2006-2007(2)高等数学试题(A卷)(72)

合集下载

高数A2(A卷)

高数A2(A卷)

……………………………… 密 ……………………………… 封 ………………………………… 线 ………………………………安 徽 工 业 大 学 工 商 学 院 试 题 纸(一)2007 ~ 2008学年第二学期期末考试《 高等数学A2》试卷(A 卷)一、选择题(共4分×6)(将结果填入下表中: ) 1、函数),(y x f z =在),(y x 点有偏导数是它在该点连续的( ).(A)充分而非必要条件; (B )必要而非充分条件;(C)充分必要条件; (D )既非充分又非必要条件.2、设),2ln(),(xy x y x f += 则=)0,1(y f ( ).(A) 21-; (B)21; (C) 0; (D) 1.3、函数3121x cx y -=(c 为任意常数)是微分方程222x dxy d -=的( ).(A)解,但既非通解又非特解; (B)通解;(C)特解; (D)不是解.4、函数y x xy y x z 84222-+++-=的驻点是( ). (A )(-1,3); (B )(3,-1); (C )(3, 1); (D )(-1,-3).5、二阶线性非齐次方程xe x y y y )1(2-=+'-''的特解形式是( ).(A)x e b ax )(+; (B )xe bx ax )(2+; (C)xe bx ax )(23+; (D )xe bx ax )(3+.6、设级数∑∞=1)1(!3n nn nn 与级数∑∞=1)2(!2n nnnn , 则成立( ).(A)级数(1)、(2)均收敛; (B)级数(1)、(2)均发散.; (C)级数(1)收敛, 级数(2)发散; (D)级数(1)发散, 级数(2)收敛二、填空题(共4分×6)1、设),(v u f 有连续偏导数,且),(yxe ef z =, 则=dz __________________.2、级数∑∞=+1623n nnn 的和是__________.3、)(x f 在某区域内有连续导数, 若积分⎰+Ly dy x f xdx e ])([2与路径无关, 则.____________________)(=x f4、设一个二阶常系数线性齐次微分方程的特征方程有两个特征根,为-2和3,则此微分方程是________________________, 其通解为___________________________.5、设Ω是由光滑闭曲面∑围成的空间区域,其体积是V , 则沿∑内侧的曲面积分⎰⎰∑=-+-+-.______________)2()3()(dxdy y z dzdx x y dydz z x6、设平面上力j xy i y F 32+-=, 在力F 的作用下, 质点沿曲线L 运动, 则力F 所做的功用曲线积分表示为__________________________.三、解答题(共47分) 1、[5分]求曲面1232=+z xy 在点(1,-2,2)处的切平面与法线方程.2、[5分]计算积分: ⎰⎰ππydx xx dy sin 0.3、[5分]求微分方程满足初始条件的特解: ⎪⎩⎪⎨⎧==+1)0(y ey dx dy x .高数试卷A2(A 卷)(第1页)……………………………… 密……………………………… 封 ………………………………… 线 ………………………………安 徽 工 业 大 学 工 商 学 院 试 题 纸(二)4、[5分]用重积分算出半球体0,2222≥≤++z a z y x 的体积V .(用其它方法不给分)5、[5分]),(v u f 可微, 且32),(x x x f =, 422),(x x x x f u -=,求 ),(2x x f v .6、 [5分]设L 是圆周x y x 222=+的正向曲线,计算第二类曲线积分dy y xydx y x x I L⎰-+-=)()(3223. (注:163cossin204204πππ⎰⎰==xdx xdx )7、[6分]求幂级数∑∞=-1)3(n nnx 的收敛域(含端点讨论).8、[6分]求幂级数∑∞=-11n n nx 在(-1,1)上的和函数.9、[5分]设222),,(z y x z y x f ++= ,求函数在点M (1,1,0)沿方向)1,2,1(=l的方向导数lf ∂∂.四、[5分]计算二重积分:,)1ln(2dxdy y y x I D⎰⎰++=其中D 由x y 3-=,24x y -=,x = 1 所围成的闭区域.五、附加题 [6分]设微分分方程0)4(32='++''y ey y(1)若把x 看成未知函数,y 看成自变量,则方程化成什么形式; (2)求此方程的通解.高数试卷A2(A 卷)(第2页)。

(整理)全国Ⅱ高考试题目文

(整理)全国Ⅱ高考试题目文

2006年普通高等数学招生全国统一考试(全国Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式: 如果事件A 、B 互斥,那么球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率:其中R 表示球的半径()(1)k kn k n n P k C P P -=-第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量(4,2)a =,向量(,3)b x =,且a ∥b ,则x =A .9B .6C .5D .32.已知集合{}|3M x x =<,{}2|log 1N x x =>,则MN =A .∅B .{}|03x x <<C .{}|13x x <<D .{}|23x x <<3.函数sin 2cos 2y x x =的最小正周期是A .2πB .4πC .4πD .2π 4.如果函数()y f x =的图像与函数()32g x x =-的图像关于坐标原点对称,则()y f x =的表达式为A .23y x =-B .23y x =+C .23y x =-+D .23y x =--5.已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 上,则△ABC 周长是A.B .6C.D .126.已知等差数列{}n a 中,27a =,415a =,则前10项的和10S =A .100B .210C .380D .4007.如图,平面α⊥平面β,A α∈,B β∈,AB 与两平面α、β所成的角分别为4π和6π,过A 、B 分别作两平面交线的垂线,垂足为A '、B ',若12AB =,则A B ''=A .4B .6C .8D .98.函数ln 1(0)y x x =+>的反函数为A .1()x y e x R +=∈ B .1()x y e x R -=∈C .1(1)x y ex +=>D .1(1)x y ex -=>9.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为A .53B .43C .54D .3210.若(sin )3cos 2f x x =-,则(cos )f x =A .3cos2x -B .3sin 2x -C .3cos2x +D .3sin 2x +11.过点(1,0)-作抛物线21y x x =++的切线,则其中一条切线为A .220x y ++=B .330x y -+=C .10x y ++=D .10x y -+=12.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有 A .150种 B .180种C .200种D .280种α βABA ′B ′第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.在4101()x x+的展开式中常数项是 .(用数字作答)14.圆1O 是以R 为半径的球O 的小圆,若圆1O 的面积1S 与球O 的表面积S 的比为1:2:9S S =,则圆心1O 与球心O 的距离与球的半径比1:OO R = .15.过点的直线l 将圆22(2)4x y -+=分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k = .16.一个社会调查机构就某地居民的月收调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,45B ∠=,AC =cos C =,求 (1)BC 的值;(2)若点D 是AB 的中点,求中线CD 的长度.18.(本小题满分12分)设等比数列{}n a 的前n 项和为n S ,41S =,817S =,求通项公式n a . 19.(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该 批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)求取6件产品中有1件产品是二等品的概率;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.20.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,AB BC =,D 、E 分别为1BB 、1AC 的中点.(1)证明:ED 为异面直线1BB 与1AC 的公垂线;(2)设1AA AC =,求二面角11A AD C --的大小.21.(本小题满分12分)设a R ∈,函数2()22f x ax x a =--,若()0f x >的解集为A ,{}|13B x x =<<,A B ≠∅,求实数a 的取值范围.21.(本小题满分14分)已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且(0)AF FB λλ=>.过A 、B 两点分别作抛物线的切线,设其交点为M .(1)证明:FM AB ⋅为定值;(2)设△ABM 的面积为S ,写出()S f λ=的表达式,并求S 的最小值.22.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且方程20n n x a x a --=有一根为1n S -,1,2,3,n =.(1)求1a ,2a ; AB CD E A 1B 1C 1(2)求{}n a 的通项公式.2006年普通高等学校招生全国统一考试(全国II 卷) 数学(文史类)(编辑:宁冈中学张建华)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷

2006-2007学年第二学期高等数学期末试卷北京工业大学2006-2007学年第二学期《高等数学》期末试卷一、单项选择题:本大题共5小题,每小题4分,共20 分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确结果的字母写在括号内。

1.假定函数f (x,,y )在点),(0y x 处取得极大值,此时下列结论正确的是 【 】(A )0(,)f x y 在0x x =处导数等于零. (B )0(,)f x y 在0x x =处导数大于零.(C )0(,)f x y 在0x x =处导数小于零. (D )0(,)f x y 在x x =处导数未必存在.2. 222222ln()1z x y z dxdydz x y z Ω+++++⎰⎰⎰(其中Ω为2222xy z ++≤)的值等于 【 】 (A ) 2 (B ) 1 (C ) 0 (D ) -1 3.级数21(1)ln nn n∞=-∑ 的敛散情况是【 】(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不能确定4.将三重积分dvz y xI ⎰⎰⎰Ω++=)(222,其中1:222≤++Ωz y x,化为球面坐标下的三次积分为 【 】 (A )⎰⎰⎰120drd d ππϕθ (B ) ⎰⎰⎰1220rdrd d ππϕθ(C )⎰⎰⎰1420sin drr d d ϕϕθππ(D ) ⎰⎰⎰12020sin drr d d ϕϕθππθϕϕd drd r dv sin 2=注意到体积元素5.定义在[,]ππ-上的函数()||f x x =展开为以2π为周期的傅立叶级数,其和函数记为)(x S ,则=)(πS【 】(A )0 (B) π(C )π- (D )2π二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中的横线上.6.曲线32,,t z ty t x ===在点),1,1,1(--P 处的切线方程为___________________ , 法平面方程为12.计算二次积分2()a x y aI a dx e dy-=⎰⎰,其中实数0a >,并求极限lim ()a I a →+∞13.利用高斯公式计算曲面积分⎰⎰∑+-=,2dxdy z xdzdx ydydz I 其中∑是锥面22y x z +=介于平面0z =与平面3z =之间部分的外侧.14.已知曲线积分()[]⎰'+-=),()0,0()()(,y x x dyxydxxeyxIϕϕ与积分路径无关,其中()xϕ是二阶可导函数,且(0)0ϕ=,0)0(='ϕ.1.求()xϕ;2.求)1,1(I.15. 求(1)幂级数112n n n n x ∞-=∑的收敛域;(2)幂级数112n nn n x ∞-=∑的和函数;(3)级数1(1)2nnn n ∞=-∑的和.16.函数)(x f 具有连续的导数,满足0()()d 1x ax xf x e f at t ae +=+⎰,且(0)2f a =, 求a 的值及函数)(x f .12()(2)x x e xe xf x e e ee--+-+=-+四、 证明题: 本题共1题,6分.17. 已知无穷级数2n n u ∞=∑满足 22222ln 1xy nx y a nun dxdyπ--+≤=-⎰⎰,其中实数0a >, 证明: 级数2n n u ∞=∑ 当1a >时收敛; 当1a ≤时发散, 但2(1)nnn u ∞=-∑ 总收敛.北京工业大学2006-2007学年第二学期 《高等数学》期末试卷 参考答案一、单项选择题1. D 2. C 3.A 4. C (θϕϕd drd r dv sin 2=注意到体积元素)5. B二、填空题 6.312111+=--=+z y x 0632=++-z y x7. 44a π8.544x - )4,4(-9.3,2==b a 310.dy dx dz 2121+=三、计算题11. 解:设 ,x u y x v ye =-=, 则''x u v zf ye f x∂=-+∂ ()()2'''''''''''''''2'''()1x x u v uu uvx x x vu vv v x x x uu uv vv v z f ye f f e f x y yye f e f e f f e y f ye f e f ∂∂=-+=--∂∂∂+++=-+-++12. 解:()2222211.2a xa aa yy y y a xa y a dx edy dx edy dy edxyedy e -----=-=-=-=-⎰⎰⎰⎰⎰⎰⎰从而1lim ()2a I a →+∞=-。

06-07高等数学试题(A)解答

06-07高等数学试题(A)解答

广州大学2006-2007学年第一学期考试卷高等数学(A 卷)(90学时)参考解答与评分标准一.填空题(每小题3分,本大题满分15分)1.=∞→xxx sin lim0 2.设函数(ln )y f x =, 其中()f x 可微, 则d y =(ln )d f x x x'3.曲线sin y x =上点(0,0)处的切线斜率为=k 1 4.设()x f x xe =, 则(2006)()f x =2006xxxe e + 5.质点以速度)sin(2t t 米/秒作直线运动, 则从时刻21π=t 秒到π=2t 秒内质点所经过的路程等于 0.5 米.二.选择题 (每小题3分, 本大题满分15分)1. 当1x →时,无穷小量(1)x -是2(1的( C ). A. 高阶无穷小; B. 低阶无穷小; C. 等价无穷小; D. 同阶但不等价无穷小.2. 0x =是函数1arctany x=的( B )间断点. A. 可去; B. 跳跃; C. 无穷; D. 振荡.3. 下列函数在指定区间上满足罗尔定理条件的是( A ).A. ];3,2[,65)(2∈+-=x x x x f B . ];2,0[,)1(1)(32∈-=x x x fC. ];1,0[,)(∈=x e x f xD. ].1,1[,)(-∈=x x x f4. 设函数()y y x =的导函数为cos x ,且(0)1y =,则()y x =( D ). A. cos x ; B. sin x ; C. cos 1x +; D. sin 1x +.5. 若22001()d ()d 2axf x x f x x =⎰⎰,则a =( A ). A. 4; B. 2; C.12; D. 1. 三.解答下列各题(每小题6分,本大题满分12分)1.21sin ()xe y x -=,求y '. 解:112sin (sin )x x e e y x x --''=⋅。

2007年高考理科数学(全国二卷)真题

2007年高考理科数学(全国二卷)真题

15.一个正四棱柱的各个顶点在一个直径为 2cm 的球面上.如果正四棱柱的底面边长 为 1cm,那么该棱柱的表面积为 cm 2 .
Sn n→ n 2
16.已知数列的通项 an 5n 2 ,其前 n 项和为 S n ,则 lim

三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步 骤. 17.(本小题满分 10 分) 在 △ ABC 中,已知内角 A
2007 年普通高等学校招生全国统一考试(全国卷Ⅱ)
理科数学
第Ⅰ卷(选择题)
本卷共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
参考公式: 如果事件 A,B 互斥,那么 球的表面积公式
P ( A B ) P ( A) P ( B )
如果事件 A,B 相互独立,那么
3.设复数 z 满足 A. 2 i
1 2i i ,则 z ( z
) C. 2 i ) D. 2 i
B. 2 i
4.下列四个数中最大的是(
第 1 页 共 14 页
A. (ln 2) 2
B. ln(ln 2)
C. ln 2
D. ln 2
1 CD CA CB ,则 5.在 △ ABC 中,已知 D 是 AB 边上一点,若 AD 2DB, 3
第 8 页 共 14 页
2007 年普通高等学校招生全国统一考试(全国 卷Ⅱ)理科数学参考答案
一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B
二、填空题 13. 42 三、解答题
2 17.解:(1) △ ABC 的内角和 A B C ,由 A ,B 0,C 0 得 0 B .

高数(2-2)历年期末试题参考答案

高数(2-2)历年期末试题参考答案

2006—2007学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内). 1.设三向量→→→c b a ,,满足关系式→→→→⋅=⋅c a b a ,则( D ). (A )必有→→=0a 或者→→=c b ; (B )必有→→→→===0c b a ; (C )当→→≠0a 时,必有→→=c b ; (D )必有)(→→→-⊥c b a . 2. 已知2,2==→→b a ,且2=⋅→→b a ,则=⨯→→b a ( A ).(A )2 ; (B )22; (C )22; (D )1 . 3. 设曲面)0,0(:2222>≥=++a z a z y x S ,1S 是S 在第一卦限中的部分,则有( C ).(A )⎰⎰⎰⎰=14S SxdS xdS ; (B )⎰⎰⎰⎰=14S SxdS ydS ;(C )⎰⎰⎰⎰=14S SxdS zdS ; (D )⎰⎰⎰⎰=14S SxyzdS xyzdS .4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:(D ). (A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x .5. 判别级数∑∞=⋅1!3n nn n n 的敛散性,正确结果是:( B ).(A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是(B ).(A )平行于xoy 平面; (B )平行于z 轴,但不通过z 轴; (C )垂直于z 轴 ; (D )通过z 轴 .二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知xy e z =,则2x xdy ydx e dz xy -⋅-=.2. 函数zx yz xy u ++=在点)3,2,1(P 处沿向量→OP 的方向导数是71411,函数u 在点P 处的方向导数取最大值的方向是}3,4,5{,该点处方向导数的最大值是25.3. 已知曲线1:22=+y x L ,则π2)(2=+⎰Lds y x .4. 设函数展开傅立叶级数为:)(,cos 02ππ≤≤-=∑∞=x nx ax n n,则12=a .三、解答下列各题(本题共7小题,每小题7分,满分49分). 1. 求幂级数∑∞=+01n nn x 收敛域及其和函数. 解 nn n a a 1lim+∞→ ,121lim =++=∞→n n n ∴收敛半径为1, 当1=x 时,级数∑∞=+011n n 发散,当1-=x 时,级数∑∞=+-01)1(n nn 收敛, 故所求的收敛域为)1,1[-;令;)1,1[,1)(0-∈+=∑∞=x n x x S n n于是.1,1)(01<+=∑∞=+x n x x S x n n 逐项求导,得.1,11)1(])([001<-=='+='∑∑∞=∞=+x x x n x x S x n n n n.1),1ln(1])([)(00<--=-='=∴⎰⎰x x t dtdt t tS x xS x x1,)1ln(1)(<--=∴x x xx S 且.0≠x而,2ln )1ln(1lim )(lim )1(11=--==-++-→-→x x x S S x x 1)0(=S ,故⎪⎩⎪⎨⎧=<<<≤---=.01,1001,)1ln()(x x x xx x S 2. 计算二重积分⎰⎰≤++42222y x y xdxdy e.解 令⎩⎨⎧==θθsin cos r y r x ,则⎰⎰≤++42222y x y x dxdy e⎰⎰=20202rdr e d r πθ ⎰=22)(2r d e r π202r eπ=).1(4-=e π3. 已知函数),(y x f z =的全微分ydy xdx dz 22-=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.解 由,22ydy xdx dz -=得),1(2x xf=∂∂ ),2(2y y f -=∂∂)1(两边关于x 积分,得)(2),(y C xdx y x f +=⎰)(2y C x +=,此式两边关于y 求偏导,再由)2(知,2)(y y C -=',)(2C y y C +-=⇒.),(22C y x y x f +-=∴ 由2)1,1(=f 知,2=C ,故.2),(22+-=y x y x f令,0202⎪⎪⎩⎪⎪⎨⎧=-=∂∂==∂∂y yf x x f得驻点)0,0(在D 内部,且2)0,0(=f ,在D 的边界1422=+y x 上:.11,252)44(222≤≤--=+--=x x x x z 其最大值是,3)0,1(1=±=±=f z x 最小值是2)2,0(0-=±==f z x ;故),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值是3}2,3,2max{=-, 最小值是.2}2,3,2min{-=-.4. 设Ω是由4,22=+=z y x z ,所围成的有界闭区域,计算三重积分⎰⎰⎰Ω++dxdydz z y x)(22.解 令,sin cos ⎪⎩⎪⎨⎧===z z r y r x θθ则.4,20,20:2≤≤≤≤≤≤Ωz r r πθ⎰⎰⎰⎰⎰⎰+=++∴Ω422020222)()(rdz z r rdr d dxdydz z y x πθ⎰⎰+=42202)(2rdz z r rdr π⎰==+=204222]2[2dr z z r r z r z π⎰-+=2053)2384(2dr r r r π.32]44[220624ππ=-+=r r r 5. 设AB L 为从点)0,1(-A 沿曲线21x y -=到点)0,1(B 一段曲线,计算⎰++ABL y x ydy xdx 22. 解 ⎩⎨⎧-=-=≤≤-==,2,1.11,,:2xdx dy x y x dx dx x x L AB.0)1()2)(1(11222222=-+--+=++∴⎰⎰-dx x x x x x y x ydy xdx ABL6. 设∑是上半球面221y x z --=的下侧,计算曲面积分⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(2322.解 ,2,,2322z y xy R z y x Q xz P +=-== ,222z y x zRy Q x P ++=∂∂+∂∂+∂∂ 作.1,0:22≤+=∑y x z 上补与下∑所围成的立体为Ω,由高斯公式,⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322 ⎰⎰∑+∑++-+=上补下dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰∑++-+-上补dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰⎰⎰⎰≤+Ω⋅+---∂∂+∂∂+∂∂-=1222)02(00y x dxdy y xy dxdydz z R y Q x P )(000222---++-=⎰⎰⎰Ωdxdydz z y x )((作球面坐标变换)⎰⎰⎰⋅-=1222020sin ρϕρρϕθππd d d .52sin 21420πρρϕϕππ-=-=⎰⎰d d 7. 将函数61)(2--=x x x f 展开成关于1-x 的幂级数 .解.1,110<=-∑∞=x x x n n.1,)1(110<-=+∑∞=x x x n n n )2131(51)3)(2(161)(2+--=-+=--=∴x x x x x x x f ]3)1(12)1(1[51+----=x x]311131211121[51-+⋅---⋅-=x x ]311131211121[51-+⋅+--⋅-=x x∑∞=+--=012)1(51n n n x ∑∞=+---013)1()1(51n n nn x ( 121<-x 且131<-x ) 21,)1](3)1(21[51011<---+-=∑∞=++x x n n n nn 即).3,1(-∈x四、证明题(7分). 证明不等式:2)sin (cos 122≤+≤⎰⎰Dd x yσ,其中D 是正方形区域:.10,10≤≤≤≤y x证D 关于y x =对称,⎰⎰∴Dd yσ2(cos ⎰⎰=D d x σ2cos ,⎰⎰+∴Dd x y σ)sin (cos 22.)sin (cos 22⎰⎰+=Dd x x σ又 ),4sin(2)cos 21sin 21(2cos sin 22222π+=+=+x x x x x而,102≤≤x ,2)4sin(22212≤+≤=∴πx 即 ,2cos sin 122≤+≤x x,22)cos (sin 1122=≤+≤⋅=∴⎰⎰⎰⎰⎰⎰DDDd d x x d σσσ即 .2)sin (cos 122≤+≤⎰⎰Dd x y σ2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π.2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dv ⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰6. 将函数()1(0)f x x x π=+≤≤展开成余弦级数为)0()5cos 513cos 31(cos 412122πππ≤≤+++-+=+x x x x x .二、单项选择题:7~12小题,每小题3分,共18分。

2006-2007(2)高等数学试题(A卷)(90)解答

2006-2007(2)高等数学试题(A卷)(90)解答

广州大学 2006-2007 学年第二学期考试卷高等数学(A 卷)(90 学时)参考解答一.填空题(每小题3分,本大题满分30分) 1. (,)(1,2) 22 lim 2 x y xy xy ® +- = - 14. 2.设 2sin z x y = ,则 2zx y¶ = ¶¶ 2cos x y .3.函数 3 x z y e = 的全微分dz = 32 3 x x y e dx y e dy + .4.若 243 (,)2 f x x x x x =++ , 22 1(,)221 f x x x x ¢ =-+ ,则 22 (,) f x x ¢ = 2 221 x x ++ .5.改换积分次序: ln 10 (,) exdx f x y dy =òò 1 0(,) y eedy f x y dx òò .6.平面 1 x y z ++= 在第一卦限部分的面积等于 32. 7.设L 为圆周 222 x y a += ,则 ò =+ Lds y x ) ( 2 2 32 ap .8.若级数 1n n u ¥= å 条件收敛,则级数 1|| n n u ¥= å 的敛散性为: 发散 .9.函数 1 1() x n f x n ¥= = å 的定义域为x Î (1,) +¥ .10.若 2 ()2ln 0 y f x dx y xdy += 为全微分方程,则 () f x =1x.二.解答下列各题(每小题7分,本大题满分14分)1.已知 ) , ( y x f z = 是由方程 0 ze xyz -= 确定的隐函数, 求 x z ¶ ¶ 和 2 2 xz¶ ¶ .解: 0 zz ze yz xy x x¶¶ --= ¶¶ z z yz x e xy¶ = ¶- ………………………………………………………4分 2 22 ()()()z z x x z yz e xy yz e z y z x e xy --- ¶ = ¶- ………………………………6分 2322 322 ()z zz y ze xy z y z e e xy -- = - ……………………………………7分 2.求曲面 222 236 x y z ++= 在点(1,1,1) - 处的切平面及法线方程. 解: (2,4,6)n x y z = r(1,1,1)(2,4,6) n -=- r ……………………………………………3分 所求切平面方程 2(1)4(1)6(1)0 x y z --++-= ……………………5分即 2360x y z -+-= 所求法线方程111246x y z -+- == - ……………………………7分三.解答下列各题(每小题7分,本大题满分 14分)1.计算 cos() Dx x y d s + òò ,其中D 是顶点分别为(0,0),(,0) p 和(,) p p 的三角形闭区域.解: 积分区域如图(从略) ……………………………………………2分cos() Dx x y d s+ òò0cos() xdx x x y dy p =+ òò …………………………………………4分(sin 2sin ) x x x dx p=- ò …………………………………………5分0 1(cos cos 2) 2xd x x p =- ò 011 [(cos cos 2)(sin sin 2)] 24x x x x x p=--- 32p =- …………………………………………………………7分2.设L 为正向圆周 22 1 x y += ,计算 ò + - Ldy xy dx yx x 2 2 2 ) (sin .解: 记 22 :1 D x y +£ ,由格林公式有ò + - Ldy xy dx yx x 22 2 ) (sin 22 () Dy x dxdy =+ òò ………………………………………………3分213 0d d p q r r = òò ………………………………………………5分2p=……………………………………………………………7分四.(本题满分8分)求幂级数 2ln n n xn ¥= å 的收敛域.解: 收敛半径 1 ln(1) lim ||lim 1 ln nn n n a n R a n®¥®¥ + + === ………………………3分 当 1 x = 时,得级数 21ln n n ¥= å ,因 11ln n n > ,而 2 1 n n ¥ = å 发散,所以 2 1ln n n ¥ = å 发散……………………………5分 当 1 x =- 时,得交错级数 2 (1)ln nn n¥= - å, 因 1lim 0 ln n n ®¥ = ,且 11 (2,,) ln ln(1) n n n >= + L ,所以 2(1) ln n n n ¥= - å 收敛 ……7分所求收敛域为[1,1) - ……………………………………………………8分 五.(本题满分6分) 求微分方程 dy y xdx x y=+ 的通解.解: 令y ux = ,则 dy duu x dx dx =+ ………………………………………2分原方程化为 1du u x u dx u +=+ ………………………………………3分分离变量得 1udu dx x = ……………………………………………4分两边积分得 21 ln || 2u x C =+ ………………………………………5分yu x= 回代得 22 2(ln ||) y x x C =+ …………………………………6分六.(本题满分8分)某厂家生产两种产品I和II,出售单价分别为 10元与9元,生产x单 位的产品I与生产 y单位的产品II的总费用是:22400230.01(33)x y x xy y+++++ (元)假定销售量等于生产量.求取得最大利润时,两种产品的产量各多少? 解: 利润函数为(,)(109)L x y x y=+- 22[400230.01(33)]x y x xy y+++++22860.01(33)400x y x xy y=+-++- ………………3分由80.01(6)060.01(6)0 xyL x yL x y=-+=ìí =-+=î……………………………………………5分 得驻点(120,80)…………………………………………………………7分 因驻点唯一,所以取得最大利润时,两种产品的产量分别为 120x= , 80y = …………………………………………………………8分 七.(本题满分8分)设W是由曲面 226z x y=-- 及 22z x y=+ 所围成的有界闭区域,求W 的体积.解:W在xOy面上的投影区域为 22:4D x y+£ ……………………2分W的体积为222600V dv d d dzp rrq r r-W==òòòòòò …………………5分22200(6)d dpq r r r r=--òò ………………………6分43222[3]43r rp r=--323p= ……………………8分八.(本题满分12分) (1)验证函数3693 ()1 3!6!9!(3)!nx x x xy x n =++++++ L L ,( x -¥<<+¥)满足微分方程 x y y y e ¢¢¢ ++= ;(2)利用(1)的结果求幂级数 3 0(3)! nn xn ¥= å 的和函数.解: (1) 258312!5!8!(31)!n x x x x y n - ¢=+++++ - L L 47324!7!(32)!n x x xy x n - ¢¢=+++++ - L L0 ! n x n xy y y e n¥= ¢¢¢ ++== å ……………………………………4分(2) 0 y y y ¢¢¢ ++= 的通解为212 33 (cossin ) 22x Y e C x C x - =+ ………………………7分 设 x y y y e ¢¢¢ ++= 的待定特解 * x y Ae = ,代入 x y y y e ¢¢¢ ++= ,求得1 3 A = , 1* 3x y e = ……………………………………………9分x y y y e ¢¢¢ ++= 的通解为212 331 (cossin ) 223xx y e C x C x e - =++ ……………………10分 由 (0)1 y = , (0)0 y ¢ = ,求得 1 23C = , 2 0C = 幂级数 3 0 (3)! n n xn¥= å 的和函数为2 231cos 323 xx y e x e - =+ ……………………………12分。

中国石油大学(华东)高数历届试题

中国石油大学(华东)高数历届试题

2006—2007学年第二学期 《本科高等数学(下)》期中试卷一、填空题(每小题5分, 共40分) 1.设向量,2,23k j i b k j i a +-=-+=则)()(b a b a322-⋅⨯= _______________.2.已知向量}2,3,4{-=a ,向量u 与三个坐标轴正向构成相等的锐角,则 a 在u轴上的投影等于__________________.3.已知空间三角形三顶点),2,0,0(),0,1,2(),1,1,1(C B A -则ABC Δ的面积等于______________;过三点的平面方程是:__________________________.4.直线⎩⎨⎧=+--=-+072,0532:z y x z y L .在平面083:=++-z y x π内的投影直线方程是: ____________________________________.5. 由曲线 ⎪⎩⎪⎨⎧==+0122322z y x 绕y 轴旋转一周所得旋转曲面在点)2,3,0(处指向外侧的单位法向量是____________________________.6.设z y x z y x 32)32sin(2-+=-+,则y zx z ∂∂+∂∂=__________________________.7. 设函数)(u f 可微,且21)0(='f , 则)4(22y x f z -=在点(1,2)处的全微分 )2,1(d z =_________________________________________.8. 曲面 22yx z += 平行于平面 042=-+z y x 的切平面方程.是:___________________.二、(7分) 设平面区域D 由1,==xy x y 和2=x 所围成,若二重积分 1d d 22=⎰⎰D y x yAx ,则常数=A ____________________________. 解题过程是:三、(8分) 设),(y x f 是连续函数,在直角坐标系下将二次积分⎰⎰-223210d ),(d y y xy x f y 交换积分次序,应是______________________________________.解题过程是:四、(7分) 设函数181261),,(222z y x z y x u +++=,若单位向量}1,1,1{31=n ,则方向导数)3,2,1(nu ∂∂等于_____________________;该函数在点(1,2,3)的梯度是____________________;该函数在点(1,2,3)处方向导数的最大值等于________________.解题过程是:五、(8分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y ∂∂+=∂∂.(I )验证()()0f u f u u '''+=;(II )若(1)0,(1)1f f '==,求函数()f u 的表达式.解题过程是:六、(7分) 设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1D xyx y x y +++⎰⎰解题过程是:七、(8分) 设空间区域Ω,是由曲线⎪⎩⎪⎨⎧==0,2x z y 绕oz 轴旋转一周而成的曲面与平面4,1==z z 所围成的区域,计算三重积分⎰⎰⎰+Ωz y x y x d d d )(22.解题过程是:八、(8分) 做一个长方体的箱子,其容积为 29m 3, 箱子的盖及侧面的造价为8元/m 2, 箱子的底造价为1元/m 2, 试求造价最低的箱子的长宽高(取米为长度单位). 解题过程是:九、(7分) 设函数),(y x f 在点(0,0)的某个邻域内连续,且1)(),(lim22220=+-→→y x xy y x f y x ,试问点(0,0)是不是),(y x f 的极值点?证明你的结论. 解题过程是:A 卷2006—2007学年第二学期《本科高等数学(下)》期末考试试卷一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1.设三向量c b a ,,满足关系式c a b a ⋅=⋅,则( ).(A )必有c b ,0 ==或者a ; (B )必有0===c b a ;(C )当0≠a 时,必有c b =; (D )必有)(c b a -⊥.2. 已知2,2==b a,且2=⋅b a ,则=⨯b a ( ).(A )2 ; (B )22; (C )22; (D )1 .3. 设曲面)0,0(:2222>≥=++a z S a z y x ,S 1是S 在第一卦限中的部分,则有( ). (A )⎰⎰⎰⎰=S S S x S x 1d 4d ; (B )⎰⎰⎰⎰=S SSx S y 1d 4d ;(C )⎰⎰⎰⎰=S SS x S z 1d 4d ; (D )⎰⎰⎰⎰=S S Sxyz S xyz 1d 4d . 4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:( ).(A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x . 5. 判别级数∑⋅∞=1!3n nn n n 的敛散性,正确结果是:( ). (A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是( ).(A )平行于XOY 平面; (B )平行于Z 轴,但不通过Z 轴; (C )垂直于Z 轴 ; (D )通过Z 轴 . 二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知e x yz =,则____________________d =z.2. 函数zx yz xy u ++=在点)3,2,1(=P 处沿向量OP 的方向导数是____________,函数u 在点P 处的方向导数取最大值的方向是_____________,该点处方向导数的最大值是____________.3. 已知曲线1:22=+y x L ,则⎰+=Ls y x ________________d )(2.4. 设函数展开傅立叶级数为:∑∞=≤≤-=02)(,cos n n x nx a xππ,则___________2=a .三、解答下列各题(本题共7小题,每小题7分,满分49分).1. 求幂级数∑∞=+01n n n x 收敛域及其和函数.解题过程是:2. 计算二重积分⎰⎰≤++42222d d y x yx yx e.解题过程是:3. 已知函数),(y x f z =的全微分y y x x z d 2d 2d -=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14|),{(22≤+=yx y x D 上的最大值和最小值.解题过程是:4. 设Ω是由y x z 22+=,4=z 所围成的有界闭区域,计算三重积分⎰⎰⎰++Ωzy x z y x d d d )(22.解题过程是:5. 设L AB 为从点)0,1(-A 沿曲线x y 21-=到点)0,1(B 一段曲线,计算⎰++L AByx yy x x 22d d .解题过程是:6. 设∑是上半球面y x z 221--=的下侧,计算曲面积分⎰⎰++-+∑yx z y xy x z z y x z y z x d d )2(d d )(d d 2322.解题过程是:7. 将函数 61)(2--=x x x f 展开成关于1-x 的幂级数 .解题过程是:四、证明题(7分). 证明不等式: ⎰⎰≤+≤Dx y 2d )sin (cos 122σ,其中D 是正方形区域:10,10≤≤≤≤y x .2007—2008学年第二学期 《本科高等数学(下)》期中试卷一 填空题(本题共5小题,每小题4分,满分20分)1 向量32a i j k →→→→=++在向量245b i j k →→→→=++上的投影Pr bj a = .2 函数u =在点)2,2,1(-M 处的梯度=M gradu __________.3 曲面1222=+-zx yz xy 上点(1,1,1)M 处的切平面方程为 .4 函数sinu yxy x =在点(,)11的全微分(1,1)du =.5 函数2(,)z xf x y =有连续的二阶偏导数,则y x z ∂∂∂2= . 二、选择题(本题共4小题,每小题4分,满分16分).1.直线34273x y z++==--与平面4223x y z --=的位置关系是( ) (A )平行,但直线不在平面上; (B ) 直线在平面上;(C ) 垂直相交; (D ) 相交但不垂直. 2.函数00(,)(,)f x y x y 在点处偏导数存在是(,)f x y 在该点可微的( ) (A) 充分非必要条件; (B) 必要非充分条件 ; (C) 充要条件; (D) 非充分非必要条件.3.设有两平面区域2221:D x y R +≤,2222:,0,0;D x y R x y +≤≥≥ 则以下结论正确的是( )(A )124D D xdxdy xdxdy=⎰⎰⎰⎰; (B )12224D D x dxdy x dxdy=⎰⎰⎰⎰;(C )124D D ydxdy ydxdy=⎰⎰⎰⎰; (D )124D D xydxdy xydxdy=⎰⎰⎰⎰.4. 若函数00(,)(,)f x y x y 在点处不可微,则函数00(,)(,)f x y x y 在点处是( )(A) 沿任何方向的方向导数不存在; (B)两个偏导数都不存在; (C) 不能取得极值; (D) 有可能取得极值. 三、画图题(本题共2小题,每小题3分,满分6分)1.写出函数(,)f x y =的定义域,并画出定义域的图形.2.画出由平面1,0,2y z z y ===及曲面2y x =所围空间立体的图形.四、解答题(本题共7小题,每小题7分,满分49分)1.设(),z z x y =是由方程()2223x z f y z -=-所确定的隐函数,其中f 可微,求23z zyx x y ∂∂+∂∂ .解:2 .考察函数221sin (,)(0,0)(,)0(,)(0,0)xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点 (0,0)的连续性和可微性. 解:3.在曲面z xy =上求一点,使在该点处的法线与平面3290x y z +++=垂直,并写出该法线方程. 解:4.抛物面22z x y =+被平面4x y z ++=截成一个椭圆,求原点到这椭圆的最长与最短距离.解:5.计算1130dy x dx⎰.解:6.计算二重积分21D y x dxdy+-⎰⎰,其中D 是由直线1,1,0,1x x y y =-===围成的平面区域. 解:7.计算由球面2221x y z ++=,柱面220x y x +-=所围立体的体积. 解:五、证明题(9分)试证明:11201()(1)()2x ydx dy f z dz z f z dz=-⎰⎰⎰⎰A卷2007—2008学年第二学期《本科高等数学(下)》试卷(理工类)一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面0:1=-∏z y 与平面0:2=+∏y x 的夹角为 .2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为 .3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dVΩ⎰⎰⎰在柱面坐标系下化为三次积分为 .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰______________________________________.6.将函数)0(1)(π≤≤+=x x x f 展开成余弦级数为__________________________________.二、单项选择题:7~12小题,每小题3分,共18分。

北京林业大学《高等数学》2006-2007学年第二学期期末试卷

北京林业大学《高等数学》2006-2007学年第二学期期末试卷

20 06 --20 07 学年第 二 学期考试试卷(A)试卷名称: 高等数学 (理工类) 课程所在院系: 理学院 (N )考试班级 学号 姓名一、填空题(每题 3 分,共 39 分) 1. 设 f (x − y , x + y ) = x2− y 2 ,则 f (x , y ) = xy .x 2 y4. 函数 u = x sin(yz ) 的全微分为du = sin(yz )dx + xz cos(yz )dy + xy cos(yz )dz .5. 已知平面区域 D 是由直线 x + y = 1, x − y = 1及 x = 0 所围成,则 ydxdy = 0D6.微分方程 y ′ = y2 e 2x, 满足初始条件 y (0) = − 2 的特解为 y = −2e −2x .7. 设 y 1 , y 2 , y 3 是微分方程 y ′′+ p (x )y ′+ q (x )y = f (x ) 的三个不同的解, 且 ≠ 常数, 则微分方程的通解为 y = c 1 (y 1 − y 2 ) + c 2 (y 2 − y 3 ) + y 1 .8. 周期为 2π 的函数 f (x ), 它在一个周期上的表达式为 f (x ) = , 则 f (x ) 的傅里叶级数的和函数在 x = 0 处的值为 0 . 9. 设 Σ 为平面 ++ = 1在第一卦限中的部分,则(z +2x + y )dS = 4 .Σ11. 设 L 为下半圆周 y = − ,则对弧长的曲线积分 ∫ ex 2 +y2ds = 2πe 4 .L12.函数 f (x ) =1展开为 x 的幂级数的形式为1 [1 + x + (x ) +2 + (x )n + ], −2 < x < 22 − x 2 2 2 213.若级数(u n +1)收敛,则 l nu n = -1二、(5 分) 函数 z = z (x , y ) 由方程 x − az = φ(y − bz ) 所确定, 其中φ(u ) 有连续导数, a , b 是不全为零的常数,证明: a∂x + b ∂y = 1 证明:方程 x − az = φ(y − bz ) 两边同时对 x , y 求偏导得2. 极限 lim = 2 .3. 设函数 f (x , y ) = 2x2+ ax + xy 2 + 2y 在点 (1, − 1) 处取得极值,则常数 a = -5 .10. 曲线 x = t − sin t , y = 1 − cos t , z = 4sin 在对应 t = 的点处的法平面方程是2 2 π 2x + y + z − −4 = 0 .y x 00− 1 t π∂z ∂z∂x ∂x ∂x a − b φ′ ∂z ∂z ∂z −φ′ ∂y ∂y ∂y a − b φ′ ∂z ∂z ∂x ∂y 三、(5 分)设 z = e ,求1 xy xy1 − a∂z = φ′ ⋅ ( −b ∂z ) ⇒ ∂z =1− a = φ′ ⋅ (1 − b ) ⇒ =故 a + b = 1x 2 y 3 ∂2z∂x ∂y= 2xy 3ex 2 y 3,= (6xy 2+ 6x 3y 5)ex 2 y 3四、(6 分)求微分方程 y ′′ − 3y ′+ 2y = 2e x 满足条件 y (0) = 0, y ′(0) = 1 的特解. 解:特征方程为: r2− 3r + 2 = 0 特征根为: r 1 = 2, r 2 = 1 对应齐次方程的通解是: y = c 1e 2x + c 2 e x设原方程的特解为: y *= axe x ,将其代入原方程待定系数得 a = −2 .所以 y * = −2xe x故原方程的通解为 y = c 1e 2x+ c 2 e x − 2xe x 由 y (0) = 0, y ′(0) = 1 解得c 1 = 3, c 2 = −3因此所求的特解是 y = 3e 2x − 3e x − 2xe x五、(6 分)计算二重积分 (x2+ y )dxdy ,其中 D = {(x , y ) 4 ≤ x 2 + y 2 ≤ 9 } .D解:(x2+ y )dxdy = x 2dxdy =πd θ∫23(r cos θ)2 rdr =πD D六、(5 分) 利用格林公式, 计算(2x 2 y − 2y )dx + (x 3 − 2x )dy , 其中 L 为以 y = x , y = x 2 围成区域的正向L边界. 解:(2x 2y − 2y )dx + (x 3− 2x )dy = − x 2dxdy = − ∫01dx ∫ x 2 dy = −L D七、(6 分) 设 Σ 是由曲线 z = y 2 ,(0 ≤ z ≤ 2) 绕 z 轴旋转而成的曲面.x = 0,(1) 写出 Σ 的方程.(2)计算 4(1 − y2)dzdx + z (8y +1)dxdy ,其中 Σ 取下侧.Σ解: (1) Σ 的方程是 z = x2+ y 2 (0 ≤ z ≤ 2) .(2) 设 Σ 1 为 z = 2, (x2+ y 2 ≤ 2) 的上侧,则4(1 − y 2)dzdx + z (8y +1)dxdy =∫ dv =πd θ 2d ρ∫ρ22 ρdz = 2πΣ+Σ Ω 4(1 − y 2 )dzdx + z (8y +1)dxdy = 2(8y +1)dxdy = 2dxdy =4πΣ D D 4(1 − y 2 )dzdx + z (8y +1)dxdy = 2π− 4π = −2πΣ八、(6 分)求幂级数 的收敛半径与收敛区间,并求出它在收敛区间内的和函数.解: 收敛半径 R = 2 ,收敛区间为[− 1,3)1解:s(x) = s′(x) = ⋅ = ()n−1 =s(1) =0,s′(x)dx== dx,s(x) =ln 2 −ln(3 −x) (−1 ≤ x< 3)九、(5 分)设b n是收敛的正项级数,(a n−a n+1 ) 收敛. 试讨论a n b n的敛散性,并说明理由.解: a n b n是绝对收敛的.因为(a n−a n+1 ) 收敛,所以部分和s m= (a n−a n+1 ) = a1 −a m+1 有界,从而数列{a n}有界即存在常数M> 0 ,使| a n|< M (n= 1, 2, 3, ) ,故| a n b n|< Mb n(n= 1, 2, 3, )由于b n是收敛的正项级数,由比较审敛法知,a n b n绝对收敛.十、(6 分)设可导函数f (x) 满足f (x) cos x+ 2f (t) sin tdt= x+1,求f (x) .解:方程f (x) cos x+ 2f (t) sin tdt= x+1两边对x求导得f′(x) c os x+ f (x) s in x= 1即f′(x) +tan x⋅f (x) =求解上面的一阶线性微分方程得f (x) = e−∫ tan xdx[ ∫ e∫ tan xdx dx+ C] = sin x+ C cos x由于f (0) =1,所以C= 1,故f (x) =sin x+ cos x十一、(5 分)证明: (sin y−y sin x)dx+ (x cos y+cos x)dy为某二元函数f(x, y)的全微分,并求f(x, y),计算(sin y−y sin x)dx+ (x cos y+ cos x)dy.解因为P= sin y−y sin x, Q= x cos y+ cos x∂P= cos y−sin x= ∂Q∂y∂x所以(sin y−y sin x)dx+ (x cos y+cos x)dy为某二元函数f(x, y)的全微分(sin y−y sin x)dx+ (x cos y+ cos x)dy= (sin ydx+ x cos ydy) +(cos xdy−y sin xdx)= d(x sin y+ y cos x)故f (x, y) = x sin y+y cos x+ c(sin y−y sin x)dx+ (x cos y+ cos x)dy= [x sin y+ y cos x]= −1十二、(6 分)求抛物面z= 1+ x2 +y2 的一个切平面,使它与抛物面及圆柱面(x−1)2 + y2 = 1所围成的立体的体积最小,并求出最小的体积,写出所求切平面方程.解:设 F (x , y , z ) = 1 + x2+ y 2 − z ,得F x = 2x , F y = 2y , z F = − 1抛物线在 (x 0 , y 0 , z 0 ) 处的切平面方程为2x 0 (x − x 0 ) + 2y 0 (y − y 0 ) − (z − z 0 ) = 0即 z = 2x 0 x + 2y 0 y + 1 − x 02− y 02该平面与抛物面及圆柱面所围成的立体的体积为2解一、填空题(每小题 3 分,共 30 分) 1、已知两点 M 12(,2,2) 和 M 21(,3,0) ,则模 M 1M 2 = ____ 2 _____。

06-07(2)高等数学试题(A)解答

06-07(2)高等数学试题(A)解答

广州大学2006-2007学年第二学期考试卷高等数学(A 卷)(90学时)参考解答一.填空题(每小题3分,本大题满分30分)1.(,)(1,2)lim x y →=14. 2.设2sin z x y =,则2z x y∂=∂∂2cos x y .3.函数3x z y e =的全微分dz =323x x y e dx y e dy +.4.若243(,)2f x x x x x =++,221(,)221f x x x x '=-+,则22(,)f x x '=2221x x ++.5.改换积分次序:ln 1(,)ex dx f x y dy =⎰⎰10(,)y eedy f x y dx ⎰⎰.6.平面1x y z ++=在第一卦限部分的面积等于. 7.设L 为圆周222x y a +=,则⎰=+Lds y x )(2232a π.8.若级数1n n u ∞=∑条件收敛,则级数1||n n u ∞=∑的敛散性为: 发散 .9.函数11()xn f x n∞==∑的定义域为x ∈(1,)+∞. 10.若2()2ln 0y f x dx y xdy +=为全微分方程,则()f x =1x.二.解答下列各题(每小题7分,本大题满分14分)1.已知),(y x f z =是由方程0ze xyz -=确定的隐函数, 求x z ∂∂和22xz∂∂.解: 0zz ze yz xy x x∂∂--=∂∂ zz yzx e xy∂=∂-………………………………………………………4分 222()()()z z x x z yz e xy yz e z y z x e xy ---∂=∂- ………………………………6分 2322322()z zz y ze xy z y z e e xy --=-……………………………………7分2.求曲面222236x y z ++=在点(1,1,1)-处的切平面及法线方程.解: (2,4,6)n x y z =(1,1,1)(2,4,6)n -=-……………………………………………3分所求切平面方程 2(1)4(1)6(1)0x y z --++-= ……………………5分 即 2360x y z -+-= 所求法线方程 111246x y z -+-==- ……………………………7分三.解答下列各题(每小题7分,本大题满分14分)1.计算cos()Dx x y d σ+⎰⎰,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三角形闭区域.解: 积分区域如图(从略) ……………………………………………2分cos()Dx x y d σ+⎰⎰cos()xdx x x y dy π=+⎰⎰…………………………………………4分(sin 2sin )x x x dx π=-⎰ …………………………………………5分01(cos cos 2)2xd x x π=-⎰ 011[(cos cos 2)(sin sin 2)]24x x x x x π=---32π=- …………………………………………………………7分2.设L 为正向圆周221x y +=,计算⎰+-Ldy xy dx yx x 222)(sin .解: 记22:1D x y +≤,由格林公式有 ⎰+-Ldy xy dx yx x 222)(sin22()Dy x dxdy =+⎰⎰………………………………………………3分2130d d πθρρ=⎰⎰ ………………………………………………5分2π= ……………………………………………………………7分四.(本题满分8分)求幂级数2ln nn x n ∞=∑的收敛域.解: 收敛半径 1ln(1)lim ||lim 1ln n n n n a n R a n→∞→∞++===………………………3分 当1x =时,得级数21ln n n ∞=∑, 因11ln n n >,而21n n ∞=∑发散,所以21ln n n∞=∑发散……………………………5分 当1x =-时,得交错级数2(1)ln n n n∞=-∑,因1lim 0ln n n →∞=,且11(2,,)ln ln(1)n n n >=+ ,所以2(1)ln nn n ∞=-∑收敛 ……7分所求收敛域为[1,1)-……………………………………………………8分五.(本题满分6分) 求微分方程dy y xdx x y=+的通解. 解: 令y ux =,则dy duu x dx dx =+………………………………………2分 原方程化为 1du u x u dx u +=+………………………………………3分 分离变量得 1udu dx x =……………………………………………4分两边积分得 21ln ||2u x C =+………………………………………5分yu x=回代得 222(ln ||)y x x C =+ …………………………………6分六.(本题满分8分)某厂家生产两种产品I 和II ,出售单价分别为10元与9元,生产x 单位的产品I 与生产y 单位的产品II 的总费用是:22400230.01(33)x y x xy y +++++(元)假定销售量等于生产量.求取得最大利润时,两种产品的产量各多少? 解: 利润函数为(,)(109)L x y x y =+-22[400230.01(33)]x y x xy y +++++ 22860.01(33)400x y x xy y =+-++-………………3分由80.01(6)060.01(6)0x y L x y L x y =-+=⎧⎨=-+=⎩……………………………………………5分得驻点(120,80)…………………………………………………………7分 因驻点唯一,所以取得最大利润时,两种产品的产量分别为120x =,80y =…………………………………………………………8分七.(本题满分8分)设Ω是由曲面226z x y =--及z =所围成的有界闭区域,求Ω的体积.解: Ω在xOy 面上的投影区域为22:4D x y +≤……………………2分Ω的体积为 22260V dv d d dz πρρθρρ-Ω==⎰⎰⎰⎰⎰⎰…………………5分22200(6)d d πθρρρρ=--⎰⎰………………………6分43222[3]43ρρπρ=--323π=……………………8分八.(本题满分12分) (1)验证函数3693()13!6!9!(3)!nx x x x y x n =++++++ ,(x-∞<<+∞)满足微分方程 x y y y e '''++=;(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.解: (1) 258312!5!8!(31)!n x x x x y n -'=+++++-47324!7!(32)!n x x x y x n -''=+++++-0!nx n x y y y e n ∞='''++==∑……………………………………4分(2) 0y y y '''++=的通解为212(cossin )22x Y e C x C x -=+………………………7分 设x y y y e '''++=的待定特解*x y Ae =,代入x y y y e '''++=,求得13A =,1*3x y e =……………………………………………9分x y y y e '''++=的通解为2121()3xx y e C x C x e -=++……………………10分 由(0)1y =,(0)0y '=,求得123C =,20C =幂级数30(3)!nn x n ∞=∑的和函数为22133x x y e x e -=+ ……………………………12分。

2006-2007学年A卷(you)

2006-2007学年A卷(you)

2006-2007学年第二学期A 试卷一,1,设22ln(),u y x y =-证明:211u u u x x y y y∂∂+=∂∂ 2,设(),x y z x y z e -++++=求22,z z x x∂∂∂∂ 二,曲面22()3z x y =-++在何处的切平面平行于平面226?x y z ++=求该处的切平面方程和法线方程,三,计算下列重积分。

1,(2),Dx y dxdy D +⎰⎰由0,0,3x y x y ==+=所围成。

2,2222,:4x y D edxdy D x y ++≤⎰⎰3.,zdv ΩΩ⎰⎰⎰由锥面z =与平面(0)z h h =>所围成。

四,计算下列曲线,曲面积分1,,:2cos ,2sin ,02L xyds L x t y t t π==≤≤⎰ 2.22(sin2)(2cos2100),:1,0x x L e y y dx e y dy L x y y -+-+=≥⎰从(1,0)A 到(1,0)B -3.利用高斯公式计算333,x dydz y dzdx z dxdy ∑++∑⎰⎰ 为球面2222x y z R ++=的外侧。

五,1,判别了下列级数是否收敛,若收敛,是条件收敛还是绝对收敛?(1)1(1)3n n n n ∞=-∑ (2)11ln (1)n n n n∞-=-∑ 2,将21()2f x x x =--展成x 的幂级数,并指出收敛区间。

3,将()(0)f x x x π=≤≤展开成余弦级数。

六,解下列微分方程1, 求21dy x dx xy-=满足1|x y =的特解。

2, 求23()(1)0xx y dx x dy ++++=的通解,。

3, 求244x y y y e -'''++=的通解。

七,设0,(1,2,.....)n a n >=1。

证明:若1n n a∞=∑收敛,则1n ∞=∑2,上述命题的逆命题是否成立?证明你的结论或给出反例。

大学高等数学期末考试题A卷(答案)

大学高等数学期末考试题A卷(答案)

广东海洋大学2006 —— 2007 学年第 二学期《高等数学》试题答案(A 卷)一、填空题。

(每小题3分,共24分) 1.曲线2x y =与直线xy 2= 所围成的平面图形面积为A= 34;2.设向量{}2,3,1-=a,{}2,2,1-=b,则a·b= -3 ;3. 函数221yx z--=的定义域为 }1),({22≤+y x y x ;4.过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程为: 3x -7y +5z -4=0 ;5.设函数x y Z cos =,则yx Z ∂∂∂2= -sinx ;6.改变累次积分I=⎰⎰102),(xx dy y x f dx 的次序为I = ⎰⎰10),(X yy d y x f dy ;7. 设曲线方程为⎩⎨⎧=+-=++0380422222z y x z y x ,该曲线在Oxy 面上的投影方程为: ⎩⎨⎧==+0042z y x .8. 写出函数x x f sin )(=的幂级数展开式,并注明收敛域:x sin = )(,)!12()1(!5!312153R x n xxxx n n ∈+--+-+---二、选择题。

(每小题3分,共15分)1.函数z f x y =(,)在点(,)x y 00处连续是它在该点偏导数存在的( D )(A)必要而非充分条件 (B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件 2.下列方程中,通解为12e e x x y C C x =+的微分方程是( A ). (A) 02=+'-''y y y (B) ''+'+=y y y 21; (C) '+=y y 0 (D) '=y y . 3. 设函数),(v x f Z=,),(y x v ϕ=,其中ϕ,f 都有一阶连续偏导数,则xZ ∂∂等于( B )班级:姓名:学号:试题共 页加白纸张密封线(A)xf ∂∂ ;(B)vf xf ∂∂+∂∂·x∂∂ϕ ; (C)xxf ∂∂+∂∂ϕ ; (D)xf ∂∂·x∂∂ϕ4.设函数),(y x f Z=在点(1,2)处有)2,1(='x f ,)2,1(='y f ,且1)2,1(="xx f ,0)2,1(="xy f ,2)2,1(="yy f ,则下列结论正确的是( D )(A ))2,1(f 不是极大值; (B ))2,1(f 不是极小值; (C ))2,1(f 是极大值; (D ))2,1(f 是极小值。

天津外国语学院 06-07(2)高等数学

天津外国语学院 06-07(2)高等数学

天津外国语学院基础课教学部2006--2007学年第二学期高等数学(一)期末考试试卷 (A 卷)一、 填空:(本题15分,每题3分)1. 已知4,r r = 与u 的夹角是,3π则Pr uj r = 。

2.函数22(,)(6)(4)f x y x x y y =--的极大值是 。

3.交换二重积分的积分次序ln 1(,)exdx f x y dy =⎰⎰。

4.级数21(1)n n n ∞==-∑ 。

5.已知ln x y x =是微分方程()y yy x xϕ'=+的解,则()y x ϕ的表达式是二、单项选择题:(本题15分,每小题3分)1.设平面方程为0,Bx Cz D ++=且,,0,B C D ≠则平面( ). (A )平行于x 轴;(B )平行于y 轴; (C )经过y 轴; (D )垂直于y 轴.2.函数(,)f x y 在点00(,)x y 处连续,两个偏导数0000(,),(,)x y f x y f x y 存在是(,)f x y 在该点可微的( ) (A )充分但不必要条件 (B )必要但不充分条件 (C )充分必要条件(D )既不充分也不必要条件3.设22(),1,2,3,ix y i D I e d i σ-+==⎰⎰其中2221{(,)},D x y x y R =+≤2222{(,)2},D x y x y R =+≤3{(,),},D x y x R y R =≤≤下列结论正确的是( )(A )123I I I <<; (B )231I I I <<; (C )132I I I <<; (D )321I I I <<。

4. 下列级数中,收敛的是( )(A )115()4n n -∞=∑; (B )114()5n n -∞=∑;(C )1(1)15(1)()4n n n -∞-=-∑; (D )1154()45n n -∞=+∑。

2006-2007年高数期末试卷(下A)

2006-2007年高数期末试卷(下A)

高等数学(下)(A 卷)一、填空题(每题2分,共20分)1、 xyxy y x +-→→93lim=__________________.2、 微分方程03'2''=--y y y 的通解为 .3、 设⎰⎰=x xdy y x f dx I 220),(,交换积分次序后,=I ____________________.4、 曲面22y x z +=在点(1,1,2)处的切平面方程为 _________________.5、 级数∑∞=+1)1(1n n n 的和为_____________.6、 ⎰+Lds y x )(=_____________,其中L 为连接)0,1(及)1,0(两点的直线段.7、 函数)ln(222z y x u ++=在点M(1,2,-2)处的梯度=M gradu | ______.8、 函数yxez 2=在点)0,1(P 处沿从点)0,1(P 到点)1,2(-Q 的方向的方向导数为_________.9、 函数x ye z =的全微分=dz ___________________________.10、)(x f 是以2π为周期的周期函数,其在[)ππ,-上的表达式为x x f =)(,设)(x f 的Fourier 级数的和函数为s(x),则 =)(2πs ______,=)(πs ________√ √二、计算题 (每题8分,共64分)1. 设yz zx ln=,求xz ∂∂,yz ∂∂2. 求曲线2,1,1t z tt y tt x =+=+=在对应于1=t 的点处的切线及法平面方程.3. 计算D d yx D,22⎰⎰σ是由直线x y =、2=x 及曲线1=xy 所围成的闭区域.4. 计算⎰-+++Lx x dy x y e dx y y e )cos ()sin (π,其中L 是下半圆周9)4(22=+-y x 逆时针方向的封闭曲线.5. 求∑∞=1n nnx的收敛域与和函数.6. 求微分方程25)1(12+=+-x x y dxdy 的通解.7. 将21)(2-+=x x x f 展成x 的幂级数,并求收敛域8. 计算⎰⎰∑++=dxdy z dzdx y dydz x I 222,其中Σ是)0(222a z z yx ≤≤=+的外侧.三、确定常数λ,使得在右半平面0>x 上,⎰+-+Ldy y x x dx y x xy λλ)()(224224与积分路径无关. (8分)四、 求表面积为2a 而体积最大的长方体的体积.(8分)。

2007年高考.全国Ⅱ卷.理科数学试题及解答

2007年高考.全国Ⅱ卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试试题卷理科数学(必修+选修II)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟. 2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。

3. 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。

4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。

5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效。

6. 考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C knP k (1-P)n -k一.选择题 1. sin2100 =(A)23 (B) 23-(C)21(D) 21-2.函数f(x)=|sinx|的一个单调递增区间是 (A)⎪⎭⎫⎝⎛-4,4ππ (B) ⎪⎭⎫⎝⎛43,4ππ(C) ⎪⎭⎫ ⎝⎛23,ππ (D) ⎪⎭⎫ ⎝⎛ππ2,233.设复数z 满足i z2i1=+,则z = (A) -2+i(B) -2-i(C) 2-i(D) 2+i4.以下四个数中的最大者是 (A) (ln2)2(B) ln(ln2)(C) ln 2(D) ln25.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA 31λ+,则λ= (A)32 (B)31 (C)31-(D) 32-球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式 V=334Rπ,其中R 表示球的半径6.不等式:04x 1x 2>--的解集为 (A)( -2, 1) (B) ( 2, +∞)(C) ( -2, 1)∪ ( 2, +∞)(D) ( -∞, -2)∪ ( 1, +∞)7.已知正三棱柱ABC-A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于(A)46(B)410 (C)22 (D) 238.已知曲线3lnx 4x y 2-=的一条切线的斜率为21,则切点的横坐标为 (A)3 (B) 2 (C) 1 (D) 219.把函数y =e x 的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )=(A) e x -3+2 (B) e x +3-2 (C) e x -2+3 (D) e x +2-310.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A)40种 (B) 60种 (C) 100种 (D) 120种11.设F 1,F 2分别是双曲线1by a x 2222=-的左、右焦点。

2007.7微积分下(06级)期末试卷a

2007.7微积分下(06级)期末试卷a

上海金融学院2006~20 07学年度,第二学期,代码:13440079 《__高等数学(二)》课程期末考试试卷A本试卷系A卷,采用闭卷方式,集中考试考试时只能使用简单计算器(无存储功能)。

(请将横线上不需要的文字用红笔划去)交教务处时间: 年月日送印时间: 年月日试题内容分布命题教师:刘煦室主任签章:________ 系、部主任签章:________上 海 金 融 学 院2006--2007 学年度 第 二学期《高等数学(二)》课程 代码:13440079__________ 专业 _________ 班 姓名 __________ 学号 _______(集中考试 考试形式:闭卷 考试用时: 120 分钟)试 题 纸 一、选择题(2⨯5=10分)1、定积分定义i ba ni i x f dx x f ∆=⎰∑=→)(lim )(1ξλ,说明( )A ],[b a 必须n 等分,i ξ是],[1i i x x -端点。

B ],[b a 可任意分法,i ξ必须是],[1i i x x -端点。

C ],[b a 可任意分法,0max →∆=i x λ,i ξ可在],[1i i x x -内任取。

D ],[b a 必须等分,0max →∆=i x λ,i ξ可在],[1i i x x -内任取。

2.若级数∑∞=1n n u 收敛,则下列命题()正确(其中=n s ∑=ni i u 1)。

A.;0lim =∞→n n s B.n n s ∞→lim 存在;C.n n s ∞→lim 可能不存在; D.{}n s 为单调数列。

3、),(y x f z =在()00,y x 点可微是二元函数),(y x f z =在点()00,y x 处的两个偏导数()00,y x f x ',()00,y x f y '存在的(). A .充分必要条件;B. 非充分非必要条件; C .充分非必要条件; D. 必要非充分条件4、设),(y x f z =连续,且()σd y x f xy y x f D⎰⎰+=,),(,其中D 是由1,,02===x x y y 所围成的区域,则=),(y x f ().A .xy ;B.2xy ;C .81+xy ; D. xy+15、方程x x y sin +=''的通解是( )..cos 2.sin 6.;sin 6.;sin 6.22133213C x xy D C x C x x y C Cx x x y B C x C x x y A +-='+++=+-=++-= 二、填空题(2⨯5=10分)1、设)(x f 在],[b a 上连续,当20a b -=时,()2baf x dx ⎰ _________.2、当P_________时,级数211pn n∞=∑是收敛的. 3、设级数∑∞=1n n u 的部分和为12-=n ns n ,则级数∑∞=1n n u __________(填收敛或发散).4、xdy xdx y dz sin cos +=,则=∂∂xz5、设二重积分⎰⎰=2),(2e ey dx y x f dy I ,交换积分次序,则=I .三、计算下列各题(4⨯5=20分)1、21cos 02limxdte xt x ⎰-→ 2、;ln 121⎰+e xx dx3、⎰+411dx x4、()⎰-2211dx x四、解答题(4⨯5=20分) 1、判别级数()∑∞=-+-11131n n n n的敛散性. 2、判别级数()∑∞=--11231n nn 的敛散性 3、求幂级数⋅⋅⋅+⋅+⋅⋅⋅+⋅+⋅=∑∞=nnn n n n x x x n x 222212220的收敛区间.4、将函数()()()211--=x x x f 在展开成x 的幂级数,并求其收敛域.五、解答题(5⨯6=30分) 1、求函数xy e x z ⋅=2sin 的全微分。

北京科技大学《高等数学》2006-2007学年第二学期期末试卷A卷

北京科技大学《高等数学》2006-2007学年第二学期期末试卷A卷

北京科技大学 2006 --2007 学年第二学期高等数学 试卷 (A )院(系) 班级 学号 姓名试卷卷面成绩占课程考核成绩80 % 平时成绩 占 20 %课程考核 成绩 题号 一二 三 四 五 六 七 小计 得分阅卷审核一、填空题(15 分)1.曲面z =+ y 2 在点(2,1, 3) 的切平面方程为2.交换积分次序 dx ∫0ln x f (x , y )dy =3.设l 是球面 x 2 + y 2 + z 2 = R 2 与平面 x + y + z = 0 的交线,则(x 2 + y 2 + z 2 )dl = 4.级数x 2n −1 的收敛半径是5.求微分方程 y "+ y '− 2y = 0 的通解 y =二、单选题(15 分)1.设u = f (x + y , xz ) 有二阶连续偏导数,则= ( )( A ) f '2+ (x + z )f 12'' + xzf '2'2 (B ) x f 12''+ xzf '2'2( C ) f '2 + xf 12''+ xzf '2'2 (D ) x zf '2'2得 分得 分自 觉 遵 守 考 试 规 则, 诚 信 考 试, 绝 不 作 弊装 订 线 内 不 得 答 题2. 若 f (x , y )dxdy = ∫d θcos θf (r cos θ, r sin θ)rdr , 其中a > 0 为常数, 则积分区域 D 是D 2( )( A ) x 2 + y 2 ≤ a 2 (B ) x 2 + y 2 ≤ a 2 , x > 0 ( C ) x 2 + y 2 ≤ ax (D ) x 2 + y 2 ≤ ay3. 设∑ 为球面 x 2 + y 2 + z 2 = 1, ∑1 为上半球面 z = , D xy 为曲面 ∑ 在 xoy 平面上的投影区域,则下列等式成立的是( ) ( A ) ∫ zdS = 2∫ zdS (B )∫ zdS = 0 ∑ ∑1 ∑( C ) ∫ z 2 dS = 2∫ z 2dxdy (D )∫ z 2dS = 2∫ z 2dxdy ∑ ∑1 ∑ D xy4.设幂级数a n (x − 1)n 在 x = 2 处条件收敛,则该级数在x = 处是( )( A ) 条件收敛 (B )绝对收敛 ( C ) 发散 (D )敛散性不一定5. 设线性无关的函数 y 1 , y 2 , y 3 都是二阶非齐次线性方程 y "+ p (x )y '+ q (x )y = f (x ) 的解, c 1 , c 2 为任意常数,则该方程的通解是( )( A ) c 1y 1 + c 2 y 2 + y 3 (B ) c 1y 1 + c 2 y 2 + (c 1 + c 2 )y 3 ( C ) c 1y 1 + c 2 y 2 − (1 − c 1 − c 2 )y 3 (D ) c 1y 1 + c 2 y 2 + (1 − c 1 − c 2 )y 31.(8 分) 设u = x 2 + 2y 2 + 3z 2 + xy + 3x − 2y − 6z , 求点 P 0 (1,1,1) 处从点 P 0 到点 P 1 (3, 0, − 1) 方 向的方向导数P 0 和在点 P 0 处的梯度 gradu (1,1,1)2.(8 分)计算 I = x 2 + y 2 − 4 dxdy , 其中 D : x 2 + y 2 ≤ 9D3.(8 分) 计算∫∫ (x2+ y 2 )dv , 其中Ω 是由曲线绕 z 轴旋转一周而成的曲面与两平面 z = 2, z = 8 所围成的区域。

河北科技大学2006—2007高数试卷A

河北科技大学2006—2007高数试卷A

河北科技大学2006——2007学年第二学期《高等数学》(下册)期末考试(A )卷一. 选择题(每小题3分,共15分)1.二元函数(,)f x y 在点00(,)x y 处的两个偏导数(,)x f x y ',(,)y f x y '存在是(,)f x y 在点 00(,)x y 处连续的 【 】A.充分且必要条件B.充分但非必要条件C. 必要但非充分条件D.既非必要又非充分条件2.设3xy z =,而()y f x =且f 可导,则dz dx = 【 】 A.3[()]ln3xy y xf x '+ B.3[()]ln3xy x yf x '+ C.3[()]ln 3xy y xf x '+ D.3[()]ln 3xyx yf x '+ 3. 下列方程为全微分方程的是 【 】A.220x dx y xdy +=B.2330yx dx x dy +=C.20xydx y xdy +=D.2220x ydx y x dy +=4.曲线232,,x t y t z t t =⎧⎪=⎨⎪=+⎩上点0(2,1,2)M 处的切线方程是 【 】 A.2212z x y --=-= B.1222y x z --==- C.2122x y z -=-=- D.212x y z -=-=- 5.若幂级数1(1)n n n a x ∞=-∑在1x =-处条件收敛,则数项级数1n n a ∞=∑为 【 】A.发散B.条件收敛C. 绝对收敛D.敛散性不定二. 填空题(每小题3分,共15分)1. 设y x z x y =+,则 z x∂=∂ . 2. 设sin xy z e =,则dz = .3. 设L 是圆周224x y +=,则=⎰ .4. 设22u xy z =-,则函数u 在点(2,1,1)-处的方向导数的最大值为 .5. 设21,0,()1,0,x f x x x ππ--<≤⎧=⎨+<≤⎩则()f x 的以2π为周期的傅里叶级数在x π=处收敛于_________ _.三. 计算题:(每小题6分,共18分)1. 设22(,)xy u f x y e =-,其中f 具有一阶连续偏导数,求u x ∂∂,u y∂∂. 2. (1)交换积分()00()a y m a x dy e f x dx -⎰⎰的次序; (2)证明:()()000()()()a y am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰. 3. 计算抛物面221()z x y =-+位于xoy 平面上面的部分与xoy 平面围成的立体体积.四. 计算题:(每小题7分,共21分)1. 计算22()I x y dv Ω=+⎰⎰⎰,其中Ω是由曲面222x y z +=及平面2z =所围成的有界闭区域.2. 计算曲线积分33(1)Ly dx x dy -+⎰,其中L 为上半圆周224x y +=,(0y >),方向为逆时针方向.3. 计算曲面积分2232()(2)x z d y d z x y z d z d x x y y z d x d y ∑+-++⎰⎰ ,其中∑为上半球面z =0z =所围立体表面的外侧.五. 计算题:(每小题8分,共24分)1.判别级数21(!)n n n n ∞=∑的敛散性,并求极限2lim (!)nn n n →∞. 2.求幂级数113n n n n x ∞-=∑的收敛区间及和函数()s x ,并求13n n n ∞=∑的和. 3.求微分方程021(0)xy y ydx x '++=≥⎰满足初始条件(0)1(0)1y y =⎧⎨'=-⎩的特解. 六. 综合题:(7分)设1y x =,22x y x e =+,23(1)x y x e =+是二阶常系数线性非齐次微分方程的特解,求 该微分方程的通解及该微分方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学2006-2007学年第二学期考试卷 课 程:高等数学(72学时) 考 试 形 式: 闭卷 考试
一.填空题(每空3分,本大题满分15分)
1.=→x
x x 1sin lim 0 ______。

2.曲线12+=x y 在点(1,2)处的切线方程是_______ _____。

3.函数1--=x e y x 的单调增区间为____________。

4.若⎰+=x c x dt t f 02sin )(,则()f x =_________。

5.射击二次,事件i A 表示第i 次命中目标),2,1(=i 则事件“至少命中一次” 可表示为______________________。

二.选择题 (每小题3分, 本大题满分15分) 6. 当0→x 时,x sin 是x 的( )无穷小.
(A) 高阶; (B) 低阶; (C) 同阶; (D) 等价.
7.函数)(x f 在[,]a b 上可导是)(x f 在[,]a b 上连续的( ).
(A)充分条件; (B)必要条件;
(C)充要条件; (D)无关条件。






级 姓



8.='⎰dt t F x
a )( ( ).
(A) ()F x ; (B) ()()F x F a -; (C) ()dF x ; (D) ()F x C +.
9. =-+∞⎰dx e x 0
( ). (A)1; (B)2;
(C)3; (D)4.
10. 随机变量X 的分布律为{}21k
P k ξ==,6,,1Λ=k ,

=≤≤)21(ξP ( ).
(A )213
(B )215 (C )216 (D )217
三.解答下列各题(每小题5分,本大题满分10分)
11.计算极限 x
x x x x 232lim ⎪⎭⎫ ⎝⎛++∞→
12.计算极限 x e e x
x x sin lim 0-→-
四.解答下列各题(每小题6分,本大题满分12分)
13.x x y ln 22+=,求dy 及y ''。

14.求由方程 0cos =-xy xy 所确定的隐函数的导数
dx
dy 。

五.计算下列积分(每小题5分,本大题满分15分)
15.⎰xdx arcsin 。

16.
xdx x sin cos 05⎰π。

17..
dx x x ⎰++40122。

六.解答下列各题(每小题6分,本大题满分18分)
18.一口袋装有9只球, 其中有3只白球, 6只红球. 从袋中任取一只球后, 放回去, 再从中任取一只球. 求下列事件概率
1) 取出两只球都是白球的概率)(A P ;
2) 取出一只白球, 一只红球的概率)(B P 。

19. 工厂有甲、乙、丙三个车间生产同一种产品,已知甲、乙、丙三个车间的产量分别占总产量的20%,30% ,50% , 每个车间的次品率分别为5%, 4%,2%. 现从全厂产品中任取一件产品,求取到的为正品的概率。

20. 设随机变量X 的概率密度函数⎩⎨
⎧≤≤=其它
,010,2)(x x x f 求 (1)E (X ),
(2)D (X )。

七.应用题(第一小题7分,第二小题8分,本大题满分15分)
21.求593)(2
3+--=x x x x f 的极值。

22.求2x y =与2
y x =围成的面积S 。

相关文档
最新文档