【最新】人教版七年级数学上册:4.1几何图形测试题
人教版七年级上册4.1 几何图形同步测试(有答案)

绝密★启用前4.1 几何图形班级:姓名:1、圆锥体是由下列哪个图形绕自身的对称轴旋转一周得到的()A、正方形B、等腰三角形C、圆D、等腰梯形2、下面现象能说明“面动成体”的是()A、旋转一扇门,门运动的痕迹B、扔一块小石子,小石子在空中飞行的路线C、天空划过一道流星D、时钟秒针旋转时扫过的痕迹3、下列说法中,正确的是()A、棱柱的侧面可以是三角形B、四棱锥由四个面组成的C、正方体的各条棱都相等D、长方形纸板绕它的一条边旋转1周可以形成棱柱4、下列四个图中,是三棱锥的表面展开图的是()5、在如图所示的几何体中,由四个面围成的几何体是()6、下列有六个面的几何体的个数是()①长方体;②圆柱;③四棱柱;④正方体;⑤三棱柱A、1个B、2个C、3个D、4个7、下列几何体属于柱体的个数是()A、3B、4C、5D、68、一个棱锥有7个面,这是________棱锥.9、如果一个棱柱共有15条棱,那么它的底面一定是________边形.10、长方体是一个立体图形,它有________个面,________条棱,________个顶点.11、六棱柱有________个顶点,________个面,________条棱.12、如图,5×5方格中,已有5个阴影小正方形,请再选取一个小正方形,使所选的小正方形和阴影部分组合后能折叠成一个正方体.把所有可能的选择都标记出来,直接在图中把所选的小正方形标上序号①②③….13、将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1,2,3,6的小正方形中不能剪去的是(填编号).1、将右面正方体的平面展开图重新折成正方体后,“共”字对面的字是()A.阖B.家C.幸D.福2、骰子是一种特殊的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()3、下列图形中,属于立体图形的是( )4、下列图形中,不可以作为一个正方体的展开图的是( )5、如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A、遇B、见C、未D、来6、如图,从一个多边形的某一条边上的一点(不与端点重合)出发,分别连接这个点与其他所有顶点,可以把这个多边形分割成若干个三角形,由三角形、四边形、五边形为例,你能总结出什么规律?n边形呢?7、已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)1、(2019·山西)某正方体的每个面上都有一个汉字,如图是它的的一个展开图,那么在原正方体中,与“点”字所在的面相对的面上的汉字是()2、(2019·四川)如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()3、(2019·贵州)由下面正方体的平面展开图可知,原正方体“中”字所在面的对面的汉字是()4、(2019·江苏)一个几何体的侧面展开图如图所示,则该几何体的地面是()参考答案1-7、BACBCCD8、六9、五10、6;12;811、12;8;1812、如图所示.13、31-5、CCCCD6、解:由图中可以看出三角形被分为2个三角形;四边形被分为3个三角形,五边形被分为4个三角形,那么n边形被分为(n﹣1)个三角形.7、(1)解:长方形绕一边旋转一周,得圆柱.情况①:π×32×4=36π(cm3);情况②:π×42×3=48π(cm3)(2)解:情况①:π×3×2×4+π×32×2=24π+18π=42π(cm2);情况②:π×4×2×3+π×42×2=24π+32π=56π(cm2).1-4、BCBB。
新版人教版七年级数学上册第四章几何图形初步测试题(含答案)

)
D. 经过两点可以画一条直线,并且只能画一条直线 C
A. ∠1 与∠ AOB 是同一个角
B. ∠ AOC 也可以用∠ O 来表示
C. 图中共有三个角:∠ AOB ,∠ AOC ,∠ BOC O
D. ∠β 与∠ BOC 是同一个角
3.甲看乙的方向是北偏东 ຫໍສະໝຸດ 00,那么乙看甲的方向是()
A. 南偏东 600
B.南偏西 600
C.南偏西 300
B
β
1
A
第 2 题图 D. 南偏东 300
4. 分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形, 是( )
那么这个几何体
A
B
C
D
5. 下列四个图形中,经过折叠能围成如图所示的几何图形的是(
)
A
B
C
B 书店 D
6.一个角的度数为 54 11 23 ,则这个角的余角和补角的度数分别为(
8.如图,各图中阴影部分绕着直线 AB 旋转 3600,所形成的立体图形分别是
A
A
A
A
学校
第 7 题图
________________________. __________________________.
B D
C
B 9.如图,以图中的
B
B
第 8 题图
A,B,C,D,E 为端点的线段共有 __________条 .
参考答案: 1.D 2.B 3.C 4.C 5.B 6.A 7.两点之间,线段最短 8.圆柱、圆锥、球 9.10 10.520 11.DC=3cm ,AB=10cm 12.略 13.∠ 2=50 0,∠ 3=65 0
14.( 1) 116 010 ,( 2) 106 025 .
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
人教版 七年级数学上册 第四章同步测试题(含答案)

人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
人教版数学七年级上册第4章4.1几何图形同步练习(解析版)(附模拟试卷含答案)

人教版数学七年级上册第4章4.1几何图形同步练习一、单选题(共10题;共20分)1、一个几何体的边面全部展开后铺在平面上,不可能是()A、一个三角形B、一个圆C、三个正方形D、一个小圆和半个大圆2、下列图形中,是棱锥展开图的是()A、B、C、D、3、下列图形是四棱柱的侧面展开图的是()A、B、C、D、4、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、5、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、6、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱7、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱.A、3B、5C、7D、98、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、9、如图所示的正方体,如果把它展开,可以得到()A、B、C、D、10、下列四个图形中是如图展形图的立体图的是()A、B、C、D、二、填空题(共3题;共4分)11、一个棱锥的棱数是24,则这个棱锥的面数是________.12、如图中的几何体有________个面,面面相交成________线.13、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.三、计算题(共4题;共20分)14、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.15、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?16、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?17、我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.四、解答题(共3题;共15分)18、请你用式子表示如图所示的长方体形无盖纸盒的容积(纸盒厚度忽略不计)和表面积.这些式子是整式吗?如果是,请你分别指出它们是单项式,还是多项式.19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.答案解析部分一、单选题1、【答案】B【考点】几何体的展开图【解析】【解答】解:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.3、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.4、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.5、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.6、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.7、【答案】C【考点】几何体的展开图【解析】【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴至少要剪开12﹣5=7条棱,故选:C.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.9、【答案】D【考点】几何体的展开图【解析】【解答】解:如图所示的正方体,如果把它展开,可以得到.故选:D.【分析】根据题干,3个黑色图形经过1个顶点,由此可以判断选项D是这个正方体的展开图.10、【答案】A【考点】几何体的展开图【解析】【解答】解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.【分析】因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,据此判断.二、填空题11、【答案】13【考点】认识立体图形【解析】【解答】解:由题意,得侧棱=底棱=12,棱锥是十二棱锥,十二棱锥有十二个侧面,一个底面,故答案为:13.【分析】根据棱锥的侧棱与底棱相等,可得棱锥,根据棱锥的特征,可得答案.12、【答案】3;曲【考点】认识立体图形【解析】【解答】解:图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.故答案为:3, 曲.【分析】由圆台的概念和特征即可解.图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.13、【答案】24【考点】几何体的表面积,截一个几何体【解析】【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、计算题14、【答案】解:这个长方形绕一边所在直线旋转一周后是圆柱.当2cm是底面半径时,圆柱的底面积是πr2=22π=4π(cm2),圆柱的侧面积是2πrh=2π×2×3=12π(cm2);当3cm是底面半径时,圆柱的底面积是πr2=32π=9π(cm2),圆柱的侧面积是2πrh=2π×3×2=12π(cm2).【考点】点、线、面、体,有理数的乘法【解析】【分析】根据长方形绕一边旋转一周,可得圆柱.分类讨论:2cm是底面半径,3cm是底面半径,根据圆的面积公式,可得圆柱的底面积,根据圆柱的侧面积公式,可得答案.15、【答案】几何体的表面积为48πcm2或80πcm2.【考点】认识立体图形,点、线、面、体,几何体的表面积【解析】【解答】当以5cm的边为轴旋转一周时,圆柱的表面积=2×π×32+2π×3×5=18π+30π=48πcm2;当以3cm的边为轴旋转一周时,圆柱的表面积=2×π×52+2π×5×3=50π+30π=80πcm2.所以答案为:几何体的表面积为48πcm2或80πcm2.【分析】以5cm的边为轴旋转一周得到的是一个底面半径为3cm,高为5cm的圆柱;以3cm边为轴旋转一周得到的是一个底面半径为5cm,高为3cm的圆柱.16、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3).【考点】点、线、面、体,有理数的乘方【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.17、【答案】【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm3).故它们的体积分别为45πcm3或75πcm3.【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.四、解答题18、【答案】解:根据题意得:长方体的体积为abc;表面积为ab+2(ac+bc),体积结果为单项式;表面积结果为多项式【考点】单项式,多项式,几何体的表面积【解析】【分析】根据长方体的体积=长×宽×高,表面积等于2(长×宽+长×高+宽×高),列出关系式即可做出判断.19、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3【考点】点、线、面、体【解析】【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.20、【答案】解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条【考点】截一个几何体【解析】【分析】一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,相加即可.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为( )A.160°B.110°C.130°D.140°2.如图,直线与相交于点,平分,且,则的度数为()A. B. C. D.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB4.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点AB.点BC.点CD.点D5.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(n>6),则a-b的值为()A.6B.8C.9D.126.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y 7.请通过计算推测32018的个位数是( )A .1B .3C .7D .98.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-19.若x=-3是方程2(x-m )=6的解,则m 的值为( )A.6B.6-C.12D.12-10.一个有理数的平方等于它本身,那么这个有理数是( )A .0B .1C .±1 D.0或111.5的相反数是( ) A.15B.5C.15-D.﹣512.2322...233 (3)m n ⨯⨯⨯+++个个=( ) A.23n m B.m 23n C.32m n D.23m n二、填空题 13.已知△ABC 的高AD 于AB 、AC 的夹角分别是60°和20°,则∠BAC 的度数是_____________.14.在直角三角形中,一个锐角比另一个锐角的3倍还多10,则较小的锐角度数是_______.15.若代数式 4x 8- 与 3x 22+ 的值互为相反数,则x 的值是____.16.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.17.将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形⋯⋯如此下去,则图2019中共有正方形的个数为______.18.如图所示,有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,将一根半径为2cm的玻璃棒垂直插入水中后,容器里的水升高了_____cm.19.-24=________.20.若a和b是互为相反数,则a+b=_______三、解答题21.王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?22.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.23.下面是马小哈同学做的一道题:解方程:212134 x x-+=-解:①去分母,得 4(2x﹣1)=1﹣3(x+2)②去括号,得 8x﹣4=1﹣3x﹣6③移项,得8x+3x=1﹣6+4④合并同类项,得 11x=﹣1⑤系数化为1,得x=-111, (1)上面的解题过程中最早出现错误的步骤是(填代号) (2)请在本题右边正确的解方程:x-12224x x -+=-. 24.解方程或计算:(1)30564x x --= (2)13142x xx ---=- (3)3425203+3542︒'⨯︒''' (4) 220161416(2)(1)2-+÷-⨯--25.已知多项式A 、B ,其中 ,某同学在计算A+B 时,由于粗心把A+B 看成了A-B 求得结果为,请你算出A+B 的正确结果。
人教版七年级上册数学第四章4.1---4.4测试题 含答案

人教版七年级上册数学第四章4.1---4.4测试题含答案4.1《几何图形》一.选择题1.如图是一无盖的正方体盒子,其展开图不能是()A.B.C.D.2.如图是某个几何体的平面展开图,该几何体是()A.圆柱B.四棱柱C.三棱锥D.三棱柱3.在一个棱柱中,一共有八个面,则这个棱柱棱的条数有()A.18条B.15条C.12条D.21条4.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过5.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.6.如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.7.在下列几何体中,()几何体是将一个三角尺绕它的斜边所在直线旋转一周得到的.A.B.C.D.二.填空题8.举两例生活学习中点动成线的例子:,.9.面与面相交成,线与线相交得到,点动成,线动成,面动成.10.用数学知识解释下列现象:(1)一只蚂蚁行走的路线可以解释为;(2)自行车的辐条运动可解释为.11.用你手中的直角三角板绕其一条直角边旋转一周所得的几何体是.12.五棱柱是由个面围成的,圆锥是由个面围成的.13.铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是.14.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数互为相反数,则a﹣b﹣c的值为.15.病毒无情人有情,很多最美逆行者奔赴疫情的前线,不顾自己的安危令我们感动.宣传委员小明在一个正方体的每个面上分别写上一个汉字,组成“共同抗击疫情”,如图是该正方体的一种展开图,那么在原正方体中,与汉字“抗”相对的面上的汉字是.三.解答题16.如图所示是一个几何体的表面展开图(1)该几何体的名称是.(2)根据图中所给信息,求该几何体的体积(结果保留π)17.如图,是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)请根据图中所标的尺寸,计算这个几何体的侧面积.18.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.19.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)参考答案一.选择题1.解:根据正方体表面展开图的“田凹应弃之”可得,选项A不能折叠成无盖的正方体盒子,故选:A.2.解:这个几何体有5个面,两个底面是全等的三角形,3个侧面是长方形,因此这个几何体为三棱柱,故选:D.3.解:一个棱柱中,一共有八个面,则有2个底面,6个侧面,因此此立体图形是六棱柱,则这个棱柱棱的条数有18条.故选:A.4.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.5.解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.6.解:将直角三角形绕斜边所在直线旋转一周得到的几何体为:故选:D.7.解:A、圆锥是由一直角三角形绕其直角边旋转而成的,不合题意;B、圆柱是由一长方形绕其一边长旋转而成的,不合题意;C、该几何体是由直角梯形绕其下底旋转而成的,不合题意;D、该几何体是由直角三角形绕其斜边旋转而成的,符合题意.故选:D.二.填空题8.解:雨落下来成线、笔尖在纸上移动能画成一条线均是点动成线的例子.故答案可为:雨落下来成线、笔尖在纸上移动能画成一条线.9.解:面面相交得到线,线线相交得到点.点动成线,线动成面,面动成体.故答案为:线;点;线;面;体.10.解:(1)一只蚂蚁行走的路线可以解释为:点动成线;(2)自行车的辐条运动可解释为:线动成面,故答案为:点动成线;线动成面.11.解:圆锥的轴截面是直角三角形,因而圆锥可以认为直角三角形以一条直角边所在的直线为轴旋转一周得到.故直角三角形绕它的直角边旋转一周可形成圆锥.故答案为:圆锥.12.解:五棱柱是由7个面围成的,圆锥是由2个面围成的.故答案为:7,2.13.解:铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是面动成体.故答案为:面动成体.14.解:根据正方体展开图所标的数字,相对面上所标的两个数互为相反数,可得a=1,b=5,c=﹣2,∴a﹣b﹣c=1﹣5﹣(﹣2)=﹣2,故答案为:﹣2.15.解:根据正方体展开图的特征,“相间、Z端是对面”可得,“抗”的对面是“情”,故答案为:情.三.解答题16.解:(1)该几何体的名称是圆柱,故答案为:圆柱;(2)该几何体的体积=π×12×3=3π.17.解:(1)这个几何体的名称是六棱柱;(2)侧面积=(2+4)ab=6ab.18.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),19.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.4.2直线、射线、线段一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB4.3角一.选择题1.如图,从4点钟开始,过了40分钟后,分钟与时针所夹角的度数是()A.90°B.100°C.110°D.120°2.钟面上,下列时刻分针与时针构成的角是直角的是()A.12点15分B.9点整C.3点20分D.6点45分3.如图,若∠BOC:∠AOC=1:2,∠AOB=63°,且OC在∠AOB的内部,则∠AOC=()A.78°B.42°C.39°D.21°4.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有()A.1个B.2个C.3个D.4个5.如图,点O在直线AB上,∠AOC与∠AOD互余,OE平分∠DOB,∠DOE=75°,则∠AOC的度数为()A.40°B.50°C.60°D.70°6.如图,在直线AD上任取一点O,过点O作射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,∠BOE的度数()A.61°B.62°C.63°D.64°7.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOC=10°,则∠BOD的度数是()A.10°B.20°C.70°D.80°8.将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.9.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°10.如图所示,将长方形ABCD的一角沿AE折叠,若∠BAD′=40°,那么∠EAD′的度数为()A.20B.25°C.40°D.50°二.填空题11.计算:已知∠α=20°20′,则∠α的余角为.12.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.15.如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55°,若同时开工,则在乙地公路按南偏西度的走向施工,才能使公路准确接通.三.解答题16.一个角的余角的3倍比它的补角小10°,求这个角的度数.17.如图,∠AOB=180°,∠COD=40°,OD平分∠COB,OE平分∠AOC,求∠AOE 和∠EOD的度数.18.如图,点O是直线AB上一点,∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ 平分∠BOF,求∠POQ的度数.19.如图1,将一副直角三角尺的顶点叠一起放在点A处,∠BAC=60°,∠DAE=45°,保持三角尺ABC不动,三角尺AED绕点A顺时针旋转,旋转角度小于180°.(1)如图2,AD是∠EAC的角平分线,直接写出∠DAB的度数;(2)在旋转的过程中,当∠EAB和∠DAC互余时,求∠BAD的值.参考答案与试题解析一.选择题1.【解答】解:4点40分钟时,钟表的时针与分针形成的夹角的度数=40×6°﹣4×30°﹣40×0.5°=100°.故选:B.2.【解答】解:A、30°×(5﹣)=127.5°,故A不符合题意;B、30°×3=90°,故B符合题意;C、30°×(4﹣)=11°,故C不符合题意;D、30°×(3+)=112.5°,故D不符合题意;故选:B.3.【解答】解:∵∠BOC:∠AOC=1:2,∴∠AOC=∠AOB=×63°=42°.故选:B.4.【解答】解:第1个图形中,∠1=∠2=135°,符合题意;第2个图形中∠1=45°,∠2的度数不确定,不符合题意;第3个图形中∠1=∠2,符合题意;第4个图形中∠1=120°,∠2=45°,不符合题意,故选:B.5.【解答】解:∵OE平分∠DOB,∠DOE=75°,∴∠BOD=2∠DOE=150°,∴∠AOD=30°,∵∠AOC与∠AOD互余,∴∠AOC=90°﹣30°=60°,故选:C.6.【解答】解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.故选:D.7.【解答】解:由图可得,∠AOC、∠BOD都是∠BOC的余角,则∠BOD=∠AOC=10°.故选:A.8.【解答】解:A、由图形得:∠α=60°,∠β=30°+45°=75°,不合题意;B、由图形得:∠α+∠β=90°,不合题意;C、根据同角的余角相等,可得:∠α=∠β,符合题意;D、由图形得:∠α=90°﹣30°=60°,∠β=90°﹣45°=45°,不合题意.故选:C.9.【解答】解:∵BM为∠ABC的平分线,∴∠CBM=∠ABC=×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=∠EBC=×(60°+90°)=75°,∴∠MBN=∠CBN﹣∠CBM=75°﹣30°=45°.故选:B.10.【解答】解:∵∠BAD′=40°,∴∠DAD′=90°﹣40°=50°,∵将长方形ABCD的一角沿AE折叠,∴∠DAE=∠EAD′=∠DAD′=25°.故选:B.二.填空题(共5小题)11.【解答】解:∠α的余角=90°﹣20°20′=69°40′.故答案为:69°40′.12.【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.13.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.14.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.15.【解答】解:如图:∵AD∥OC,∴∠COD=∠ADO=55°,即乙地公路走向应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.三.解答题(共4小题)16.【解答】解:设这个角是x°,根据题意,得3(90﹣x)=(180﹣x)﹣10,解得x=50.故这个角的度数为50°.17.【解答】解:∵∠COD=40°,OD平分∠COB,∴∠BOC=2∠COD=80°,∠BOD=40°,又∵∠AOB=180°,∴∠AOC=100°,∵OE平分∠AOC,∴∠AOE=∠AOC=50°,∴∠DOE=180°﹣∠AOE﹣∠BOD=180°﹣50°﹣40°=90°.18.【解答】解:∵OP平分∠AOE,∴∠POE=∠AOE=×130°=65°,∵∠BOE=180°﹣∠AOE=180°﹣130°=50°,∴∠BOF=∠EOF﹣∠BOE=90°﹣50°=40°,∵OQ平分∠BOF,∴∠BOQ=∠BOF=×40°=20°,∴∠POQ=∠POE+∠BOE+∠BOQ=65°+50°+20°=135°.19.【解答】解:(1)如图2,∵AD是∠EAC的角平分线,∴∠DAE=∠CAD=45°,∵∠BAC=60°,∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB和∠DAC互余时,设∠BAD=α,则∠BAE=45°﹣α,∠CAD=60°﹣α,∴45°﹣α+60°﹣α=90°,解得α=7.5°;②如图,当∠EAB和∠DAC互余时,设∠BAD=α,则∠BAE=α﹣45°,∠CAD=α﹣60°4.4 课题学习设计制作长方体形状的包装纸盒一、选择题1. 下图中,是正方体的展开图的是()A B C D2. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉 B.害C.了D.我3. 图是一个能折成长方体的平面展开图,那么由它折成的长方体可能是( )4. 如图,将图①围成图②的正方体,则图①中的红心“♥”标志所在的正方形是正方体中的()A.面CDHE B.面BCEFC.面ABFG D.面ADHG5. 明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出装墨水的盒子是()A B C D6. 有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是()A.白B.红C.黄D.黑7. 一个正方体,六个面上分别写着六个连续的整数,且每两个相对面上的两个数之和相等,如图,你能看到的数为7,10,11,则六个整数的和为()A.51 B.52 C.57 D.588. 下列平面图形,不能沿虚线折叠成立体图形的是( )9. 小明同学设计了如图所示的正方体形状的包装纸盒,把其下面的四个表面展开图折叠(不计接缝),与小明同学设计的纸盒完全相同的是( )10. 下列不是如图所示的立体图形的展开图的是( )A. B. C. D.11. 图是一个长方体包装盒,则它的平面展开图是( )二、填空题12. 如图是一个多面体的表面展开图,每个面上都标注了字母(字母在多面体的外表面),请根据要求回答问题.(1)如果D面在多面体的左面,那么F面在面;(2)B面和面是相对的面;(3)如果C面在前面,从上面看到的是D面,那么从左面能看到面。
人教版数学七年级上册 第4章 4.1---4.2测试题含答案

4.1几何图形同步测试题一.选择题1.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形2.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.43.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图的正方体纸巾盒,它的平面展开图是()A.B.C.D.6.下列叙述,其中正确的个数有()①最小的正整数是0;②若x+2是一个负数,则x一定是负数;③用一个平面去裁正方体,截面不可能是六边形;④三角形是多边形;⑤绝对值等于本身的数是正整数.A.1B.2C.3D.47.如图所示的纸片折成一个长方体纸盒,折得的纸盒是()A.B.C.D.8.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1B.﹣2C.3D.﹣b9.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.10.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.二.填空题11.如果一个棱柱共有15条棱,那么它一定是棱柱.12.设三棱柱有a个面,b条棱,c个顶点,则a﹣b﹣c=.13.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为元(π取3).14.如图,阴影部分的面积为cm2.(π取3.14)15.如图,两个长方形重叠部分的面积相当于大长方形面积的,相当于小长方形面积的,则大长方形和小长方形的面积的比值是.三.解答题16.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)17.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.18.随着城市的发展,住宅小区的建设也越来越人性化.为响应国家“加强全民健身设施建设,发展全民体育”的号召.哈市某小区在一片足够大的空地中,改建出一个休闲广场,规划设计如图所示.求塑胶地面休闲区的面积;(2)求广场中种植花卉的面积与种植草坪的面积的比值.19.如图①所示,从大正方体中截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为a,图②中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图①中大正方体的棱长之和为m,图②中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图③是图②几何体的表面展开图吗?如有错误,请予修正.参考答案与试题解析一.选择题1.【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B.2.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,所以原正方体相对两个面上的数字和最小的是6,故选:C.3.【解答】解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.4.【解答】解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、能折成圆柱,故选项正确;D、不能折成三棱柱,故选项错误.故选:C.5.【解答】解:观察图形可知,正方体纸巾盒的平面展开图是:故选:C.6.【解答】解:①最小的正整数是1,此结论错误;②若x+2是一个负数,则x一定是负数是正确的;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④三角形是多边形是正确的;⑤绝对值等于本身的数是正数和0,此结论错误.故正确的个数有2个.故选:B.7.【解答】解:如图所示:根据题意可知,A的对面是A′,B的对面是B′,C的对面是C′,A的短边阴影与C 的阴影重合.故用形如图所示的纸片折成一个长方体纸盒,折得的纸盒是C.故选:C.8.【解答】解:“a”与“﹣1”相对,∵相对面上的两个数都互为相反数,∴a=1.故选:A.9.【解答】解:因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.10.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.二.填空题(共5小题)11.【解答】解:15÷3=5,所以是五棱柱,故答案为:五.12.【解答】解:三棱柱有5个面,9条棱,6个顶点,因此a=5,b=9,c=6,所以a﹣b﹣c=5﹣9﹣6=﹣10,故答案为:﹣10.13.【解答】解:修剪草坪的面积为:(π×52﹣π×42)×5﹣1×8=45π﹣8≈127(平方米),因此所用的人工费为10×127=1270(元),故答案为:1270.14.【解答】解:S 阴影=S 圆形﹣S 正方形=π×()2﹣×2×2=π﹣2≈1.14(cm 2), 故答案为:1.14.15.【解答】解:设阴影部分的面积为k , ∵阴影部分的面积相当于大长方形面积的,相当于小长方形面积的,∴大长方形的面积为6k ,小长方形的面积为4k , ∴大长方形和小长方形的面积的比值为=, 故答案为:.三.解答题(共4小题)16.【解答】解:(1)50×4+20×4+18=298(cm ),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm 2), (3)π×()2×50=5000π≈15700(cm 3), 答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.17.【解答】解:(1)(1×3+2×3+1×2)×2=22(m 2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm ,2cm ,1cm ,因此体积为:1×2×3=6(m 3),18.【解答】解:(1)S 塑胶地面=S 长方形+S 半圆=10×20+π×()2=200+50π≈350(平方米),答:塑胶地面休闲区的面积为350平方米;(2)S 种花卉=S 长方形﹣S 半圆=200﹣150=50(平方米),S 种草坪=S 半圆=50π≈150(平方米), 所以,广场中种植花卉的面积与种植草坪的面积的比值为=. 19.【解答】解:(1)根据“切去三个小面”但又“新增三个小面”,因此与原来的表面积相等,即a =b ,故答案为:C;(2)如图②红颜色的棱是多出来的,共6条,如果截去的小正方体的棱长为大正方体的棱长的一半时,n比m正好多出大正方体的3条棱的长度,如果截去的小正方体的棱长不是大正方体的棱长的一半,n比m就不是多出大正方体的人教版数学(七上)第4章 4.2 直线、射线、线段同步练习一、选择题1. 下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2. 如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4. 工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线5. 如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条6. 射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.7. 如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确8. 下列选项中各有一条射线和一条线段,则它们能相交的是()9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③二、填空题11. 经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.12. 如图,该图中不同的线段数共有__________条.13. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14. 如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.15. 如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.16. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.18. 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.19. 如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.参考答案一、选择题1. 下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行【答案】 D2. 如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB【答案】 A3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③【答案】B【解析】①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确.故选B.4. 工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( )A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线【答案】 D5. 如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条【答案】 C6. 射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.【答案】 B7. 如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【答案】 C8. 下列选项中各有一条射线和一条线段,则它们能相交的是()【答案】C【解析】射线可以向一方无限延伸.故选C.9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④【答案】D10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③【答案】【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.二、填空题11. 经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.【答案】1或312. 如图,该图中不同的线段数共有__________条.【答案】613. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.【答案】【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14. 如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.【答案】③;两点之间,线段最短15. 如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.【答案】116. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.【答案】(1)>,=,=(2)=,<,<三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.【答案】解:如图所示.18. 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.【答案】【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.19. 如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.【答案】【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.【答案】解:(1),(2),(3)如答图;(4)以点C为端点的射线有3条,分别是射线CP,射线CD,射线CQ;(5)以点C为一个端点的线段有6条,分别是线段CP,线段CD,线段CA,线段CQ,线段CO,线段CB.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.【答案】解:如答图,应建在AC,BD连线的交点处.理由:根据两点之间线段最短,将A,C,B,D用线段连起来,路程最短,两线段的交点处建超市可使4个居民小区到购物中心的距离之和最小.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.【答案】【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.【答案】【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.。
人教版数学七年级上册4.1 几何图形-练习

当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形内的
三个数依次为( )
A. 1,−2,0
B. 0,−2,1
C. −2,0,1
5 如图,直角三角形绕直线l旋转一周,得到的立体图形是( )
D. −2,1,0
A.
B.
C.
D.
6 以下平面图形按某种方式折叠后,能够围成立体图形的是( )
A. ①
B. ②
C. ③
二 、填空题(本大题共 5 小题,共 15 分)
D. ④
16 在一个正方体的六个面上都写有一个汉字,其平面展开图如图所示,那么该正方体 中和“文”相对的汉字是______.
17 一个直角三角形直角边边长分别为3和4,将直角三角形绕它所在的一条直角边旋转, 则所形成的几何体的体积为______(结果保留π). 18 如图,一个正方体六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态,则? 表示的数字是______.
答案和解析
1.【答案】A; 【解析】解:由n棱柱有3n条棱可得, 一个棱柱体有18条棱,18 ÷ 3 = 6,因此这个棱柱是六棱柱, 故选:A. 由棱柱的形体特征进行判断即可. 此题主要考查认识立体图形,掌握棱柱的形体特征是正确判断的关键.
2.【答案】A; 【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “A”与“0”是相对面, “B”与“3”是相对面, “C”与“−4”是相对面, ∵ 相对面上的两数互为相反数, ∴ A、B、C内的三个数依次是0、−3、4. 故选:A. 依据对面不存任何公共部分可确定出对面,然后依据相反数的定义解答即可. 此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手, 分析及解答问题.
人教版数学七年级上册《4.1 几何图形》练习

B.
C.
D.
11.如图,共有 12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方
体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,能构成这个正
方体的表面展开图的有( )个.
A. 4
B. 5
C. 6
D. 7
12.如图是一个直三棱柱,则它的平面展开图中,错误的是( )
A.
B.
宽是原正方形边长的两倍;
(2)俯视图为半径为 1 的圆,根据圆的面积公式求出即可.
22.【答案】解:分两种情况:
3
①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(c );
3
②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(c ).
3
3
故它们的体积分别为 45πc 或 75πc .;
5.【答案】C;
【解析】解:A、是田字格,不是正方体的平面展开图,故选项错误;
B、缺少上下 2 个底面,不是正方体的平面展开图,故选项错误;
C、是一个正方体的平面展开图,故选项正确;
D、是凹字格,不是正方体的平面展开图,故选项错误.
故选 C.
6.【答案】C;
【解析】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,D 选项可以拼成
而另一端一定与圆锥的底面相交,即靠近 A、B 两点的两个空白部分无法围成环并且
紧贴底面.
故选 B.
16.【答案】线动成面;
【解析】解:汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,
故答案为:线动成面.
17.【答案】②;
【解析】解:平面图形②绕虚线旋转一周,可以得到图 1,
人教版七年级数学上册4.1 几何图形同步测试含答案与试题解析

人教版七年级数学上册4.1 几何图形同步测试参考答案与试题解析一.选择题(共8小题)1.下列四个几何体中,是三棱柱的为()A.B.C.D.2.一圆柱形桶内装满了水,已知桶的底面直径和高都为m,另一长方体形容器的长为m,宽为m,若把圆柱形桶中的水倒入长方体形容器中刚好倒满,则长方体形容器的高为()A.2mπB.mπC.mπD.4mπ3.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.13个D.12个4.“汽车上雨刷器的运动过程”能说明的数学知识是()A.点动成线B.线动成面C.面动成体D.面与面交于线5.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体6.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.7.下列几何体中,不能由一个平面图形经过旋转运动形成的是()A.圆柱体B.圆锥体C.球体D.长方体8.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对二.填空题(共6小题)9.底面直径是4cm高3cm的圆柱体积是cm3(π取3.14)10.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是.11.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是cm3.12.图中阴影部分是个半圆环,它的面积是cm2.(结果保留π)13.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体125个,那么n的值为.14.下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形.三.解答题(共4小题)15.已知圆环的面积为π,其中大圆与小圆周长的和为4π,求圆环的宽度(大圆半径与小圆半径的差).16.在一个底面直径为5cm,高为16cm圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6cm,高为10cm的圆柱形玻璃杯中,能否完全装下?若装不下,求瓶内水面还有多高?若未能装满,求玻璃杯内水面离杯口的距离?17.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?18.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=底面积×高)参考答案与试题解析一.选择题(共8小题)1.下列四个几何体中,是三棱柱的为()A.B.C.D.解:A、该几何体为四棱柱,不符合题意;B、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.2.一圆柱形桶内装满了水,已知桶的底面直径和高都为m,另一长方体形容器的长为m,宽为m,若把圆柱形桶中的水倒入长方体形容器中刚好倒满,则长方体形容器的高为()A.2mπB.mπC.mπD.4mπ解:==.所以长方体形容器的高为.故选:B.3.如图,这个立体图形中小正方体的个数是()A.9个B.10个C.13个D.12个解:由图可得,第一层有7个;第二层有5个;第三层有1个,故这个立体图形中小正方体的个数是13个,故选:C.4.“汽车上雨刷器的运动过程”能说明的数学知识是()A.点动成线B.线动成面C.面动成体D.面与面交于线解:汽车的雨刷把玻璃上的雨水刷干净,是运用了线动成面的原理,故选:B.5.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体解:A、球、圆锥是立体图形,错误;B、棱锥、棱柱是立体图形,错误;C、角、三角形、正方形、圆是平面图形,正确;D、长方体是立体图形,错误;故选:C.6.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.7.下列几何体中,不能由一个平面图形经过旋转运动形成的是()A.圆柱体B.圆锥体C.球体D.长方体解:A、圆柱由矩形旋转可得,故此选项不合题意;B、圆锥由直角三角形旋转可得,故此选项不合题意;C、球由半圆旋转可得,故此选项不合题意;D、长方体不是由一个平面图形通过旋转得到的,故此选项符合题意;故选:D.8.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的矩形有()A.1对B.2对C.3对D.4对解:在矩形ABCD中,∵EF∥AB,AB∥DC,∴EF∥DC,则EP∥DH;故∠PED=∠DHP;同理∠DPH=∠PDE;又PD=DP;所以△EPD≌△HDP;则S△EPD=S△HDP;同理S△GBP=S△FPB;则(1)S梯形BPHC=S△BDC﹣S△HDP=S△ABD﹣S△EDP=S梯形ABPE;S▱AGPE=S梯形ABPE﹣S△GBP=S梯形BPHC﹣S△FPB=S▱FPHC;(2)S▱AGHD=S▱AGPE+S▱HDPE=S▱PFCH+S▱PHDE=S▱EFCD;(3)S▱ABFE=S▱AGPE+S▱GBFP=S▱PFCH+S▱GBFP=S▱GBCH.故选:C.二.填空题(共6小题)9.底面直径是4cm高3cm的圆柱体积是37.68cm3(π取3.14)解:因为圆柱底面直径是4cm,所以圆柱底面半径是2cm,圆柱的体积=22π×3≈4×3.14×3=37.68(cm3),故答案为:37.68.10.已知甲乙两圆的周长之比是3:4,那么甲乙两圆的直径之比是3:4.解:∵甲乙两圆的周长之比是3:4,∴甲乙两圆的直径之比是3:4.故答案为:3:4.11.如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是192πcm3.解:16π÷(2×π)=8(cm)π×82×3=192π(cm3)故该圆柱的体积是192πcm3.故答案为:192π.12.图中阴影部分是个半圆环,它的面积是32πcm2.(结果保留π)解:π×[(20÷2)2﹣(12÷2)2]÷2=π×(100﹣36)÷2=32π(cm2).答:它的面积是32πcm2.故答案为:32π.13.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体125个,那么n的值为7.解:由已知规律可推断:正方体的棱n等分时,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为714.下列平面图形中,将编号为②(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形.解:①是两个圆台,故①错误;②上面大下面小,侧面是曲面,故②正确;③上面小下面大,侧面是曲面,故③错误;④是一个圆台,故④错误;故答案为:②.三.解答题(共4小题)15.已知圆环的面积为π,其中大圆与小圆周长的和为4π,求圆环的宽度(大圆半径与小圆半径的差).解:∵圆环的面积为π,∴R2﹣r2=1,∵大圆与小圆周长的和为4π,∴R+r=2,∴R﹣r=.故圆环的宽度是.16.在一个底面直径为5cm,高为16cm圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6cm,高为10cm的圆柱形玻璃杯中,能否完全装下?若装不下,求瓶内水面还有多高?若未能装满,求玻璃杯内水面离杯口的距离?解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2×16,解得x=,∵>10,∴不能完全装下.﹣10=(cm),16×=1.6(cm),答:装不下,那么瓶内水面还有1.6cm.17.打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是12米,高是底面半径的,(1)求这堆小麦的体积是多少立方米?(π取3.14)(2)在某仓库有一些相同的圆柱形有盖平顶粮仓,每个粮仓的高为1.1米,侧面积为π,求该粮仓的底面积是多少平方米?(结果保留π)(3)在(2)的条件下,若将打谷场上的这堆小麦全部装入仓库的圆柱形的粮仓内,至少需要多少个这样的粮仓?解(1)(米),V麦=≈24×3.14=75.36(立方米),这堆小麦的体积是75.36立方米;(2),(米),(平方米),所以该粮仓的底面积是4π平方米;(3)(立方米),,所以至少需要6个这样的粮仓.18.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=底面积×高)解:以8cm为轴,得以8cm为轴体积为×π×62×8=96π(cm3),以6cm为轴,得以6cm为轴的体积为×π×82×6=128π(cm3),以10cm为轴,得以10cm为轴的体积为×π()2×10=76.8π(cm3).故几何体的体积为:96πcm3或128πcm3或76.8πcm3.。
人教版七年级上数学4.1几何图形

1、对棱柱而言,下列说法错误的是()A. 所有侧面都是长方形B.所有侧棱长都相等C.上、下底面的形状相同D.相邻两个侧面的交线叫做侧棱A利用棱柱的性质逐项判断即可得到答案.解:A、所有的侧面不一定是长方形,说法错误,故本选项正确;B、所有的侧棱长都相等,说法正确,故本选��错误;C、上、下底面的形状相同,说法正确,故本选项错误;D、相邻两侧面的交线叫侧棱,说法正确,故本选项错误,故选A.2、用平面去截下图中的正方体,截面形状不可能是()A.B.C.D.D正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.无论如何去截,截面也不可能有弧度,因此截面不可能是圆.解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选D.3、下列选项中,不能折成如左图所示的长方体的是()A.B.C.D.B由平面图形的折叠及长方体的展开图解题.解:选项A,C,D经过折叠均能围成长方体;选项B两个后面重合,缺少一定底面,所以不能折成如左图所示的长方体.故选B.4、如图所示,几何体截面的形状是()A.B.C.D.B根据几何体(圆柱、球体、圆锥),进行截面即可判断形状.解:几何体初中阶段有:圆柱、球体、圆锥,∴其截面的形状有圆、长方形、三角形、梯形等.故选B.5、图形中是正方形表面展开图的是()A.B.C.D.C利用正方体及其表面展开图的特点解题.解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.6、以下图形中,不是平面图形的是()A.线段B.角C.圆锥D.圆C通过操作,使学生分辨出立体图形与平面图形的区别.解:A、B、D是平面图形,C是立体图形,故选C.7、如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“神”相对的面上的汉字是()A.太B.空C.漫D.步D正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“生”字相对的面上的汉字是“学”.故选D.8、如图,在正方体的平面展开图中,与“高”对立面的是()A.我B.考C.天D.立D正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“高”字相对的面上的汉字是“立”.故选D.9、如图,是包装新年礼物的正方体盒子的展开图,如果前面对应的是“新”字,那么后面对应的字是()A.祝B.你C.快D.乐D正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“新”相对的面上的汉字是“乐”,故“新”在正方体的后面,则这个正方体的前面是“乐”.故选D.10、把下列图形折叠起来,所形成的立体图形是圆锥的是()A.B.C.D.C根据图纸折叠后,根据圆柱、圆锥、棱柱、圆锥判断即可.解:A、折叠后能得到一个圆柱,故本选项错误;B、折叠后能得到一个正五棱柱,故本选项错误;C、半圆和圆折叠后能得到一个圆锥,故本选项正确;D、折叠后能得到一个正三棱柱,故本选项错误;故选C.11、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6B.7C.8D.9C根据相对的面相隔一个面得到相对的2个数,相加后比较即可.解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选C.12、如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.【答案】A【解析】试题分析:长方体的四个侧面中,有两个相对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错误,D中底面不符合,只有A符合。
人教版七年级数学《4.1几何图形》测试题(含答案)

《4.1几何图形》测试题一、选择题1.从上向下看图,应是右图中所示的( )考查说明:本题考查从不同方向观察立体图形.答案与解析:D.此题要发挥空间想象力.2.如图,四个图形是由立体图形展开得到的,相应的立体图形是顺次是A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥考查说明:本题考查立体图形和它的平面展开图.答案与解析:A. 此题要发挥空间想象力.3.将图中左边的图形折成一个立方体, 判断下图右边的四个立方体哪个是由左边的图形折成的.()考查说明:本题主要考查立体图形与平面展开图的关系.答案与解析:B. 此题要发挥空间想象力和动手操作能力.4.将一个正方体沿某些棱展开后,能够得到的平面图形是()考查说明:本题主要考查正方体与平面展开图的关系.答案与解析:选C.遵循正方体展开图规律“一线不过四、田、凹应弃之”,发挥想象,动手操作,得答案.5.将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是考查说明:本题考查平面图形与立体图形的关系.答案与解析:选D.直角三角形绕斜边旋转一周得到的是有公共底面的两个圆锥.二、填空题6.棱柱的面与面相交成_________;点动成;线动成________;面动成______;考查说明:本题考查点、线、面、体间的关系.答案与解析:线,线,面,体.7.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为的面是底面,则朝上一面所标注的数字为____________.考查说明:本题主要考查长方体与平面展开图的关系.答案与解析:2. 此题要发挥空间想象力和动手操作能力.构成“目”和“Z”形的两面是相对的面,即3与5是对面,4与1是对面,6与2是对面.三、解答题8.棱长为a的正方体摆放成如图的形状,问:(1)有几个正方体.(2)摆放成如图形式后,表面积是多少?考查说明:本题考查从不同方向观察立体图形及正方体组合图形的表面积.答案与解析:(1)10个.(2)36a2. 第一层有1个,第二层有1+2个,第三层有1+2+3个,共有10个.从六个方向去看这个立体图形得到的是6个相同的平面图形,每个平面图形是6个边长为a的正方形,面积为6a2.,所以表面积为36a2.。
【最新】人教版七年级数学上册自我小测4.1几何图形含答案.doc

自我小测
1.下列说法中正确的是()
①教科书是长方形;②教科书是长方体,也是棱柱;③教学书的表面是长方形.
A.①②B.①③C.②③D.①②③
2.在下面四个物体中,最接近圆柱的是()
3.2012年伦敦奥运会标志改进的图案如下,其中五环的每一个环的形状与()类似.
A.三角形B.正方形C.圆D.长方形
4.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有__________.
5.三棱柱有__________个顶点,__________条棱.
参考答案
1.答案:C
2.答案:C选项B中,圆柱是“直”的,与弯管有明显区别;D中的饮料瓶的盖确实可以看作是圆柱,但它在该物体中只占很小的一部分,该物体从整体上讲更接近于棱柱;A中烟囱上下粗细不同,不是圆柱,因此选C.新课标第一网
3.答案:C
4.答案:乒乓球、足球
5.答案:69。
人教版七年级数学上册4.1几何图形练习题(有答案)

人教版七年级数学上册4.1几何图形练习题一、单选题1.用平面去截正方体,在所得的截面中,不可能出现的是( )A.四边形B.五边形C.六边形D.七边形2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A. B. C. D.3.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱4.如图是一个正方体展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0-5.如图是一个几何体的俯视图,则这个几何体的形状可能是( )A. B. C. D.6.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.7.把一个直角三角形绕它的最长边旋转一周,得到的几何体是( ).A. B. C. D.8.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图,一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是( )A.五棱柱B.六棱柱C.七棱柱D.八棱柱9.给出下列结论:①圆柱由三个面围成,这三个面都是平的;②圆锥由两个面围成,这两个面中,一个面是平的,一个面是曲的;③球仅由一个面围成,这个面是曲的;④长方体由六个面围成,这六个面都是平的.其中正确的有( )A.①②③B.①③④C.②③④D.①②④二、解答题10.如图(1)是一个正方体,不考虑边长的大小,它的平面展开图为图(2),四边形APQC是截正方体的一个截面.问截面的四条线段,,,AC CQ QP PA分别在展开图的什么位置上?三、填空题11.薄薄的硬币在桌面上转动时,看上去像球,这可以说 .12.如图是由6个棱长均为1的小正方体组成的几何体,从它的左面看到的图形的面积为 .13.已知一个正方体的每一个面上都有一个数,且各相对面上的数互为倒数,若这个正方体的展开图如图所示,则A,B的值分别为 .14.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是__________.参考答案1.答案:D因为正方体一共6个面,故截面不可能是七边形,故选D.2.答案:D3.答案:D4.答案:A5.答案:D6.答案:A7.答案:C8.答案:B九棱锥的棱数有18条,五棱柱、六棱柱、七棱柱、八棱柱的棱数分别为15,18,21,24,故选B.9.答案:C圆柱的侧面是曲的,①错误;圆锥由侧面和底面两个面围成,侧面是曲的,底面是平的,②正确:球只由一个面围成,这个面是曲的,③正确;长方体的六个面都是平面,④正确.故正确的有②③④.10.答案:【解】考虑到展开图上有六个顶点没有标出,可想象将展开图折成立体形,并在顶点上标出对应的符号.根据四边形所在立体图形上的位置,确定其顶点所在的点和棱,以及四条边所在的平面顶点:,,A A C C P --在EF 边上,Q 在GF 边上.边AC 在ABCD 面上,AP 在ABFE 面上,QC 在BCGF 面上,PQ 在EFGH 面上.将上面确定的位置标在展开图上,并在对应平面上连线.需要注意的是,立体图上的,A C 点在展开图上有三个,,B D 点在展开图上有两个,所以在标点连线时必须注意连线所在的平面.11.答案:面动成体从运动的观点可知,薄薄的硬币类似面,在桌面上转动时,看上去像球,这可以说面动成体.12.答案:4从左边看到的图形有两列,第一列有3个小正方形,第二列有1个小正方形,故从它的左面看到的图形的面积为4.13.答案:11,32发挥空间想象能力,或者动手操作:剪一个正方体纸片,折益,看看A,B 的对面各是什么,结果便一目了然.14.答案:8俯视图是一个梯形.上底是1,下底是3,两腰是2,周长是12238+++=.。
人教版数学七年级上册4.1几何图形随堂测试题

4.1几何图形一.选择题1.一个长方体音箱,长是宽的2倍,宽和高相等,它的体积是54000cm3,则这个音箱的长是()A.30cm B.60cm C.300cm D.600cm2.某正方体每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“厉”字所在面相对的面上的汉字是()A.国B.了C.的D.我3.如图是一个正方体纸盒的表面展开图,折成正方体后,相对面上的两个数互为相反数,则A、B、C表示的数分别为()A.0,﹣5,3B.0,3,﹣5C.3,0,﹣5D.﹣5,3,04.如图,是一个正方体的展开图,把展开图折叠成正方体后有“水”字一面的相对面上的字是()A.共B.山C.绿D.建5.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,与“美”字相对的面上的字是()A.的B.利C.川D.市6.一圆柱形桶内装满了水,已知桶的底面直径和高都为m,另一长方体形容器的长为m,宽为m,若把圆柱形桶中的水倒入长方体形容器中刚好倒满,则长方体形容器的高为()A.2mπB.mπC.mπD.4mπ7.将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m等于()A.16B.18C.26D.328.下列图形中能折叠成棱柱的是()A.B.C.D.9.下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.10.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.二.填空题11.将一个直角三角形ABC绕它的一边旋转,旋转后所得的几何体可能是下面图中的哪个.12.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.13.若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=.14.如图,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体的2号面的对面是号面.15.如图,在长方体ABCD﹣A1B1C1D1中,已知AB=4,AD=3,AA1=2.则三棱锥C1﹣A1DB的体积为.三.解答题16.把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为4cm,宽为3cm的长方形绕它的一条边所在的直线旋转一周后,得到的圆柱体的体积是多少?(结果保留π)17.求下列图形中阴影部分的面积.(用字母表示)18.(1)三棱锥有6条棱,4个面,四棱锥有条棱,个面;(2)棱锥有30条棱;(3)有没有一个多棱锥,其棱数是2006,若有求出有多少个面;若没有,说明理由.19.如图所示,图①~图④都是平面图形(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.图序顶点数边数区域数①463②③④参考答案与试题解析一.选择题1.【解答】解:设长方体的宽为xcm,则高是xcm,长是2xcm,根据题意,得2x3=54000,x3=27000,x=30,所以这个音箱的长是60cm.故选:B.2.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面;故选:B.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣3是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=3.故选:A.4.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有“水”字一面的相对面上的字是“建”.故选:D.5.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“美”字相对的面上的字是市.故选:D.6.【解答】解:==.所以长方体形容器的高为.故选:B.7.【解答】解:将一个棱长为m(m>2且m为正整数)的正方体木块的表面染上红色,然后切成m3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m﹣2)2,恰有两个表面染有红色的小正方体的数量12(m﹣2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m﹣2)2=12×12(m﹣2),解得m1=26,m2=2(舍去),故选:C.8.【解答】解:A、不能折叠成棱柱,缺少一个侧面,故A不符合题意;B、能折叠成四棱柱,故B符合题意;C、不能折叠成四棱柱,有两个面重叠,故C不符合题意;D、不能折叠成六棱柱,底面缺少一条边,故D不符合题意;故选:B.9.【解答】解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选:B.10.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.二.填空题(共5小题)11.【解答】解:以AC边所在的直线为轴,旋转一周所形成的图(2)的圆锥体,以BC边所在的直线为轴,旋转一周所形成的图(3)的圆锥体,以AB边所在的直线为轴,旋转一周所形成的图(4)的圆锥体,故答案为:(2)(3)(4).12.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.13.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.14.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“1”与面“4”相对,面“3”与面“5”相对,“2”与面“6”相对.故填6.15.【解答】解:在长方体ABCD﹣A1B1C1D1中,三棱锥C1﹣A1DB的体积V=V﹣(V+V+V+V)=V﹣(S△ABD ×AA1+S△CBD×CC1+S×BB1+S×DD1)=S ABCD×AA1﹣(S ABCD×AA1+S×AA1)=S ABCD×AA1=V=×AB×AD×AA1=×4×3×2=8.∴三棱锥C1﹣A1DB的体积为8;故答案为:8.三.解答题(共4小题)16.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36π(cm3),绕宽所在的直线旋转一周得到圆柱体积为:π×42×3=48π(cm3),答:得到的圆柱体的体积是36πcm3或者48πcm3.17.【解答】解:左图:阴影部分的长为(a﹣x),宽为b,因此S=b(a﹣x)=ab﹣阴影部分bx,=R2﹣=.右图:S阴影部分18.【解答】解:(1)四棱锥有8条棱,5个面;(2)十五棱锥有30条棱;(3)一个多棱锥的棱数是2006,则这个多面体的面数是2006÷2+1=1004.故有1004个面.故答案为:8,5;十五.19.【解答】解:(1)填表如下:图序顶点数边数区域数①463②8125③694④10156(2)由(1)中的结论得:边数﹣顶点数+1=区域数.4.2直线射线线段一、选择题1.下列说法中正确的是A. 延长射线OA到点BB. 线段AB为直线AB的一部分C. 射线OM与射线MO表示同一条射线D. 一条直线由两条射线组成2.如图,在下列说法中,错误的是A. 点P为直线AB外一点B. 直线AB不经过点PC. 直线AB与直线BA是同一条直线D. 点P在直线AB上3.如图,对于直线AB,线段CD,射线EF,其中能相交的是A. B.C. D.4.如图,点B,C,D依次在射线AP上,则下列线段长度错误的是A. B. C. D.5.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定A. 1根B. 2根C. 3根D. 4根6.如图,C是线段AB的中点,D是线段BC的中点,下列等式不正确的是A. B.C. D.7.有三个点A,B,C,过其中每两个点画直线,可以画出直线A. 1条B. 2条C. 1条或3条D. 无法确定8.如图所示,C是线段AB的中点,D在线段CB上,,,则A. 20B. 12C. 10D. 89.在线段MN的延长线上取一点P,使,再在MN的延长线上截取,那么线段MP的长是线段NQ的长的A. B. C. D.10.将一根绳子对折以后用线段AB表示,现从一点P处将绳子剪断,剪断后的各段绳子中最长的一段为60cm,若AP PB,则这条绳子的原长为A. 100cmB. 150cmC. 100cm或150cmD. 120cm或150cm二、填空题(本大题共6小题,共18.0分)11.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.12.如图,A,B,C是直线l上的三个点,图中共有条线段.13.如图,已知C、D是AB上两点,且,,M是AD的中点,N是BC的中点,则线段MN的长为_______________.14.线段,点C在线段AB上,且,M为BC的中点,则AM的长为______cm.15.如图,数轴上A、B两点之间的距离,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为.16.线段,是AB的中点,是的中点,是的中点,是的中点,依此类推,线段的长为_____.三、计算题(本大题共2小题,共12.0分)17.如图,已知线段,M为AB的中点,P在MB上,N为PB的中点,且,求MB的长;求PB的长;求PM的长.18.已知:如图,点C、D是线段AB上的两点,线段AC:CD::3:4,点E、F分别是线段AC、DB的中点,且线段,求线段AB的长.四、解答题(本大题共4小题,共32.0分)19.如图,在平面内有A,B,C三点.画直线AC,线段BC,射线AB;在线段BC上任取一点不同于B,,连接线段AD;请直接写出图中的线段条数.20.已知,点C在直线AB上,如果,D是线段AC的中点,求线段BD的长度.下面是马小虎同学的解题过程:解:根据题意可画出如图所示的图形.由图可得.因为D是线段AC的中点,所以.所以.若你是老师,会判马小虎满分吗若会,请说明理由若不会,请将马小虎的错误指出,并给出你认为正确的解法.21.A,B两点在数轴上的位置如图所示,其中点A表示的有理数为,且点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为秒.当时,AP的长为,点P表示的有理数为.当时,求t的值.为线段AP的中点,N为线段PB的中点在点P运动的过程中,线段MN 的长度是否发生变化若发生变化,请说明理由若不发生变化,请你画出图形,并求出线段MN的长.22.如图,在射线OM上有三点A、B、C,满足,,如图所示,点P从点O出发,沿OM方向以的速度匀速运动,点Q从点C出发在线段CO上向点O以的速度匀速运动点Q运动到点O时停止运动,两点同时出发.若关于m、n的单项式与的和仍为单项式,请直接写出:_____,_____;当,时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;点E、F分别是线段OA、OC的中点,当AB以的速度向右运动t秒时,是否存在某一时刻恰好点F是线段BE的中点?若存在,请求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】本题主要考查的是直线,射线,线段的有关知识,利用直线、射线、线段的特征判定即可.【解答】解:延长射线OA到点B,射线OA是无限延伸的,故选项错误;B.线段AB为直线AB的一部分是正确的;C.射线OM与射线MO表示两条射线,故选项错误;D.一条直线不一定由两条射线组成,故选项错误.故选B.2.【答案】D【解析】【分析】考查直线、射线和线段的意义.注意图形结合的解题思想结合图形,对选项一一分析,选出正确答案.【解答】解:A、点P为直线AB外一点,符合图形描述,选项正确;B、直线AB不经过点P,符合图形描述,选项正确;C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;D、点P在直线AB上应改为点P在直线AB外一点,选项错误.故选D.3.【答案】B【解析】【分析】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键,根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.4.【答案】C【解析】【分析】本题主要考查的是两点间的距离的有关知识,直接根据数轴结合两点间的距离公式对给出的各个选项进行逐一分析即可.【解答】解:,,故本选项正确;B.,,,故本选项正确;C.由图示可知,,故本选项错误;D.,,,故本选项正确.故选C.5.【答案】B【解析】【分析】本题考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.根据直线的性质求解,判定正确选项.【解答】解:根据直线的性质,小红至少需要2根钉子使细木条固定.只有B符合.故选B.6.【答案】D【解析】【分析】此题主要考查线段的中点定义及线段和差问题,根据线段的中点定义求解【解答】解:是线段AB的中点,D是线段BC的中点,,故A选项正确,,故B选项正确,故C选项正确,故D选项错误故选D7.【答案】C【解析】【分析】此题考查直线的基本性质:两点确定一条直线,分当三点在同一条直线上时,当三点不在同一条直线上时讨论求解即可.【解答】解:当三点在同一条直线上时,只能画一条;当三点不在同一条直线上时可以画3条;故选C.8.【答案】D【解析】【分析】此题考查的知识点是线段的和差,由已知得,又由C是线段AB的中点可求出,从而求得.【解答】解:,是线段AB的中点,,.故选D.9.【答案】C【解析】【分析】本题主要考查了两点间的距离和线段的和差.根据题意设,则,,,然后得到,进而得到MP:::4,问题得到解决.【解答】解:线段MN的延长线上取一点P,,如图,设,则,,,,,MP :::4,故选C.10.【答案】C【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.根据绳子对折以后用线段AB表示,可得绳长是AB的2倍,分类讨论,PB的2倍最长,可得PB,AP的2倍最长,可得AP的长,再根据线段间的比例关系,可得答案.【解答】解:当PB的2倍最长时,得,,,这条绳子的原长为;当AP的2倍最长时,得,,,,这条绳子的原长为.故选C.11.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.根据线段的性质,可得答案.本题考查了线段的性质,熟记线段的性质是解题关键.12.【答案】3【解析】【分析】本题考查了线段,记住线段是直线上两点及其之间的部分是解题的关键,写出所有的线段,然后再计算条数【解答】解:图中线段有:线段AB、线段AC、线段BC,共三条.故答案为3.13.【答案】7cm【解析】【试题解析】【分析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.设,则,再用x表示出各线段的长度,再根据即可得出结论.【解答】解:,,,设,则,是AD的中点,N是BC的中点,,,,,.故答案为7cm.14.【答案】【解析】解:如图,点C在线段AB上,,即,即为BC的中点,.故答案为.根据点C在线段AB上,且,可得,再根据M为BC的中点,即可求得AM的长.本题考查了两点间的距离,解决本题的关键是利用线段中点定义.15.【答案】21或【解析】【分析】本题主要考查了数轴与分类讨论思想的综合,关键是要运用分类讨论思想的方法设MN的长度为m,根据点M对应的数据利用分类讨论思想得出结果.【解答】解:设MN的长度为m.当点N与点A重合时,此时点M对应的数为9,则点N对应的数为.当点N到AB中点时,点N此时对应的数为,则点M对应的数为当点N与点B重合时,同理可得点M对应的数为.故答案为21或.16.【答案】【解析】【试题解析】【分析】本题主要考查了线段中点的概念,图形的变化规律,有理数乘方的意义解答本题的关键是发现图形的变化规律首先根据线段中点的概念得出线段的长,然后根据线段AB的长,求出的长,即可求解.【解答】解:,是AB的中点,是的中点,是的中点,是的中点,,,,,,.故答案为.17.【答案】解:是AB的中点,;为PB的中点,且,;,,.【解析】【试题解析】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.根据线段,M为AB的中点可直接得出结论;根据N为PB的中点,且可直接得出PB的长;根据MB与PB的长可直接得出结论.18.【答案】解:设,则线段,,、F分别是线段AC、DB的中点,,,,,.【解析】【试题解析】首先设,则线段,,然后根据E、F分别是线段AC、DB的中点,分别用x表示出EC、DF,根据,求出x的值,即可求出线段AB的长是多少.此题主要考查了两点间的距离的求法,以及线段的中点的特征和应用,要熟练掌握.19.【答案】解:如图,直线AC,线段BC,射线AB即为所求;如图,线段AD即为所求;图中的线段条数为6.【解析】本题主要考查了直线、射线、线段的定义,线段和直线的关系:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段或线段.依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;依据在线段BC上任取一点不同于B,,连接线段AD即可;根据图中的线段为AB,AC,AD,BD,CD,BC,即可得到图中线段的条数.20.【答案】解:不会判马小虎同学满分点C可能在线段AB的延长线上,也可能在线段AB 上,有两种情况,而马小虎只考虑了一种情况.应分两种情况讨论:第一种情况同马小虎同学的解题过程,可求得第二种情况根据题意画图如下:由图可得.因为D是线段AC的中点,所以.所以.综上可得,线段BD的长度为3cm或7cm.【解析】本题主要考查了线段的和差、线段的中点的定义等知识,需要注意的是不要将“点C在直线AB上”与“点C在线段AB上”混为一谈.由于,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC 与BC的和或差,就可解决问题.21.【答案】解:,;当点P在点B左侧时,,,,由题意得:,解得:;当点P在点B右侧时,由题意可得,解得:;综上,或6;如图1,当点P在线段AB上时,;如图2,当点P在AB延长线上时,;综上所述,线段MN的长度不发生变化,其值为5.【解析】【分析】本题考查了一元一次方程的应用和数轴,解题关键是根据题目给出的条件,找出合适的等量关系列出方程,再求解.根据题意知,点P表示的有理数为,将代入即可求得;由、知,根据得出关于t的方程,解之即可得;分类讨论:当点P在点A、B两点之间运动时,当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.【解答】解:设运动时间为t秒,则,点P表示的有理数为,当时,,点P表示的有理数为,故答案为:2,;见答案;见答案.22.【答案】;2;以O未原点,以OM方向为正方向,以作单位长度建立数轴,则O:0,A:20,B:80,C:100,设ts时有,Q为AB的三等分点,:2t,,,,由,即,当时,,得舍去,当时,,得,当时,,得,的三等分点为40或60,当时,或,解得:或;当时,或,解得:或;由建立数轴,A:,B:,O:0,,为OC的中点,,即F表示50,为OA的中点,,当t秒时,F为BE的中点,即,解得:.【解析】【试题解析】【分析】本题主要考查了合并同类项的定义,线段的和差,解题的关键是注意分情况讨论.根据同类项的定义进行解答即可;根据,当P在AB上和P在AB延长线上时,求出它的运动时间,即是点Q的运动时间,点Q运动到的位置恰好是线段AB的三等分点,这里的三等分点是两个点,分别是时,时,由此就可求出它的速度;需要正确找准点F随AB的移动而移动,得出BE、BF的大小即可解决.【解答】解:单项式与的和仍为单项式,,,故答案为1;2;见答案;见答案.4.3《角》一、选择题:1、下列说法中,正确的是( )A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形2、如图,点O在直线AB上,则在此图中小于平角的角有( )A.4个B.5个C.6个D.7个3、∠ACB的两边是()A.射线AC、BCB.射线CA、CBC.线段AC、BCD.线段CA、CB4、用量角器量∠MON 的度数,下列操作正确的是( )A B C D5、下列各式中,角度互化正确的是( )A.63.5°=63°50″B.23°12′36″=25.48°C.18°18′18″=3.33°D.22.25°=22°15′6、下列说法错误的是()A.角的大小与角的边画出部分的长短无关B.角的大小与它们度数的大小是一致的C.角的平分线是一条线段D.角的和、差、倍、分的度数与它们度数的和、差、倍、分相等7、若∠A+∠B=180°,∠A与∠C互补,则∠B与∠C的关系是()A.相等B.互补C.互余D.不能确定8、如图,∠1=∠2,∠3=∠4,则下列结论正确的有( )①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE平分∠BAC. A.4个B.3个C.2个D.1个二、填空题:9、如图,∠1,∠2表示的角可分别用大写字母表示为 , ;∠A也可表示为,还可以表示为 .10、把15°30′化成度的形式,则15°30′=度.11、8点整,时针与分针之间的夹角是 .12、如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB的度数为 .13、一个角补角比它的余角的2倍多30°,则这个角的度数为.14、如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB= .三、解答题:15、计算:(1)153°29′42″+26°40′32″(2)110°36′-90°37′32″16、如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).17、如图,∠AOB=124°,OC是∠AOB的平分线,∠1与∠2互余,求∠1和∠BOD的度数.18、如图1所示,将一副三角尺的直角顶点重合在点O处.(1)①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD在数量上有何关系?说明理由;(2)若将等腰的三角尺绕点O旋转到如图2的位置.①∠AOD和∠BOC相等吗?说明理由;②∠AOC和∠BOD的以上关系还成立吗?说明理由.参考答案一、选择题:1、C2、B3、 B4、C5、D6、C7、A8、C二、填空题:9、∠ABC,∠BCN ∠BAC ∠MAN.10、15.511、120°12、28°13、30°14、180°三、解答题:15、(1)180°10′14″(2)19°58′32″16、(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.17、∠1=28°.∠BOD=34°18、(1)①∠AOD=∠BOC.②∠AOC和∠BOD互补.(2)①∠AOD=∠BOC.②∠AOC和∠BOD互补.。
人教版-数学-七年级上册- 4-1几何图形 测试题

《4.1几何图形》测试题一、选择题1.从上向下看图,应是右图中所示的( )考查说明:本题考查从不同方向观察立体图形.答案与解析:D.此题要发挥空间想象力.2.如图,四个图形是由立体图形展开得到的,相应的立体图形是顺次是( )A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥考查说明:本题考查立体图形和它的平面展开图.答案与解析:A. 此题要发挥空间想象力.3.将图中左边的图形折成一个立方体, 判断下图右边的四个立方体哪个是由左边的图形折成的.()考查说明:本题主要考查立体图形与平面展开图的关系.答案与解析:B. 此题要发挥空间想象力和动手操作能力.4.将一个正方体沿某些棱展开后,能够得到的平面图形是()考查说明:本题主要考查正方体与平面展开图的关系.答案与解析:选C.遵循正方体展开图规律“一线不过四、田、凹应弃之”,发挥想象,动手操作,得答案.5.将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是()考查说明:本题考查平面图形与立体图形的关系.答案与解析:选D.直角三角形绕斜边旋转一周得到的是有公共底面的两个圆锥.二、填空题6.棱柱的面与面相交成_________;点动成;线动成________;面动成______;考查说明:本题考查点、线、面、体间的关系.答案与解析:线,线,面,体.7.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为的面是底面,则朝上一面所标注的数字为____________.考查说明:本题主要考查长方体与平面展开图的关系.答案与解析:2. 此题要发挥空间想象力和动手操作能力.构成“目”和“Z”形的两面是相对的面,即3与5是对面,4与1是对面,6与2是对面.三、解答题8.棱长为a的正方体摆放成如图的形状,问:(1)有几个正方体.(2)摆放成如图形式后,表面积是多少?考查说明:本题考查从不同方向观察立体图形及正方体组合图形的表面积.答案与解析:(1)10个.(2)36a2. 第一层有1个,第二层有1+2个,第三层有1+2+3个,共有10个.从六个方向去看这个立体图形得到的是6个相同的平面图形,每个平面图形是6个边长为a的正方形,面积为6a2.,所以表面积为36a2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学上册:4.1几何图形测试题
学习要求
观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.
课堂学习检测
一、填空题
1.把下面几何体的标号写在相对应的括号里.
长方体:{ } 棱柱体:{ }
圆柱体:{ } 球体:{ }
圆锥体:{ }
2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?
①②③
3.用如图所示的平面图形可以折成的多面体是______.
二、选择题
4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()
(A)棱柱(B)圆柱(C)圆锥(D)球
5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()
(A)三角形(B)正方形(C)圆(D)长方形
6.下图中,不是左图所示物体视图的是()
7.下列四张图中,能经过折叠围成一个棱柱的是().
三、解答题
8.下图中哪些图形是立体的,哪些是平面的?。