高三理科数学试卷(含答案)
【高三数学试题】高三数学试题1(理科)及参考答案
![【高三数学试题】高三数学试题1(理科)及参考答案](https://img.taocdn.com/s3/m/c4c4a5ff680203d8ce2f249c.png)
高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
2021-2022学年高三理科数学期末试题及答案
![2021-2022学年高三理科数学期末试题及答案](https://img.taocdn.com/s3/m/51de81a66429647d27284b73f242336c1fb93050.png)
2021 — 2022学年度第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D)y =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A)16+ (B)16+ (C)20+ (D)20+侧(左)视图正(主)视图俯视图6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1 (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-FD P C B第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()cos(sin)f x x x x=,x∈R.(Ⅰ)求()f x的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f xα=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,135BCD∠=,侧面PAB⊥底面ABCD,90BAP∠=,2AB AC PA===, ,E F分别为,BC AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证://ME平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求PMPD的值.18.(本小题满分13分)已知函数2()1f x x=-,函数()2lng x t x=,其中1t≤.FCA DPMB E(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.参考答案一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±12 12. 2 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =+2sin cos 1)x x x =+-1sin 22x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z ,解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分又因为PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………5分同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面 所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 |22|λ-=, 解得λ=λ=. ………………14分 D18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分 (Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时,令()0h x '=,解得x =.当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x在上单调递减,在)+∞上单调递增,所以当x =时,min()h x h =. ………………11分因为(1)0h =1<,且()h x在)+∞上单调递增,所以(1)0h h <=.又因为存在12e (0,1)t -∈ ,111122()12ln 0t t t t h t ----=--=>e e e e ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+, ………………2分又因为点A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,c ,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。
高三数学试卷理科及答案
![高三数学试卷理科及答案](https://img.taocdn.com/s3/m/a8516c46b6360b4c2e3f5727a5e9856a561226af.png)
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。
A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。
A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。
A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。
A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。
A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。
A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。
A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。
A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。
A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。
高三理科数学试卷(含答案)
![高三理科数学试卷(含答案)](https://img.taocdn.com/s3/m/7010992e5901020207409ce5.png)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
河南省2023届高三上学期第一次考试数学理科试题(解析版)
![河南省2023届高三上学期第一次考试数学理科试题(解析版)](https://img.taocdn.com/s3/m/a786b1743a3567ec102de2bd960590c69ec3d8a5.png)
“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
高三数学(理科)试题及答案
![高三数学(理科)试题及答案](https://img.taocdn.com/s3/m/1b12524b78563c1ec5da50e2524de518964bd3ba.png)
高三数学(理科)试题及答案高三数学(理科)试题及答案试题一:1. 解方程:(1) 解方程 $3x - 5 = 4x + 7$(2) 解方程 $2x^2 + 5x - 3 = 0$2. 已知函数 $f(x) = \frac{3}{x+1}$,求 $f(2) \cdot f(-2)$ 的值。
3. 已知 $\triangle ABC$,$AB = 3$,$BC = 4$,$AC = 5$。
求$\angle BAC$ 的大小。
4. 已知等差数列 $a_1 = 3$,$d = 4$。
求前10项的和 $S_{10}$。
5. 在平面直角坐标系中,已知抛物线 $y = x^2 - 2x - 3$。
求顶点坐标和焦点坐标。
答案:1.(1) 将 $4x + 7$ 移项得 $3x - 4x = 7 + 5$,化简得 $x = -12$。
(2) 使用因式分解法或配方法,将方程 $2x^2 + 5x - 3 = 0$ 化简为$(2x - 1)(x + 3) = 0$。
解得 $x = \frac{1}{2}$ 或 $x = -3$。
2. 代入函数 $f(x)$ 的定义,得到 $f(2) \cdot f(-2) = \frac{3}{3} \cdot \frac{3}{1} = 3$。
3. 根据余弦定理,$AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot\cos(\angle BAC) = BC^2$。
代入已知条件,解得 $\cos(\angle BAC) = -\frac{7}{25}$。
因为 $\angle BAC$ 是锐角,所以 $\angle BAC =\arccos\left(-\frac{7}{25}\right)$。
4. 使用等差数列的求和公式 $S_n = \frac{n}{2}(a_1 + a_n)$,其中$S_{10}$ 是前10项的和,$n = 10$,$a_1 = 3$,$d = 4$。
高三理科数学期末试题及答案
![高三理科数学期末试题及答案](https://img.taocdn.com/s3/m/b70db33f0812a21614791711cc7931b765ce7b3b.png)
高三年级第一学期期末统一考试数学试卷(理工类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题:每小题5分:共40分.在每小题给出的四个选项中:选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N =A .{}|01x x ≤<B .{|01x x <<C .{}|0x x ≥D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图:则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处:现随机抽取其中的200辆进行车速统计:统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h :试km/h )错误!估计2000辆车中:在这段时间内以正常速度通过该处的汽车约有A .30辆B .300辆C .170辆D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y :则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示:则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D :如果存在正实数m :使得对任意x D ∈:都有()()f x m f x +>:则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数:且当0x >时:()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”:则实数a 的取值范围是 A .0a > B .5a < C.10a<D .20a <第二部分(非选择题 共110分)二、填空题:本大题共6小题:每小题5分:共30分.把答案填在答题卡上.侧视图俯视图9.函数2sin(2)16y x π=++的最小正周期是 :最小值是 .10.若x :y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列n a 中:若22a :则132a a 的最小值是 .12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间:甲同学不与老师相邻:则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心):且满足||25CA CB +==AB .14.已知点O 在ABC ∆的内部:且有xOA yOB zOC ++=0:记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===:则::AOB BOC AOC S S S ∆∆∆= :若2,3,4x y z ===:则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题:共80分.解答应写出文字说明:演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班:现从高一年级选10名同学组成社区服务小组:其中高一(1)班选取3名同学:其它各班各选取1名同学.现从这10名同学中随机选取3名同学:到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率:(Ⅱ)设X 为选出同学中高一(1)班同学的人数:求随机变量X 的分布列和数学期望.16.(本小题满分13分)如图:在ABC ∆中:点D 在BC 边上:7,42CAD AC π∠==:cos 10ADB ∠=-.(Ⅰ)求sin C ∠的值:(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)如图:在四棱锥P ABCD -中:底面ABCD 是菱形:且60DAB ∠=︒.点E 是棱PC 的中点:平面ABE 与棱PD 交于点F .(Ⅰ)求证:AB ∥EF :(Ⅱ)若PA PD AD ==:且平面PAD ⊥平面ABCD : 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+:其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数:求a 的取值范 围:(Ⅱ)当e a =-时:(ⅰ)证明:()20f x +≤:19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A :B 两点. (Ⅰ)求椭圆C 的离心率: (Ⅱ)求证:OA OB ⊥: (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分) 已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数:且满足条件:①1k a a =:②11212(1,2,3,,1)n n n n a a n k a a +++=+=-.(Ⅰ)若13,2k a ==:求出这个数列: (Ⅱ)若4k =:求1a 的所有取值的集合: (Ⅲ)若k 是偶数:求1a 的最大值(用k 表示).数学答案(理工类) .1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空:第一空3分:第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A :则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0:1:2:3:则03373107(0)24C C P X C ⋅===: 123731021(1)40C C P X C ⋅===: 21373107(2)40C C P X C ⋅===:30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分 16.(本小题满分13分) 解:(Ⅰ)因为cos 10ADB ∠=-:所以sin 10ADB ∠=. 又因为4CAD π∠=:所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45=. ………………………7分 (Ⅱ)在ACD ∆中:由ADCAC C AD ∠=∠sin sin:得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形:所以AB ∥CD . 又因为AB ⊄面PCD :CD ⊂面PCD :所以AB ∥面PCD . 又因为,,,A B E F 四点共面:且平面ABEF平面PCD EF =:所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G :连接,PG GB .因为PA PD =:所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD : 且平面PAD平面ABCD AD =:所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中:因为AB AD =: 60DAB ∠=︒:G 是AD 中点: 所以AD GB ⊥.如图:建立空间直角坐标系G xyz -.设2PA PD AD a ===: 则(0,0,0),(,0,0)G A a :,0),(2,0),(,0,0),)B C a D a P --.又因为AB ∥EF :点E 是棱PC 中点:所以点F 是棱PD中点.所以(,,)22E a -:(2a F -.所以3(2a AF =-:(,2a EF =.设平面AFE 的法向量为(,,)x y z =n :则有0,0.AF EF ⎧⋅=⎪⎨⋅=⎪⎩n n所以,.z y x ⎧=⎪⎨=⎪⎩令3x =:则平面AFE 的一个法向量为=n .因为BG ⊥平面PAD :所以(0,,0)GB =是平面PAF 的一个法向量.因为cos ,39GB <GB >GB⋅===⋅n n n所以平面PAF 与平面AFE . ……………………13分 18.(本小题满分14分)解:函数()f x 定义域),0(+∞∈x :1()f x a x'=+.(Ⅰ)因为()f x 在区间[1,2]上为增函数:所以()0f x '≥在[1,2]x ∈上恒成立: 即1()0f x a x '=+≥:1a x≥-在[1,2]x ∈上恒成立: 则1.2a ≥- ………………………………………………………4分(Ⅱ)当e a =-时:() e ln f x x x =-+:e 1()x f x x-+'=. (ⅰ)令0)(='x f :得1ex =. 令()0f x '>:得1(0,)e x ∈:所以函数)(x f 在1(0,)e 单调递增.令()0f x '<:得1(,)e x ∈+∞:所以函数)(x f 在1(,)e +∞单调递减.所以:max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知: max ()2f x =-: 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(xx x g -='. 令0)(='x g :得e x =.令()0g x '>:得(0,e)x ∈:所以函数)(x g 在(0,e)单调递增: 令()0g x '<:得(e,)x ∈+∞:所以函数)(x g 在(e,)+∞单调递减:所以:max lne 313()(e)2e 2e 2g x g ==+=+<: 即2)(<x g . 所以)(|)(|x g x f > :即>|)(|x f ln 32x x +.所以:方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分) 解:(Ⅰ)由题意可知24a =:243b =:所以22283c a b =-=.所以3c e a ==.所以椭圆C的离心率为3. …………………………3分 (Ⅱ)若切线l 的斜率不存在:则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -:则110OA OB ⋅=-=.所以OA OB ⊥. 同理:当:1l x =-时:也有OA OB ⊥. 若切线l 的斜率存在:设:l y kx m =+1=:即221k m +=.由2234y kx m x y =+⎧⎨+=⎩:得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y :22(,)B x y :则122631kmx x k +=-+:21223431m x x k -=+.所以2212121212()()()y y kx m kx m k x x km x x m =++=+++. 所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+ 22244431m k k --=+2224(1)44031k k k +--==+. 所以OA OB ⊥.综上所述:总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切:则圆O 半径即为OAB ∆的高: 当l 的斜率不存在时:由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时:由(Ⅱ)可知:AB ===223131k k ==++231k =+. 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++ 24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时:等号成立).所以AB ≤.此时:max (S )OAB ∆=.综上所述:当且仅当3k =±时:OAB ∆面积的最大值为3.…………………14分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==:由①知32a =: 由②知:21211223a a a a +=+=:整理得:2222310a a -+=.解得:21a =或212a =. 当21a =时:不满足2323212a a a a +=+:舍去: 所以:这个数列为12,,22. …………………………………………………3分 (Ⅱ)若4k =:由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=:所以111(2)(1)0n n n n a a a a ++--=.所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=:显然不满足条件: 所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=:共有下面4种情况: (1)若211a a =:3212a a =:4312a a =:则41114a a a ==:解得112a =: (2)若2112a a =:321a a =:4312a a =:则4111a a a ==:解得11a =:(3)若2112a a =:3212a a =:431a a =:则4114a a a ==:解得12a =:(4)若211a a =:321a a =:431a a =:则4111a a a ==:解得11a =: 综上:1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意:设*2,,m 2k m m =∈≥N .由(II )知:112n n a a +=或11(1,2,3,21)n n a n m a +==-.假设从1a 到2m a 恰用了i 次递推关系11n n a a +=:用了21m i --次递推关系112n n a a +=: 则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z . 当i 是偶数时:0t ≠:2111()2tm a a a =⋅=无正数解:不满足条件: 当i 是奇数时:由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤:所以112m a -≤.又当1i =时:若213221222211111,,,,222m m m m a a a a a a a a ---====: 有222111()2m m a a --=⋅:222112m m a a a -==:即112m a -=.所以:1a 的最大值是12m -.即1212k a -=.…………………………………13分。
四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)
![四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)](https://img.taocdn.com/s3/m/e62db271dc36a32d7375a417866fb84ae45cc3b3.png)
四川省成都外国语学校2024届高三下学期高考模拟(三)数学(理科)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D .2.已知为虚数单位,若复数为纯虚数,则实数( )A .B .2C .D .43.“”是“方程表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知为锐角,若,则( )ABCD5.正方形的边长为2,是的中点,是的中点,则( )A .4B .3C .D .6.已知非零实数,满足,则下列不等式不一定成立的是( )A .B .C .D .7.已知函数,,则图象为如图的函数可能是( ){}240,A x x x x =-≤∈Z {}14B x x =-≤<A B = []1,4-[)0,4{}0,1,2,3,4{}0,1,2,3i ()242i z m m =---m =2±2-13m <<22113x y m m+=--αsin 22πα⎛⎫-= ⎪⎝⎭cos α=ABCD E AD F DC ()EB EF BF +⋅=4-3-a b 1a b >+221a b >+122a b +>24a b>1ab b>+()214f x x =+()sin g x x =A .B .C .D .8.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A .B .C.D .9.已知甲同学从学校的2个科技类社团,4个艺术类社团,3个体育类社团中选择报名参加,若甲报名了两个社团,则在仅有一个是艺术类社团的条件下,另一个是体育类社团的概率( )A .B .C .D .10.鼎湖峰,矗立于浙江省缙云县仙都风景名胜区,状如春笋拔地而起,其峰顶镶嵌着一汪小湖,传说黄帝炼丹鼎坠积水成湖.白居易曾以诗赋之:“黄帝旌旗去不回,片云孤石独崔嵬,有时风激鼎湖浪,散作晴天雨点来”.某校开展数学建模活动,有建模课题组的学生选择测量鼎湖峰的高度,为此,他们设计了测量方案.如图,在山脚测得山顶得仰角为,沿倾斜角为的斜坡向上走了90米到达点(,,,在同一个平面内),在处测得山顶得仰角为,则鼎湖峰的山高为( )米()()14y f x g x =+-()()14y f x g x =--()()y f x g x =()()g x y f x =cm 3cm 22π8π223π163π356131234A P 45︒15︒B A B P Q B P 60︒PQA .B .C .D .11.已知正方体的棱长为4,,分别是棱,的中点,则平面截该正方体所得的截面图形周长为( )A .6B .CD12.已知,分别是双曲线:(,)的左右焦点,过的直线分别交双曲线左、右两支于、两点,点在轴上,,平分,则双曲线的离心率( )ABCD .二、填空题:本题共4小题;每小题5分,共20分。
高三期末数学理科试卷
![高三期末数学理科试卷](https://img.taocdn.com/s3/m/928a57484531b90d6c85ec3a87c24028915f85bb.png)
一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()。
A. √2B. πC. 0.1010010001...D. 22. 已知函数f(x) = 2x - 1,若f(2x) = 4x - 3,则x的值为()。
A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()。
A. log23 = 3B. log22 = 1C. log32 = 2D. log42 = 34. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差为()。
A. 1B. 2C. 3D. 45. 下列函数中,在定义域内单调递减的是()。
A. y = 2x + 1B. y = x^2C. y = log2xD. y = 3^x6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()。
A. 0B. 1C. -1D. 不存在7. 已知直线l的方程为x - 2y + 1 = 0,则直线l的斜率为()。
A. 1B. -1C. 2D. -28. 若向量a = (1, 2),向量b = (2, 1),则向量a与向量b的点积为()。
A. 3B. 5C. 0D. -39. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的大小为()。
A. 75°B. 105°C. 120°D. 135°10. 已知等比数列{an}的首项为2,公比为3,则该数列的前5项和为()。
A. 62B. 78C. 90D. 105二、填空题(每题5分,共50分)11. 已知函数f(x) = x^2 - 2x + 1,若f(x) = 0,则x的值为______。
12. 若log2(3x - 1) = 3,则x的值为______。
13. 已知等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为______。
14. 若函数f(x) = x^3 - 3x + 2在区间[0, 2]上单调递增,则f(1)的值为______。
高三理科数学试卷+答案
![高三理科数学试卷+答案](https://img.taocdn.com/s3/m/4681431e91c69ec3d5bbfd0a79563c1ec5dad709.png)
理科数学试题一、选择题(每题5分,共60分)1.已知i 是虚数单位,复数z 满足2(1i)1i z-=+则z =()B.2C.12.已知全集{}2|230,{3}U x x x A =+-≤=-,则U A =ð()A.(,3](1,)-∞⋃+∞B.(3,1]- C.[3,1)- D.[3,1]-3.已知0.30.3121,log 0.3,0.32a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是()A.a b c<< B.c a b<< C.a c b << D.a c b<<4.函数2()cos ln f x x x =的图象大致为()A. B.C.D.5.已知向量,a b 的夹角为π4,且2,a b == ,则a b -= ()A.1B.2C.4D.66.若曲线e 1xy =+在0x=处的切线,也是ln y x b =+的切线,则b =()A.-1B.2C.4D.37.在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=则2020S =()A.0B.2018C.-2019D.20208、一个几何体的三视图如图所示,则该几何体的体积为()A.8π3+ B.8π+ C.82π3+D.89.如图,已知点()2,2A 与反比例函数2y x=,在正方形ABOC 内随机取一点P ,则点P 取自图中阴影部分的概率为()10.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且倾斜角为120的直线与抛物线C 交于,A B 两点,若,AF BF 的中点在y 轴上的射影分别为,M N ,且||43MN =,则抛物线C 的准线方程为()A.32x =-B.2x =- C.3x =- D.4x =-11.已知函数2,0()2ln ,0x x f x x x ⎧⎪<=⎨⎪>⎩,若函数()()1g x f x kx =--有且只有三个零点,则实数k 的取值范围()A.21(0,)eB.1(,0)2- C.(0,e)D.211(,)2e-12.已知等边ABC △的边长为23,,M N 分别为,AB AC 的中点,将AMN △沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为()A.1312+ B.1312+ C.33+ D.35+二、填空题(每题5分,共20分)13.太极图被称为"中华第一图".从孔庙大成殿梁柱,到楼观台,三茅宫等的标记物,太极图无不跃居其上,这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为"阴阳鱼太极图".在如图所示的阴阳鱼图案中,阴影部分的区域可用不等式组222240(1)1x y x x y ⎧+⎪≤≤≥⎨⎪++⎩或22(1)1x y +-≤来表示,设(),x y 是阴影中任意一点,则z x y =+的最大值为_______.A.ln 22B.1ln 22+ C.2ln 22- D.1ln 22-14.某校举行歌唱比赛,高一年级从6名教师中选出3名教师参加,要求李老师,王老师两名老师至少有一人参加,则参加的三名老师不同的唱歌顺序的种数为______.(用数字作答)15.已知函数()2sin()(0)f x x ωϕω=+>满足π2,(π)04f f ⎛⎫== ⎪⎝⎭,且()f x 在区间ππ(,43上单调,则ω的值有_____个.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右顶点12,A A ,右焦点为1,F B 为虚轴的上端点,在线段1BF 上(不含端点)有且只有一点P满足120PA PA ⋅=,则双曲线的离心率为________.三、解答题(共70分)17、(本题12分)设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.(1)求数列{}n a 的通项公式;(2)记()12121log log 1n n n a b a S ++=⋅+,求数列{}n b 的前n 项和n T .18、(本题12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,120ABC ∠=︒,PA PB PC ==.(1)证明:PBD △为直角三角形;(2)若2PD =,E 是PC 的中点,且二面角P AB E --的余弦值为5714,求三棱锥P ABE -的体积.19、(本题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A B B C C D D E +++、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为371624241673%、%、%、%、%、%、%、%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N .(1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20、(本题12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,下顶点为M ,直线2MF 与E 的另一个交点为P ,连接1PF ,若1PMF △的周长为12PF F △的面积为313b .(1)求椭圆E 的标准方程;(2)若直线:(1)l y kx m m =+≠-与椭圆E 交于A ,B 两点,当m 为何值时,MA MB ⊥恒成立?21、(本题12分)已知函数213()e3x a f x x -=-,其中常数a ∈R .(1)若()f x 在(0,)+∞上是增函数,求实数a 的取值范围;(2)当1a =时,求证:导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.(本题10分)在平面直角坐标系xOy 中,曲线C的参数方程为4cos 24sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为π6θ=.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.理科数学参考答案1.答案:A 解析:复数z 满足2(1i)1i z -=+,2(1i)2i 2i(1i)1i 1i 1i 2z ----∴====--++,||z ∴==2.答案:B 解析:全集{|(3)(1)0}[3,1],{3}U x x x A =+-≤=-=-,则(3,1]U A =-ð.3.答案:B 解析:0.3.311221110.31,log 0.3log 1222a ⎛⎫⎛⎫<<=>= ⎪ ⎪⎝⎭⎝⎭ ,c a b ∴<<.4.答案:C解析:易知()(),()f x f x f x -=∴为偶数,当(0,1)x ∈时,2cos 0,ln 0x x ><,所以当(0,1)x ∈时,()0f x <,故只有C 选项满足条件.5.答案:B解析:||82a b -===+= 6.答案:D解析: e 1x y =+的导数为'e x y =,曲线 e 1x y =+在0x =处的切线斜率为1k =,则曲线 e 1x y =+在0x =处的切线方程为2,ln y x y x b -==+的导数为1y x '=设切点为(),m n .则11m=解得1,3m n ==,即有3ln1b =+解得3b =.7.答案:D 解析:设等差数列{}n a 的公差为d ,由等差数列的性质可得112n S n a d n -=+为等差数列,n S n ⎧⎫⎨⎬⎩⎭的公差为2d .15105,5515102S S d -=∴⨯=.解得2d =.则2020202020192020(2018)220202S ⨯=⨯-+⨯=.8.答案:A 解析:该几何体是由一个四棱锥和一个圆柱的一半组成的几何体,体积为2118π12222π233⨯⨯⨯+⨯⨯⨯=+.9.答案:D解析:由题意可得正方形的面积为4,联立,22y y x =⎧⎪⎨=⎪⎩解得12x y =⎧⎨=⎩.所以阴影部分面积为221122d 22ln (42ln 2)(20)22ln 2x x x x ⎛⎫-=-=---=- ⎪⎝⎭⎰,所以所求概率22ln 21ln 242P --==.10.答案:C 解析:抛物线2(:20)C y px p =>的焦点为,02p F ⎛⎫⎪⎝⎭,过F 且倾斜角为120的直线方程设为)2py x =-联立抛物线的方程可得2220py +-=.设A 的纵坐标为1y ,B 的纵坐标为2y ,,M N 的纵坐标为1211,22y y ,可得21212y y y p +==-,则121||2y y -=,可得()212124192y y y y +-=,即为22192443p p =+解得6p =,则抛物线的准线方程为3x =-.11.答案:A解析:如图,作出函数,0()2ln ,0xx f x x x ⎧-<⎪=⎨⎪>⎩的图象,函数()()1g x f x kx =--有且只有三个零点,则函数()f x 与函数1y kx =+的图象有且只有三个交点,函数1y kx =+图象恒过点()0,1则直线1y kx =+在图中阴影部分内时,函数()f x 与1y kx =+有三个或两个交点.当直线1y kx =+与ln y x =的图象相切时,设切点为()00,ln x x 切线斜率为000011,ln 1k x x x x =∴=⋅+解得202211e ,,0,e ex k k ⎛⎫=∴=∴∈ ⎪⎝⎭.12.答案:A 解析:如图,由题意,易知,CM BM BN CN ⊥⊥,所以取BC 的中点E ,则E 是等腰梯形MNCB 外接圆圆心.AMN △为等边三角形,所以取MN 中点D ,连接AD ,在AD 上取点F 使2AF FD =,所以点为F AMN △外心.易知13,,1,.22AD MN DE MN DF AF DE ⊥⊥===设点O 为四棱锥A MNCB -的外接球球心OE ∴⊥平面MNCB ,OF ⊥平面AMN .当四棱锥A MNCB -的体积最大时,平面AMN ⊥平面MNCB .π31,,222ADE OF ED OE FD ∴∠=====设四棱锥A MNCB -的外接球半径R,则222134R AF OF =+=.所以当四棱锥A MNCB -的体积最大时,P 到平面MNCB距离的最大值为max d R OE =+=.13.答案:1解析:依题意,,,z x y y x z z =+∴=-+表示直线y x z =-+在y 轴上的截距,所以当直线y x z =-+与圆22(1)1x y +-=切于如图的点A 时,z 最大(1)z >.因为直线y x z =-+与圆相切,所以点()0,1到直线0x y z +-=的距离为1,即11z =>,1=,解得1z =+.14.答案:96解析:第一步:先选3人,李老师与王老师至少有一人参加,用间接法,有3364C C 20416-=-=种;第二步,将3人排序,有336A =种.故不同发言顺序的种数为16696⨯=.15.答案:9解析:由π2,(π)04f f ⎛⎫== ⎪⎝⎭知,*π3ππ,N 4244T kT k +=-=∈,*3π2(12),,N 123k T k k ω+∴==∈+又因为()f x 在区间ππ(,)43上单调,ππ342T ∴-≤故π2π,126T Tω≥∴=≤,即2(12)1712,32k k +≤∴≤,*N ,0,1,2,8k k ∈∴= 符合条件的ω的值有9个.16.解析:由题意1(,0),(0,)F c B b ,则直线1BF 的方程为0bx cy bc +-=,在线段1BF 上(不含端点)有且只有一点满足120PA PA ⋅=,则1PO BF ⊥,且PO a =,a ∴=即22222222b c a a b c b c =⋅+=+ ,42244230,310c a c a e e ∴-+=-+=,解得2351522e e ++=∴=.17.答案:(1) 设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.∴数列{}n a 为等比数列,公比2=q ,又149a a +=,11a ∴=.因此数列{}n a 的通项公式为12n n a -=,*n N ∈.(2)由()12121log log 1n n n a b a S ++=⋅+,得1221111(1)1log 2log 2n n n b n n n n +===-++.11111122311n n T n n n =-+-+-=++ .18.解析:(1)因为四边形ABCD 是菱形,120ABC ∠=︒,所以AD BD CD ==,取AB 的中点M ,连接DM ,PM ,易知DM AB ⊥,因为PA PB =,所以PM AB ⊥,因为PM DM M ⋂=,所以AB ⊥平面PDM ,又PD ⊂平面PDM ,所以PD AB ⊥.取BC 的中点N ,连接DN ,PN ,同理得PD BC ⊥,又AB BC B ⋂=,所以PD ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,故PBD △为直角三角形.(2)由(1)可知,直线DM ,DC ,DP 两两垂直,故可以D 为坐标原点,DM ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系D xyz -,如图所示.设AB a =,则,,02a A ⎫-⎪⎪⎝⎭,,,02a B ⎫⎪⎪⎝⎭,(0,,0)C a ,(0,0,2)P ,因为E 是PC 的中点,所以0,,12a E ⎛⎫⎪⎝⎭,则(0,,0)AB a =,,,222aPA a ⎛⎫=-- ⎪ ⎪⎝⎭,,0,12BE a ⎛⎫=- ⎪ ⎪⎝⎭,设平面PAB 的法向量为()111,,x y z =m ,则0,0,AB PA ⎧⋅=⎪⎨⋅=⎪⎩m m 得11110,320,22ay a ax y z =⎧--=⎪⎩令12x =,则2a ⎛⎫= ⎪ ⎪⎝⎭m .设平面ABE 的法向量为()222,,x y z =n ,则0,0,AB BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得2220,30,2ay z =⎧⎪⎨-+=⎪⎩令21x =,则⎛⎫= ⎪ ⎪⎝⎭n,所以2324|cos ,|a +〈〉=m n .令2314t a =+,则14=,解得73t =或4t =,所以237143a +=或23144a +=,所以43a =或2a =.连接AC ,因为12P ABC P ABCD V --=,12E ABC P ABC V V --=,所以2111344312P ABE E ABC P ABCD V V AB DM PD a ---===⨯⨯⨯⨯=.当2AB =时,三棱锥P ABE -;当43AB =时,三棱锥P ABE -19.答案:(1)因为物理原始成绩()260,13N ξ~,所以()()()478647606086P P P ξξξ<<=<<+≤<()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯0.6820.95422=+0.818=.所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).(2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()22323362C 55125P X ⎛⎫==⋅⋅=⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为X 0123P2712554125361258125所以数学期望()26355E X =⨯=.20.解析:(1)设122F F c =.由椭圆的定义可知,1PMF △的周长为4a =a =直线2MF 的方程为by x b c =-,与22221x y a b +=联立可得点2322222,a c b P a c a c ⎛⎫ ⎪++⎝⎭,12PF F ∴△的面积为333222112223b b c c b a c c ⨯⨯==++,即232c c =+,解得1c =或2c =(舍),则2221b a c =-=,∴椭圆E 的标准方程为2212x y +=.(2)联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()222214220k x kmx m +++-=,()228210k m ∆=-+>.由(1)可知(0,1)M -,设()()1122,,,A x y B x y ,则2121222422,2121km m x x x x k k -+=-=++,()212122242222121k m my y k x x m m k k +=++=-+=++,()()()2212121212y y kx m kx m k x x mk x x m =++=+++()22222222222242212121k m k m m k m k k k --=-+=+++,()()1122,1,1 MA MB x y x y ∴⋅=+⋅+uuu r uuu r ()()121211x x y y =+++1212121x x y y y y =++++22222222221212121m m k mk k k --=++++++.由MA MB ⊥得0MA MB ⋅=uuu r uuu r ,故23210m m +-=,解得13m =或1m =-(舍),∴当13m =时,MA MB ⊥恒成立.21.解析:(1)因为()f x 在(0,)+∞上是增函数,所以212()2e 0x f x ax -'=-≥在(0,)+∞上恒成立,即212e 2x a x -≤恒成立,只需使212mine 2x a x -⎛⎫≤ ⎪⎝⎭即可.设212e ()(0)x h x x x -=>,则2122121432e 2e 2(1)e ()x x x x x x h x x x -----'==.当(0,1)x ∈时,()0h x '<,函数()h x 在(0,1)上单调递减;当(1,)x ∈+∞时,()0h x '>,函数()h x 在(1,)+∞上单调递增,所以()h x 的最小值为(1)e h =,所以e 2a≤,解得2e a ≤,故实数a 的取值范围是(,2e]-∞.(2)证明:当1a =时,212()2e x f x x -'=-.令()221()()412e 41x g x f x x x x -'=--+=--,则21()44x g x e -'=-.令()0g x '>得12x >;令()0g x '<得12x <,所以()g x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,所以()g x 在12x =处取极小值,1102g ⎛⎫=-< ⎪⎝⎭.因为32(1)410e g -=+->,3(2)290g e =->,所以存在12111,,,222x x ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120,0g x g x ==,所以()g x 有两个零点,即导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.答案:(1)曲线C 的参数方程为4cos 24sin x y αα=+⎧⎨=⎩.得曲线C 的普通方程为224120x y x +--=.所以曲线C 的极坐标方程为24cos 12ρρθ-=.(2)设,A B 两点的极坐标方程分别为12ππ(,,66ρρ,12||AB ρρ=-,又,A B 在曲线C 上,则12,ρρ是2π4cos 1206ρρ--=的两根.12121212,||AB ρρρρρρ∴+==-∴=-=.23.答案:(1).∵0,0a b >>,1a b +=由基本不等式得:2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,由ab m ≤恒成立,14m ∴≥(2).∵(),0,a b ∈+∞()4141459b a a b a b a b a b ⎛⎫∴+=++=++≥ ⎪⎝⎭故要使41212x x a b+≥--+恒成立,第7页共7页则2129x x --+≤当2x ≤-时,不等式化为:1229x x -++≤,解得62x -≤≤-当122x -<<时,不等式化为:1229x x ---≤,解得122x -<<当12x ≥时,不等式化为:2129x x ---≤,解得1122x ≤≤故 x 的取值范围[]6,12-.。
江西省丰城市第九中学2023届高三上学期入学考数学(理)试题(解析版)
![江西省丰城市第九中学2023届高三上学期入学考数学(理)试题(解析版)](https://img.taocdn.com/s3/m/5935fe1f11661ed9ad51f01dc281e53a58025115.png)
丰城九中高三上学期理科数学开学考试试卷一、单选题(共12题,共60分)1.已知集合{}{}2220,log 1A x x x B x x =--<=≤,则A B = ()A.{}02x x <≤B.{}02x x <<C.{}12x x -<< D.{}12x x -<≤【答案】B 【解析】【分析】分别解二次不等式和对数不等式,求得集合,A B ,进而利用交集的定义求得A B ⋂.【详解】A {}{}12,02x x B x x =-<<=<≤,则{}02A B x x ⋂=<<.故选:B2.已知命题p :∀x ∈R ,cosx≤1,则()A.¬p :∃x 0∈R ,cosx 0≥1B.¬p :∀x ∈R ,cosx≥1C.¬p :∀x ∈R ,cosx >1D.¬p :∃x 0∈R ,cosx 0>1【答案】D 【解析】【分析】对于全称命题的否命题,首先要将全称量词“∀”改为特称量词“∃”,然后否定原命题的结论,据此可得答案.【详解】解:因为全称命题的否定是特称命题,所以命题p :∀x ∈R ,cosx≤1,¬p :∃x 0∈R ,cosx 0>1.故选D.【点睛】本题考查了命题中全称量词和存在量词,解题的关键是要知晓全称命题的否定形式是特称命题.3.设122a =,133b =,3log 2c =,则A.b a c <<B.a b c <<C.c b a <<D.c<a<b【答案】D 【解析】【详解】试题分析:由已知1221a =>,1331b =>,且616228a ⎛⎫== ⎪⎝⎭,616339b ⎛⎫== ⎪⎝⎭,1b a ∴>>,而3log 2c =<1,所以c<a<b考点:指数的幂运算.4.已知3sin , (,)52πα=α∈π,则πcos()3α+=()A.410- B.410+ C.410+-D.310+【答案】C 【解析】【分析】由两角和的余弦公式展开即可.【详解】 3sin ,(,)52πααπ=∈,4cos 5α∴=-,cos()cos cos sin sin333ππ∴+=-πααα4134525210+=-⨯-⨯=-故选:C5.已知命题()2000:R,110p x x a x ∃∈+-+<,若命题p 是假命题,则a 的取值范围为()A.1≤a ≤3B.-1<a <3C.-1≤a ≤3D.0≤a ≤2【答案】C 【解析】【分析】先写出命题p 的否定,然后结合一元二次不等式恒成立列不等式,从而求得a 的取值范围.【详解】命题p 是假命题,命题p 的否定是:()2R,110x x a x ∀∈+-+≥,且为真命题,所以()()()214130a a a ∆=--=+-≤,解得13a -≤≤.故选:C 6.“04x k ππ=-+,k ∈Z ”是“函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的图象关于点()0,0x 对称”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据题意,求出函数()f x 的对称中心,即可判断.【详解】函数()tan 4f x x π⎛⎫=+⎪⎝⎭的图象关于点()0,0x 对称042k x ππ⇔+=,k ∈Z ,即042k x ππ=-+,k ∈Z ,故“02442k x k ππππ=-+=-+,k ∈Z ”是“函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的图象关于点()0,0x 对称”的充分不必要条件.故选:A7.如图,有一古塔,在A 点测得塔底位于北偏东60°方向上的点D 处,塔顶C 的仰角为30°,在A 的正东方向且距D 点60m 的B 点测得塔底位于北偏西45°方向上(A ,B ,D 在同一水平面),则塔的高度CD 约为() 2.4≈)A.38mB.44mC.40mD.48m【答案】D 【解析】【分析】转化为解三角形问题,利用正弦定理、直角三角形的性质进行求解.【详解】如图,根据题意,CD ⊥平面ABD ,30CAD ∠=︒,30BAD ∠=︒,45ABD ∠=︒,60BD =.在ABD △中,因为sin sin BD AD BAD ABD =∠∠,所以60sin 30sin 45AD=︒︒,所以AD =.在Rt ACD △中,3tan 30483CD AD =⋅︒==m .故A ,B ,C 错误.8.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()g x =()A.2sin 8x π⎛⎫- ⎪⎝⎭B.2sin 8x π⎛⎫+⎪⎝⎭C.2sin 48x π⎛⎫-⎪⎝⎭D.2sin 48x π⎛⎫+⎪⎝⎭【答案】A 【解析】【分析】由最值可求得A ,根据最小正周期可求得ω,由28f π⎛⎫= ⎪⎝⎭可求得ϕ,从而得到()f x 解析式;由三角函数平移和伸缩变换原则可得()g x .【详解】由图象可知:()()max min22f x f x A -==,最小正周期3488T πππ⎛⎫=-=⎪⎝⎭,22T πω∴==,()()2sin 2f x x ϕ∴=+,2sin 284f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()242k k ππϕπ∴+=+∈Z ,解得:()24k k πϕπ=+∈Z ,又2πϕ<,4πϕ∴=,()2sin 24f x x π⎛⎫∴=+ ⎪⎝⎭;将()f x 图象向右平移316π个单位长度可得:332sin 22sin 216848f x x x ππππ⎛⎫⎛⎫⎛⎫-=-+=- ⎪ ⎪⎝⎭⎝⎭⎝⎭;将316f x π⎛⎫-⎪⎝⎭横坐标变为原来的2倍得:()2sin 8g x x π⎛⎫=- ⎪⎝⎭.9.已知()21sin 42f x x x π⎛⎫++ ⎝=⎪⎭,()f x '为()f x 的导函数,则()f x '的大致图象是()A. B.C. D.【答案】A 【解析】【分析】对函数()f x 求导,判断导函数的奇偶性,排除部分答案,接着将6x π=代入导函数即可解得答案.【详解】解:∵()2211sin cos 424f x x x x x π⎛⎫=++=+ ⎪⎝⎭,∴()1sin 2f x x x '=-,∴()()()11sin sin 22f x x x x x '-=---=-+∴()()f x f x ''-=-∴()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B ,D ,将6x π=代入()f x '得:106122f ππ⎛⎫'=-< ⎪⎝⎭,排除C .故选:A .10.已知定义在R 上的函数()f x 在(],3-∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为().A.51,3⎛⎫ ⎪⎝⎭B.()5,1,3⎛⎫-∞⋃+∞⎪⎝⎭C.()3,2-- D.()(),32,-∞--+∞ 【答案】B 【解析】【分析】根据已知条件,可得()f x 对称轴为3x =,且在[)3,+∞上单调递减.根据函数的对称性与单调性,可得只需223x x -<-即可,解出不等式即可.【详解】由题意可得,()f x 对称轴为3x =,且在[)3,+∞上单调递减.则由()()12f x f x +>,可得出1323x x +-<-,即()()22223x x -<-,即()()23853510x x x x -+=-->,解得1x <或53x >.所以,不等式()()12f x f x +>的解集为()5,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭.故选:B.11.已知a 是()323652f x x x x =--+-的一个零点,b 是()e 1xg x x =++的一个零点,132log 5c =,则()A.a c b <<B.a b c<<C.b<c<a D.a c b <<或c b a<<【答案】A 【解析】【分析】利用导数研究函数()f x 的单调性得()f x 仅有1个零点,且3a <-,结合函数()g x 的单调性与零点的存在性定理得21b -<<-,根据对数运算得3log 25c =-,进而32c -<<-,再根据范围得大小.【详解】解:因为()323652f x x x x =--+-,()()()2336321f x x x x x '=--+=-+-,所以()f x 在(),2-∞-上是减函数,在()2,1-上是增函数,在()1,+∞上是减函数,因为()3102f =-<,所以()f x 仅有1个零点,因为()19302f -=-<,所以3a <-,因为()e 1xg x x =++是增函数,且()110e g -=>,()21210eg -=-<,所以21b -<<-,因为1332log 5log 25c ==-,32log 253<<,所以32c -<<-,所以a c b <<.故选:A .12.已知函数()ln f x x x =-,若()59f x m ≥-恒成立,则实数m 的取值范围为()A.1,e∞⎛⎤- ⎥⎝⎦B.(],1-∞ C.(],2-∞ D.(],e ∞-【答案】C 【解析】【分析】令()0t t =>,问题转化为2e 2ln 59t t t t m --≥-,构造函数()2e 2ln tg t t t t =--,通过导数,对()g t 的单调性进行讨论,进而可以得到()min g t ,进而可求答案.()0t t =>,则2x t =,问题转化为2e 2ln 59t t t t m --≥-恒成立.令()2e 2ln tg t t t t =--,则()()()()()222e 122e 10tt t t g t t t t t t+-=+--'=>,因为0t >,所以20t t+>.令()()2e 10t h t t t =->,则()()22e 0t h t t t =+>',所以()h t 在()0,∞+上单调递增,又()1e 10h =->,11024h ⎛⎫=-<⎪⎝⎭,所以存在01,12t ⎛⎫∈⎪⎝⎭,使得()00h t =,即020e t t 10-=,所以当()00,t t ∈时,()0h t <,即()0g t '<,当()0,t t ∞∈+时,()0h t >,即()0g t '>,所以()g t 在()00,t 上单调递减,在()0,t +∞上单调递增,所以()()020000min e 2ln tg t g t t t t ==--,又020e 10t t -=,所以020e 1tt =,0201et t =,所以()0000min 11ln 11e t g t t t t =--=-+=,所以159m ≥-,解得2m ≤.故选:C二、填空题(共4题,共20分)13.已知幂函数()()213m f x m x-=-在()0,∞+内是单调递减函数,则实数m =______.【答案】2-【解析】【分析】由已知,函数()f x 为幂函数且在()0,∞+内是单调递减,可进行列式,即231m -=且10m -<即可完成求解.【详解】由题意得,函数()f x 为幂函数且在()0,∞+内是单调递减,所以23110m m ⎧-=⎨-<⎩,解得2m =-.故答案为:2-.14.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2,A C a ==,若228c +=,则ABC ∆的面积为____________.【答案】【解析】【详解】试题分析:由正弦定理,知sin sin a A c C =,即sin 22cos sin 2cos sin sin C C C C C C ===,所以3cos 2C =,所以30C =︒,所以60,90A B =︒=︒.因为a =,所以2b c =228c +=,所以2c =,所以12S ac ==.考点:正弦定理.【方法点睛】解三角形问题,多为边和角的求值问题,其基本步骤是:(1)确定三角形中的已知和所求,(2)根据条件和所求合理选择正弦定理与余弦定理,使边化角或角化边;(3)求解.15.命题[]:1,1p x ∃∈-,使得2x a <成立;命题():0,q x ∀∈+∞,不等式21ax x <+恒成立.若命题p q ∧为假,则实数a 的取值范围为___________.【答案】[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦【解析】【分析】首先求出命题,p q 为真时a 的取值范围,再根据复合命题的真假即得.【详解】命题p :[1,1]x ∃∈-,使得2x a <成立,当[1,1]x ∈-时,1,222x⎡⎤∈⎢⎥⎣⎦,若命题p 为真,则12a >,命题:(0,)q x ∀∈+∞,不等式21ax x <+恒成立,则211x a x x x+<=+,当0x >时,12x x+≥,当且仅当1x =时等号成立,若命题q 为真,则2a <;当命题p q ∧为真命题时,有122a a ⎧>⎪⎨⎪<⎩,即122a <<,所以命题p q ∧为假时,12a ≤或2a ≥,所以实数a 的取值范围为[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.故答案为:[)1,2,2⎛⎤-∞+∞ ⎥⎝⎦.16.已知sin (20)26()|ln 1(0)x x f x x x πππ⎧⎛⎫+-≤≤⎪ ⎪=⎝⎭⎨⎪-⎩,若方程()(),0f x m m =>恰有4个不同的实数解a ,b ,c ,d ,且a b c d <<<,则cda b=+___________.【答案】2320e -【解析】【分析】画出函数的图象,利用数形结合方法判定易知112m <<,a ,b 关于直线103x =-对称,结合0c e d <<<可知|ln 1||ln 1|c d -=-,进而求得.【详解】如图,易知112m <<,a ,b 关于直线103x =-对称,所以203a b +=-,又0c e d <<<且|ln 1||ln 1|c d -=-,所以1ln ln 1c d -=-,所以ln ln ln 2cd c d =+=,所以2cd e =,从而2320cd e a b =-+.故答案为:2320e -三、解答题(共6题,共70分)17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足πsin()cos 6⎛⎫+=- ⎪⎝⎭a A Cb A .(1)求角A ;(2)若3,5a b c =+=,求ABC 的面积.【答案】(1)π3A =(2)433【解析】【分析】(1)由条件和正弦定理可得πsin sin sin cos 6A B B A ⎛⎫=- ⎪⎝⎭,然后结合三角函数的知识可得答案;(2)由条件结合余弦定理求出bc 的值即可.【小问1详解】由正弦定理得πsin sin sin cos 6A B B A ⎛⎫=- ⎪⎝⎭,因为0πB <<,所以sin 0B >,所以πsin cos 6A A ⎛⎫=-⎪⎝⎭,化简得1sin sin 22A A A =+,所以πcos 06A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以π3A =.【小问2详解】因为π3A =,由余弦定理得2222()3a b c bc b c bc =+-=+-,又3,5a b c =+=,所以2229()3b c bc b c bc =+-=+-,即9253=-bc ,解得163bc =,则ABC 的面积1116sin 22323S bc A ==⨯⨯=.18.已知函数()2cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)若函数()()g x f x k =-在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的零点,求实数k 的取值范围.【答案】(1)πT =,增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)12k ≤<.【解析】【分析】(1)用二倍角公式以及辅助角公式化简()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,然后根据正弦函数的性质即得;(2)由题可得()f x k =在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的根,然后利用数形结合即得.【小问1详解】由()2cos 2cos 1f x x x x =-+得,()π2cos 22sin 26f x x x x ⎛⎫=-=- ⎪⎭,故最小正周期为2ππ2T ==,由πππ2π22π262k x k -+≤-≤+,解得ππππ63k x k -+≤≤+,k ∈Z ,故()f x 的单调递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z ;【小问2详解】令()()0g x f x k =-=,则()f x k =,故问题转化为()f x k =在区间π0,2⎡⎤⎢⎥⎣⎦内有两个不同的根,令π26t x =-,且π5π,66t ⎡⎤∈-⎢⎥⎣⎦,则问题等价于2sin t k =在π5π,66t ⎡⎤∈-⎢⎥⎣⎦有两个根,画出函数2sin y t =的图象,由2sin y t =的图象可知:当12k ≤<时,有两个根,故实数k 的取值范围为12k ≤<.19.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是cos sin 90ρθθ++=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)若P 是曲线C 上的动点,求点P 到直线l 距离的最大值,并求此时点P 的坐标.【答案】(1)2214x y +=,90x ++=(232⎛⎫ ⎪ ⎪⎝⎭【解析】【分析】(1)结合22cos sin 1αα+=消元即可得出曲线C 的普通方程;由cos ,sin x y ρθρθ==即可得出直线l 的直角坐标方程;(2)设点()2cos ,sin P αα,结合点线距离公式,讨论最大值即可【小问1详解】由2cos sin x y αα=⎧⎨=⎩(α为参数),得2214x y +=,故曲线C 的普通方程为2214x y +=.由cos sin 90ρθθ++=,得90x ++=,故直线l 的直角坐标方程为90x ++=.【小问2详解】设点()2cos ,sin P αα,则点P 到直线l 的距离π4sin 96d α⎛⎫++ ⎪==故当πsin 16α⎛⎫+= ⎪⎝⎭时,点P 到直线l .此时,点P 的坐标为⎛ ⎝⎭.20.(1)设α,β为锐角,且5sin 5α=,310cos 10β=,求αβ+的值;(2)已知πsin 410α⎛⎫+= ⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 24α⎛⎫- ⎪⎝⎭的值.【答案】(1)π4;(2)17250-.【解析】【分析】(1)根据三角恒等式求出cos α和sin β,利用两角和的余弦公式求出()cos αβ+,结合范围即可得结果;(2)通过两角和的正弦公式以及三角恒等式求出sin α,cos α,然后利用二倍角公式求出sin 2α,cos 2α的值,最后由两角差的正弦可得结果.【详解】(1)∵α为锐角,5sin 5α=,且22sin cos 1αα+=,∴cos 5α=.∵β为锐角,310cos 10β=,且22sin cos 1ββ+=,∴sin 10β=,∴()253105102cos cos cos sin sin 5105102αβαβαβ+=-=⨯-⨯=,∵()0,παβ+∈,∴π4αβ+=.(2)因为πsin 410α⎛⎫+= ⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,所以ππ2sin cos cos sin 4410αα+=,即1sin cos 5αα+=.又π,π2α⎛⎫∈ ⎪⎝⎭,22sin cos 1αα+=,解得:4sin 5α=,3cos 5α=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭,2222347cos 2cos sin 5525ααα⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,所以πππsin 2sin 2cos cos 2sin 444ααα⎛⎫-=- ⎪⎝⎭2427217225225250⎛⎫⎛⎫=-⨯--⨯=- ⎪ ⎪⎝⎭⎝⎭.21.已知函数()|26||36|f x x x =---.(1)求不等式()1f x >的解集;(2)若不等式()||f x k x ≤恒成立,求实数k 的取值范围【答案】(1)111,5⎛⎫ ⎪⎝⎭(2)[)1,+∞【解析】【分析】(1)分类讨论去绝对值后再求解不等式即可;(2)讨论0x =,当0x ≠时6623x k x ---≥,利用绝对值的三角不等式求解6623x x---的最大值即可;【小问1详解】(),22636512,23,3x x f x x x x x x x <⎧⎪=---=-+≤≤⎨⎪->⎩,当2x <时,1x >,即12x <<,当23x ≤≤时,5121x -+>,解得115x <,即1125x ≤<,当3x >时,1x ->,解得1x <-,此时无解,综上:不等式()1f x >的解集为111,5⎛⎫ ⎪⎝⎭;【小问2详解】0x =时上述不等式显然成立,当0x ≠时,上述不等式可化为()26362366x x f x x k xx x ---=---≥=,令()()666623231x x x f g x x xx ==---≤--+=,当且仅当02x <≤时等号成立,所以1k ≥,即实数k 的取值范围为[)1,+∞.22.已知函数()ln f x x ax =-.(1)求函数()f x 的单调区间;(2)当1x ≥时,函数()()()1ln 0k x x f x a x =++-⎡⎤⎣⎦≤恒成立,求实数a 取值范围.【答案】(1)答案见解析(2)1,2⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)求出函数()f x 的定义域,求得()1ax f x x='-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由题意可知()2ln 10x x a x --≤对任意的1x ≥恒成立,令()()()2ln 11g x x x a x x =--≥,分0a ≤、102a <<、12a ≥三种情况讨论,利用导数分析函数()g x 在[)1,+∞上的单调性,验证()()10g x g ≥=能否恒成立,综合可得出实数a 的取值范围.【小问1详解】解:函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=①当0a ≤时,则()0f x ¢>,所以()f x 在()0,∞+上单调递增;②当0a >时,则由()0f x ¢>知10x a <<,由()0f x '<知1x a>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a ≤时,()f x 的单调递增区间为()0,∞+,当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭.【小问2详解】解:由题意知()0k x ≤恒成立,而()()()()201ln 0ln 10k x x f x a x x x a x ⇔++-⇔-⎡⎤⎣⎦-≤≤≤,由()()()2ln 11g x x x a x x =--≥,得()ln 12g x x ax '=+-,令()ln 12h x x ax =+-,则()1122ax h x a x x-'=-=.①若0a ≤,()0h x '>,则()g x '在[)1,+∞上单调递增,故()()1120g x g a ''-≥=≥,所以()g x 在[)1,+∞上单调递增,所以()()10g x g ≥=,从而()2ln 10x x a x --≥,不符合题意;②若102a <<,则112a >,当11,2x a ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()g x '在11,2a ⎛⎫ ⎪⎝⎭上单调递增,从而()()1120g x g a ''>=->,所以()g x 在11,2a ⎡⎫⎪⎢⎣⎭在单调递增,所以()1102g g a ⎛⎫>= ⎪⎝⎭,不符合题意;③若12a ≥,则1012a<≤,()0h x '≤在[)1,+∞上恒成立,所以()g x '在[)1,+∞上单调递减,()()1120g x g a ≤=-'≤',从而()g x 在[)1,+∞上单调递减,所以()()10g x g ≤=,所以()2ln 10x x a x --≤恒成立.综上所述,a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,本题涉及端点效应,一般的解题思路就是对参数的取值进行分类讨论,利用导数分析函数在定义域上的单调性,验证对应的不等式能否恒成,由此求解.第17页/共17页。
天津市高三模拟考试(理科)数学试卷-带答案解析
![天津市高三模拟考试(理科)数学试卷-带答案解析](https://img.taocdn.com/s3/m/f480af4f178884868762caaedd3383c4bb4cb481.png)
天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。
高三数学综合测试题(含答案)
![高三数学综合测试题(含答案)](https://img.taocdn.com/s3/m/64d9b00359eef8c75fbfb3df.png)
高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。
高三年数学试卷(理科)(附答案)
![高三年数学试卷(理科)(附答案)](https://img.taocdn.com/s3/m/2237e2934b35eefdc9d33399.png)
高三年数学试卷(理科)(完卷时间:120分钟; 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数i z +=31,i z -=12,则1z ·2z 在复平面内的对应点位于( )A .第一象限B .第二象限 C.第三象限 D.第四象限2、等差数列{}n a 中,若752a a =-,则1715a a -=( ) A .2- B .2 C .1- D .13、函数)1(121>+=+x y x 的反函数是( )A .)5(2log 2>-=x x yB .())5(11log 2>--=x x yC .)1(2log 2>-=x x yD . ())1(11log 2>--=x x y 4、为真命题的且为真命题是或""""q p q p 条件 A .充分非必要条件 B .必要非充分条件 C .既非充分也非必要条件 D .充要条件 5、一个容量为20的样本数据,分组后,组距与频数如下:A .201. B .41. C .107. D .21 6、关于x 的不等式0<-b ax 的解集为(1,+∞),则关于x 的不等式2--x bax >0的解集为( ) A .(-1,2) B .(-∞,-1)∪(2,+∞)C .(1,2)D .(―∞,―2)∪(1,+∞)7、已知函数)(x f 的导数为,44)(3x x x f -='且)(x f 图象过点(0,-5),当函数)(x f 取得极小值-6时,x 的值应为( ) A .0B .-1C .±1D . 18、设函数⎪⎩⎪⎨⎧>≤-=)0(log )0(8)31()(3x x x x f x,若f (a )>1,则实数a 的取值范围是( )A .)3,2(-B .)2,(--∞∪),3(+∞C .(3,+∞)D .)3,(--∞∪(0,+∞) 9、已知等差数列{a n }中,若1201210864=++++a a a a a ,则=1515S 项和前 ( ) A .240- B .360- C .240 D .360 10、已知数列{n a }中,*N n ∈,11-=a ,1121--+=n n n a a (2≥n ),则∞→n lim =+++)(21n a a a ( )A .2-B .2C . 32-D .3211、已知函数f (x )的定义域为[a ,b ],函数f (x )则函数f (| x |)的图象是( )A . B. C. D.12、已知()x f 为偶函数,且()()x f x f -=+22,当02≤≤-x 时()x x f 2=,若*N n ∈,()n f a n =则=2006a ( ) A . 2006 B .4 C .41D .4- 二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饶平二中2010—2011学年度高三理科数学试卷(2)一、填空题(本题4小题,每小题5分,共20分)1.复数22)1(ii += 2.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖块。
3.若不等式121+-≥+a xx 对一切非零实数x 均成立,则实数a 的最大值是______; 4.已知关于x 的不等式12011x a x a ++-+>(a 是常数)的解是非空集合,则a 的取值范围是 .二、解答题(本题共6小题,第5,6小题每题12分,第7至第10小题每题14分,共80分。
解答应写出文字说明、证明过程或演算步骤) 5.在ABC ∆中,已知222a b c ab +-=,且sin()2cos sin A B A B+=,(1)求C ∠的大小;(2)证明ABC ∆是等边三角形.第1个第2个第3个6.先阅读以下不等式的证明,再类比解决后面的问题: 若123123,,,1a a a R a a a ∈++=,则22212313a a a ++≥.证明:构造二次函数222123()()()()0,f x x a x a x a =-+-+-≥将()f x 展开得:2222123123()32()f x x a a a x a a a =-+++++222212332x x a a a =-+++对一切实数x 恒有()0f x ≥,且抛物线的开口向上222123412()0a a a ∴∆=-++≤,22212313a a a ∴++≥. (1)类比猜想:若1212,,,,1n n a a a R a a a ∈+++=,则22212n a a a +++≥.(在横线上填写你的猜想结论)(2)证明你的猜想结论.7.某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖. (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是152,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用ξ表示获奖的人数,求ξ的分布列及ξE .8.把边长为a 的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x ,容积为()V x . (Ⅰ)写出函数()V x 的解析式,并求出函数的定义域; (Ⅱ)求当x 为多少时,容器的容积最大?并求出最大容积.9.(本小题满分14分)已知数列{}n a 满足:11a =,且对任意∈n N *都有12)n a += (1) 求2a ,3a 的值,猜想数列{}n a的通项公式; (2) 证明你的猜想; (3n n a a ++∈n N *).10. 已知函数()1ln xf x x ax-=+.(0)a > (1)求函数()f x 的极值点;(2)当1a =时,求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(3)当1a =时,求证对大于1的任意正整数n ,1111ln 234n n>++++.饶平二中2010—2011学年度高三理科数学试卷(2)答题卷姓名:___________ 座号:____________班级:____________ 成绩:_____________ 一、 填空题:(本题4小题,每小题5分,共20分)1. _________2. ________________3. _______________4. _____________ 二、解答题(本题共6小题,第5,6小题每题12分,第7至第10小题每题14分,共80分。
解答应写出文字说明、证明过程或演算步骤)12,,,1n n a R a a a ∈+++=,则221n a a +++≥饶平二中2010—2011学年度高三理科数学试卷(1)参考答案二、解答题(本题共6小题,第5,6小题每题12分,第7至第10小题每题14分,共80分。
解答应写出文字说明、证明过程或演算步骤) 一、填空题(本题4小题,每小题5分,共20分) 1. 2.3. 3 4. )1004 , (-∞二、 解答题(本题共6小题,第5,6小题每题12分,第7至第10小题每题14分,共80分。
解答应写出文字说明、证明过程或演算步骤) 5、解: (1)222a b c ab +-=,由余弦定理,得 2221cos 22a b c C ab +-== -------3分 又C 为ABC ∆的内角,∴60C =. --------------------4分(2)sin()2cos sin A B A B+=,2cos sin sin()A B A B ∴=+2cos sin sin cos cos sin A B A B A B =+∴, ………………………6分sin()0A B -=∴……………………………………………8分∵,A B 为ABC ∆的内角,A B =∴. ……………………………10分又60C =,∴ABC ∆是等边三角形. -------------------12分另证:sin()sin 2cos sin sin A B CA B B+==, -------------------5分由余弦定理和正弦定理,得222b c a cbc b+-=, ----------------8分整理得,a b =.----------------------------------------10分又60C =,∴ABC ∆是等边三角形. ------------------12分6.解:(1)222121n a a a n+++≥……………………………………4分 (2)证明: 构造二次函数22212()()()()0n f x x a x a x a =-+-++-≥……6分22221212()2()n n f x nx a a a x a a a =-+++++++………………8分2222122()n nx x a a a =-++++………………………… 9分对一切实数x 恒有()0f x ≥,且抛物线的开口向上 ………………10分2221244()0n n a a a ∴∆=-+++≤………………………… 11分即 222121n a a a n+++≥. ……………………………………… 12分 7、解:(1)设“世博会会徽”卡有n 张,由2210n C C =152,得n =4….3分故“海宝”卡有6张,抽奖者获奖的概率为31226=C C …………………………5分(2)ξ可能取的值为0,1,2,3,4,则.…..…..….…6分8116)32()0(4===ξP 8132)32(31)1(314=⋅==C P ξ 8124)32()31()2(2224=⋅==C P ξ81832)31()3(314=⋅==C P ξ 811)31()4(4===ξP …………………………………………9分=ξE 0×8116+1×8132+2×8124+3×818+4×811=3481108=…………………12分法二(1)设“海宝”卡有n 张,由152210210=-C C n得078192=+-n n n=6或n=13(舍去)……………………………………3分故“海宝”卡有6张,抽奖者获奖的概率为3121026=C C …………………………5分(2))31,4(~B ξ.…………………………………………………6分)4,3,2,1,0()32()31()(44=⋅==-k C k P k kk ξ=ξE 34314=⨯=np8.解:(Ⅰ)因为容器的高为x,则做成的正三棱柱形容器的底边长为()a ----1分.则2())V x a x =- 。
函数的定义域为). --- 4分 (Ⅱ)实际问题归结为求函数()V x 在区间)上的最大值点.先求()V x 的极值点.在开区间)内,22'()6V x ax =----------------6分令'()0V x =,即令2260ax -=,解得12,( x x =舍去).因为1x =在区间)内,1x 可能是极值点. 当10x x <<时,'()0V x >;当1x x <<时,'()0V x <. ------------8分因此1x 是极大值点,且在区间)内,1x是唯一的极值点,所以1x x ==是()V x 的最大值点,并且最大值 31)54f a =时,容器的容积最大为3154a .---------10分9.(本小题满分14分,其中(1)题3分,(2)题7分,(3)题4分)解:(1na +++=211211a a a =∴得412=a 32212111a a a a =+得913=a ……2分 猜想数列{}n a 的通项公式为2.1n a n =………………… 3分 (2)当2≥n 时,12121111+=+++n n n a a a a a ① nn n a a a a a 112121111--=+++②①- ②得:nn n n na a a a a 1121211-+-=……………… 5分∴21111=--+n n a a ∴ 数列}1{},1{212n n a a -皆为等差数列 ……… 7分 ∴122)1(11112-=⋅-+=-n n a a n n n a a n 22)1(1122=⋅-+=…… 9分综上, n a n=1, ∴2.1n a n =. ………………… 10分(3) 13221++++n n a a a a a a )1(1321211+++⨯+⨯=n n 11131212111+-++-+-=n n 111+-=n 1+=n n……… 13分1)1(221+=+=∴+n nn n a a nn ∴等式成立. ……… 14分10.(1)对函数求导得:()21()0ax f x a ax -'=>,定义域为(0,)+∞,依题意得:210ax ax -=, ∴函数()f x 的极小值点为1x a =(2)当1a =时,21()x f x x -'=,在1,22⎡⎤⎢⎥⎣⎦,若1,12x ⎡⎫∈⎪⎢⎣⎭,则()'0f x <,若(]1,2x ∈则()'0f x >,故1x =是函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的唯一的极小值点,也就是最小值点,故()()min 10f x f ==;()313ln ln1622ln 2222e f f -⎛⎫-=-= ⎪⎝⎭,因为332.719.68316e >=>,所以()1202f f ⎛⎫-> ⎪⎝⎭,即()122f f ⎛⎫> ⎪⎝⎭,即函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最大值是12f ⎛⎫ ⎪⎝⎭.综上知函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最大值是1ln2-,最小值是0.(3)当1a =时,由(1)知,函数()1ln xf x x x-=+在[)1,+∞上为增函数.当1n >时令1nx n =-,则1x >,故()()10f x f >=,即111ln ln 01111n n n n n f n n n n n n -⎛⎫-=+=-+> ⎪---⎝⎭-,即1ln 1n n n >-. 故21ln 12>,31ln 23>,…………,1ln 1n n n>-,相加得23111ln ln ln 12123n n n +++>+++-,而2323ln ln ln ln ln 121121n n n n n ⎛⎫+++=⋅⋅⋅= ⎪--⎝⎭,即1111ln 234n n>++++.。