初二数学利用公式法(完全平方公式)因式分解课堂

合集下载

人教版(新)数学八年级上册第十四章第三节完全平方公式因式分解课件

人教版(新)数学八年级上册第十四章第三节完全平方公式因式分解课件
2 2
( 2 0 1 4 2 0 1 3 )
2
1.
7.分解因式:(1)4x2+4x+1;(2)
1 2-2x+3. x 3
小聪和小明的解答过程如下: 小聪:
×
小明:
×
他们做对了吗?若错误,请你帮忙纠正过来. 解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 1 1 (2)原式= 3 (x2-6x+9)= (x-3)2 3
般先利用添括号法则, 将其变形为-(x2-4xy +4y2),然后再利用公式 分解因式.
a2
2ab
+b2
解: (1)16x2+ 24x +9 = (4x)2 + 2· 4x· 3 + (3)2 = (4x + 3)2; (2)-x2+ 4xy-4y2 =-(x2-4xy+4y2) =-(x-2y)2.
a2-2ab+b2+b2-2bc+c2=0, 即(a-b)2+(b-c)2=0,
∴a-b=0,b-c=0,∴a=b=c,
∴△ABC是等边三角形.
当堂练习
1.下列四个多项式中,能因式分解的是( B )
A.a2+1 B.a2-6a+9
C.x2+5y
D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( B ) A.4xy(x-y)-x3 B.-x(x-2y)2 C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
课堂小结


a2±2ab+b2=(a±b)2
完全平方 公式分解 因 式 特 点
(1)要求多项式有三项. (2)其中两项同号,且都可以写 成某数或式的平方,另一项则是这

因式分解(3)—公式法(完全平方公式)(新版)人教版八年级数学上册ppt

因式分解(3)—公式法(完全平方公式)(新版)人教版八年级数学上册ppt


(2)4b2-4ab+a2= (2b-a)2

(3)9x2-12x+4=
(3x-2)2

(4)4b2-20ab+25a2=
(2b-5a)2
.
12. 下列各式中,不能 证明:因为a2+2b2+c2=2b(a+c), 用完全平方公式分解的
原式=[2+3(x-y)]2=(2+3x-3y)2.
个数为( C 原式=x(x-1)2.
第十四章 整式的乘法与因式分解
第14课 因式分解(3)——公式法 (完全平方公式)
新课学习
1. 分解因式:
(1)3x-6=
3(x-2)

(2)4-x2=
(2+x)(2-x)

(3)x3-x=
x(x+1)(x-1)
.
知识点.公式法(完全平方公式)
2. 完全平方公式:
整式乘法:(a+b)2=a2+2ab+b2;
原式=[2+3(x-y)]2=(2+3x-3y)2.
(2)4x2-3y(4x-3y).
原式=4x2-12xy+9y2=(2x-3y)2.
16. 已知:△ABC 的三边分别为 a,b,c,且满 足 a2+2b2+c2=2b(a+c). 求证:△ABC 为等
边三角形.
证明:因为a2+2b2+c2=2b(a+c), 所以(a-b)2+(c-b)2=0. 所以a=b=c,即△ABC为等边三角形.
(1)9x2-6x+1=
(3x-1)2

(2)9a2+24ab+16b2= (3a+4b)2

华东师大版八年级数学上册因式分解公式法课件

华东师大版八年级数学上册因式分解公式法课件

1002-2×100×99+99² 解:原式=(100-99)²
=1.
本题利用完全平方 公式分解因式的方 法,大大减少计算 量,结果准确.
当堂练习
1.把下列各式分解因式:
(1) 16a2-9b2
(4a+3b)(4a-3b)
(2) (a+b)2-(a-b)2
4ab
(3) 9xy3-36x3y
9xy(y+2x)(y-2x)
a2 ± 2 . a . b + b2
下列各式是不是完全平方式?
首2 2 首 尾 尾2
(1)a2-4a+4;
是 (2)1+4a²; 不是
(3)4b2+4b-1; (5)x2+x+0.25.
不是 (4)a2+ab+b2; 不是 是
分析: (2)因为它只有两项;
(3)4b²与-1的符号不统一; (4)因为ab不是a与b的积的2倍.
2、m²-6m+9=( m)²- 2·(m ) ·(3 )+( 3 )²=(m - 3 )² 3、a²+4ab+4b²=(a )²+2·( a ) ·(2b )+(2b )²=( a + 2b )²
a2 ± 2 . a . b + b2 = ( a ± b )²
首2 2 首 尾 尾2 (首 尾)2
三查(多项式的因式分解要分解到不能再分解为止) 分解因式的一般步骤
二 运用完全平方公式因式分解
完全平方公式: a2 2ab b2 =(a ± b)2 完全平方式的特点:
1.必须是三项式(或可以看成三项的); 2.有两个同号的数或式的平方; 3.中间有两底数之积的±2倍. 简记口诀:首平方,尾平方,首尾两倍在中央. 凡具备这些特点的三项式,就是完全平方式,将它写成 完全平方形式,便实现了因式分解.

14.3.2因式分解完全平方公式课件八年级数学人教版上册

14.3.2因式分解完全平方公式课件八年级数学人教版上册

a
b
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
利用公式把某些具有特殊 形式(如平方差式,完全平 方式等)的多项式分解因式, 这种分解因式的方法叫做 公式法因式分解.
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
判断下列各式是完全平方式吗?
a2 4a 22 (a 2)2
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
例4 计算:
(1) 1002–2×100×99+99²;
解:(1)原式=(100–99)² =1.
(2) 342+34×32+162.
(2)原式=(34+16)2 =2500.
利用完全平方 公式分解因式, 可以简化计算.
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
2a(x y)2
先纳总结 巩固提升 小结回顾
例2 因式分解
(2) 16a4 8a2b2 b4 解:原式 (4a2 )2 2 4a2 b2 (b2 )2
(4a2 b2 )2 [(2a b)(2a b)]2 (2a b)2 (2a b)2
因式分解 步骤方法
先提公因式→一提 再用公式→二用 继续分解→三查
例2 因式分解
(5) ( p 1)( p 4) p 解:原式 p2 4 p p 4 p
p2 4p 4 ( p 2)2
无提无公式, 展开合并 再观察。
探究新知 理解新知 经典例题 归纳总结 巩固提升 小结回顾
例3 已知: a2+b2+2a–4b+5=0,求 2a2+4b–3的值.
解:∵a2+b2+2a–4b+5=0
∴ 2a2+4b–3

用完全平方公式因式分解教案

用完全平方公式因式分解教案

用完全平方公式因式分解教案一、教学目标1、学生能正确理解并使用完全平方公式因式分解原理;2、能熟练掌握并使用完全平方公式因式分解;3、能够正确使用完全平方公式因式分解解决实际问题。

二、教学重点1、教育学生正确理解并使用完全平方公式因式分解原理;2、让学生熟练掌握并使用完全平方公式因式分解;3、让学生能够正确使用完全平方公式因式分解解决实际问题。

三、教学内容1、完全平方公式因式分解的概念:完全平方公式因式分解是指把已知的式子按照公式的形式进行因式分解,它将一个多项式分解成多个完全平方式,可以利用此方法减少复杂的运算,求出更简单的表达式,便于解题。

2、完全平方公式因式分解的原理:完全平方公式因式分解的原理是把一个多项式按完全平方的方式分解,因为是平方的变化,所以可以得到输出的式子乘积比输入的式子中的幂次(未分解之前的)总数要少,因而也能得到不那么复杂的结果,更便于进行解答。

3、完全平方公式因式分解的步骤:(1)将多项式分开化简;(2)查看乘积中对称的字母数量;(3)如果有两个就可以分解出平方根;(4)如果只有一个就可以把它们包装成一个平方;(5)将结果拆分成平方根;(6)最后将项按照完全平方的左右结构组合,即完成完全平方公式因式分解。

四、教学方法主要采用讲授法、示范法、讨论法等,使学生运用完全平方公式因式分解解决实际问题,即“先上一道习题,把学生教会讲解,通过几道练习让学生自己解决,通过交流方式归纳总结,使得学生由解答变为分析,从而更好的掌握完全平方公式因式分解的知识。

五、教学设计(1)课前准备:准备若干相关的实际问题供学生讨论解答;(2)课前检测:通过一些随机出的习题,检测学生对完全平方公式因式分解的现有知识水平;(3)概念讲解:讲解完全平方公式因式分解的定义、特征及原理;(4)实例讲解:以实例分析演示完全平方公式因式分解的步骤和思想;(5)讨论练习:准备一些重难点习题,学生分组分析,练习完全平方公式因式分解;(6)总结归纳:学生就讨论的情况发表自己的看法,总结归纳完全平方公式因式分解的方法。

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿

人教版八年级数学上册14.3.2.2《运用完全平方公式因式分解》说课稿一. 教材分析《人教版八年级数学上册》第14章是关于因式分解的内容。

在本章节中,学生将学习并掌握完全平方公式,并运用完全平方公式进行因式分解。

14.3.2.2节《运用完全平方公式因式分解》是本章的重要内容,通过本节的学习,学生能够理解完全平方公式的含义,掌握运用完全平方公式进行因式分解的方法,提高解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了实数、代数式等基础知识,具备一定的逻辑思维能力和解决问题的能力。

但对于完全平方公式的理解和运用,还需要通过本节课的学习来进一步巩固。

同时,学生对于新知识的学习兴趣和积极性需要教师的激发和引导。

三. 说教学目标1.知识与技能目标:学生能够理解完全平方公式的含义,掌握运用完全平方公式进行因式分解的方法。

2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力和团队合作精神。

四. 说教学重难点1.教学重点:学生能够理解并掌握完全平方公式的运用。

2.教学难点:如何引导学生理解和运用完全平方公式进行因式分解。

五.说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导相结合的教学方法。

2.教学手段:利用多媒体课件、黑板等教学工具,帮助学生直观地理解完全平方公式的运用。

六. 说教学过程1.导入新课:通过复习已学过的知识,引出完全平方公式,激发学生的学习兴趣。

2.自主学习:学生自主探究完全平方公式的含义和运用,培养学生的自主学习能力。

3.合作交流:学生分组讨论,分享各自的学习心得,提高团队合作精神。

4.教师引导:教师针对学生的学习情况,进行针对性的讲解和引导,帮助学生理解和掌握完全平方公式。

5.巩固练习:学生进行相关的练习题,检验自己对于完全平方公式的掌握程度。

6.课堂小结:教师引导学生总结本节课的学习内容,加深对完全平方公式的理解。

因式分解——公式法(2) 优秀教学设计

因式分解——公式法(2)  优秀教学设计

公式法2
【课题】:公式法2
【教学目标】:
(一)教学知识点
用完全平方公式分解因式
(二)能力训练要求
1.理解完全平方公式的特点.
2.能较熟悉地运用完全平方公式分解因式.
3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.
(三)情感与价值观要求
通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.
【教学重点】:用完全平方公式分解因式.
【教学难点】:根据多项式的特点选用适当的方法进行因式分解。

【教学突破点】:观察理解分解因式与整式乘法的关系,让学生了解事物间的因果联系.
【教法、学法设计】:探究式分层次教学,讲授、练习相结合。

【课前准备】:课件。

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

因式分解(完全平方公式)课件

因式分解(完全平方公式)课件
3 因式分解(完全平方公式)
因式分解(完全平方公式)是将多项式分解成平方因子的特殊方法。
完全平方公式的原理
1 平方公式
平方公式是指一个二次方程的两个解之和等于系数b的相反数,而两个解的乘积等于系数 c。
2 完全平方公式的推导
完全平方公式的推导基于平方公式,通过对多项式进行平方运算。
3 常用的完全平方公式
因式分解(完全平方公式) 课件
因式分解(完全平方公式)是一种数学方法,用于将多项式分解成较简单的因子。 它的原理基于完全平方的特性,可以帮助我们解决各种数学问题。
什么是因式分解(完全平方公式)
1 定义
因式分解是将一个多项式分解成多个乘积的过程,每个乘积都被称为因子。
2 完全平方
一个完全平方是一个数的平方,例如4的完全平方是16。
1
确定多项式的类型
首先,我们需要确定多项式的类型,是一个二次方程还是其他类型的多项式。
2
提取公因子
然后,我们可以尝试提取多项式的公因子,使其更容易进行因式分解。
3
应用完全平方公式
接下来,我们可以根据所学的完全平方公式,将多项式分解成平方因子。
因式分解(完全平方公式)的例子
二次方程
多项式
例如,我们可以用因式分解(完全 平方公式)来解决二次方程的问题。
常用的完全平方公式包括平方差公式和平方和公式。
完全平方公式的应用
求解方程
完全平方公式可以帮助我们求 解二次方程,找到方程的解。
化简多项式
通过因式分解(完全平方公式), 我们可以将复杂的多项式化简 为更简单的形式。
探索数学关系
通过分析完全平方公式,我们 可以发现数学中的一些有趣的 关系和特性。
因式分解(完全平方公式)的步骤

运用完全平方公式因式分解教学参考

运用完全平方公式因式分解教学参考

第1课时运用完全平方公式因式分解1.理解完全平方公式,弄清完全平方公式的形式和特点.(重点)2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点)一、情境导入1.分解因式:(1)A2—4/;(2)3/-3/;(3)√-l; (4) (x÷3^)2-(χ-3y)2.2.根据学习用平方差公式分解因式的经验和方法,你能将形如“才+2助+从Iab + 4”的式子分解因式吗?二、合作探究探究点:运用完全平方公式分解因式[类型一]判断能否用完全平方公式分解因式(≡1下列多项式能用完全平方公式分解因式的有()(1)a-∖-abΛ^β; (2)-一a+;; (3)9a j-24aZ?+4Z?2; (4) —a ÷8a-16.A. 1个B. 2个C. 3个D. 4个解析:(1)/+μ+人乘积项不是两数积的2倍,不能运用完全平方公式;(2)才一a+ J= (a-1)2;(3)9才-24勖+4次乘积项是这两数积的4倍,不能用完全平方公式;(4) — a2+8a-16= 一(/-8a+16)= - U-4)2.所以(2) (4)能用完全平方公式分解.故选B.方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.[类型二]运用完全平方公式分解因式≡3因式分解:(1)—3a2—+24,才一48 才;(2)(才+4) 2 —16 才.解析:(1)有公因式,因此要先提取公因式一3才,再把另一个因式(V-8x+16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解.解:(1)原式=-3/(V—8x+16) ——3∕(x—4)2;(2)原式=(才+4)2- (4a)2= (a2+4+4a) (a2+4-4a) = U+2)2U-2)2.方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解.【类型三】利用完全平方公式求值(SB 已知4x+y2-10y+29=0,求f∕+2χy+1 的值.解析:首先配方,借助非负数的性质求出x、y的值,问题即可解决.解:*.*X —4,γ÷y-↑,Oy+ 29 = 0, Λ (χ-2)2+ (y—5)2=0. V (A,-2)2^0, (y—5)2>0, .∙.χ-2=0, y—5=0, .∙.x=2, y=5, ∙∖xy-^-2xy+l = (Λ,∕÷I)2= H2= 121.方法总结:几个非负数的和为0,则这几个非负数都为0.[类型四]运用因式分解进行简便运算利用因式分解计算:(1)342÷34×32 + 162;(2)38. 92-2×38. 9X48. 9+48. 92.解析:利用完全平方公式转化为(a±力2的形式后计算即可.解:(1) 342 + 34 X 32 +162 = (34 +16)2 = 2500 ;(2)38. 92-2×38. 9X48. 9+48. 92= (38. 9-48. 9)2= 100.方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键.[类型五]利用因式分解判定三角形的形状(SB已知a, A C分别是A4¾7三边的长,且才+2〃+02-26(&+©=0,请判断△力回的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由/+2//+——28(a+c)=0,得 a'—2aZ?+1} +1/-2bc-∖- c2=0,即(a—Z?)2+ {b- c)2=0, .∙.a-b=0, b-c=O f .*.a= b= c f Z∖4%7是等边三角形.方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.[类型六]整体代入求值[例❺已知a+6=5, ab=10,求*6+才炉+Ja6的值.解析:将*6+4武昂3分解碌6与(叶犷的乘积,因此可以运用整体代入的数学思想来解答.解:3才6+才62+56=$仇才+246+62)=56(4+6)2.当西+6=5,仍=]。

人教版数学八年级上册第十四章14.公式法课件

人教版数学八年级上册第十四章14.公式法课件

(1)m2-14m+49;
(2)9x2-24xy+16y2.
解:原式=m2-2·7·m+72 解:原式=(3x)2-2·3x·4y+(4y)2
=(m-7)2.
=(3x-4y)2.
课堂导练
典型例题 【例1】分解因式: (1)x2+16x+64; 解:原式=x2+2×8x+82
=(x+8)2.
(2)(x+y)2-10(x+y)+25. 解:原式=(x+y-5)2.
思路点拨:直接利用完全平方公式进行因式分解即可.
举一反三 1.分解因式: (1)9x2-6x+1; 解:原式=(3x-1)2.
(2) (x-1)2-2(x-1)+1. 解:原式=(x-1-1)2
=(x-2)2.
典型例题 【例2】分解因式: (1)x(x+4)+4; 解:原式=x2+4x+4
=(x+2)2.
举一反三
3.分解因式:
(1)-3ma2+12ma-12m; (2)2x2y-8xy+8y. 解:原式=-3m(a2-4a+4) 解:原式=2y(x2-4x+4)
=-3m(a-2)2.
=2y(x-2)2.
典型例题
【例4】分解因式:
(1)(x2-6)2-6(x2-6)+9; (2)16y4-8x2y2+x4.
解:原式=(x2-6-3)2
解:原式=(4y2-x2)2
=(x2-9)2
=[(2y+x)(2y-x)]2
=(x+3)2(x-3)2.
平方差公式和完全平方公式来
解答.

14.3.2 公式法 - 第二课时 运用完全平方公式因式分解

14.3.2 公式法 - 第二课时   运用完全平方公式因式分解
分解因式:a2-2a(b+c)+(b+c)2.
解:原式=[a-(b+c)]2=(a-b-c)2.
师生活动:学生先独立思考并完成解答,教师适当给予指导,最后进行统一讲解
1.学生独立思考、合作交流,在前面学习利用平方差公式分解因式的经验的基础上,总结利用完全平方公式分解因式的经验.
经历对例题和变式的探究过程,加深因式分解的一般解题步骤,达到巩固知识的目的,培养学生分析问题、解决问题的能力.
课前预学任 务(前提测评内容)
上节课我们学习了运用平方差公式分解因式,同学们能解决下面的题目吗?
因式分解:81a4-16.
情境导入
出示目标
导学活动预设
教师活动
学生活动
设计意图
活动一:创设情境、导入因式:
(1)m2-8mn+16n2;(2)a2-2ab+b2.
“以学为主’有效课堂范式”之课堂导学设计预案
课 题
14.3.2运用完全平方公式因式分解
授课时间
年 月 日
星 期
第 节
课标及教材解读
在学习本节课之前,已经学过了因式分解的有关概念和方法,特别是学过了运用平方差公式分解因式与本节课有类似之处,为本节课打下了基础.运用完全平方公式分解因式不仅是现阶段的学习重点,而且为后面分解二次三项式奠定了一定的基础.教学时注意类比平方差公式分解因式得出完全平方公式分解因式的意义,并分析完全平方式的特点.
(2)-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2.
方法归纳:运用完全平方公式分解因式,被分解的多项式必须满足三个特点:(1)多项式为三项式;(2)其中有两项是平方项且符号相同;(3)第三项是两个平方项幂的底数的积的2倍或-2倍.

14.3因式分解(3)——公式法(完全平方公式)讲练课件-2023-2024学年人教版八年级数学上册

14.3因式分解(3)——公式法(完全平方公式)讲练课件-2023-2024学年人教版八年级数学上册



(2b-a)2
(3x+2)2

-(a+b)2

2.填空:
(1)若x2+8x+k是完全平方式,则k=
16

(2)若x2+kx+4是完全平方式,则k=
±4
.
3.分解因式:
(1)1+10t+25t2;

2
(2)y -y+ .

(1)解:原式=12+2·1·5t+(5t)2
=(1+5t)2.
2
(2)解:原式=4a(x2+2xy+y2)
=4a(x+y)2.
4.分解因式:
(1)2x3+4x2+2x; (2)-4x3+4x2y-xy2.
(1)解:原式=2x(x2+2x+1)
=2x(x+1)2.
(2)解:原式=-x(4x2-4xy+y2)
=-x[(2x)2-2·2x·y+y2]
=-x(2x-y)2.
(1)解:原式=(x2)2-2·x2·4y2+(4y2)2
=(x2-4y2)2=(x+2y)2(x-2y)2.
(2)(x2-2x)2+2(x2-2x)+1.
(2)解:原式=(x2-2x+1)2
=(x-1)4.
运用因式分解进行简便运算
例5 利用因式分解计算:342+34×32+162.
解:原式=342+2×34×16+162
方公式分解因式的有(
A.1个
C )
B.2个
C.3个
D.4个
4.分解因式:
(1)x2-2xy+y2=
(2)4a2+4ab+b2=
(x-y)2
(2a+b)2


5.若4x2-(k-1)x+9能用完全平方公式因式分解,则k的值为

因式分解——完全平方公式

因式分解——完全平方公式

14.3.2公式法(完全平方公式)一、内容及内容解析1.内容:本节课的主要内容是利用完全平方公式进行因式分解。

2.内容解析:本节是人教版八年级上册第十四章14.3.2公式法的内容。

主要是利用完全平方公式进行因式分解。

因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其是多项式的乘法关系十分密切。

因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。

完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因式分解,是学生进一步学习数学不可或缺的工具。

基于以上分析,确定本节课的教学重点是:能准确判断全平方公式,会用完全平方公式进行因式分解。

二、目标及目标解析1.目标:(1)知道完全平方式的特征,会用完全平方公式分解因式;(2)能综合运用提公因式法、完全平方公式分解因式。

2.目标解析:达成目标(1)的具体标志是:学生通过自学,小组合作的方式,能准确说出完全平方式的特征、并会判断一个式子是否是完全平方式,是哪两个数的完全平方和(或差),从而将这个式子进行因式分解。

达成目标(2)的具体标志是:学生能综合运用提公因式法、完全平方公式分解因式,并且会判断一个式子是否已经分解到最简,还能否继续分解。

从而培养学生的观察和联想能力。

再以课堂习题加以巩固,提高学生灵活运用知识的能力,使新知识得到巩固和升华。

三、教学问题诊断分析在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因式分解。

这两种方法都是整式乘法的逆运用,所以应先复习整式乘法中的完全平方公式,再学习用公式法分解因式,可以加强学生对公式的熟练使用。

在思想上:学生个体有所差异,所以应准备不同梯度的题目,让不同层次的学生尝试完成不同难度的题目,从而达到让“差生吃好,优生吃饱”的教学效果。

另外,平方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。

基于以上分析,确定本节课的教学难点是:能准确判断完全平方式,并能综合运用提公因式法、完全平方公式分解因式。

因式分解(完全平方公式)教案

因式分解(完全平方公式)教案

因式分解(完全平方公式)教案14.3.2因式分解(公式法)——完全平方公式》教案教学目标】一、知识技能:掌握完全平方式的特征,运用完全平方公式进行简单的因式分解。

二、过程方法:通过对完全平方公式的逆向变形进行分解,发展学生的观察、类比、归纳等能力,提高处理数学问题的技能。

三、情感态度:培养学生严谨的思维,激发学生求知的欲望与对数学的研究兴趣。

教学重难点】重点:运用完全平方式分解因式。

难点:识别一个多项式是否适合完全平方公式。

教学过程】一、复回顾:1.因式分解就是把多项式分解为几个整式的乘积的形式,如:2x²-x= x (2x-1)。

例子中的变形利用了我们上一节课所学的因式分解中的法则。

2.把下列的式子进行因式分解:1)4y + 8=4(y+2)(2)3a-ab=a(3-b)3)5b²-10b=5b(b-2)(4)2ab²-4a²b=2ab(ab-2a)二、探究新知一)完全平方式的概念:形如a²+2ab+b²、a²-2ab+b²这样的式子叫做完全平方式,例如:1)a²+4a+4=a²+2·a·2 + 2²2)a²+6a+9=a²+2·3a·3a+3²3)a²-10a+25=a²-2·5a·5a+5²4)a²+64-16a=a²-2·8a·8+a²跟踪练:判断下列各式是完全平方式吗?1)a²+b²不是完全平方式2)a²-4a +4 是完全平方式3)a²-ab +b²是完全平方式4)x²-6x-9 不是完全平方式5)x²+x+1 是完全平方式6)a²+16-8a 不是完全平方式完全平方式的特点:1、必须是三项式;2、有两个项的平方;3、有这两项的积的2倍。

北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第2课时 利用完全平方公式因式分解

北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第2课时 利用完全平方公式因式分解
数学 八年级下册 北师版
第四章 因式分解
4.3 公式法
第2课时 利用完全平方公式因式分解
1.(3分)下列各式中能用完全平方公式进行因式分解的是( D )
A.x2+x+1 B.x2+2x-1
C.x2-1
D.x2-6x+9
2.(4分)将x2-2xy+y2分解因式,结果正确的是( D )
A.(x+y)(x-y) B.x(x-2y)+y2
5.(4分)把代数式3x3-12x2+12x因式分解结果正确的是( D ) A.3x(x2-4x+4) B.3x-(x-4)2 C.3x(x+2)(x-2) D.3x(x-2)2
6.(4分)(攀枝花中考)因式分解:x3y-2x2y+xy=___x_y_(x_-__1_)_2____.
7.(12分)把下列各式因式分解: (1)x3-2x2y+xy2; 解:原式=x(x-y)2
【素养提升】 14.(14分)(平顶山郏县期末)阅读材料:常用的分解因式方法有提公因式、公式 法等,但有的多项式只有上述方法就无法分解,如x2-4y2+2x-4y,细心观察这 个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别 分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过 程为:x2-4y2+2x-4y=(x2-4y2)+(2x-4y)=(x+2y)(x-2y)+2(x-2y)=(x- 2y)(x+2y+2). 这种分解因式的方法叫分组分解法,利用这种方法解决下列问题: (1)分解因式:x2-6xy+9y2-3x+9y; (2)若△ABC的三边a,b,c满足a2-b2-ac+bc=0,判断△ABC的形状,并说 明理由.
二、解答题(共36分) 12.(12分)将下列各式因式分解: (1)x2(y2-1)+2x(y2-1)+(y2-1); 解:原式=(y2-1)(x2+2x+1)=(y+1)(y-1)(x+1)2 (2)a2-2ab+b2-9; 解:原式=(a-b)2-32=(a-b+3)(a-b-3) (3)(x2y2+1)2-4x2y2. 解:原式=(xy+1)2(xy-1)2

14.3 因式分解(3)——公式法(完全平方公式) 教案 2022-2023学年人教版数学八年级上册

14.3 因式分解(3)——公式法(完全平方公式) 教案 2022-2023学年人教版数学八年级上册

14.3 因式分解(3)——公式法(完全平方公式) 教案一、教学目标1.理解完全平方公式并能够准确应用;2.掌握用完全平方公式因式分解三次方差的多项式的方法。

二、教学重点1.掌握完全平方公式的定义和应用方法;2.理解完全平方公式在因式分解中的作用。

三、教学难点理解完全平方公式在因式分解中的应用方法,掌握应用完全平方公式因式分解三次方差的多项式的方法。

四、教学过程1. 引入通过举例说明完全平方公式在实际生活中的应用,如计算正方形的面积等。

引导学生思考如何将三次差公式因式分解。

2. 学习完全平方公式•展示完全平方公式的推导过程,并解释公式的含义;•通过示例演示如何应用完全平方公式计算等式中未知数的值。

3. 应用完全平方公式因式分解三次方差的多项式•提供一个实际生活中的问题,如长方形地板的面积与周长相关的问题。

让学生思考如何应用完全平方公式因式分解;•引导学生观察多项式的结构,根据完全平方公式进行因式分解的步骤;•分组讨论解决问题的方法,并带领学生完成相关练习。

4. 总结与拓展•对学生进行知识点总结,强调完全平方公式在因式分解中的作用;•提供拓展问题,如其他类型的多项式的因式分解,鼓励学生自主探索并解答。

五、教学资源•教材: 人教版数学八年级上册;•板书: 完全平方公式的定义和应用方法;•练习题: 相关练习题及拓展问题。

六、课堂练习1.将多项式x^2 + 10x + 25使用完全平方公式进行因式分解;2.如何应用完全平方公式因式分解多项式2x^4 + 8x^3 + 8x^2 + 32x + 32?七、课后作业1.完成教材相关练习题;2.思考并写出其他类型的多项式因式分解的步骤,并给出具体的例子。

以上为14.3 因式分解(3)——公式法(完全平方公式) 教案的内容。

希望对你有帮助!。

利用完全平方公式进行因式分解公式法(二)

利用完全平方公式进行因式分解公式法(二)
3、培养我们的逆向思维能力。
1.我们共学过几种因式分解的方法
提取公因式法 平方差公式法
2.分解因式时,通常先考虑__提__公__因__式_____ 然后再考虑___进__一__步__套__用__公__式____.
3.分解因式一直到 _不_能_分__解_ 为止.
一起回顾:
完全平方公式: (a+b)2= a2+2ab+b2
随堂练习: 2. 把下列各式分解因式:
(1)x2 - 12xy +36y2 (2)16a4 +24a2b2 + 9b4
原式
=
x2
-
2·x·6y
+
(6y)2 原式
=(4a2)2
+
2·4a2·3b2
+
(3b2)2
= ( x - 6y)2
= ( 4a2 + 3b2 )2
(3) - 2xy - x2 - y2 (4) 4 - 12( x-y) + 9(x-y)2
收获季
有何感想?
有何收获? 有何疑惑?
作业: p103,习题4.5 1、2题
2017年5月
彰武县教师进修学校
彰武县第二初级中学
联合录制 2017年5月19日
(整式乘法的)
(a-b)2= a2 - 2ab+b2
把完全平方公式反过来,可得:
a2+2ab+b2 = (a+b)2 a2 - 2ab+b2 = (a-b)2
a2 + 2ab + b2 = (a+b)2 庖丁解牛:
a2 - 2ab + b2 = (a-b)2
结构特征: 因式分解的完全平方公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计思路:
教师是学习活动的引导者和组织者,学生是课堂的主人。

教师在教学中要充分体现教师的导向作用,尊重学生的个体差异,选择适合自己的学习方式,鼓励学生自主探索与合作交流,让学生经历数学知识的形成与应用过程,鼓励学生的直觉并且运用基本方法进行相关的验证,指导学生注重数学知识之间的联系,不断提高解决问题的能力。

教学过程:
师生问好,组织上课。

师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容?
生1:(答略)
师:你能用符号语言来表示这个公式吗?
生1:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
师:不错,请坐。

由此我们可以看出完全平方公式其实包含几个公式?
生齐答:两个。

师:接下来有两道填空题,我们该怎么进行填空?
a2++1=(a+1)24a2-4ab+=(2a-b)2
生2:(答略)
师:你能否告诉大家,你是根据什么来进行填空的吗?
生2:根据完全平方公式,将等号右边的展开。

师:很好。

(将四个式子分别标上○1○2○3○4)
问题:○1、○2两个式子由左往右是什么变形?
○3、○4两个式子由左往右是什么变形?
生3:(答略)
师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:
a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(板书)
问题:这两个式子由左到右的变形又是什么呢?
生齐答:因式分解。

师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。

这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题)
师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。

这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。

(经过讨论之后)
生4:左边是三项,右边是完全平方的形式。

生5:左边有两项能够写成平方和的形式。

师:说得很好,其他同学有没有补充的?
生6:还有一项是两个数的乘积的2倍。

师:这“两个数的乘积”中“两个数”是不是任意的?
生6:不是,而是刚才两项的底数。

师:刚才三位同学都回答得不错,每人都找出了一些特征。

再请一位同学来综合一下。

生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。

右边是两个数的和或差的平方。

教师在学生回答的基础上总结:
1)多项式是三项式
2)有两项都为正且能够写成平方的形式
3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负
4)等号右边为两平方项底数和或差的平方。

师:我们如何将符号语言转化为文字语言呢?
生8:a、b两个数的平方和加上a、b乘积的2倍,等于a与b的和的平方;
a、b两个数的平方和减去a、b乘积的2倍,等于a与b的差的平方。

师:如果不用字母a、b,又怎么表达?能否将两句合并成一句呢?
生9:两个数的平方和加上或减去这两个数的乘积的2倍,等于这两个数的和或差的平方。

师:非常好!我们以后只要遇到这种类型的多项式可以直接利用完全平方公式方便地进行因式分解了。

通过刚才的学习,我们已经初步掌握了利用完全平方公式分解因式的有关知识,下面有几道练习题向我们同学提出了挑战,看你掌握知识的情况:
判断下列各式是不是完全平方式,并说出理由。

(1)a2-4a+4(2 )x2+4x+4y2(3 )4a2+2ab+b2
(4 )a2-ab+b2(5 )x2-6x-9(6 )a2+a+0.25
生10:第一题是完全平方式。

有三项,其中有两项正且能写成平方的形式,另一项是减去这两个数的积的2倍。

…… ……
生11:第四题不是完全平方式,因为中间一项不是两个数的乘积的2倍。

生12:第五题是完全平方式。

三项,有两项能写成平方的形式,另一项也是两个数的积的2倍。

师:其它同学同意他的意见吗?有没有补充的?
生13:这一题不是完全平方式,虽然有两部分能写成平方的形式,但这两项不是平方和。

师:同意他的意见吗?
生齐答:同意。

师:因此我们在观察一个多项式是否符合完全平方式的特点时,不仅要找有没有两项能
够写成平方的形式,同时还要看这两项的符号是否同为正,更要看另一项是不是这两数的积的2倍。

像刚才的第2题和第4题都只满足特征中的一部分。

引例讲解:将下列各式分解因式。

1、x2+6x+9
2、4x2-20x+25
问题:这两题首先怎么分析?
生14:将9改写成32,6x正好是x与3的乘积的2倍。

(学生回答,教师板书)
生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5
x2+6x+9=x2+2×x×3+32=(x+3)2
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2
(联系字母表达式用箭头对应表示,加深学生印象。


师:由刚才的例子,我们同学能否发现将因式分解为两数的和或差的平方,如何确定是两数的和还是两数的差的平方呢?
生16:由符号来决定。

师:能不能具体点。

生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。

师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。

例题1:把25x4+10x2+1分解因式。

师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?
生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。

(此学生板演,过程略)
例题2:把-x2-4y2+4xy分解因式。

师:按照常规我们首先怎么办?
生齐答:提取负号。

〔教师板书:-(x2+4y2-4xy)〕以下过程学生板演。

师:如果是这道题:4xy-x2-4y2 怎么分解呢?(教师改变刚才题型)
提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。

生18:同样还是将负号提取改变成完全平方式的形式。

师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。

练习题:课本p21 练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式的特征;第2题,学生口答。

例题3:把3ax2+6axy+3ay2分解因式。

师:先观察,再选择适当的方法。

(学生板演,教师点评)
练习:课本p22 第3题分两组学生板演,教师评讲、适当提示注意点。

师:这一堂课我们一起研究了完全平方式的有关知识,同学们先自查一下自己的收获,然后请同学发表自己的见解。

(学生小声讨论)
生甲:我学到了如何将完全平方式分解因式,遇到三项式中有两项符号相同且能化成平方的形式,另一项为这两个数的积的2倍的形式,如果能化成平方项是负的,首先将负号提取再分解。

第二项是正的就是两数的和的平方,第二项是负的就是两数差的平方。

生乙:有公因式可提取的先提取公因式,然后再分解,同时根据第二项的符号来选用合适的公式。

教师布置课堂作业:课本p23 习题8.2A组4~5 偶数题
课外作业:课本p23 习题8.2A组4~5 奇数题。

相关文档
最新文档