,设y 1=1,y =()x -a ()x -b ,画出图象得,n<b<a<m.第2题解图3. D 【解析】根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x 轴的线段.4. A 【解析】设A(a ,am -4m),B(b ,bm -4m),结合图象知,S 1=12a(am -4m),S 2=12b(bm -4m),S 1-S 2=12am(a -4)-12bm(b -4)=12m ×(a 2-4a -b 2+4b)=12m[(a +b)×(a-b)-4(a -b)]=12m(a -b)(a +b -4),∵OA 1+OB 1=a +b >4,∴S 1-S 2=12m(a -b)(a +b -4)>0,∴S 1>S 2.5. x>16. 1-12n 【解析】由正方形的边长为1,得正方形的面积为1,正方形减去未贴彩色纸片部分的面积即是已贴彩色纸片部分的面积,12+14+18+…+12n =1-12n .7. 6 【解析】如解图,分别过A ,B 两点作x 轴的垂线,垂足分别为N 、M ,则S △BOM S △AON =19=⎝ ⎛⎭⎪⎫OB OA 2,∴OB OA =13,∵S △AOC =2×S △AON =9,∴S △ABC =23×9=6.第7题解图 8.解:(1)由题意可得:(5+x)(3+x)-3×5=y ,化简得y =x 2+8x.故y 与x 的函数关系式为y =x 2+8x ;(2)把y =20代入解析式y =x 2+8x 中得x 2+8x -20=0, 解得x 1=2,x 2=-10(舍去).∴当边长增加2 cm 时,面积增加20 cm 2.9. 解:(1)如解图①,过点P 作PD⊥AB 于点D.9题解图①∵∠A =30°,PA =2x , ∴PD =PA·sin30°=2x·12=x ,∴y =12AQ ·PD =12ax ·x =12ax 2.由图象得,当x =1时,y =12,则12a ·12=12, ∴a =1;(2)如解图②,当点P 在BC 上时,PB =5×2-2x =10-2x.第9题解图②∴PD =PB·sinB =(10-2x)·sinB , ∴y =12AQ ·PD =12x ·(10-2x)·sinB.由图象得,当x =4时,y =43,∴12×4×(10-8)·sinB =43,∴sinB =13, ∴y =12x ·(10-2x)·13=-13x 2+53x ;(3)令12x 2=-13x 2+53x ,解得x 1=0(舍去),x 2=2.由图象得,当x =2时,函数y =12x 2的最大值为y =12×22=2.将y =2代入函数y =-13x 2+53x ,得2=-13x 2+53x ,解得x 1=2,x 2=3.∴由图象得,x 的取值范围是2<x <3.第二部分 题型研究题型一 数学思想方法 类型三 方程与函数思想针对演练1. 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少kg 货物.设甲每小时搬运x kg 货物,则可列方程为( )A.5000x -600=8000xB. 5000x =8000x +600C.5000x +600=8000xD.5000x =8000x -6002. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH.若BE∶EC=2∶1,则线段CH 的长是( )A. 3B. 4C. 5D. 6第2题图3. 如图,在△ABC 中, AB =AC ,∠BAC =120°, AD ⊥BC 于点D ,AE ⊥AB 交BC 于点E.若 S △ABC =m 2+9n 2,S △ADE =mn ,则m 与n 之间的数量关系是( )第3题图A. m =3nB. m =6nC. n =3mD. n =6m4. 已知:M ,N 两点关于y 轴对称,且点M 在双曲线y =12x 上,点N 在直线y =x +3上,设点M的坐标为(a ,b),则二次函数y =-abx 2+(a +b)x( )A .有最大值,最大值为-92B .有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为-925. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )6. 若3x 2m y m与x 4-n y n -1是同类项,则m +n =________.7. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m.8. 设直线y =kx +k -1和直线y =()k +1x +k(k 是正整数)与x 轴围成的三角形面积为S k ,则S 1+S 2+S 3+…+S 2018的值是________.9. 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元? (2)房价定为多少时,宾馆的利润最大? 答案1. B 【解析】甲每小时搬运x kg 货物,则乙每小时搬运(x +600)kg 货物,根据题意得5000x =8000x +600,故选B. 2. B 【解析】由题意设C H =x ,则DH =EH =(9-x),∵BE ∶EC =2∶1,∴CE =13BC =3,∴在Rt △ECH 中,EH 2=EC 2+CH 2,即(9-x )2=32+x 2,解得x =4,即CH =4.3. A 【解析】∵AB=AC ,∠BAC =120°,∴∠B =∠C=30°,∵AD ⊥BC ,AE ⊥AB ,∴∠BEA=∠BAD=60°,∠EAC =∠C=30°,设DE =a ,则AE =CE =2a ,∴BC =6a ,∴S △ABC =6S △ADE ,即m2+9n 2=6mn ,∴()m -3n 2=0,∴m =3n.4. B 【解析】∵M,N 两点关于y 轴对称,点M 的坐标为(a ,b),∴N 点的坐标为(-a ,b).又∵点M 在反比例函数y =12x的图象上,点N 在一次函数y =x +3的图象上,∴⎩⎪⎨⎪⎧b =12a b =-a +3,即⎩⎪⎨⎪⎧ab =12a +b =3,∴二次函数y =-abx 2+(a +b)x =-12x 2+3x =-12(x -3)2+92.∵二次项系数为-12<0,∴函数有最大值,最大值为92.5. B 【解析】根据题意可知,需分两种情况讨论:①当P 在AB 上时,x 的取值范围是0<x≤3,此时点D 到PA 的距离等于AD 的长度4,∴y 关于x 的函数图象是一条平行于x 轴的直线;②当P 在BC 上时,x 的取值范围是3<x≤5,∵∠BAP +∠DAE=∠BAP+∠APB,∴∠DAE =∠APB,又∵∠B=∠DEA=90°,∴△ABP ∽△DEA ,∴DE AB =AD AP ,∴y 3=4x ,∴y =12x,∴y 关于x 的函数图象是双曲线的一部分,由k =12可得函数在第一象限,且y 随x 的增大而减小.综合①②可知B 选项正确.第5题解图6. 3 【解析】根据同类项的概念得,⎩⎪⎨⎪⎧2m +n =4m -n =-1,解得m =1,n =2,∴m +n =3.7. 10 【解析】在函数表达式y =-112(x -4)2+3中令y =0,得-112(x -4)2+3=0,解得x 1=10,x 2=-2(舍去),∴铅球推出的距离是10 m.8. 20184038 【解析】∵方程组⎩⎨⎧y =kx +k -1y =()k +1x +k的解为⎩⎪⎨⎪⎧x =-1y =-1,∴两条直线的交点为()-1,-1,两直线与x 轴的交点分别为⎝⎛⎭⎪⎫1-k k ,0,⎝ ⎛⎭⎪⎫-k k +1,0,∴S k =12×1×⎝⎛⎭⎪⎫1-k k --k k +1=12⎝ ⎛⎭⎪⎫1k -1k +1,则S1+S 2+S 3+…+S 2018=12×(1-12+12-13+13-14+…+12017-12018+12018-12019)=12×⎝ ⎛⎭⎪⎫1-12019=20184038. 9. 解:(1)若每个房间定价增加40元,则这个宾馆这一天的利润为(180+40-20)×(50-4010)=9200(元);(2)设房价增加x 元时,利润为w ,则w =(180-20+x)(50-x10)=-110x 2+34x +8000=-110(x -170)2+10890,当x =170时,房价为170+180=350(元),w 最大为10890. 即当房价定为350元时,宾馆的利润最大.第二部分 题型研究题型一 数学思想方法 类型四 转化思想针对演练1. 我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为 3x(x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A. 转化思想B. 函数思想C. 数形结合思想D. 公理化思想2. 已知a 2-b 2=-16,a -b =12,则a +b a -b 的值为( )A. -12B. 13C. -23D. -323. (2017温州)我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0.它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-34. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14a 2C. 59a 2D. 49a 2第4题图5. 如图,在大长方形ABCD 中,放入六个相同的小长方形,则图中阴影部分面积(单位:cm 2)为( )第5题图A. 16B. 44C. 96D. 1406. 设m 2+m -1=0,则代数式m 3+2m 2+2017的值为( ) A. 2016 B. 2017 C. 2018 D. 20207. 如图, △ABC 经过平移得到△A′B′C′, 若四边形ACDA′的面积为6 cm 2,则阴影部分的面积为________cm 2.第7题图8. 如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是_________寸.第8题图9. 三个同学对问题“若方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,求方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.10. 如图,△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN=45°.若BM =1,CN =3,求MN 的长.第10题图 答案1. A2. C 【解析】∵()a +b ()a -b =-16,a -b =12,∴a +b =-13,∴a +b a -b =-23.3.D 【解析】令y =2x +3,则原方程变形为y 2+2y -3=0,解得y 1=1,y 2=-3,所以2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3.4. D 【解析】如解图,过E 作BC 和CD 的垂线,垂足分别为G ,H ,则△EGM≌△EHN,∴重叠部分四边形EMCN 的面积等于正方形EGCH 的面积,∵EC =2AE ,∴CE =23AC ,EG =23AB =23a ,∴正方形EGCH 的面积为49a 2.第4题解图5. B 【解析】设小长方形的长和宽分别为x ,y ,则由图形得⎩⎪⎨⎪⎧y +3x =14y +x -2x =6,解得⎩⎪⎨⎪⎧x =2y =8,则阴影部分面积为14×10-6×2×8=140-96=44.6. C 【解析】∵m 2+m -1=0,∴m 2+m =1,则m 3+2m 2+2017=m(m 2+m)+m 2+2017=m 2+m +2017=1+2017=2018.7. 6 【解析】∵由平移性质得,△ABC 的面积等于△A′B′C′的面积, ∴阴影部分的面积等于四边形ACDA′的面积等于6 cm 2.第7题解图8. 73 【解析】立体图形转化为平面图形,展开后变为长方形,根据题意得,∠C =90°,BC =3×()10+6=48,∴AB =AC 2+BC 2=552+482=73.第8题解图9. ⎩⎪⎨⎪⎧x =5y =10 【解析】将方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2变为 ⎩⎪⎨⎪⎧35a 1x +25b 1y =c 135a 2x +25b 2y =c 2,设35x =m ,25y =n ,则原方程组转化为⎩⎪⎨⎪⎧a 1m +b 1n =c 1a 2m +b 2n =c 2,再根据方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,所以得出⎩⎪⎨⎪⎧m =3n =4,即⎩⎪⎨⎪⎧35x =325y =4,解得,⎩⎪⎨⎪⎧x =5y =10.10. 解:把△ABM 绕点A 逆时针旋转90°得到的△ACG,连接NG ,如解图,第10题解图∴∠BAM =∠GAC,AM =AG , ∴△ABM ≌△ACG.∵∠MAN =45°, ∠BAC =90°, ∴∠GAN =∠MAN =45°, ∴△MAN ≌△GAN. ∴MN =NG ,∴∠BCA+∠ACG=90°.在Rt△GCN中,NG=CN2+CG2=10,∴ MN=NG=10.第二部分 题型研究题型一 数学思想方法 类型五 整体思想针对演练1. 已知:a -b =35,b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于________.2. 如图,已知△ABC 的周长为20,一半径为1的圆紧贴三角形外侧旋转一周所经过的路程为________.第2题图3. 已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,则阴影部分的面积为________.第3题图4. 角α、β、γ中有两个锐角和一个钝角,其数值已给出,在计算115(α+β+γ)的值时,全班得出23.5°、24.5°、25.5°这样三种不同结果,其中确定有正确的答案,那么α+β+γ=________.5. 已知方程组⎩⎪⎨⎪⎧4x +5y =55x +4y =7,求代数式x +y 的值等于________.6. 已知1x +1y =2,则2x -3xy +2yx +xy +y的值为________.7. 计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________.8. 如图,已知Rt △ABC 的周长为2+6,其中AB =2,则这个三角形的面积是________.第8题图9. 如图,△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为________.第9题图10. 分解因式:(x 2-3x +2)(x 2-3x -4)-72.11. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?12. 如图,矩形ABCD 中,AB =6,AD =8,P 是BC 上一点,PE ⊥BD 于E ,PF ⊥AC 于F ,求PE +PF 的长.第12题图 答案1. -225 【解析】可将ab +bc +ca 当作整体去求解,不用分别求出a 、b 、c 的值.∵a-b =35,b -c =35,∴a -c =65,则有(a -b)2+(b -c)2+(c -a)2=5425,即a 2+b 2+c 2-ab -bc -ac =2725,又∵a2+b 2+c 2=1,∴ab +bc +ac =-225.2. 20+2π 【解析】⊙O 在△ABC 的三个顶点处所转过的圆心角度数和为360°×3-90°×2×3-180°=360°.所以总长度为L =20+2π.3.3π2【解析】将五个扇形的圆心角度和作为整体,∵五个扇形的圆心角的和=(5-2)×180°=540°,r =1,∴S 阴影部分=540×π×12360=3π2.4. 352.5° 【解析】将a +β+r 看作整体.设0°<α<90°,0°<β<90°,90°<γ<180°,∴90°<α+β+γ<360°,∴6°<115(α+β+γ)<24°.∵23.5°、24.5°、25.5°中有正确答案,∴115(α+β+γ)=23.5°,∴α+β+γ=352.5°.5. 43 【解析】将(x +y)作为整体,方程组中的两个方程相加得:9x +9y =12,∴9(x +y)=12,即x +y =43.6. 13 【解析】∵1x +1y =2,∴x +y =2xy ,∴2x -3xy +2y x +xy +y =2(x +y )-3xy (x +y )+xy =xy 3xy =13.7. 16 【解析】设12+13+14+15=a ,则原式=(1-a)·(a+16)-(1-a -16)a =16+56a -a 2-56a +a 2=16.8. 12 【解析】在Rt △ABC 中,根据勾股定理,得a 2+b 2=22,即(a +b)2-2ab =4,又∵a+b=6,∴(6)2-2ab =4,∴ab =1,∴S =12ab =12.9. 13 【解析】∵DE 是AB 的垂直平分线,∴EA =EB ,则△BCE 的周长=BC +EC +EB =BC +EC+EA =B C +AC =13.10. 解:设x 2-3x =a , 则原式=(a +2)(a -4)-72 =a 2-2a -80 =(a -10)(a +8)=(x 2-3x -10)(x 2-3x +8)=(x -5)(x +2)(x 2-3x +8).11.解:设甲、乙、丙三种货物的单价各为x 、y 、z 元, 由题意可得:3x +7y +z =3.15 ①, 4x +10y +z =4.20 ②,三个未知数,2个方程,故考虑将x +y +z 当作整体来解答. ②-①得x +3y =1.05 ③, ③×3得3x +9y =3.15 ④, ②-④得x +y +z =1.05,答:购甲、乙、丙各1件,共需1.05元.12. 解:由已知条件并不能求得PE 、PF 的长,我们把PE +PF 的值看成一个整体.由题设条件可知:△BPE∽△BDC,∴PE DC =BP BD , ∵△CPF ∽△CAB , ∴PF AB =CP CA, 又∵四边形ABCD 为矩形,∴AB =DC =6,AC =BD =AB 2+AD 2=62+82=10, ∴PE +PF AB =BP +CP AC =810,∴PE +PF =4.8.第二部分 题型研究题型二 二次函数性质综合题 类型一 二次项系数确定型针对演练1. 已知抛物线y =x 2+px +q 的顶点M 为直线y =12x +12与y =-x +m -1的交点.(1)用含m 的代数式来表示顶点M 的坐标;(2)若m =6,当x 取值为t -1≤x≤t+3时,二次函数y 最小值=2,求t 的取值范围;(3)将抛物线y =x 2+px +q 向右平移1个单位,再向下平移2个单位后,与抛物线y =(x -3)2+2重合,求p 、q 的值.2. 已知抛物线y =x 2-2bx +c.(1)若抛物线的顶点坐标为(2,-3),求b ,c 的值;(2)若b +c =0,是否存在实数x ,使得相应的y 的值为1,请说明理由; (3)若c =b +2且抛物线在-2≤x≤2上的最小值是-3,求b 的值.3. 已知抛物线y =x 2-(m +1)x +12(m 2+1).(1)若抛物线与x 轴有交点,求m 的值;(2)在(1)的条件下,先作y =x 2-(m +1)x +12(m 2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y =2x +n(n≥m)与变化后的图象有公共点时,求n 2-4n 的最大值和最小值.4. 如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线y =x 2-2mx +m 2-2与直线x =-2交于点P.(1)当抛物线经过点C 时,求它的表达式;(2)抛物线上有两点M(x 1,y 1)、N(x 2,y 2),若-2≤x 1<x 2,y 1<y 2,求m 的取值范围;(3)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线上有两点M(x 1,y 1)、N(x 2,y 2),若x 1<x 2≤-2,比较y 1与y 2的大小;(4)当抛物线与线段AB 有公共点时,直接写出m 的取值范围.第4题图答案1. 解:(1)由⎩⎪⎨⎪⎧y =12x +12y =-x +m -1,解得⎩⎪⎨⎪⎧x =2m -33y =m 3;即顶点M 坐标为(2m -33,m 3);(2)∵m=6,∴二次函数图象的顶点为(3,2),∴抛物线为y =(x -3)2+2, ∴函数y 有最小值为2,∵当x 取值为t -1≤x≤t+3时,二次函数y 最小值=2, ∴t -1≤3,t +3≥3, 解得0≤t≤4;(3)平移后的抛物线为y =(x -3)2+2,其顶点坐标为(3,2), 平移前的抛物线为y =x 2+px +q ,其顶点坐标为(-p 2,4q -p24)由题意可知:将(-p 2,4q -p24)向右平移1个单位,再向下平移2个单位后与(3,2)重合,∴⎩⎪⎨⎪⎧-p2+1=34q -p 24-2=2,解得⎩⎪⎨⎪⎧p =-4q =8,故p 、q 的值分别为-4,8.2. 解:(1)∵抛物线y =x 2-2bx +c ∴a =1,∵抛物线的顶点坐标为 (2,-3),∴y =(x -2)2-3,∵y =(x -2)2-3=x 2-4x +1, ∴b =2,c =1;(2)由y =1得x 2-2bx +c =1,∴x 2-2bx +c -1=0, ∵b +c =0, ∴c =-b ,∵Δ=4b 2-4(c -1)=4b 2+4b +4=(2b +1)2+3>0, ∴存在两个实数,使得相应的y =1;(3)由c =b +2,则抛物线可化为y =x 2-2bx +b +2,其对称轴为x =b ,①当x =b≤-2时,则有抛物线在x =-2时取最小值为-3,此时-3=(-2)2-2×(-2)b +b +2,解得b =-95,不合题意;②当x =b≥2时,则有抛物线在x =2时取最小值为-3,此时-3=22-2×2b+b +2,解得b =3,符合题意.③当-2<b <2时,则4(b +2)-4b 24=-3,化简得:b 2-b -5=0,解得:b 1=1+212(不合题意,舍去),b 2=1-212.综上:b =3或1-212.3. 解:(1)抛物线与x 轴有交点,则一元二次方程x 2-(m +1)x +12(m 2+1)=0,Δ=(m +1)2-2(m 2+1)=-m 2+2m -1=-(m -1)2,∵方程有实数根,∴-(m -1)2≥0, ∴m =1;(2)由(1)可知y =x 2-2x +1=(x -1)2, 图象如解图所示:第3题解图平移后的解析式为y =-(x +2)2+2=-x 2-4x -2.(3)由⎩⎪⎨⎪⎧y =2x +n y =-x 2-4x -2消去y 得到x 2+6x +n +2=0, 由题意Δ≥0, ∴36-4n -8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7,令y′=n 2-4n =(n -2)2-4,∴n =2时,y ′的值最小,最小值为-4, n =7时,y ′的值最大,最大值为21, ∴n 2-4n 的最大值为21,最小值为-4. 4. 解: (1)∵抛物线经过点C(-1,-2),∴-2=1+2m +m 2-2, ∴m =-1,∴抛物线的表达式是y =x 2+2x -1; (2)抛物线的对称轴为直线x =m , 当x≥m 时,y 随x 的增大而增大; 点M ,N 均在直线x =-2的右侧,∴直线x =-2必须在直线x =m 右侧或与之重合. ∴m ≤-2.(3)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴y P 的最小值为-2,此时m =-2,∴当x <-2时,y 随x 的增大而减小, ∵x 1<x 2≤-2, ∴y 1>y 2;(4)∵y=(x -m)2-2,∴抛物线的顶点在直线y =-2上.当x =0时,y =m 2-2.当x =2时,y =m 2-4m +2. ∵抛物线与线段AB 有交点,∴⎩⎪⎨⎪⎧m 2-2≤2m 2-4m +2≥2 或⎩⎪⎨⎪⎧m 2-2≥2m 2-4m +2≤0或⎩⎪⎨⎪⎧m 2-2≥0m 2-4m +2≥20<m <2, 解得:-2≤m≤0或2≤m≤4.第二部分 题型研究题型二 二次函数性质综合题 类型二 二次项系数不确定型针对演练1. (2013杭州)已知抛物线y 1=ax 2+bx +c(a≠0)与x 轴相交于点A 、B(点A 、B 在原点O 两侧),与y 轴相交于点C ,且点A 、C 在一次函数y 2=43x +n 的图象上,线段AB 长为16,线段OC 长为8,当y 1随着x 的增大而减小时,求自变量x 的取值范围.2. 在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m≠0)与y 轴交于点A ,其对称轴与x 轴交于点B.(1)求点A ,B 的坐标;(2)若抛物线在-2≤x≤3的区间上的最小值为-3,求m 的值;(3)设直线l 与直线AB 关于该抛物线的对称轴对称,且该抛物线在-2<x <-1这一段位于直线l 的上方,在2<x <3这一段位于直线AB 的下方,求该抛物线的解析式.第2题图3. 已知二次函数y =kx 2+(3k +2)x +2k +2.(1)若二次函数图象经过直线y =x -1与x 轴的交点,求此时抛物线的解析式;(2)点A(x 1,y 1),B(x 2,y 2)是函数图象上的两个点,若满足x 1+x 2=-3,试比较y 1和y 2的大小关系.4. (2012杭州)在平面直角坐标系中,反比例函数与二次函数y =k(x 2+x -1)的图象交于点A(1,k)和点B(-1,-k).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.考向 2) 函数类型不确定型(杭州:2015.20,2014.23,2012.18) 针对演练1. (2012杭州)当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由,若有,请求出最大值.2. (2015杭州)设函数y =(x -1)[(k -1)x +(k -3)](k 是常数).(1)当k 取1和2时的函数y 1和y 2的图象如图所示,请你在同一直角坐标系中画出当k 取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y 2的图象向左平移4个单位,再向下平移2个单位,得到函数y 3的图象,求函数y 3的最小值.第2题图3. (2011杭州)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,画出这两个特殊函数的图象;(2)根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明; (3)对任意负.实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.4. 已知函数y =(k -1)x 2+x -k +2(k 为常数).(1)求证:不论k 为何值,该函数的图象与x 轴总有交点;(2)当k 为何值时,函数图象过原点,并指出此时函数图象与x 轴的另一个交点;(3)试问该函数是否存在最小值-3?若存在,求出此时的k 值;若不存在,请说明理由.5. 已知关于x 的函数y =kx 2+(2k -1)x -2(k 为常数).(1) 试说明:无论k 取什么值,此函数图象一定经过(-2,0); (2) 在x>0时,若要使y 随x 的增大而减小,求k 的取值范围;(3) 若该函数图象为抛物线,将其向上平移2个单位后,平移前后图象、对称轴和y 轴围成的图形面积为4,求此时k 的值.6. 关于x 的函数y =2kx 2+(1-k)x -1-k(k 是实数),探索发现了以下四条结论: ①函数图象与坐标轴总有三个不同的交点;②当k =-3时,函数图象的顶点坐标是(13,83);③当k>0时,函数图象截x 轴所得的线段长度大于32;④当k≠0时,函数图象总经过两个定点. 请你判断四条结论的真假,并说明理由.答案1. 解:∵点C 在一次函数y 2=43x +n 的图象上,线段OC 长为8,∴n =±8,①当n =8时,一次函数为y 2=43x +8,当y =0时,x =-6,求得点A 的坐标为A(-6,0),∵抛物线y 1=ax 2+bx +c (a≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16,∴这时抛物线开口向下,B(10,0);如解图①所示,抛物线的对称轴是x =2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2;第1题解图①②当n =-8时,一次函数为y 2=43x -8,当y =0时,x =6,求得点A 的坐标为(6,0),∵抛物线y 1=ax 2+bx +c(a≠0)与x 轴相交于点A ,B(点A ,B 在原点O 两侧),与y 轴相交于点C ,且线段AB 长为16,∴这时抛物线开口向上,B(-10,0),如解图②所示,抛物线的对称轴是x =-2,由图象可知:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≤-2;第1题解图②综合以上两种情况可得:当y 1随着x 的增大而减小时,自变量x 的取值范围是x≥2或x≤-2. 2. 解:(1)当x =0时,y =-2, ∴A(0,-2),∵抛物线的对称轴为直线x =--2m2m=1,∴B(1,0);(2)易知抛物线y =mx 2-2mx -2的对称轴为x =1, 当m >0时,抛物线开口向上,∵-2≤x≤3,∴y 最小值在x =1处取得,y 最小值=-m -2, ∴-m -2=-3,∴m =1, 当m <0时,抛物线开口向下,y 最小值在x =-2处取得,即8m -2=-3,∴m =-18.。
浙教版2018-2019学年度九年级数学中考模拟试卷含答案
浙教版2018-2019学年度九年级数学中考模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H2.如图,下列图形从正面看是三角形的是()A.B.C.D.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→156.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的内角的度数为.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.如图,的倒数在数轴上表示的点位于下列两个点之间()A.点E和点F B.点F和点G C.点F和点G D.点G和点H【分析】根据倒数的定义即可判断;【解答】解:的倒数是,∴在G和H之间,故选:D.【点评】本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.3.下列运算中,正确的是()A.(﹣2x)2•x=2x3B.﹣x5•(﹣x)3=x8C.x2•x3=x6D.(x+y)2•(x+y)n=(x+y)2n【分析】各项计算得到结果,即可做出判断.【解答】解:A、(﹣2x)2•x=4x2•x=4x3,本选项错误;B、﹣x5•(﹣x)3=x8,本选项正确;C、x2•x3=x5,本选项错误;D、(x+y)2•(x+y)n=(x+y)2+n,本选项错误.故选:B.【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.4.已知a+,则的值为()A.﹣1 B.1 C.2 D.不能确定【分析】把a,b中的一个当作未知数,就可得到一个方程,解方程即可求解.【解答】解:两边同乘以a,得到:a2+(﹣2b)a﹣2=0,解这个关于a的方程得到:a=2b,或a=﹣,∵a+≠0,∴a≠﹣,故选:C.【点评】把其中的一个字母当作未知数,转化为方程问题是解决关键.5.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A.6→3B.7→16C.7→8D.6→15【分析】直接利用轴对称图形以及中心对称图形的性质分别分析得出答案.【解答】解:阴影部分的小正方形6→15,能使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形.故选:D.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A. B. C. D.【分析】本题是规律性题型,基本方法是,将一个分数分为两个分数的差,因为所求式子,每一个分母的两个因数相差2,一个分数分为两个分数时,需要乘以.【解答】解:由上式可知+++…+=(1﹣)=.故选A.【点评】此题属规律性题目,解答此题时要注意观察所给式子的特点,总结出规律再求解.7.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.9.已知关于x的一元二次方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,给出三个结论:①x1≠x2;②x1x2<ab;③x1+x2<a+b;④若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,则正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④【分析】如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b),利用图象法即可解决问题.【解答】解:如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b)观察图象可知,x1≠x2,故①正确设抛物线的对称轴为x=h,x2=h+m,x1=h﹣m,b=h+n,a=h﹣n,m>n,∴x1•x2=h2﹣m2,ab=h2﹣n2,∵m>n,∴x1•x2<ab,故②正确,∵=,∴x1+x2=a+b,故③错误,∴x12+2x1x2+x22=a2+2ab+b2,∵2x1x2<2ab,∴x12+x22>a2+b2,观察图象可知若x1<x2且a<b,则(x1﹣a)(x2﹣b)<0,故④正确.故选:B.【点评】本题考查抛物线与x轴的交点,一元二次方程的根与系数的关系等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.10.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.【分析】由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是一次函数还是二次函数)就能选出答案.【解答】解:已知∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴=,即=,解得:EH=x,所以y=•x•x=x2,∵x y之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x 2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选:A.【点评】本题主要考查了一次函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.二.填空题(共6小题,满分24分,每小题4分)11.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为 2.54×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为2π.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.【点评】本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.13.如图,▱ABCD中,点E、F分别在BC,AD上,且BE:EC=2:1,EF∥CD,交对角线AC于点G,则= .【分析】先证四边形ABEF是平行四边形得BE=AF,由=2知=、=,设S△ECG=a,根据△ECG∽△FAG知S△FAG=4a,根据△ECG∽△BCA知S△BCA=9a、S四边形ABEG=S△BCA﹣S△ECG=8a,继而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD、BC∥AD,且AD=BC,∵EF∥CD,∴四边形ABEF是平行四边形,∴BE=AF,∵=2,∴=、=,设S△ECG=a由BC∥AD知△ECG∽△FAG,则=()2,即=,则S△FAG=4a;由EF∥AB知△ECG∽△BCA,则=()2,即=,则S△BCA=9a,∴S四边形ABEG=S△BCA﹣S△ECG=8a,则==,故答案为:.【点评】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握平行四边形的判定与性质及相似三角形的判定与性质.14.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是10千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)【分析】要求所用行车时间最短,就要计算好行驶的路线,可以设在公路上行驶x千米,根据题意,找出可以运用勾股定理的直角三角形,运用勾股定理求解.【解答】解:如图所示,公路上行驶的路线是AD,草地上行驶的路线是DB,设AD的路程为x千米,由已知条件AB=10千米,BC=5千米,BC⊥AC,知AC==15千米.则CD=AC﹣AD=(15﹣x)千米,BD==km,设走的行驶时间为y,则y=+.整理为关于x的一元二次方程得3x2+(160y﹣120)x﹣6400y2+1200=0.因为x必定存在,所以△≥0.即(160y﹣120)2﹣4×3×(1200﹣6400y2)≥0.化简得102400y2﹣38400y≥0.解得y≥,即消防车在出发后最快经过小时可到达居民点B.故答案为:.【点评】本题考查的是在直角三角形中勾股定理的运用,画出图形构建直角三角形是关键,根据一元二次不等式的求解,可以计算出解的最小值,以便求出最短路程.15.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的内角的度数为.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以A n为顶点的底角的度数.【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为;17.5°,.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三.解答题(共9小题,满分86分)17.(8分)计算:﹣|1﹣|﹣sin30°+2﹣1.【分析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.【解答】解:原式=3﹣+1﹣+=2+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.19.(8分)已知:如图,△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD、AC于点F、E.求证:CE=CF.【分析】先判断出∠ACD+∠BCD=90°,再判断出∠A+∠ACD=90°,进而得出∠A=∠BCD,再用三角形的外角即可得出结论.【解答】证明:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD为AB边上的高,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠CFE=∠BCD+∠CBE=∠A+∠ABE,∵∠CEF=∠A+∠ABE,∴∠CEF=∠CFE,∴CE=CF.【点评】此题主要考查了等腰三角形的判定,直角三角形的性质,三角形的高的意义,三角形的外角的性质,判断出∠A=∠BCD是解本题的关键.20.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.【分析】(1)作AB的垂直平分线得到AB的中点O,然后以O为圆心,OA为半径作圆交BC于D;(2)先利用圆周角定理得到∠ADB=∠CAB,则可判断△CAD∽△CBA,然后利用相似比得到CA:CB=CD:CA,再根据比例的性质即可得到结论.【解答】(1)解:如图,(2)证明:连接AD,如图,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠CAB,∵∠C=∠C,∴△CAD∽△CBA,∴CA:CB=CD:CA,∴AC2=CD•CB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.利用相似比是解决(2)小题的关键.21.(8分)如图,四边形ABCD是平形四边形,点B在以AD为直径的⊙O上,AD=4,∠BAD=45°,AF平分∠BAD交⊙O于点E,交BC于点F,连接BE、ED、BD.(1)求证:BC是⊙O的切线;(2)求证:△ABF∽△BED;(3)求AF2的值.【分析】(1)由于点B在圆上,要说明BC是⊙O的切线,证明OB⊥BC即可;(2)要证明△ABF∽△BED,有一个同弧上的圆周角∠BAF与∠BDE,可通过证明∠ABF=∠BED来实现,利用圆内接四边形的对角互补计算∠BED的度数,利用平行线的性质计算∠ABF的度数即可.(3)由(2)的△ABF∽△BED,可得,要求AF需求出AB、BD、BE.由于AD是直径,∠BAD=45°,AD=4,可求得AB、BD的长.连接OE,可利用垂径定理求出BE的长,计算出AF2即可.【解答】解:(1)证明:连接OB,∵四边形ABCD是平形四边形,∠BAD=45°,∴∠ABC=135°∵OA=OB,∴∠BAD=∠ABO=45°,∴∠OBC=∠ABC﹣∠ABO=135°﹣45°=90°,∴OB⊥BC,又∵点B在圆上∴BC是⊙O的切线;(2)证明:∵ABED是⊙O的圆内接四边形,∴∠BED+∠BAD=180°,∴∠BED=180°﹣45°=135°=∠ABC又∵∠BAF=∠BDE∴△ABF∽△BED(3)解:连接OE交BD于点G.∵AD是⊙O的直径,∴∠ABD=90°∵∠BAD=45°,AD=4,∴AB=BD=2∵AF平分∠BAD交⊙O于点E,∴∠BAF=∠FAD,∴∠EBD=∠EDB,∴BE=ED,又因为OE是半径∴OE⊥BD,BG=GD=∵∠BAD=45°=∠BDA∴OG=GB=.∴GE=OE﹣OG=2﹣在Rt△BEG中,BE2=BG2+GE2=2+(2﹣)2=8﹣4由(2)知,△ABF∽△BED∴∴AF==∴AF 2===16+8【点评】本题主要考查了切线的判定、相似三角形的判定和性质、勾股定理及圆周角等知识,综合性较强.解决(3)利用垂径定理是关键.22.(10分)已知抛物线y=ax2+bx经过点A(﹣3,﹣3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=﹣4,求a、b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.【分析】(1)由图可以看出A点为抛物线的顶点,且开口向上,所以此点即为此函数的最小值;(2)点p是抛物线与x轴的一个交点,而此时另一个交点是0,那么P与O是关于抛物线对称轴的两个对称点,知道了对称点的坐标,就很容易求出t的值;(3)a>0时,抛物线的开口向上,a<0时,抛物线的开口向下,求出a的值就知道其开口方向.【解答】解:(1)∵抛物线的对称轴经过点A,∴A点为抛物线的顶点,∴y的最小值为﹣3,∵P点和O点对称,∴t=﹣6;(2)分别将(﹣4,0)和(﹣3,﹣3)代入y=ax2+bx,得:,解得,∴抛物线开口方向向上;(3)将A(﹣3,﹣3)和点P(t,0)代入y=ax2+bx,,由①得,b=3a+1③,把③代入②,得at2+t(3a+1)=0,∵t≠0,∴at+3a+1=0,∴a=﹣.∵抛物线开口向下,∴a<0,∴﹣<0,∴t+3>0,∴t>﹣3.故t的值可以是﹣1(答案不唯一).(注:写出t>﹣3且t≠0或其中任意一个数均给分)【点评】此题主要考查了抛物线的对称性及开口方向的问题,对于二次函数的图象和性质要很熟悉.23.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?【分析】(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=180,s2=120330﹣180﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.24.(12分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.【分析】(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.【解答】解:(1)如图1,∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.【点评】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.25.(14分)已知二次函数y=ax2+bx+c.①若b=2a+c,那么函数图象一定经过哪个定点?②若a<0且c=0,且对于任意的实数x,都有y≤1,求证:4a+b2≤0.③若函数图象上两点(0,y1)和(1,y2)满足y1•y2>0,且2a+3b+6c=0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.【分析】(1)将b=2a+c整理为4a﹣2b+c=0即可判断其经过的点的坐标;(2)根据题目提供的条件求得其顶点的纵坐标,进一步整理即可得到答案;(3)将(0,y1)和(1,y2)分别代入函数的解析式,利用y1•y2>0、2a+3b+6c=0,即可确定纵坐标的取值范围.【解答】(1)解:由b=2a+c,可得4a﹣2b+c=0,∵当x=﹣2时,y=4a﹣2b+c=0,∴函数图象一定经过点(﹣2,0);(2)证明:此时抛物线解析式为y=ax2+bx,图象是开口向下的抛物线,a<0.∴顶点纵坐标≤1,∴﹣b2≥4a,∴4a+b2≤0;(3)解:由2a+3b+6c=0,可得6c=﹣(2a+3b),由题意,y1•y2=c•(a+b+c)>0,即6c•(6a+6b+6c)>0,∴﹣(2a+3b)•(4a+3b)>0,(2a+3b)•(4a+3b)<0,两边同除以9a2,∵9a2>0,∴<0,∴或∴,∴,即为所求.【点评】本题考查了二次函数的性质及抛物线与x轴的交点,另外还考查了二次函数图象上的点的特征,是一道比较复杂的二次函数综合题.。
(2018金华中考数学必考胡不归问题)浙教版中考数学辅助线典型作法
浙教版中考数学辅助线典型作法三角形中常见辅助线的作法1. 与角平分线有关的(1)可向两边作垂线。
(2)可作平行线,构造等腰三角形(角平分线与平行线,等腰三角形会出现,即双平等腰)(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
(5)遇到直角,可构造直角三角形,利用勾股定理来计算或斜边上的中线等于斜边的一半。
3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全等三角形或相似三角形,一般旋转顶角的度数,等边旋转60 °四边形中常见辅助线的作法特殊四边形主要包括平行四边形、矩形、菱形、正方形。
在解决一些和四边形有关的问题时往往需要添加辅助线。
1. 和平行四边形有关的辅助线作法(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题。
和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线圆中常见辅助线的作法1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
2018年浙江中考数学复习难题突破专题一:规律归纳探索问题.doc
则2017在第行.(2)可知第/?行中最大的数是,〃=44时,最大数为;77=45 时,•因此2017在第g)难题突破专题一规律归纳探索问题近年来有关规律探索性题H 在浙江省初中数学考试题中频繁出现,这类题H 要求学生能根据给出的一组具有某种 特定关系的数、式、图形或与图形有关的操作、变化过程,通过观察、分析、推理,探究其中所蕴含的规律,进而归 纳或猜想出■•般性的结论.有利于促进学生对数学知识和数学方法的巩固和掌握,也有利于学生思维能力的提高和自 主探索、创新精神的培养.规律探究题一般分为数字规律题、数式规律题、图形规律题等.类型1数字规律熨1 2017 -淮安将从1开始的连续自然数按以下规律排列:®例题分层分析(1)观察发现,前5行中最大的数分别为®解题方法点析解决数字规律问题的突破口在于寻找隐含在图形或式子中的规律,数的规律主要有倍数关系、等差关系、等比关 系等.类型2数式规律最2我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是…例.如图Z1-2,这个三角形的构造 法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了 3+5)〃(〃为正整数)的展开式(按a 的次数 由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1, 2, 1,恰好对应(打+〃2=疽+2》力+£展开式 中的系数;第四行的四个数1, 3, 3, 1,恰好对应S+Q3展开式中的系数等.(1)根据上面的规律,写出3+力尸的展开式;(2) 利用上面的规律计算:25-5X24+10X23-10X22+5X2-l.®例题分层分析⑴你能写出(a+/^, 3+/沪,(3+^)3, 3+力)4的展开式吗?⑵25-5X24+10X23-10X22+5X2-1和(a+力尸,(a+矿,(a+»,(》+力)\ (a+矿中哪个的展开式比较类似?此时a 等于什么?力等于什么?第一行 第二行 21 34 第三行 9 8 7 65 第四行 111 12 13 14 15 16 第五行25 2423 222120 19 18图勿一 1173(白+如(a+b)2A O务A O 图 Z1-3ABy图勿一4第1个图形 第2个图第3个图®解题方法点析数式规律要关注中学阶段所学的一些重要公式,此类问题主要考查学生的观察、分析、逻辑推理能力,读憧题意 并根据所给的式子寻找规律是快速解题的关键.类型3图形规律匡>3 [2017 -衢州]如图21-3,正△时。
2018中考数学:解题实用方法归纳
2018中考数学:解题实用方法归纳1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
2018年中考数学(浙教版)精品复习题全集(含答案)
函数一. 教学目标:1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标2. 会确定点关于x 轴,y 轴及原点的对称点的坐标3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。
4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。
5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。
二. 教学重点、难点:重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。
三.知识要点:知识点1、平面直角坐标系与点的坐标一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。
点P (x 、y )在x 轴上⇔y =0,x 为任意实数,点P (x 、y )在y 轴上,⇔x =0,y 为任意实数,点P (x 、y )在坐标原点⇔x =0,y =0。
知识点2、对称点的坐标的特征点P (x 、y )关于x 轴的对称点P 1的坐标为(x ,-y );关于y 轴的对称轴点P 2的坐标为(-x ,y );关于原点的对称点P 3为(-x ,-y )知识点3、距离与点的坐标的关系点P (a ,b )到x 轴的距离等于点P 的纵坐标的绝对值,即|b | 点P (a ,b )到y 轴的距离等于点P 的横坐标的绝对值,即|a | 点P (a ,b )到原点的距离等于:22b a + 知识点4、与函数有关的概念函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版2018届中考数学二轮复习解题技巧与方法训练专题汇编目录方法技巧专题一数形结合思想训练 (1)方法技巧专题二分类讨论思想训练 (9)方法技巧专题三整体思想训练 (16)方法技巧专题四构造法训练 (21)方法技巧专题五转化思想训练 (27)方法技巧专题六中点联想训练 (33)方法技巧专题七角平分线训练 (42)方法技巧专题八面积训练 (52)方法技巧专题九45 °角与正切值 (63)方法技巧专题十最短距离训练 (76)方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017²怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12B.14C .4D .8 4.[2017²聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min 5.[2016²天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017²鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +b c>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017²十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子²天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________.11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017²荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016²菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去).6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ²(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ²(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +b c<0,④不正确.7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3³1=3个点; 第2个图形有3+6=3³(1+2)=9个点; 第3个图形有3+6+9=3³(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3³(1+2+3+…+n )=3n (n +1)2个点.当n =9时,=135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…,第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎨⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3).∴DH =32.∴S △BDC =S △BDH +S △CDH =12³32³3+12³32³1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.方法技巧专题二分类讨论思想训练当数学问题中的某一条件模糊而不确定时,需要对这一条件进行分类讨论,然后逐一解决.常见的分类讨论有概念的分类、解题方法的分类和图形位置关系的分类等.一、选择题1.⊙O中,点A,B,C在⊙O上,∠AOB=100°,点C不与A、B重合,则∠ACB的度数为()A.50° B.80°或50°C.130° D.50°或130°2.[2016²荆门] 已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为() A.7 B.10C.11 D.10或113.[2017²聊城] 如图F2-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P的个数是()图F2-1A.2个 B.3个 C.4个 D.5个二、填空题4.[2017²西宁] 若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数解析式为________.5.[2016²西宁] ⊙O 的半径为1,弦AB =2,弦AC =3,则∠BAC 的度数为________. 6.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6.若点P 在直线AC 上(不与点A ,C 重合),且∠ABP =30°,则CP 的长为________.图F 2-27.[2016²江西]如图F 2-2是一张长方形纸片ABCD ,已知AB =8,AD =7,E 为AB 上一点,AE =5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是________.8.[2017²齐齐哈尔] 如图F 2-3,在等腰三角形纸片ABC 中,AB =AC =10,BC =12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是________.图F 2-39.[2016²鄂州] 如图F 2-4,AB =6,O 是AB 的中点,直线l 经过点O ,∠1=120°,P 是直线l 上一点.当△APB 为直角三角形时,AP =________.图F 2-410.[2016²荆门] 如图F 2-5,已知点A (1,2)是反比例函数y =kx 图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点,若△PAB 是等腰三角形,则点P的坐标是________.图F2-511.[2017²义乌] 如图F2-6,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有三个,则x的值是________.图F2-6参考答案1.D 2.D 3.B4.y=x或y=-x5.75°或15°6.2 3或4 3或6[解析] ①当∠ABC=60°时,如图①,求得CP=2 3或4 3;②当∠ACB=60°时,如图②,此时CP=6.7.5 2或4 5或5[解析] 如图所示.①当点P在AD边上时,△AEP是等腰直角三角形,底边PE=2AE=5 2;②当点P在BC边上时,P1E=AE=5,BE=AB-AE=8-5=3,∴P1B=P1E2-BE2=4.∴AP1=AB2+P1B2=82+42=4 5;③当点P在DC边上时,P2A=P2E,底边AE=5.综上所述,等腰三角形AEP的底边长为5 2或4 5或5.8.10或4 13或2 73[解析] ∵AB=AC=10,BC=12,底边BC上的高是AD,∴∠ADB=∠ADC=90°,BD=CD=12BC=12³12=6,∴AD=102-62=8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是82+122=4 13.(3)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是62+162=2 73.综上所述,这个平行四边形较长的对角线的长是10或4 13或2 73.9.3或3 3或3 7[解析] 如图,分类讨论如下:(1)当∠APB=90°时,以AB为直径作⊙O,与直线l交于点P1,P2,则AP1=3,AP2=3 3;(2)当∠PAB=90°时,AP3=3 3;(3)当∠ABP=90°时,BP4=3 3,AP4=AB2+BP42=62+(3 3)2=3 7.综上所述,当△APB为直角三角形时,AP=3或3 3或3 7.10.(-5,0)或(-3,0)或(3,0)或(5,0)①11.x=0或x=4 2-4或4<x<4 2[解析] 分三种情况:①如图①,当M与O重合时,即x=0时,点P恰好有三个;②如图②,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA 交于D,②∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4 2,当M与D重合时,即x=OM-DM=4 2-4时,同理可知:点P恰好有三个;③如图③,取OM=4,以M为圆心,以OM为半径画圆,③则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N为圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4 2时,圆M在移动过程中,则会与OB除了O外有两个交点,使P,M,N构成等腰三角形,此时,满足条件的点P恰好有三个.综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4 2-4或4<x<4 2.故答案为x=0或x=4 2-4或4<x<4 2.方法技巧专题三整体思想训练整体思想就是研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.一、选择题1.[2016²眉山] 已知x2-3x-4=0,则代数式xx2-x-4的值是() A.3 B.2C.13 D.122.[2016²白银] 若x2+4x-4=0,则3(x-2)2-6(x-1)(x+1)的值为()A.-6 B.6C.18 D.303.当x=2时,多项式ax5+bx3+cx-10的值为7,则当x=-2时,这个多项式的值是()A.-3 B.-27C.-7 D.74.[2017²郴州] 小明把一幅含45°,30°的直角三角板如图F3-1摆放,其中∠C=∠F =90°,∠A=45°,∠D=30°,则∠α+∠β等于()图F3-1A.180° B.210° C.360° D.270°二、填空题5.[2016²长沙] 如图F3-2,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D ,交边AC 于点E ,则△BCE 的周长为________.图F 3-26.[2017²泰州] 已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为________. 7.[2017²淄博] 已知α,β是方程x 2-3x -4=0的两个实数根,则α2+αβ-3α的值为________.8.[2017²枣庄] 已知⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2bx +ay =3的解,则a 2-b 2=________.9.[2016²毕节] 若a 2+5ab -b 2=0,则b a -a b的值为________.10.设函数y =2x 与y =x -1的图象的交点坐标为(a ,b ),则1a -1b 的值为________.11.计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________.三、解答题12.已知a =2+3,b =2-3,求(a +2)2(b +2)2的值.13.已知(a +b )2=7,(a -b )2=3,求下列各式的值: (1)a 2+b 2和ab ; (2)a 4+b 4; (3)1a 2+2+1b 2+2.参考答案1.D 2.B3.B [解析] 依题意,得25a +23b +2c -10=7,即25a +23b +2c =17.当x =-2时,原式=-25a -23b -2c -10=-(25a +23b +2c )-10=-17-10=-27.故选B .注:此题把“25a +23b +2c ”当作整体.4.B [解析] 如图,不妨设AB 与DE 交于点G ,由三角形的外角性质可知∠α=∠A +∠AGD ,∠β=∠B +∠BHF ,由于∠AGD =∠EGH ,∠BHF =∠EHG ,所以∠AGD +∠BHF =∠EGH +∠EHG =180°-∠E =180°-(90°-∠D )=120°,所以∠α+∠β=∠A +∠B +∠AGD +∠BHF =90°+120°=210°,故选B .5.13 [解析] 此题把“BE +EC ”当作整体.6.87.0 [解析] ∵α,β是方程x 2-3x -4=0的两个实数根,∴α2-3α-4=0且αβ=-4.∴α2-3α=4.∴α2+αβ-3α=(α2-3α)+αβ=4-4=0.8.1 [解析] ∵⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2,bx +ay =3的解,∴⎩⎪⎨⎪⎧2a -3b =2,2b -3a =3,把这个方程的两式分别相加,减,得a -b =-15,a +b =-5,∴a 2-b 2=(a +b )(a -b )=(-5)³(-15)=1,故答案为1.9.5 [解析] ∵a 2+5ab -b 2=0,∴b 2-a 2=5ab . ∴b a -a b =b 2-a 2ab =5ab ab =5.故答案为5. 注:此题把“b 2-a 2,ab ”当作整体.10.-12 [解析] 依题意得b =2a且b =a -1,∴ab =2且b -a =-1.∴1a -1b =b -a ab =-12=-12.注:此题把“ab ,b -a ”当作整体.11.16 [解析] 设12+13+14+15=a ,则原式=(1-a )²(a +16)-(1-a -16)a =16+56a -a 2-56a +a 2=16. 注:此题中的整体是“12+13+14+15”.12.解:∵a +b =(2+3)+(2-3)=4,ab =(2+3)(2-3)=4-3=1,∴原式=[(a +2)(b +2)]2=[ab +2(a +b )+2]2=(3+4 2)2=41+24 2. 注:此题把“ab ,a +b ”当作整体.13.解:(1)依题意得a 2+2ab +b 2=7①,a 2-2ab +b 2=3②.①+②,得2(a 2+b 2)=10,即a 2+b 2=5. ①-②,得4ab =4,即ab =1.(2)a 4+b 4=(a 2+b 2)2-2(ab )2=52-2³12=25-2=23.(3)原式=b 2+2(a 2+2)(b 2+2)+a 2+2(a 2+2)(b 2+2)=a 2+b 2+4(ab )2+2(a 2+b 2)+4=5+412+2³5+4=35. 注:此题把“ab ,a 2+b 2”当作整体.方法技巧专题四构造法训练构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:1.构造方程;2.构造函数;3.构造图形.一、选择题图F4-11.如图F4-1,OA=OB=OC,且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°2.已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是() A.6 B.3 C.-3 D.03.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足()A.1<α<β<2 B.1<α<2<βC.α<1<β<2 D.α<1且β>2二、填空题4.如图F4-2,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于________.图F4-25.如图F 4-3,直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式0<kx +b <13x的解为________.图F 4-36.关于x 的方程a (x +m )2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a (x +m +2)2+b =0的解是________.7.[2016²成都] 如图F 4-4,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.图F 4-48.如图F 4-5,在四边形ABCD 中,AB ∥DC ,E 是AD 的中点,EF ⊥BC 于点F ,BC =5,EF =3.图F 4-5(1)若AB =DC ,则四边形ABCD 的面积S =________;(2)若AB >DC ,则此时四边形ABCD 的面积S ′________S (用“>”或“=”或“<”填空).三、解答题9.如图F 4-6,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC ,CD ,测得BC =6 m ,CD =4 m ,∠BCD =150°,在D 处测得电线杆顶端A 的仰角为30°,试求电线杆的高度.(结果保留根号)图F 4-6参考答案1.C [解析] 以点O 为圆心,以OA 为半径作⊙O .∵OA =OB =OC ,∴点B ,C 在⊙O 上.∴∠AOB =2∠ACB =60°.故选C .注:此题构造了圆.2.A [解析] (1)当m =n 时,(m -1)2+(n -1)2=2(m -1)2.此时当m =1时,有最小值0.而m =1时,代入原方程求得a =32.∵不满足条件a ≥2,∴舍去此种情况.(2)当m ≠n 时,∵m 2-2am +2=0,n 2-2an +2=0,∴m ,n 是关于x 的方程x 2-2ax +2=0的两个根. ∴m +n =2a ,mn =2,∴(m -1)2+(n -1)2=m 2-2m +1+n 2-2n +1=(m +n )2-2mn -2(m +n )+2=4a 2-4-4a +2=4(a -12)2-3.∵a ≥2,∴当a =2时,(m -1)2+(n -1)2有最小值.∴(m -1)2+(n -1)2的最小值=4(2-12)2-3=6.故选A . 注:此题根据两个等式构造了一个一元二次方程.3.D [解析] 一元二次方程(x -1)(x -2)=m (m >0)的两根实质上是抛物线y =(x -1)(x -2)与直线y =m 两个交点的横坐标.如图所示,显然α<1且β>2.故选D .注:此题构造了二次函数.4.15 [解析] 分别将线段AB ,CD ,EF 向两端延长,延长线构成一个等边三角形,边长为8.则EF =2,AF =4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.5.3<x <6 [解析] 作直线OA ,易知直线OA 的解析式为y =13x .由图可知,不等式kx+b >0的解为x <6;不等式kx +b <13x 的解为x >3.所以不等式0<kx +b <13x 的解为3<x<6.注:此题构造了一次函数y =13x .6.x 1=-4,x 2=-1 [解析] 根据方程的特点联想二次函数的顶点式.将函数y =a (x +m )2+b 的图象向左平移2个单位得函数y =a (x +m +2)2+b 的图象,因此将方程a (x +m )2+b =0的解x 1=-2,x 2=1分别减去2,即得所求方程的解.注:此题构造了二次函数.7.392[解析] 如图,作直径AE ,连结CE ,则∠ACE =90°.∵AH ⊥BC ,∴∠AHB =90°. ∴∠ACE =∠AHB .∵∠B =∠E ,∴△ABH ∽△AEC . ∴AB AE =AH AC .∴AB =AE²AH AC. ∵AC =24,AH =18,AE =2OC =26, ∴AB =18³2624=392.注:此题构造了直角三角形. 8.(1)15 (2)=[解析] (1)平行四边形的面积等于底乘高;(2)如图,连结BE ,并延长BE 交CD 的延长线于点G ,连结CE .易证△EAB ≌△EDG .∴BE =EG .∴S 四边形ABCD =S △BCG =2S △BCE =BC ²EF =15.注:此题根据平行线间线段的中点构造了全等三角形.9.解:如图,延长AD交BC的延长线于E,过点D作DF⊥BE于F.∵∠BCD=150°,∴∠DCF=30°.∵CD=4,∴DF=2,CF=2 3.由题意得∠E=30°,∴DC=DE.∴CE=2CF=4 3.∴BE=BC+CE=6+4 3.∴AB=BE³tan E=(6+4 3)³33=2 3+4.答:电线杆的高度为(2 3+4)m.注:此题构造了直角三角形.三角函数只能应用于直角三角形中,因此用三角函数解决四边形或斜三角形的问题时,必须构造直角三角形.方法技巧专题五 转化思想训练转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等.一、选择题1.[2015²山西] 我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想2.[2016²扬州] 已知M =29a -1,N =a 2-79a (a 为任意实数),则M 、N 的大小关系为( )A .M <NB .M =NC .M >ND .不能确定3.[2016²十堰] 如图F 5-1所示,小华从A 点出发,沿直线前进10 m 后左转24°,再沿直线前进10 m ,又向左转24°,…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A .140 mB .150 mC .160 mD .240 m图F 5-14.[2016²徐州] 图F 5-2是由三个边长分别为6,9,x 的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()图F5-2A.1或9 B.3或5C.4或6 D.3或6二、填空题5.[2017²烟台] 运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是________.图F5-36.[2016²达州] 如图F5-4,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连结BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.图F5-47.[2016²宿迁] 如图F5-5,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为________.图F5-5三、解答题8.如图F5-6①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连结AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果,不必说明理由.图F5-6参考答案1.A2.A[解析] ∵N-M=a2-79a-(29a-1)=a2-a+1=(a-12)2+34>0,∴M<N.故选A.注:此题把比较两个式子的大小转化为比较两个代数式的差的正负.3.B[解析] ∵多边形的外角和为360°,这里每一个外角都为24°,∴多边形的边数为360°÷24°=15.∴小华一共走的路程=15³10=150(m).故选B.注:把问题转化为正多边形的周长.4.D [解析] 如图,把原图形扩充成矩形,则图中两个阴影部分的面积相等,于是可列方程x (9-x )=6³(9-6).整理,得x 2-9x +18=0,解得x 1=3,x 2=6.故选D .注:此题体现了转化思想(把不规则图形转化为规则图形)和方程思想. 5.x <8 [解析] 由题意,得3x -6<18,解得x <8.6.24+9 3 [解析] 如图,连结PQ ,则△APQ 为等边三角形.∴PQ =AP =6.易知△APC ≌△AQB ,∴QB =PC =10.由勾股定理的逆定理,可知∠BPQ =90°. ∴S 四边形APBQ =S △BPQ +S △APQ =12³6×8+34³62=24+9 3.故答案为24+9 3.注:此题体现了分散向集中转化,即通过旋转把PA ,PB ,PC 集中到△PBQ 中. 7.4或2 3 [解析] 设AD 的中点为P 1,无论AB 多长,△P 1BC 都是等腰三角形,即点P 1始终是符合条件的一个点.(1)如图①,当以点B (或点C )为圆心,以BC 为半径的圆与直线AD 相切时,符合条件的点有3个,此时AB =BC =4;(2)如图②,分别以点B (或点C )为圆心,以BC 为半径的圆经过点P 1时,符合条件的点也有3个.此时BP 1=BC =4,AB =2 3.综上所述,BA 的长为4或2 3.注:将等腰三角形的个数转化为直线与圆的交点个数. 8.解:(1)证明:如图,延长ED 交AG 于点H .∵O 为正方形ABCD 对角线的交点, ∴OA =OD ,∠AOG =∠DOE =90°, ∵四边形OEFG 为正方形,∴OG =OE , ∴△AOG ≌△DOE , ∴∠AGO =∠DEO . ∵∠AGO +∠GAO =90°, ∴∠DEO +∠GAO =90°. ∴∠AHE =90°,即DE ⊥AG .(2)①在旋转过程中,∠OAG ′成为直角有以下两种情况:(i )α由0°增大到90°的过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴在Rt △OAG ′中,sin ∠AG ′O =OA OG′=12, ∴∠AG ′O =30°, ∵OA ⊥OD ,OA ⊥AG ′,∴OD∥AG′.∴∠DOG′=∠AG′O=30°,即α=30°.(ii)α由90°增大到180°的过程中,当∠OAG′为直角时,同理可求得∠BOG′=30°,所以α=180°-30°=150°.综上,当∠OAG′为直角时,α=30°或150°.②AF′长的最大值是2+22,此时α=315°.理由:当AF′的长最大时,点F′在直线AC上,如图所示.∵AB=BC=CD=AD=1,∴AC=BD=2,AO=OD=2 2.∴OE′=E′F′=2OD= 2.∴OF′=(2)2+(2)2=2.∴AF′=AO+OF′=22+2.∵∠DOG′=45°,∴旋转角α=360°-45°=315°.方法技巧专题六中点联想训练1.与中点有关的定理(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.2.与中点有关的辅助线(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.一、选择题1.[2017²宜昌] 如图F6-1,要测定被池塘隔开的A、B两点的距离.可以在AB外选一点C,连结AC,BC,并分别找出它们的中点D、E,连结DE.现测得AC=30 m,BC=40 m,DE=24 m,则AB=()A.50 m B.48 mC.45 m D.35 m图F6-12.[2017²株洲] 如图F6-2,点E、F、G、H分别为四边形ABCD四条边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的是()图F6-2A.一定不是平行四边形B.一定不会是中心对称图形C.可能是轴对称图形D.当AC=BD时,它为矩形3.[2017²湖州] 如图F6-3,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A.1 B. 2C.32D.2图F6-34.如图F6-4,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()图F6-4A.2.5 B. 5C.322D.25.如图F 6-5,在菱形ABCD 和菱形BEFG 中,点A ,B ,E 在同一直线上,P 是线段DF 的中点,连结PG ,P C.若∠ABC =∠BEF =60°,则PGPC=( )图F 6-5A.2B. 3C.22D .33二、填空题6.[2017²巴中] 如图F 6-6,在△ABC 中,AD 、BE 是两条中线,则S △EDC ∶S △ABC =________.图F 6-67.[2017²宁夏] 如图F 6-7在△ABC 中,AB =6,点D 是AB 的中点,过点D 作DE ∥BC ,交AC 于点E ,点M 在DE 上,且ME =13DM .当AM ⊥BM 时,BC 的长为________.图F 6-78.[2017²天津] 如图F 6-8,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连结PG ,则PG 的长为________.图F 6-89.如图F 6-9,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________.图F 6-9三、解答题10.[2017²徐州] 如图F 6-10,在平行四边形ABCD 中,点O 是边BC 的中点,连结DO 并延长,交AB 的延长线于点E .连结BD ,E C.(1)求证:四边形BECD 是平行四边形;(2)若∠A =50°,则当∠BOD =________°时,四边形BECD 是矩形.图F 6-1011.[2017²成都] 如图F 6-11,在△ABC 中,AB =AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连结DE 交线段OA 于点F .(1)求证:DH 是⊙O 的切线;(2)若A 为EH 的中点,求EFFD 的值;(3)若EA =EF =1,求⊙O 的半径.图F 6-1112.[2016²舟山] 如图F 6-12①,已知点E ,F ,G ,H 分别是四边形ABCD 各边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:(1)如图②,将图①中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形;(2)如图③,在边长为1的小正方形组成的5³5网格中,点A ,C ,B 都在格点上,在格点上画出点D ,使点C 与BC ,CD ,DA 的中点F ,G ,H 组成正方形CFGH ;(3)在(2)的条件下求出正方形CFGH 的边长.图F 6-12。