正弦电流电路基础

合集下载

电工基础第二章正弦交流电路及应用

电工基础第二章正弦交流电路及应用

U1 sin 1 U 2 sin 2 U1 cos 1 U 2 cos 2
由相量与正弦量之间的对应关系最后得 u u1 u2 2U sin(t ) U1cosψ1+U2cosψ2
三角函数运算由几何分析运算所替代,化复杂为简单!
电工技术
如何把代数形式变 换成极坐标形式?
例:正弦量i=14.1sin(ωt+36.9°)A的最大值相量表示为:
I m 14.1/ 36.9A
其有效值相量为: 10/ 36.9A I 由于一个电路中各正弦量都是同频率的,所以相量只需 对应正弦量的两个要素即可。 即模值对应正弦量的最大值或有效值,
幅角对应正弦量的初相位。


电工技术
复数的运算法则
设有两个复数分别为: A a a1 jb1 A
B B b a 2 jb2
A、B加、减、乘、除时运算公式如下: A B ( a1 a 2 ) j ( b1 b2 )
A B ( a1 a 2 ) j ( b1 b2 ) A B AB a b A A a b B B
补充内容:复数的运算
A 6 j8 B 3 j 4
C 10 30 D 6135
A+B= A-B= A· B=
C+D= C-D= C· D=
A/B=
C/D=
电工技术
(2)正弦量的相量表示法
与正弦量相对应的复数形式的电压和电流称为相量。 为区别与一般复数,相量的顶上一般加符号“· ”。

正弦量与纵轴相交处若 在正半周,初相为正。
-
正弦量与纵轴相交处若 在负半周,初相为负。
电工技术

《电路基础》第22讲 正弦稳态电路的计算

《电路基础》第22讲 正弦稳态电路的计算

已知:U=115V , U1=55.4V ,
U2=80V , R1=32 , f=50Hz 求: 线圈的电阻R2和电感L2 。
解一: I U1 / R1 55.4 / 32
U
I
(R1 R2 )2 (L)2
U2
I
R22 (L)2
115
55.4
(32 R2 )2 (314L)2 32
80
55.4
i2 0.182 2 cos(314t 20) A
i3 0.57 2 cos(314 t 70) A
14
例4. 已知:IS 490o A , Z1 Z 2 j30Ω
Z3 30Ω , Z 45Ω 求:I.
Z2 I
解: 法一:电源变换
IS
Z1 Z3 Z
Z1
//
Z3
30( j30) 30 j30
∑i (t) = 0 ∀t ∑I= 0
∑u (t) = 0 ∀t ∑U= 0
3. 基本元件VCR(VAR)的相量形式
UR RIR
UR RIR
UL jL IL
U L LIL
UC
1
jC
IC
j
1
C
IC
UC
1
C
IC
∑Im = 0 ∑Um = 0
u i
u
i
2
u
i
2
7
3. 感抗、容抗、电抗、复阻抗、感纳、容纳、电纳、复导纳
i2 R1 i1
i3 C
+
R2
_u
L
I1 I2 R1
I3
j 1 C
+
R2
U _
Z1
Z2
jL

正弦电流电路的稳态分析基础知识讲解

正弦电流电路的稳态分析基础知识讲解
dt t
T 1T
0
0
2
20 2
I
1 T
I
2 m
T 2
Im 2
0.707Im
Im 2I
i(t ) Im sin(wt Ψ ) 2I sin(wt Ψ )
同理,可得正弦电压有效值与最大值的关系:
1 U 2 Um

U m 2U
若一交流电压有效值为U=220V,则其最大值为Um311V;
U=380V,
二、正弦量的相量表示
两个正弦量 i1 2 I1 sin(wt y1 )
u, i
角频率: 有效值:
i1
w
i1
i2
wi2
I1
I2
初相位:
1 O 2
i2 2 I2 sin(wt y2 )
i1+i3i2 i3
w
I3
wt3
无论是波形图逐点相加,或用三角函数做都很繁。
因同频的正弦量相加仍得到同频的正弦量,所以,只 要确定初相位和有效值(或最大值)就行了。于是想到复数, 复数向量也包含一个模和一个幅角,因此,我们可以把正 弦量与复数对应起来,以复数计算来代替正弦量的计算, 使计算变得较简单。
解:

I
10030o
A

U 220 60o V
试用相量表示i, u .
例2.

已知I
5015
A,
f 50Hz .
试写出电流的瞬时值表达式。
解:i 50 2sin(314t 15 ) A
相量图(相量和复数一样可以在平面上用向量表示):

U

I
i(t) 2Isin(ω t ) I I u(t) 2Usin(ωt θ ) U Uθ

正弦交流电路的电压、电流

正弦交流电路的电压、电流

04
正弦交流电路的应用
照明电路Biblioteka 照明电路正弦交流电路在照明电路中广泛应用,如日光灯、LED灯等。由于正弦交流电能 够提供稳定的照明亮度,且能够节约能源,因此被广泛应用于家庭、办公室和公 共场所的照明。
节能灯
正弦交流电在节能灯中的应用尤为突出,节能灯在启动时需要一个高电压来激发 灯管内的气体,而正弦交流电能够提供这种高电压,使得节能灯能够快速启动并 稳定工作。
详细描述
根据欧姆定律,电流(I)等于电压(V) 除以电阻(R),即 I = V/R。在正弦交流 电路中,电压和电流都是正弦波,其有效 值分别为电压和电流的最大值除以根号2。
电流的测量
总结词
电流的测量可以通过使用电流表来完成。
详细描述
电流表是一种测量电路中电流大小的仪表,其工作原理基于安培环路定律。在 正弦交流电路中,可以使用交流电流表来测量电流的大小和方向。
电压的计算公式
在正弦交流电路中,电压的计算公式为U=Umsin(ωt+φu),其中Um为电压的最大值,ω为角频率, φu为初相角。
电压与电流的关系
在正弦交流电路中,电压和电流之间存在相位差,即电流滞后于电压一定的角度。因此,可以通 过测量电路中的电压和电流来计算相位差。
电压的测量
在电路中,可以使用电压表来测量电压。测量时,将电压表并联在电路中需要测量的两点之间, 即可读出电压值。
正弦交流电的参数
总结词
正弦交流电的主要参数包括频率、幅值、相位和初相角。
详细描述
频率是正弦交流电每秒变化的周期数,单位为赫兹(Hz)。幅值或峰值是正弦波的最大值,表示电压或 电流的大小。相位是电压和电流之间的时间差,而初相角则是正弦波在某一特定时刻与时间轴之间的角度 差。这些参数对于分析正弦交流电路的特性和行为至关重要。

电工基础 第三章

电工基础  第三章

角频率 1 2 2πf 2 3.14 333rad/s 2091rad/s
(2)最大值 U ml (10 3)V 30V
U m2 (10 2)V 20V
相应的有效值为
U1
Uml 2
30 2
V 21.2V
U2
Um2 2
20 V 14.1V 2
第一节 正弦交流电的基本概念及其表示方法
相同的时间内,两个电阻产生的热量相等,我们就把这个直流电 流的数值定义为交流电流的有效值。电动势、电压和电流的有效 值分别用大写字母E、U、I表示。
第一节 正弦交流电的基本概念及其表示方法
E
Em 2
0.707Em
U
Um 2
0.707U m
I
Im 2
0.707I m
第一节 正弦交流电的基本概念及其表示方法
交流电是指大小和方向均随时间做周期变化的电流、电压 或电动势,分为正弦交流电和非正弦交流电两大类。正选交流 电按正弦规律变化,如图3-1所示;非正弦交流电不按正弦规 律变化,如图3-1d所示。
图3-1 直流电和交流电的波形 a)恒定直流电 b)脉动直流电 c)正弦交流电 d)非正弦交流电
第一节 正弦交流电的基本概念及其表示方法
1MHz 106 Hz
频率和周期的关系是 (3)角频率
f 1 T
指交流电每秒钟变化的弧度数,用ω表示
2π 2πf
t
T
第一节 正弦交流电的基本概念及其表示方法
3.相位、初相位和相位差
(1)相位 电角度(ωt+φ) 为交流电的相位,其单位是弧度或度。相位 反映了交流电变化的进程。
(2)φ表
(3)平均值 交流电的平均值是指由零点开始的半个周期内的平均值,如

电路基础知识总结(精华版)

电路基础知识总结(精华版)

电路知识总结(精简)1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。

电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。

2.功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。

3.全电路欧姆定律:U=E-RI4.负载大小的意义:电路的电流越大,负载越大。

电路的电阻越大,负载越小。

5.电路的断路与短路电路的断路处:I=0,U≠0电路的短路处:U=0,I≠0二.基尔霍夫定律1.几个概念:支路:是电路的一个分支。

结点:三条(或三条以上)支路的联接点称为结点。

回路:由支路构成的闭合路径称为回路。

网孔:电路中无其他支路穿过的回路称为网孔。

2.基尔霍夫电流定律:(1)定义:任一时刻,流入一个结点的电流的代数和为零。

或者说:流入的电流等于流出的电流。

(2)表达式:i进总和=0或: i进=i出(3)可以推广到一个闭合面。

3.基尔霍夫电压定律(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。

或者说:在一个闭合的回路中,电压的代数和为零。

或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。

(2)表达式:1或: 2或: 3(3)基尔霍夫电压定律可以推广到一个非闭合回路三.电位的概念(1)定义:某点的电位等于该点到电路参考点的电压。

(2)规定参考点的电位为零。

称为接地。

(3)电压用符号U表示,电位用符号V表示(4)两点间的电压等于两点的电位的差。

(5)注意电源的简化画法。

四.理想电压源与理想电流源1.理想电压源(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。

理想电压源的输出功率可达无穷大。

(2)理想电压源不允许短路。

2.理想电流源(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。

理想电流源的输出功率可达无穷大。

(2)理想电流源不允许开路。

3.理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。

电路基础+PDF版本

电路基础+PDF版本
节点:a、 b、… ... 几个? 4
回路:abda、 bcdb、 … ...
几个? 7
§1.7 电路中电位的概念及计算
电位:在电路中为方便起见,常用电位表示各处
电压。所谓电位是指电路中某一点相对于参考点
而言的电压。
a
a
1Ω
1Ω
b 5A
b 5A
a 点电位: Va = 5V b点电位:Vb= -5V
U2 = U1 − 1
U1
+
U1 − 1 2

3
− U1 3
=
0
U1
=
9V 11
例4 如图,已知R1=0.5kΩ,R2=1kΩ,R3=2kΩ,uS=10V,电 流控制电流源的电流iC=50i1。求电阻R3两端的电压u3。
i1
; i2 − iC = 0
+
R1
++
i2 = i1 + iC = 51i1
U= -4、I=2A
§1.4 欧姆定律
I
I
I
U
R
U
R
U
R
U = IR U = − IR U = − IR
注意:用欧姆定律列方程时,一定要在图中标 明正方向。
广义欧姆定律
(支路中含有电动势时的欧姆定律)
RI
+ E_
提问: I的方向反过来呢?
a
Uab = IR + E
Uab
b
I = U ab − E R
若短路,电流很大,可能烧毁电源。
i
u
Us
r
实际电压源
u u=US–ri
Us
0
i
4. 功率:

电路基础-正弦稳态电路

电路基础-正弦稳态电路

第五章正弦稳态电路第一节正弦量的基本概念学习目标:1. 掌握正弦量的三要素。

2 .掌握正弦量的相位关系。

3. 掌握有效值的定义。

4.掌握正弦量的有效值与最大值的关系。

重点:正弦量的三要素、相位关系、有效值与最大值的关系难点:初相一.正弦交流电的特点大小和方向随时间按正弦规律变化的电流称为正弦交变电流,简称交流( ac 或 AC )。

我们日常生活、生产中,大量使用的电能都是正弦交流电。

正弦交流电具有以下特点:1 .交流电压易于改变。

在电力系统中,应用变压器可以方便地改变电压,高压输电可以减少线路上的损耗;降低电压以满足不同用电设备的电压等级。

2 .交流发电机比直流发电机结构简单。

二.正弦量的三要素区别不同的正弦量需要从它们变化的快慢、变化的先后和变化的幅度三方面考虑。

1 .变化的快慢 ---- 用周期、频率或角频率描述。

(1) 周期: T ,秒。

(2) 频率:, Hz 。

(3) 角频率:* 周期越短、频率(角频率)越高,交流电变化越快。

* 工频,,2 .变化的先后 ---- 用初相角描述(1) 相位角:(2) 初相角: t=0 时正弦量的相位角称作初相角。

* 的大小和正负与计时起点有关。

* 规定* 当正弦量的初始值为正时,角为正;初始值为负时,角为负。

* 如果正弦量零点在纵轴的左侧时,角为正;在纵轴右侧时,角为负。

3 .变化的幅度 ---- 用最大值来描述( 1 )瞬时值:用小写字母表示,如 e 、 u 、 i 。

( 2 )最大值:也称振幅或峰值,通常用大写字母加下标 m 表示,如。

一个正弦量与时间的函数关系可用它的频率、初相位和振幅三个量表示,这三个量就叫正弦量的三要素。

对一个正弦交流电量来说,可以由这三个要素来唯一确定:三、相位差与相位关系1 .相位差——两个正弦交流电在任何瞬时相位角之差称相位差。

* 两个同频正弦量的相位差等于它们的初相之差。

规定。

2 .相位关系图 5-1 相位关系①超前、滞后关系;②同相关系(;③ 反相关系;④ 正交关系四、正弦量的有效值一、有效值的引入正弦量的瞬时值是随时间变化的,这对正弦量大小的计量带来一定的困难。

电路分析基础第3章 正弦交流电路

电路分析基础第3章 正弦交流电路
初相角的单位可以用弧度或度来表示,初相角ψ的大小 与计时起点的选择有关。另外,初相角通常在|ψ|≤π的主值
20 图3.2.4 不同初相时的正弦电流波形
21
在正弦交流电路的分析中,有时需要比较同频率的正弦 量之间的相位差。例如在一个电路中,某元件的端电压u和 流过的电流i
u=Umsin(ωt+ψu) i=Imsin(ωt+ψi) 它们的初相分别为ψu和ψi,则它们之间的相位差(用φ表 示)为 φ=(ωt+ψu)-(ωt+ψi)=ψu-ψi (3.2.7) 即两个同频率的正弦量之间的相位差就是其初相之差,相位 差φ
以复数运算为基础的,复数的表示如图3.3.1所示。
32 图3.3.1 复数的表示
33
一个复数A可以用下述几种形式来表示。
1.代数形式
A=a+jb
(3.3.1)
式中, j 1 2.三角形式
A=rcosψ+jrsinψ=r(cosψ+jsinψ)
(3.3.2)
式中,r a2b2, t gb,arctban
28
I B I Bm 7 .07 5 A 22
A
100
π
1 300
π 60 3
B
100
π
1 600
π 30 6
A
B
π 3
π 6
π 2
90
(2)
iA=14.1sin(314t+60°)A
iB=7.07sin(314t-30°)A
29 图3.2.6 例3.2.5的波形图
a
a
ψ称为A的辐角。
34
3.指数形式
根据欧拉公式
ejψ=cosψ+jsinψ

正弦交流电基础知识

正弦交流电基础知识

3.1.3 有效值
正弦量是一个随时间按正弦规律作 周期性变化的物理量,可以用瞬时值和 最大值来表示。但瞬时值描述较繁琐, 最大值又只能反映瞬间情况,不能确切 表达它的效果,为此工程上引入一个新 概念,即有效值。下面从等效能量概念 来定义有效值。
有效值:如果交流电通过一个电阻时,在 一个周期内产生的热量与某直流电通过同 一个电阻在同样的时间内产生的热量相等, 就将这一直流电的数值定义为交流电的电 流有效值。 I
交流电相比于直流电有如下优点。
(1)正弦交流电在电力供电系统中广泛应 用, (2)交流电可通过变压器任意变换电流、电 压,便于输送、分配和使用。 (3)交流发电机和电动机比直流的简单、经 济和耐用。
交流电的三要素
最大值Im,周期T(或频率ω),初相位Ψ。
正弦交流电的波形图
ω称为正弦电流的角频率。它表示正 弦量的对应的角度随时间变化的速度,或 者说,表示单位时间增加的角度。主单位 是弧度每秒(即rad/s)。正弦量变化的 快慢还可以用周期(T)和频率(f)表示。 周期是指正弦量变化一个循环所需的 时间,用T表示,它的主单位是秒(s)。 频率是指正弦量每单位时间内变化的循环 次数,用f表示,它的主单位是赫兹 (Hz)。频率和周期的关系是互为倒数 。
I=
mபைடு நூலகம்
2
= 0.707 I m
同样,还有电压有效值。
工程上凡是谈到周期电流、电压或电动 势的量值时,若无特殊说明,都是指有 效值而言。在交流测量仪表上指示的电 流或电压也都是有效值。但在分析各种 电子器件的击穿电压或电气设备的绝缘 耐压时,要按最大值考虑。
它是正弦量在计时起点t0时刻的相角即t它又反映正弦量的初始值即t0时刻的值如果能求出正弦电流的振幅频率和初相位根据给定的参考方向就可以完全确定该正弦电流

电工电子学-第二讲(正弦交流电路)

电工电子学-第二讲(正弦交流电路)

解:(1) X L L 106 6 103 6 kΩ
XC
1
C
106
1 0.001 106
1

Z R j(X L X C ) 5 j(6 1) 5 245 kΩ
z 0 ,电路呈感性。
由 u 5 2 sin106tV ,得电压相量为:
| Z | R2 X 2
R | Z | cosz
z

arctg
X R
X | Z | sinz
Z

U I
Uu I i
U I
( u
i ) z
0
电压超前电流,感性
| Z | U Um I Im
z u i
z 0 电压滞后电流,容性
z 0 电压电流同相,阻性
dt
I jCU
iC
将U U u 、I Ii 代入上式,得:
I i jCU u CU ( u 90)
+ u - (a) 电容元件
I CU
I
θi
U
i u 90

U


j
1
C
I


jX CI
θu
(b) 相量图
容抗:XC=1/ωC,与频率成反比。
复数的四则运算: 设两复数为: A a1 ja2 a1
B b1 jb2 b2 (1)相等。若a1=b1,a2=b2,则A=B。 (2)加减运算:
A B (a1 b1) j(a2 b2 ) (3)乘除运算:
A B ae j1 be j 2 abe j(1 2 ) ab(1 2 )

电工基础5.1 正弦交流电的基本概念

电工基础5.1 正弦交流电的基本概念

u Um cos(t 60) 当t=0时,所以 u(0) Um cos(60)
(1) Im 为电流i的振幅 (2)Um为电压u的振幅 3.周期,频率和角频率 (1)周期
正弦量变化一次所用的时间称为周期,用T表 示单位为秒(s)。
(2)频率
正弦量单位时间内变化的周期数称为频率。用f表 示,单位为赫兹(Hz). ①周期与频率的关系 f 1 T
②频率的单位
1kHZ 103 HZ
按能量等效的概念定义,以电流为例。设两个相同
电阻R,分别通过正弦电流 i 和直流电流I。
1 有效值
(1)正弦电流 I 通过R在一个周期T里消耗的能量为
Q1 T pdt T i2Rdt R T i2dt
0
0
0
(2)直流电I通过R在相同时间T内产生的能量为
Q2 PT I 2RT
图4-3 例4-1图
解:(1)有波形图可知,T 16ms

2
T
2
16103
125rad / s
f
1 T

16
1 103
62.5HZ

2f 2 62.5 125rad / s
由波形图可知,从时间起点到离原点最近的波
形最大值所需的时间为2ms。则初相
随时间按正弦规律变化的交流电流或电压称为 正弦电流或电压。 (2)正弦量
正弦电压、电流统称为正弦量或正弦交流电
二 正弦量的三要素
1.正弦电流i Im cos(t i )
Im , 和 i分别称为振幅,角频率和
初相位。此三个量称为正弦量的三要素。波形 如图4-2所示。
2. 振幅
正弦量在一个周期内的最大值称为振幅。用 Am 表示

电工基础正弦交流电

电工基础正弦交流电

05
正弦交流电的测量与仪 器
交流电压表与电流表
交流电压表
用于测量正弦交流电压的大小,通常采用电 磁感应原理,将交流电压转换为可测量的直 流电压。
交流电流表
用于测量正弦交流电流的大小,通常采用电 磁感应原理,将交流电流转换为可测量的直
流电流。
功率表与功率因数表
要点一
功率表
用于测量正弦交流电路的功率,可以测量有功功率和无功 功率。
THANKS FOR WATCHING
感谢您的观看
谐振与滤波
谐振
正弦交流电路中的一种特殊状态,当电路的感抗与容抗相等时,电流与电压相位相同, 产生共振现象。谐振时电路的阻抗最小,电流最大,可能会引起过电流和设备损坏。
滤波
通过电路中的电容、电感等元件,将特定频率的信号滤除,实现信号处理和噪声抑制。 在正弦交流电路中,滤波器可以用于分离不同频率的信号,提高电路的稳定性和可靠性。
正弦交流电的三要素
幅值、频率和相位。幅值表示正弦波 的最大值,频率表示单位时间内波动 的次数,相位表示正弦波在某一时刻 所处的位置。
正弦交流电的特点
周期性
01
正弦交流电每秒完成一个周期的波形变化,其频率和周期成反
比。
相位差
02
两个不同频率或不同相位的正弦交流电在合成时会产生相位差。
方向性
03
正弦交流电的电压和电流方向随时间变化,但平均值保持不变。
1
变压器由两个线圈(初级和次级)和一个磁芯组 成。初级线圈输入电压,在磁芯中产生磁场,次 级线圈感应出电压。
2
变压器的工作原理基于电磁感应定律,即变化的 磁场会产生感应电动势,而感应电动势的大小与 磁通量的变化率成正比。

正弦电流表达式

正弦电流表达式

正弦电流表达式
正弦电流是指电流随时间变化呈正弦形态的电流。

正弦电流是一种交流电流,它的波形是一个正弦曲线,包括正弦电压和正弦电流。

正弦电流的周期为2π,频率为1/T,其中T为周期时间。

在电路中,正弦电流是非常常见的,例如家庭中的电源就是交流电源,它提供的电流就是正弦电流。

正弦电流的特点是具有周期性和正弦性,这使得它在电路中具有很好的稳定性和可控性。

正弦电流的表达式可以用公式表示为:i = Imsin(ωt + φ),其中i 表示电流,Im表示电流的峰值,ω表示角频率,t表示时间,φ表示初相位。

正弦电流的峰值是指电流波形中的最大值,一般用Im表示。

角频率ω表示在一个周期内,电流的相位变化量,常用单位为弧度/秒。

初相位φ表示电流波形的起始相位,一般用弧度表示。

在电路中,正弦电流常常需要与电阻、电感、电容等元件配合使用,以实现电路的各种功能。

例如,正弦电流在电感元件中可以产生电磁感应,从而实现电路中的变压、变流、滤波等功能;在电容元件中则可以实现电路的储能、放电等功能。

正弦电流的应用非常广泛,例如在家庭电器中,电视机、洗衣机、冰箱等都需要正弦电流才能正常工作。

在工业生产中,交流电机、
变压器、电焊机等也需要正弦电流来驱动或供电。

正弦电流是一种非常重要的电流形式,它在电路中具有很好的稳定性和可控性,广泛应用于各种电气设备和系统中,是电气工程中的基础知识之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意 +j, –j, -1 都可以看成旋转因子。
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
5.2 正弦量
1. 正弦量
i
T
波形
瞬时值表达式 0
i(t)=Imcos(w t+y) 正弦量为周期函数 f(t)=f ( t+kT )
周期T 和频率f
t
f 1 T
周期T :重复变化一次所需的时间。单位:秒s 频率f :每秒重复变化的次数。单位:赫Байду номын сангаас兹)Hz
③旋转因子
复数 ej =cos +jsin =1∠
F• ej
Im
F• ej
旋转因子
F
0
Re
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
特殊旋转因子
Im
jF
F
π,
2

e2
cos
π
jsin
π
j
2
2
0
Re
jF
F
π,
j( π )
e2
cos(
π)
jsin(
π)
j
2
2
2
π , ej(π) cos(π) jsin(π) 1
解 i(t) 100 cos(103t y )
100 i
t 0 50 100cosy
y π 3
y π
50
t
3
由于最大值发生在计时起点右侧
o t1
i(t) 100 cos(103t π) 3
当 103t1 π 3 有最大值
t1=1π033 =1.047ms
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
3. 同频率正弦量的相位差
设 u(t)=Umcos(w t+y u), i(t)=Imcos(w t+y i) 相位差 :j = (w t+y u)- (w t+y i)= y u-y i
规定: |j | (180°) 等于初相位之差
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
注意 同一个正弦量,计时起点不同,初相
位不同。
i
y =0
一般规定:|y | 。
oy y =-/2
wt
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
例 已知正弦电流波形如图,w=103rad/s,
1.写出 i(t) 表达式;2.求最大值发生的时间t1
20 j5

原式
180.2
j126.2
19.2427.9o 7.21156.3o 20.6214.04o
180.2 j126.2 6.72870.16o
180.2 j126.2 2.238 j6.329
182.5 j132.5 225.536o
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
②乘除运算 —— 采用极坐标式
若 F1=|F1| 1 ,F2=|F2| 2
则:
F1 F2
F1 e j1 F2 e j2
F1
F e j(12 ) 2
F1 F2 1 2
模相乘 角相加
F1 F2
| F1 | | F2 |
θ1 θ2
| |
F1 F2
| |
e jθ1 e jθ 2
| F1 | e j(θ1θ2 ) | F2 |
极坐标式
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
几种表示法的关系:
F a jb
Im
b
F
|F|
F | F | ej | F |
o
a Re
| F |
a2 b2
θ
arctan b

a
a | F | cos
b |F|sin
2. 复数运算
①加减运算 —— 采用代数式
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
若 F1=a1+jb1, F2=a2+jb2 则 F1±F2=(a1±a2)+j(b1±b2)
Im F2
F1+F2
Im
F1+F2
F2
o 图解法
F1 Re o
F1 Re
F1-F2 -F2
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
返回
第五章 正 弦 电 流 电 路 基 础
5.1 复数
1. 复数的表示形式
b
旷建军的讲义
Im F
F a jb
代数式
|F|
(j 1 为虚数单位)
F | F | ej
指数式
o
a Re
三角函数式
F | F | ej | F | (cos j sin ) a jb
F | F | ej | F |
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
2. 正弦量的三要素 i(t)=Imcos(w t+y)
(1) 幅值 (振幅、最大值)Im 反映正弦量变化幅度的大小。
(2) 角频率ω
相位变化的速度,反映正弦量变化快慢。
w

f
2π T
(3) 初相位y
单位: rad/s ,弧度/秒
反映正弦量的计时起点,常用角度表示。
| F1 | | F2 |
θ1 θ2
模相除 角相减
返回 上页 下页
例1
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
547o 10 25o ?

原式 (3.41 j3.657) (9.063 j4.226)
12.47 j0.569 12.48 2.61o
例2
220 35o (17 j9) (4 j6) ?
②正弦信号容易产生、传送和使用。
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
2.正弦信号是一种基本信号,任何非正弦周期信 号可以分解为按正弦规律变化的分量。
n
f (t) Ak cos(kwt k ) k 1
结论
对正弦电路的分析研究具有重要的理论 价值和实际意义。
返回 上页 下页
j >0, u超前i j 角,或i 滞后 u j 角, (u 比 i 先
返回 上页 下页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
正弦电流电路 激励和响应均为同频率的正弦量的线性电路
(正弦稳态电路)称为正弦电路或交流电路。
研究正弦电路的意义 1.正弦稳态电路在电力系统和电子技术领域 占有十分重要的地位。
优 ①正弦函数是周期函数,其加、减、求导、 点 积分运算后仍是同频率的正弦函数;
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
第五章 正弦电流电路基础
本章重点
5.1 复数 5.2 正弦量 5.3 相量法的基础 5.4 电路定律的相量形式
首页
第 五 章 正 弦 电 流 电 路 基 础 旷建军的讲义
重点: 1. 正弦量的表示、相位差 2. 正弦量的相量表示 3. 电路定理的相量形式
相关文档
最新文档