2020-2021中考数学复习相似专项综合练附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学复习相似专项综合练附答案
一、相似
1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.
(1)①求证:AP=CQ;②求证:PA2=AF•AD;
(2)若AP:PC=1:3,求tan∠CBQ.
【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,
∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°
∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;
②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,
∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,
由①得△ABP≌△CBQ,∠ABP=∠CBQ
∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,
(本题也可以连接PD,证△APF∽△ADP)
(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,
∵∠ACB=45°,∴∠PCQ=45°+45°=90°
∴tan∠CPQ= ,
由①得AP=CQ,
又AP:PC=1:3,∴tan∠CPQ= ,
由②得∠CBQ=∠CPQ,
∴tan∠CBQ=tan∠CPQ= .
【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可
得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答
案.
2.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.
【答案】(1)解:设直线AB的解析式为y=px+q,
把A(3,0),B(0,2)代入得,解得,
∴直线AB的解析式为y=﹣ x+2;
把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,
∴抛物线解析式为y=﹣ x2+ x+2
(2)解:∵M(m,0),MN⊥x轴,
∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),
∴NP=﹣ m2+4m,PM=﹣ m+2,
而NP=PM,
∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,
∴N点坐标为(,)
(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),
∴AB= = ,BP= = m,
而NP=﹣ m2+4m,
∵MN∥OB,
∴∠BPN=∠ABO,
当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,
整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,
此时M点的坐标为(,0);
当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,
整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,
此时M点的坐标为(,0);
综上所述,点M的坐标为(,0)或(,0)
【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;
(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表
示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;
(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;
当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。

3.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标.
【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得
解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8)
(2)解:如图1,过F作FG⊥x轴于点G,
设F(x, x2+2x+6),则FG= ,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴,
∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x,

当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,),
当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,),
综上可知F点的坐标为(-1,)或(-3,)
(3)解:如图2,
不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上
∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 ,
∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k),
∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6
解得k1= 或k2=
∴满足条件的点Q有两个,Q1(2,)或Q2(2,).
【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。

(2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。

(3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,
点Q在抛物线的对称轴上,设Q(2,2k),M坐标为(2-k,k),再由点M在抛物线上,列出关于k的方程,求解即可得出点Q的坐标。

4.如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,C,点D (m,4)在直线AC上,点B在x轴正半轴上,且OB=2OC.点E是y轴上任意一点,连结DE,将线段DE按顺时针旋转90°得线段DG,作正方形DEFG,记点E为(0,n).
(1)求点D的坐标;
(2)记正方形DEFG的面积为S,
① 求S关于n的函数关系式;
② 当DF∥x轴时,求S的值;
(3)是否存在n的值,使正方形的顶点F或G落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.
【答案】(1)解:∵点D(m,4)在直线AC上;
∴4= m+8,解得m=﹣3,∴点D的坐标为(﹣3,4)
(2)解:①如图1,过点D作DH⊥y轴于H,
则EH=|n﹣4|
∴S=DE2=EH2+DH2=(n﹣4)2+9;
②当DF∥x轴时,点H即为正方形DEFG的中心,∴EH=DH=3,∴n=4+3=7,∴S=(7﹣4)2+9=18
(3)解:∵OB=2OC=16,∴B为(16,0),∴BC为:;
①当点F落在BC边上时,如图2,作DM⊥y轴于M,FN⊥y轴于N.
在△DEM与△EFN中,,∴△DEM≌△EFN(AAS),∴NF=EM=n﹣4,EN=DM=3
∴F为(n﹣4,n﹣3)
∴n﹣3=﹣(n﹣4)+8,∴n= ;
②当点G落在BC边上时,如图3,作DM⊥y轴于M,GN⊥DM轴于N,
由①同理可得△DEM≌△GDN,∴GN=DM=3,DN=EM=n﹣4,∴点G纵坐标为1,∴
,∴x=14,∴DN=14+3=17=n﹣4,∴n=21;
③当点F落在AB边上时,如图4,作DM⊥y轴于M,
由①同理可得△DEM≌△EFO,∴OE=DM=3,即n=3;
④当点G落在AC边上时,如图5.
∵∠CDE=∠AOC=90°,∠DCE=∠OCA,∴△DCE∽△OCA,∴,∴,∴n= ,显然,点G不落在AB边上,点F不落在AC边上,故只存在以上四种情况.
综上可得,当n= 或21或3或时,正方形的顶点F或G落在△ABC的边上.
【解析】【分析】(1)根据点D在直线AC上;于是将D(m,4)代入直线AC的解析式得出m=-3,从而得出D点的坐标;
(2)①如图1,过点D作DH⊥y轴于H,根据和y轴垂直的直线上的点的坐标特点及y 轴上两点间的距离,则DH=|n-4|,根据正方形的面积等于边长的平方及勾股定理得出S=DE2=EH2+DH2=(n﹣4)2+9;②当DF∥x轴时,点H即为正方形DEFG的中心,故EH=DH=3,n=7,将n=7代入函数解析式即可得出S的值;
(3)首先找到C点的坐标,得出OC的长度,然后根据OB=2OC=16得出B点的坐标,利用待定系数法得出直线BC的解析式,①当点F落在BC边上时,如图2,作DM⊥y轴于M,FN⊥y轴于N.利用AAS判断出∴△DEM≌△EFN,根据全等三角形对应边相等得出NF=EM=n﹣4,EN=DM=3从而得出F点的坐标,根据F点的纵坐标的两种不同表示方法得出关于n的方程,求解得出n的值;②当点G落在BC边上时,如图3,作DM⊥y轴于M,GN⊥DM轴于N,由①同理可得△DEM≌△GDN,GN=DM=3,DN=EM=n﹣4,从而得出G点的纵坐标为1,根据点G的纵坐标列出方程,求解得出N的值;③当点F落在AB 边上时,如图4,作DM⊥y轴于M,由①同理可得△DEM≌△EFO,OE=DM=3,即n=3;
④当点G落在AC边上时,如图5.首先判断出△DCE∽△OCA,根据相似三角形对应边成比例得出 C E∶ A C = C D∶ O C,从而得出关于n的方程,求解得出n的值,综上所述得出所有答案。

5.
(1)问题发现
如图1,四边形ABCD为矩形,AB=a,BC=b,点P在矩形ABCD的对角线AC上,Rt△PEF
的两条直角边PE,PF分别交BC,DC于点M,N,当PM⊥BC,PN⊥CD时, =________(用含a,b的代数式表示).
(2)拓展探究
在(1)中,固定点P,使△PEF绕点P旋转,如图2,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
如图3,四边形ABCD为正方形,AB=BC=a,点P在对角线AC上,M,N分别在BC,CD 上,PM⊥PN,当AP=nPC时,(n是正实数),直接写出四边形PMCN的面积是________(用含n,a的代数式表示)
【答案】(1)
(2)解:如图3,过P作PG⊥BC于G,作PH⊥CD于H,
则∠PGM=∠PHN=90°,∠GPH=90°
∵Rt△PEF中,∠FPE=90°
∴∠GPM=∠HPN
∴△PGM∽△PHN

由PG∥AB,PH∥AD可得, ,
∵AB=a,BC=b
∴,即 ,
∴,
故答案为
(3)
【解析】【解答解:(1)∵四边形ABCD是矩形,
∴AB⊥BC,
∵PM⊥BC,
∴△PMC∽△ABC

∵四边形ABCD是矩形,
∴∠BCD=90°,
∵PM⊥BC,PN⊥CD,
∴∠PMC=∠PNC=90°=∠BCD,
∴四边形CNPM是矩形,
∴CM=PN,
∴,
故答案为;
( 3 )∵PM⊥BC,AB⊥BC
∴△PMC∽△ABC

当AP=nPC时(n是正实数),
∴PM= a
∴四边形PMCN的面积= ,
故答案为:.
【分析】(1)由题意易得△PMC∽△ABC,可得比例式,由矩形的性质可得CM=PN,则结论可得证;
(2)过P作PG⊥BC于G,作PH⊥CD于H,由辅助线和已知条件易得△PGM∽△PHN,则得比例式,由(1)可得比例式,即比值不变;
(3)由(2)的方法可得,则四边形PMCN的面积= .
6.如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB 重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=________.
【答案】(1)解:由题意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,∴△BCD∽△BOA,

而CD=OE=t,BC=8−CO=8− ,OA=4,
则8− ,解得t=,
∴当点D在直线AB上时,t=
(2)解:当t=4时,点E与A重合,设CD与AB交于点F,
则由△CBF∽△OBA得,
即,解得CF=3,
∴S= OC(OE+CF)= ×2×(3+4)=7
(3)解:①当0<t≤时,S= t2
②当<t≤4时,S=-t2+10t−16
③当4<t≤16时,S=t2+2t
(4)8
【解析】【解答】解:(3)①当0﹤t≤时,如图(1),
②当<t≤4时,如图(2),
∵A(4,0),B(0,8)
∴直线AB的解析式为y=-2x+8,∴G(t,-2t+8),F(4-,),
∴DF=t-4,DG=t-8,
∴S=S矩形COED-S△DFG=t·
③当4<t≤16时,如图(3)
∵CD∥OA,
∴△BCF∽△BOA,

∴,
∴CF=4-,
∴S=S△BOA-S△BCF=
(4)由题意可知把S=12代入S= t2+2t中, . t2+2t=12,整理,得t2-32t+192=0.解得 t1=8,t2=24>16(舍去)当S=12时,t=8
【分析】(1)首先判断出△BCD∽△BOA,根据相似三角形对应边成比例得出BC ∶BO=CD ∶OA ,根据矩形的性质及线段的和差得出CD=OE=t,BC=8−CO=8- ,OA=4,利用比例式即可得出方程,求解得出t的值;
(2)当t=4时,点E与A重合,设CD与AB交于点F,则由△CBF∽△OBA得CF :CB=OA ∶OB ,根据比例式得出方程,求解得出CF的长,根据梯形的面积公式即可算出答案;
(3)①当0﹤t≤ 时,如图(1),其重叠部分的面积就是矩形的面积,根据矩形的面积
公式即可得出函数关系式;②当<t≤4时,如图(2),利用待定系数法,求出直线AB 的解析式,根据和坐标轴平行的直线上的点的坐标特点及直线上的点的坐标特点分别表示出G,F的坐标,进而表示出DF的长,DG的长,根据S=S矩形COED-S△DFG即可得出函数关系式;③当4<t≤16时,如图(3)根据矩形的性质得出CD∥OA,根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似得出△BCF∽△BOA,由相似三角形的对应边成比例得出BC:BO=CF:OA,根据比例式表示出CF的长,再根据S=S△BOA-S△BCF即可得出函数关系式。

7.如图,抛物线与坐标轴交点分别为,,,作直线BC.
(1)求抛物线的解析式;
(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;
(3)条件同,若与相似,求点P的坐标.
【答案】(1)解:把,,代入得:,
解得:,,,
抛物线的解析式为
(2)解:设点P的坐标为(t,- t×2+ t+2),
∵A(-1,0),B(3,0),
∴AB=4,
∴S=
(3)解:当∽时,,即,
整理得:,
解得:或舍去,
,,
点P的坐标为;
当∽,则,即,
整理得,
解得:或舍去,
,,
点P的坐标为,
综上所述点P的坐标为或
【解析】【分析】(1)利用待定系数法,将点A、B、C三点坐标分别代入函数解析式,建立方程组,就可求出a、b、c的值,即可解答;或设函数解析式为交点式,即y=a (x+1)(x-3),再将点C的坐标代入可解答。

(2)点P为抛物线上第一象限内一动点,因此利用二次函数解析式,由P的横坐标为t表示出点P的坐标,利用三角形的面积公式,就可得出s与t的函数解析式。

(3)分两种情况讨论:当△ ODP ∽△ COB 时;当△ ODP ∽△ BOC ,分别利用相似三角形的性质,分别得出对应边成比例,建立关于t的方程,求出t的值,就可得出点P的坐标。

8.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.
(1)求线段AB的长度;
(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.
①当⊙N与x轴相切时,求点M的坐标;
②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.
【答案】(1)解:当x=0时,y=4,
∴A(0,4),
∴OA=4,
当y=0时,- x+4=0,
x=3,
∴B(3,0),
∴OB=3,
由勾股定理得:AB=5
(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,
tan∠OAB= ,
∴设EM=3x,AE=4x,则AM=5x,
∴M(3x,-4x+4),
由旋转得:AM=AN,∠MAN=90°,
∴∠EAM+∠HAN=90°,
∵∠EAM+∠AME=90°,
∴∠HAN=∠AME,
∵∠AHN=∠AEM=90°,
∴△AHN≌△MEA,
∴AH=EM=3x,
∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,
∴NG=OH,
则5x=3x+4,
2x=4,
x=2,
∴M(6,-4);
②如图2,由①知N(8,10),
∵AN=DN,A(0,4),
∴D(16,16),
设直线DM:y=kx+b,
把D(16,16)和M(6,-4)代入得:

解得:,
∴直线DM的解析式为:y=2x-16,
∵直线DM交x轴于E,
∴当y=0时,2x-16=0,
x=8,
∴E(8,0),
由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,
∵∠QAP=∠OAB=∠DCE,
∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:
i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,
∵∠QNA=∠DNF,
∴∠NFD=∠QAN=90°,
∵AO∥NE,
∴△ACO∽△NCE,
∴,
∴,
∴CO= ,
连接BN,
∴AB=BE=5,
∵∠BAN=∠BEN=90°,
∴∠ANB=∠ENB,
∵EN=ND,
∴∠NDE=∠NED,
∵∠CNE=∠NDE+∠NED,
∴∠ANB=∠NDE,
∴BN∥DE,
Rt△ABN中,BN= ,
sin∠ANB=∠NDE= ,
∴,
∴NF=2 ,
∴DF=4 ,
∵∠QNA=∠DNF,
∴tan∠QNA=tan∠DNF= ,
∴,
∴AQ=20,
∵tan∠QAH=tan∠OAB= ,
设QH=3x,AH=4x,则AQ=5x,
∴5x=20,
x=4,
∴QH=3x=12,AH=16,
∴Q(-12,20),
同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);
ii)当△DCE∽△PAQ时,如图3,
∴∠APN=∠CDE,
∵∠ANB=∠CDE,
∵AP∥NG,
∴∠APN=∠PNE,
∴∠APN=∠PNE=∠ANB,
∴B与Q重合,
∴AN=AP=10,
∴OP=AP-OA=10-4=6,
∴P(0,-6);
综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)
【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB
的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;
②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:
i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:
tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);
ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).
9.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、
FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)求t=9时,△PEF的面积;
(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;
(3)当t为何值时,△EOP与△BOA相似.
【答案】(1)解:∵EF∥OA,
∴∠BEF=∠BOA
又∵∠B=∠B,
∴△BEF∽△BOA,
∴ = ,
当t=9时,OE=9,OA=20,OB=15,
∴EF= =8,
∴S△PEF= EF•OE= ×8×9=36(cm2)
(2)解:∵△BEF∽△BOA,
∴EF= = = (15-t),
∴ × (15-t)×t=40,
整理,得t2-15t+60=0,
∵△=152-4×1×60<0,
∴方程没有实数根.
∴不存在使得△PEF的面积等于40cm2的t值
(3)解:当∠EPO=∠BAO时,△EOP∽△BOA,
∴ = ,即 = ,
解得t=6;
当∠EPO=∠ABO时,△EOP∽△AOB,
∴ = ,即 = ,
解得t= .
∴当t=6或t= 时,△EOP与△BOA相似
【解析】【分析】(1)由于EF∥x轴,则S△PEF= •EF•OE.t=9时,OE=9,关键是求
EF.易证△BEF∽△BOA,则 = ,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.
10.如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是________;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出
AD长度的所有可能值.
【答案】(1)30°
(2)解:如图3中,△APD是AC边上的“等腰邻相似三角形”,理由:作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,
∴∠BAP=∠PAD=∠DPA,∠CPD=∠B,
∴DP=DA,
∵∠CAB=2∠C,
∴∠BAP =∠C,
∴△APD是等腰三角形且△APB与△CDP相似,
∴△APD是AC边上的“等腰邻相似三角形”
(3)解:如图3′中,当DA=DP时,设∠APD=∠DAP=x,
①若∠BPD=∠CAP=90°-x,∠BDP=∠CPA=2x,
∴90°-x+2x+x=180°,
∴x=45°,
∴三角形都是等腰直角三角形,易知AD=1;
②若∠PDB=∠CAP时,设∠APD=∠DAP=x,
得到∠PDB=∠CAP=2x,易知x=30°,
设AD=a,则AP=
∵△BPD∽△CPA,
∴,即,
解得,
如图4中,当PA=PD时,易知∠PDB是钝角,∠CAP是锐角,
∴∠PDB=∠CPA,则△BPD≌△CPA,
设AD=a,则BD=2-a,,AC=2,

解得a= ,
如图5中,当AP=AD时,设∠APD=∠ADP=x,则∠DAP=180°-2x,易知∠PDB为钝角,∠CAP为锐角,
∴∠PDB=∠CPA=180°-x,∠CAP=90°-∠DAP=90°-(180°-2x)=2x-90°,
在△APC中,2x-90°+180°-x+45°=180°,
解得x=45°,不可能成立.
综上所述.AD的长为1或或
【解析】【解答】(1)解:如图2中,
∵AB=AC,DA=DP,
∴∠B=∠C,∠DAP=∠DPA,
∵∠PAC=∠BPD,
∴∠APC=∠BDP=∠DAP+∠DPA,
∵∠APC=∠B+∠BAP,
∴∠B=∠PAB=50°,
∵∠BAC=180°−50°−50°=80°,
∴∠PAC=30°
故答案为30°
【分析】(1)根据等边对等角和三角形外角的性质证明∠B=∠PAB即可解决问题.(2)如图3中,作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,根据平行线的性质和角平分线定义可得∠BAP=∠PAD=∠DPA,∠CPD=∠B,结合∠A=2∠C可证△APD是等腰三角形且△APB与△CDP相似,即可解决问题.(3)分三种情形讨论:如图3′中,当DA=
DP时;如图4中,当PA=PD时;如图5中,当AP=AD时;分别求解即可解决问题.
11.如图所示,在△ABC中,AB=AC=5,O为BC边中点,BC=8,点E、G是线段AB上的动点(不与端点重合),点H、F是线段AC上的动点,且EF∥GH∥BC.设点O到EF、GH的距离分别为x、y.
(1)若△EOF的面积为S:
①用关于x的代数式表示线段EF的长;
②求S的最大值;
(2)以点O为圆心,当以OE为半径的圆与以OG为半径的圆重合时,求x与y应满足的关系式,并求x的取值范围.
【答案】(1)解:①如图1,连接OA,交EF于M,
∵AB=AC,O为BC边中点,
∴OA⊥BC,
∵EF∥BC,
∴AM⊥EF,
∵BC=8,
∴OB=BC=4,
在Rt△AOB中,根据勾股定理得,OA==3,
∵点O到EF的距离为为x,
∴OM=x,
∴AM=OA﹣OM=3﹣x,
∵EF∥BC,
∴△AEF∽△ABC,
∴,
∴,
∴;
②由①知,,
∴S=S△OEF===,∵﹣<0,
∴当x=时,S最大=3
(2)解:如图2,
∵以OE为半径的圆与以OG为半径的圆重合,
∴OE=OG,过点O作OD⊥AB于D,
∴DE=DG,
连接OA,
由(1)知,OA⊥BC,OA=3,
在Rt△AOB中,sin B= ,cos A=,
过点E作EP⊥BC于P,PE=x,
在Rt△BPE中,sin B=,
∴BE=,
过点G作DQ⊥BC于Q,GQ=y,
在Rt△BQG中,BG=,
∴DE==,
在Rt△BDO中,BD=OB•cos B=,
∴DE=BD﹣BE=,
∴=,
∴(Ⅰ)
∵点E、G是线段AB上的动点(不与端点重合),
∴0<y<3(Ⅱ),
由(Ⅰ)(Ⅱ)得,,
∵x>0,
∴,
即:.
【解析】【分析】(1)①连接OA,判断出AO是△ABC的高,AM是△AEF的高,再利用相似三角形的对应边上的高的比等于相似比,即可得出结论;②利用三角形面积公式得出S与x的函数关系式,即可得出结论;(2)先判断出DE=DG,再用三角函数表示出BE,BD,BG,即可得出结论.
12.如图,抛物线与轴交于点,与轴交于点 .在线段上有一动点(不与重合),过点作轴的垂线交于点,交抛物线于点,过点作于点 .
(1)求直线的函数解析式;
(2)求证:;并求出当为何值时,和的相似比为 .
【答案】(1)解:令:,则,解得:,
(舍)∴
令,得,∴
设直线:,把,分别代入上式得:
解之得:

(2)证明:∵
又∵

∵,,,
∴,,
∵∴
∴,(舍)
【解析】【分析】(1) 设直线:,求出A、B点坐标,代入求出k,b即可.(2)利用两组对应角相等证明三角形相似,结合函数解析式,分别表示出AN、PN的长,再根据相似比列式计算即可.。

相关文档
最新文档