判断矩阵的最大特征值
矩阵的特征值
矩阵的特征值简介在线性代数中,矩阵的特征值是矩阵在特征向量上的投影,是一个重要的概念。
特征值可以帮助我们了解矩阵的性质和变换。
本文将介绍矩阵的特征值的定义、性质以及计算方法。
定义设 A 是一个 n × n 的矩阵,λ 是一个实数,如果存在一个非零向量 x 使得Ax = λx 成立,则称λ 是矩阵 A 的特征值,x 是对应的特征向量。
特征向量 x 满足Ax = λx,其中x ≠ 0,λ 可能是实数也可能是复数。
特征向量 x 的模长不影响特征向量的定义,通常我们会将特征向量标准化为单位向量。
性质1.矩阵 A 和其转置矩阵 A^T 具有相同的特征值。
2.若A 是一个对称矩阵,那么它的特征向量是正交的。
3.矩阵 A 的特征值的和等于它的迹,即λ1 + λ2 + … +λn = tr(A)。
4.矩阵 A 的特征值的积等于它的行列式,即λ1 * λ2* … * λn = |A|。
5.如果λ 是矩阵 A 的特征值,那么λ^k 是矩阵 A^k 的特征值,其中 k 是正整数。
6.矩阵 A 是奇异的(行列式为零)当且仅当它的零空间不为空,即存在非零向量使得 Ax = 0。
计算方法要计算矩阵的特征值,通常使用特征值问题的特征多项式。
设 A 是一个 n × n 的矩阵,特征多项式定义为f(λ) = |A - λI|,其中 I 是 n × n 的单位矩阵,|A - λI| 是矩阵 A - λI 的行列式。
1.求特征多项式的根:将特征多项式f(λ) = 0 的解称为特征值。
通过求解特征多项式的根,可以得到矩阵的特征值。
2.求解特征向量:对于每一个特征值λ,解齐次线性方程组 (A - λI)x = 0,得到相应的特征向量 x。
3.标准化特征向量:对于每一个特征值λ,将对应的特征向量 x 进行标准化处理,得到单位特征向量。
应用矩阵的特征值在很多领域有广泛的应用。
1.特征值可以帮助我们了解矩阵的变换性质。
计算方法之计算矩阵的特征值和特征量
4
1 取对应于1=4的基础解向量 P1 1 则对应于1=4的全部特征向量为:kP1 (k 0)
(2)2=2 将1=2代入(A-E)X=0得(A-2E)X=0
3 2 1 x1 1 3 2 x 0 2
总可以用 Xi 的线性组合来表示: V(0)=1X1+ 2X2+...+ nXn(其中10) 取 V(1)=AV(0) V(2)=AV(1)=A2V(0) ……
10
V(k+1)=AV(k) =Ak+1V(0) 以构成向量迭代序列。 由矩阵特征值的定义有: AXi=iXi (i=1,2,...,n) 则有
k 1 1
i [ 1 X 1 i i2 1
n
k 1
Xi ]
11
V 同理可得:
(k )
i [ 1 X 1 i X i ] i2 1
n k 1 n k 1
k
V(k+1)的第j个分量:
16
(二)按模最大特征值是互为反号的实根 设n 阶方阵A有 n 个线性无关的特征向量 Xi , 其对应的特征值为i (i=1,2,...,n),且满足: |1| = |2|>|3| … |n|,设其中1>0, 1=- 2
由迭代变换: V ( k ) Ak V ( 0 )
3 1 求矩阵 A 1 3 的特征值与特征向量
3
解:计算特征多项式方程,即 3 1 A E ( 3 )2 1 0 1 3 解得A的两个特征值:1=4, 2=2。 (1)1=4 将1=4代入 (A-E)X=0得(A-4E)X=0
判断矩阵的公式
判断矩阵的公式
判断矩阵是用于判断或评估多个标准或因素之间相对重要性的一种工具。
判断矩阵的公式是用来计算矩阵的数值的。
下面是判断矩阵常用的计算公式:
1.极大特征值法(Maximum Eigenvalue Method):
o标准化特征向量法(Normalized Eigenvector Method):判断矩阵A的主特征向量的计算公式为:v = (1/n) *
A * w,其中n为矩阵的阶数,w为单位特征值对应
的特征向量。
o平均特征向量法(Average Eigenvector Method):判断矩阵A的每一列的平均特征向量的计算公式为:v
= (1/n) * Σ(A * w),其中n为矩阵的阶数,Σ表示对所
有特征值对应的特征向量进行求和,w为对应的特
征向量。
2.离差平均法(Average Deviation Method):公式为:v =
(1/n) * Σ(A * w),其中n为矩阵的阶数,Σ表示对所有特征
值对应的特征向量进行求和,w为对应的特征向量。
判断矩阵的计算公式根据不同的方法和理论有所差异,但都涉及计算特征值和特征向量,并进行归一化或平均化等处理。
具体应用时,可以根据实际情况和所采用的方法选择适合的计算公式。
求解特征值的方法技巧
求解特征值的方法技巧求解特征值是线性代数中的一个重要问题,它在物理、工程、计算机科学等领域中都有广泛的应用。
在本文中,我们将讨论求解特征值的方法和技巧。
特征值的定义是在线性代数中非常基础的概念。
对于一个n×n的矩阵A,如果存在一个非零向量v使得Av=λv,其中λ是一个标量(实数或复数),则λ称为矩阵A的特征值,v称为对应于特征值λ的特征向量。
特征值和特征向量之间具有一一对应的关系。
1. 特征多项式法:特征多项式法是求解特征值的一种常用方法。
对于一个n×n的矩阵A,其特征多项式定义为:p(λ) = |A-λI| = det(A-λI)其中,I是n×n单位矩阵,det表示行列式。
特征多项式的根就是矩阵A的特征值。
通过计算特征多项式的根,我们可以求解矩阵A的所有特征值。
2. 幂法:幂法是求解矩阵特征值中的最大特征值的一种有效方法。
它的基本思想是通过反复迭代使一个向量v不断与矩阵A相乘,直到收敛到矩阵A的最大特征值对应的特征向量。
具体步骤如下:1) 选择一个任意非零向量v0;2) 计算v1 = Av0;3) 对v1进行归一化处理,得到v1' = v1 / ||v1||;4) 重复步骤2和3,直到v收敛到A的最大特征值对应的特征向量。
3. 反幂法:反幂法是求解特征值中的最小特征值的一种方法。
它与幂法的思想相似,只是在每一次迭代中,需要对向量进行归一化处理。
具体步骤如下:1) 选择一个任意非零向量v0;2) 计算v1 = (A-1)v0;3) 对v1进行归一化处理,得到v1' = v1 / ||v1||;4) 重复步骤2和3,直到v收敛到A的最小特征值对应的特征向量。
4. QR算法:QR算法是一种迭代算法,用于计算矩阵的所有特征值。
它的基本思想是通过反复进行QR分解将矩阵A转化为上三角矩阵,使得其特征值可以从对角线上读出。
具体步骤如下:1) 将矩阵A进行QR分解,得到A=QR,其中Q为正交矩阵,R为上三角矩阵;2) 将上一步得到的R矩阵再进行QR分解,得到新的矩阵A1=Q1R1;3) 重复步骤2,直到A收敛到上三角矩阵。
最大特征值计算公式
最大特征值计算公式
最大特征值是矩阵特征值中最大的一个,它在数学、物理、工程、经济学等多个领域中都有广泛应用。
最大特征值的计算方法有多种,其中一种常见的是幂法求解法。
幂法求解法是一种基于迭代的方法,它通过不断对矩阵进行重复乘法来逼近最大特征值。
具体而言,该方法首先需要选择一个随机向量x作为初始向量,然后对矩阵A进行多次乘法,
得到一系列向量{x, Ax, A^2x, A^3x, ...},其中向量的长度可能
会发生变化。
在每次计算中,都需要将当前向量除以其范数,使其成为单位向量,然后用新向量与旧向量进行比较以判断算法是否已经收敛。
当新向量与旧向量的差值小于一个给定的容差时,算法即停止,此时新向量的方向即为最大特征值所对应的特征向量。
具体来说,幂法计算最大特征值的公式为:
λ = lim(k→∞) (Akx_k · x_k)/(x_k · x_k)
其中,λ为最大特征值,x_k为第k次迭代得到的向量,A为
待求解矩阵,k为迭代次数。
由于幂法计算的复杂度较低且具有较好的数值稳定性,在实际应用中得到了广泛的应用。
同时,该方法也存在一些限制,如会受到矩阵特征值分布的影响,可能会在某些情况下收敛缓慢,因此需要在实际应用中结合具体问题进行调优。
矩阵特征值的求法举例
矩阵特征值的求法举例特征值是线性代数中一个重要的概念,它能够描述一个矩阵对应的线性变换的特性。
在实际应用中,我们经常需要计算一个矩阵的特征值。
本文将通过举例来讲解矩阵特征值的求法。
我们来介绍一下什么是特征值。
给定一个n×n的矩阵A,如果存在一个非零向量v,使得Av=λv,其中λ为常数,那么我们称λ为矩阵A的特征值,而v称为矩阵A对应于特征值λ的特征向量。
计算矩阵特征值的方法有很多,包括特征值分解、幂法、反幂法、QR方法等。
下面我们来逐一介绍这些方法,并通过具体的例子进行说明。
1. 特征值分解法特征值分解是指将一个矩阵分解成特征值和特征向量的乘积的形式,即A=QΛQ^-1,其中Q是特征向量组成的矩阵,Λ是对角矩阵,其对角线上的元素是矩阵A的特征值。
举例:假设有一个2×2的矩阵A=[4, 2; 1, 3],我们来计算其特征值。
首先我们要求解方程det(A-λI)=0,其中I是单位矩阵,λ是待求的特征值。
展开方程可得(4-λ)(3-λ)-2·1=0,解这个二次方程可得λ1=5,λ2=2。
2. 幂法幂法是一种迭代法,用于求解特征值模最大的特征值和对应的特征向量。
举例:假设有一个3×3的矩阵A=[1, 2, 3; 1, 3, 2; 3, 2, 1],我们来计算其特征值和特征向量。
首先我们随机选取一个初始向量x^(0),计算向量序列x^(k+1)=Ax^(k),迭代到收敛后,我们取得到的向量x^(k+1)的模最大的分量作为矩阵A的特征值模最大的特征向量。
然后,我们将这个特征向量归一化,即除以特征值模最大的分量,得到单位特征向量。
我们将单位特征向量与矩阵A相乘,可得到特征值l。
通过幂法计算可得矩阵A的特征值l≈2.863,以及对应的特征向量v≈[0.618, 0.618, 0.486]。
3. QR方法QR方法是一种迭代法,用于求解特征值。
举例:假设有一个5×5的矩阵A=[3, -1, 0, 0, 0; -1, 3, -1, 0, 0; 0, -1, 3, -1, 0; 0, 0, -1, 3, -1; 0, 0, 0, -1, 3],我们来计算其特征值。
求特征值的计算技巧
求特征值的计算技巧
特征值的计算可以通过多种方法进行,这里介绍两种常用的方法:特征多项式法和幂法。
特征多项式法是求解特征值的一种常用方法。
对于一个n×n的矩阵A,其特征多项式定义为p(λ) = A-λI = det(A-λI),其中,I是n×n单位矩阵,det表示行列式。
特征多项式的根就是矩阵A的特征值。
通过计算特征多项式的根,我们可以求解矩阵A的所有特征值。
幂法是求解矩阵特征值中的最大特征值的一种有效方法。
它的基本思路是通过迭代来逼近最大特征值和对应的特征向量。
具体步骤如下:
1. 选取初始向量v0,通常选取单位向量或随机向量。
2. 计算迭代向量v1 = Av0。
3. 归一化迭代向量v1 = v1 / v1,其中v1表示v1的范数。
4. 计算最大特征值和对应的特征向量。
5. 重复步骤2-4,直到满足收敛条件或达到预设的迭代次数。
在应用幂法时,需要注意以下几点:
1. 初始向量的选取对收敛速度和精度都有影响,应该根据矩阵A的特点选择合适的初始向量。
2. 在迭代过程中,需要保持迭代向量的正交性,避免出现迭代向量之间的相互干扰。
3. 幂法只能求解矩阵特征值中的最大特征值和对应的特征向量,对于其他特征值和特征向量需要采用其他方法进行求解。
4. 在求解过程中,可能会出现数值不稳定或溢出等问题,需要进行适当的数值稳定和误差控制。
除了上述两种方法外,还可以使用其他方法如QR算法、Jacobi方法等来计算矩阵的特征值。
不同方法各有优缺点,需要根据具体情况选择合适的方法进行计算。
和积法计算最大特征向量实例
和积法计算最大特征向量实例和积法(Power method)是一种计算矩阵的最大特征值和对应特征向量的迭代方法。
它是一种简单而高效的算法,可以在较短的时间内找到一个逼近最大特征值和对应特征向量的解。
为了更好地理解和积法的原理和应用,我们来看一个实例。
假设有一个3x3的矩阵A,我们想找到它的最大特征向量。
1.首先,我们需要选取一个初始向量x0作为迭代的起点。
这个初始向量可以是任意的非零向量。
在本例中,我们选择x0=[1,1,1]的转置作为初始向量。
2.下一步,我们利用矩阵A和初始向量x0进行迭代计算。
迭代过程如下:a.计算y=Ax,其中x是上一步的向量。
b.归一化y,得到新的向量x=y/,y,其中,y,表示y的范数(即长度)。
3.重复步骤2,直到收敛。
在每一步迭代中,x都会趋向于最大特征向量,而A的特征值则被称为和积法收敛到的特征值。
在实际计算中,通常设置一个迭代的终止条件。
比如,当新向量x与前一个向量的差异小于一些阈值时,就可以认为算法已经收敛。
另外,可以设置最大迭代次数,以防止算法陷入无限循环。
下面我们来用Python代码实现和积法计算最大特征向量的例子:```pythonimport numpy as npdef power_iteration(A, x0, epsilon, max_iters): """使用和积法计算矩阵A的最大特征值和对应特征向量参数:A:要计算特征向量的矩阵x0:初始向量epsilon:收敛的阈值max_iters:最大迭代次数返回:eigenvalue:最大特征值eigenvector:最大特征向量"""x=x0for i in range(max_iters):y = np.dot(A, x)eigenvalue = np.linalg.norm(y)x = y / eigenvalue#判断是否收敛if np.linalg.norm(y - np.dot(A, x)) < epsilon:breakeigenvector = xreturn eigenvalue, eigenvector#创建一个3x3的矩阵A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])#设置初始向量、收敛阈值和最大迭代次数x0 = np.array([1, 1, 1])epsilon = 1e-8max_iters = 100#调用和积法计算特征向量和特征值eigenvalue, eigenvector = power_iteration(A, x0, epsilon, max_iters)print("最大特征值:", eigenvalue)print("最大特征向量:", eigenvector)```在这个例子中,我们创建了一个3x3的矩阵A,并设置初始向量、收敛阈值和最大迭代次数。
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A满足一定条件时,在工程中可用幂法计算其主特征值(按模最大) 及其特征向量。
矩阵A需要满足的条件为:|,|,|,|,...,|,|,0,,为A的特征值(1) 12nix,x,...,x(2) 存在n个线性无关的特征向量,设为 12n1.1计算过程:n(0)(0)对任意向量x,有x,,u,,不全为0,则有 ,iii,1i(k,1)(k)k,1(0),,,xAx...Axnn11k,k,,,Aαuαλu,,iiiii11i,i,,,,, k,1k,1k,1n2,,,,,λu()au?()au11122nn,,,,11,,k,1,,,u111,2||可见,当越小时,收敛越快;且当k充分大时,有,111(k,)k,1(k,),,,xu,x,111(k,1),,,,x1,对应的特征向量即是。
)(k)(kkx,xu,,,111,2 算法实现,(1).输入矩阵A,初始向量x,误差限,最大迭代次数N(k)x(k),(2).k,1,,0;y,(k)max(abs(x),(3).计算x,Ay,,max(x);,,,,(4).若|,|,,输出,y,否则,转(5)(5).若 k,N, 置k,k,1,,,,,转3 ,否则输出失败信息,停机.3 matlab程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;, z=0; % z 相当于y=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于 ,if abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。
层次分析法例子
张老师需要购买一辆私家小轿车,他考虑的主要因素有:价格适中,售后比较好,轿车的动力性较好,燃油经济性相对较好。
经过轿车销售商的介绍,他初步选择了甲、乙、丙三款轿车,情况如表5-2所示:表5-2解:用AHP 方法研究解决问题的具体步骤是:第一步:分析和细化具体问题,明确该问题的总目标。
第二步:构建递阶的层次结构模型。
这是AHP 的关键步骤。
通常模型结构分为3层,其中顶层为目标层,中间层为准则层(根据问题的复杂程度,每项准则还可以细分为若干子准则),最底层为方案层。
(1)目标层。
这是最高层次,或称为理想结果层。
如需要,可再分为总目际层,战略目标层,战术目标层以至子战术目标层等;(2)准则层。
第二层次为评价准则或衡量准则,也可为因素层、约束层。
同样,可再分为子准则层、子因素层等;(3)措施层。
第三层次为措施层,或对策层、备择对象(人选、方案)等层,对不同问题可有不同的描述。
同样,可再分为子措施层或子对策层等。
构造一个好的层次结构对于问题的解决极为重要.它决定了分析结果的有效程度。
层次结构建立在决策者(或分析者)对问题全面深入认识的基础之上。
如果在层次的划分和确定层次的支配关系上举棋不定,最好的办法是重新分析问题,打乱原来的结构,重新定义要素并建立新的结构。
第三步:构造判断矩阵,求本层次要素相对于上一层次要素的权重。
建立了递阶层次后,上下层之间元素的隶属关系就被确定了。
假设上一层次的元素k C 作为准则,对下一层次的元素1,,n A A 有支配关系。
在此要在准则k C 下,按其相对重要性对1,,n A A 赋予相应的权重(Weight )。
对于大多数社会经济问题,特别是那些没有统一指标表示而仅靠人的经验判断和估计的问题,往往要通过适当的方法来导出其权重,以给出某种量化指标或直接判断元素之间的重要性。
AHP 中的方法是将本层次的要素A i 和A j (i,j=1,2,…,n )相对于上一层次要素c k (k=1,2,…,m) 按照重要程度进行两两比较,从而得到判断矩阵 A=(a ij )n ×n 。
判断矩阵的最大特征值【精选文档】
项目六矩阵的特征值与特征向量实验1 求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方阵的特征值和特征向量及求二次型的标准形.求方阵的特征值与特征向量.例1.1 (教材例1。
1) 求矩阵的特征值与特值向量.(1) 求矩阵A的特征值。
输入A={{—1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A]Eigenvalues[A]则输出A的特征值{—1,1,1}(2) 求矩阵A的特征向量. 输入A={{—1,0,2},{1,2,—1},{1,3,0}}MatrixForm[A]Eigenvectors[A]则输出 {{-3,1,0},{1,0,1},{0,0,0}}即A的特征向量为(3) 利用命令Eigensystem同时矩阵A的所有特征值与特征向量。
输入A={{—1,0,2},{1,2,—1},{1,3,0}}MatrixForm[A]Eigensystem[A]则输出矩阵A的特征值及其对应的特征向量。
例1。
2 求矩阵的特征值与特征向量.输入A=Table[i+j,{i,3},{j,3}]MatrixForm[A](1) 计算矩阵A的全部(准确解)特征值, 输入Eigenvalues[A]则输出{0,,}(2)计算矩阵A的全部(数值解)特征值,输入Eigenvalues[N[A]]则输出{12.4807,—0.480741, —1.3483}(3) 计算矩阵A的全部(准确解)特征向量,输入Eigenvectors[A]//MatrixForm则输出(4) 计算矩阵A的全部(数值解)特征向量, 输入Eigenvectors[N[A]]//MatrixForm则输出(5)同时计算矩阵A的全部(准确解)特征值和特征向量, 输入OutputForm[Eigensystem[A]]则输出所求结果(6) 计算同时矩阵A的零空间,输入NullSpace[A]则输出{{1,-2,1}}(7) 调入程序包<〈LinearAlgebra`Orthogonalization`后,还可以做以下的运算: GramSchmidt[ ]:用Gram—Schmidt过程将向量组单位正交化;Normalize[ ]:将向量组单位化;Projection[vect1,vect2]:求从向量组vect1到vect2的正交映射.输入〈<LinearAlgebra'Orthogonalization'GramSchmidt[Eigenvectors[N[A]]]//MatrixForm则输出例1.3求方阵的特征值和特征向量。
求最大特征值和权重向量
求最大特征值和权重向量全文共四篇示例,供读者参考第一篇示例:求最大特征值和权重向量是一种在数学和计算机科学领域经常用到的方法,它们在数据分析、机器学习、人工智能等领域中起着重要的作用。
在矩阵理论中,特征值和特征向量是矩阵的两个重要概念,它们能够帮助我们揭示矩阵的内在性质和结构。
本文将介绍求最大特征值和权重向量的方法及其应用。
让我们来了解一下什么是特征值和特征向量。
在线性代数中,对于一个n阶方阵A,如果存在一个非零向量v,使得Av=λv,其中λ是一个标量,则λ被称为矩阵A的特征值,v被称为对应于特征值λ的特征向量。
特征值和特征向量的求解是一个重要的矩阵分析问题,它们能够帮助我们理解矩阵的性质和行为。
接着,让我们来讨论如何求解一个矩阵的最大特征值和对应的特征向量。
在实际应用中,我们通常使用迭代法来求解最大特征值和对应的特征向量。
最常用的方法是幂法(power method),其原理如下:1. 我们随机选择一个非零向量作为初始向量v0,并将其标准化为单位向量,即v0 = v0 / ||v0||。
2. 然后,我们按照以下迭代公式计算向量vk+1 = Avk,其中A是待求解矩阵。
3. 继续迭代上述步骤,直到收敛为止。
在每次迭代中,我们需要将向量标准化,即vk+1 = vk+1 / ||vk+1||。
4. 最终,当迭代收敛时,我们可以得到矩阵A的最大特征值和对应的特征向量。
幂法具有简单、高效的特点,广泛应用于求解矩阵的最大特征值和特征向量。
在实际应用中,我们通常会对矩阵A进行对角化处理,以提高幂法的收敛速度和稳定性。
除了求解最大特征值和特征向量外,我们还经常需要对特征值进行排序,并确定对应的特征向量。
在实际应用中,我们通常使用雅各比迭代法(Jacobi method)或QR分解法(QR decomposition)等方法来实现特征值排序和特征向量确定。
1. 数据降维:在数据分析和机器学习中,我们经常需要对数据进行降维处理,以便更好地理解和分析数据。
矩阵的最大特征根公式
矩阵的最大特征根公式
矩阵的最大特征根公式是用来计算一个矩阵的最大特征值的公式。
如果一个矩阵A有n个特征值,则其最大特征值为λmax。
根据矩阵的特征值分解,矩阵A可以表示为其特征向量的线性组合,即
A=QΛQ^-1,其中Q是由特征向量组成的矩阵,Λ是由特征值组成的对角矩阵。
根据矩阵的谱半径定义,矩阵A的最大特征值λmax等于其谱半径ρ(A)。
因此,可以用矩阵的幂来逼近其谱半径,即ρ(A)=lim┬(k →∞)〖∥A^k∥^(1/k)〗。
根据幂法迭代,可以通过迭代矩阵的幂来逼近其最大特征值。
具体地,假设有一个非零向量x0,通过以下迭代可以得到A的最大特征值λmax:
1. 计算y0=Ax0。
2. 令x1=y0/∥y0∥,即将y0归一化。
3. 计算y1=Ax1。
4. 令λ1=x1^Ty1,即将y1投影到x1上得到λ1。
5. 重复步骤2至4,直到λi+1和λi的差值小于某个精度值。
根据幂法迭代的收敛性,迭代后的向量xk收敛到A的最大特征向量,λk收敛到λmax。
因此,矩阵的最大特征根公式为:λmax=lim┬(k →∞)(xk+1^TAxk)/(xk^Txk)。
该公式可以通过幂法迭代来计算矩阵的最大特征值。
- 1 -。
矩阵的特征向量及最大特征值
矩阵的特征向量及最大特征值
特征向量是线性代数中的重要概念,它在数学和科学领域中发挥着重要作用。
通过研究特征向量,我们可以更好地理解和解释矩阵的性质和行为。
特征向量可以被描述为矩阵的"指示器",它们指示了矩阵在某个方向上的拉伸或压缩程度。
换句话说,特征向量是矩阵变换后保持在同一方向上的向量。
而与特征向量相对应的是最大特征值。
最大特征值是特征向量对应的特征值中的最大值。
它告诉我们矩阵变换后,哪个方向上的拉伸或压缩程度最大。
举个简单的例子来说明特征向量和最大特征值的概念。
假设我们有一个矩阵A,它代表了一个线性变换。
通过计算矩阵A的特征向量和特征值,我们可以了解这个变换对向量空间的影响。
特征向量和最大特征值的应用非常广泛。
在数据分析和机器学习领域,它们被用于降维、聚类和模式识别等任务中。
在物理学中,特征向量和最大特征值用于描述量子力学中的态和能量。
在工程领域,它们被用于分析振动系统和电路等。
总的来说,特征向量和最大特征值是线性代数中非常重要的概念。
它们帮助我们理解矩阵的变换和性质,并在各个领域中发挥着重要作用。
通过研究特征向量和最大特征值,我们可以更好地理解和解
释现实世界中的各种现象和问题。
无论是在科学研究还是工程实践中,对特征向量和最大特征值的理解都是必不可少的。
判断矩阵最大特征值计算公式
判断矩阵最大特征值计算公式好嘞,以下是为您生成的关于“判断矩阵最大特征值计算公式”的文章:在数学的奇妙世界里,判断矩阵最大特征值的计算公式就像是一把神奇的钥匙,能帮助我们打开很多难题的大门。
咱先来说说啥是判断矩阵。
比如说,你要比较苹果、香蕉和橙子哪个更好吃。
你心里可能会有个想法,觉得苹果比香蕉好吃一点,香蕉又比橙子好吃不少。
把这种比较用数字表示出来,形成的矩阵就是判断矩阵啦。
那这最大特征值的计算到底有啥用呢?给您举个例子吧。
有一次,我们学校组织了一场活动,要评选出最受欢迎的课外活动项目,有足球、篮球、绘画、音乐等等。
同学们根据自己的喜好进行比较打分,最后形成了一个判断矩阵。
这时候,通过计算最大特征值,就能清楚地知道哪个活动项目在大家心里是最受欢迎的。
判断矩阵最大特征值的计算公式呢,常见的有幂法和和积法。
先说幂法,这就好像是不断地对矩阵进行“加工”,让它慢慢“露出真面目”。
假设咱们有一个判断矩阵 A ,先随便选一个初始向量 x₀,然后通过不断地计算 Axₙ₋₁,再对得到的结果进行归一化处理,反复多次,最终就能找到那个最大特征值。
和积法呢,相对来说步骤会多一些,但也没那么难。
先把判断矩阵每一列进行归一化,然后对归一化后的矩阵按行求和,再对求和后的结果进行归一化,得到一个向量,这个向量就是特征向量啦,通过一些简单的运算就能得到最大特征值。
就像我之前参加一个数学竞赛培训,老师出了一道关于判断矩阵最大特征值计算的题目。
题目里是关于几种不同学习方法效率的比较,形成的矩阵看起来有点复杂。
一开始我也有点懵,但是静下心来,按照老师教的方法,一步一步地去做,先试着用幂法,发现不太顺手,又换成和积法,终于算出了正确的结果。
那一瞬间,真的感觉特有成就感,就好像自己攻克了一座数学的大山。
在实际应用中,比如在经济领域,分析不同投资方案的优劣;在工程领域,评估各种设计方案的好坏,判断矩阵最大特征值的计算都能发挥大作用。
总之,虽然判断矩阵最大特征值的计算公式看起来有点复杂,但只要咱们多练习,多琢磨,就能熟练掌握,让它成为我们解决问题的有力工具。
计算成对比较矩阵最大特征根及特征向量
计算成对比较矩阵最大特征根及特征向量比较矩阵是一种用于判断两个对象之间优劣关系的工具,通常用于决策分析和判断问题的关键因素。
在使用比较矩阵时,需要将优劣关系量化为数值,并将这些数值组成成对比较矩阵。
然后,通过计算最大特征根和特征向量,可以得出比较矩阵的权重分配,从而实现决策或问题解决。
计算比较矩阵最大特征根和特征向量的方法有多种,最常用的是特征值法和特征向量法。
特征值法是通过求解矩阵的特征值来计算最大特征根,然后通过特征值计算特征向量。
而特征向量法则是通过求解矩阵的特征向量来计算最大特征根和特征向量。
在进行计算时,需要先将成对比较矩阵标准化,使得每一行的元素之和为1。
然后,通过特征值法或特征向量法计算最大特征根和特征向量。
最后,通过特征向量的值来计算比较矩阵的权重分配,以实现决策或问题解决。
计算成对比较矩阵最大特征根及特征向量是决策分析和问题解决的重要工具,能够帮助人们更科学、客观地进行决策和判断。
- 1 -。
方根法计算最大特征根
方根法计算最大特征根方根法,也称为反迭代法或雅可比法,是一种用于计算矩阵的最大特征根的迭代算法。
该算法使用了类似牛顿迭代法的思想,通过不断迭代逼近特征根的值。
方根法的基本原理是利用矩阵的特征值和特征向量之间的关系进行迭代计算。
假设A是一个n阶实矩阵,特征值为λ1, λ2, ..., λn,对应的特征向量为v1, v2, ..., vn。
方根法的目标是计算矩阵A的最大特征值λ1首先,我们需要对A进行特征值分解,得到一个对角矩阵D和一个正交矩阵P,使得A=PDP^-1、对角矩阵D的对角元素就是A的特征值。
我们可以将A的最大特征值λ1与对应的特征向量v1表示为λ1=(v1^T)Av1接下来,我们选择一个初始向量x,计算y=Ax,并将y的模归一化为1,得到y*=y/,y。
然后,我们计算z=(y*)^TA(y*),即z=(y*)^TA^2(y*)/((y*)^Ty*)。
根据特征值的性质,我们可以将z表示为z=λ1+(v1^T)Bv1,其中B 是一个与λ1相应的特征向量正交的矩阵。
由于特征向量是正交的,所以(v1^T)Bv1=0。
因此,我们可以将z简化为z=λ1、这说明,通过迭代计算y并归一化,得到的y*的模将逐渐逼近λ1的平方根。
当模的变化足够小后,我们可以认为此时的y*已经逼近了特征值v1为了更加准确地计算λ1,我们需要进行多次迭代。
每次迭代都会更新y和y*,然后计算新的z。
迭代停止的条件可以是模的变化小于一个预设的阈值或达到最大迭代次数。
方根法的优点是计算简单,收敛速度较快。
然而,它也存在一些局限性。
首先,该方法只适用于实对称矩阵的特征值计算。
其次,当矩阵存在多个相等的特征值时,方根法可能无法正确计算这些特征值。
在实际应用中,方根法通常与其他特征值计算方法结合使用,以提高计算的准确性和稳定性。
常用的方法包括QR迭代法和幂迭代法。
总而言之,方根法是一种用于计算矩阵最大特征值的迭代算法。
通过迭代计算特征向量的相关运算,反映了特征值和特征向量之间的关系,并逐步逼近最大特征值的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目六 矩阵的特征值与特征向量实验1 求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方阵的特征值和特征向量及求二次型的标准形.求方阵的特征值与特征向量.例1.1 (教材 例1.1) 求矩阵.031121201⎪⎪⎪⎭⎫ ⎝⎛--=A 的特征值与特值向量.(1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A] Eigenvalues[A]则输出A 的特征值{-1,1,1}(2) 求矩阵A 的特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A]则输出 {{-3,1,0},{1,0,1},{0,0,0}}即A 的特征向量为.101,013⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-(3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A]则输出矩阵A 的特征值及其对应的特征向量.例1.2 求矩阵⎪⎪⎪⎭⎫ ⎝⎛=654543432A 的特征值与特征向量.输入A=T able[i+j,{i,3},{j,3}] MatrixForm[A](1) 计算矩阵A 的全部(准确解)特征值, 输入Eigenvalues[A]则输出{0, 426-,426+}(2) 计算矩阵A 的全部(数值解)特征值, 输入Eigenvalues[N[A]]则输出{12.4807, -0.480741, -1.34831610-⨯}(3) 计算矩阵A 的全部(准确解)特征向量, 输入Eigenvectors[A]//MatrixForm则输出121172422344220342234421172422344220342234421(4) 计算矩阵A 的全部(数值解)特征向量, 输入Eigenvectors[N[A]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248(5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果(6) 计算同时矩阵A 的零空间, 输入NullSpace[A]则输出{{1,-2,1}}(7) 调入程序包<<LinearAlgebra`Orthogonalization`后,还可以做以下的运算:GramSchmidt[ ]:用Gram-Schmidt 过程将向量组单位正交化; Normalize[ ]:将向量组单位化;Projection[vect1,vect2]:求从向量组vect1到vect2的正交映射.输入<<LinearAlgebra ’Orthogonalization ’ GramSchmidt[Eigenvectors[N[A]]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248例1.3 求方阵⎪⎪⎪⎭⎫ ⎝⎛=633312321M 的特征值和特征向量.输入Clear[M];M={{1,2,3,},{2,1,3}{3,3,6}}; Eigenvalues[M] Eigenvectors[M] Eigensystem[M]则分别输出{-1,0,9}{{-1,1,0},{-1,-1,1}{1,1,2}}{{-1,0,9},{{-1,1,0},{-1,-1,1}{1,1,2}}}例1.4 (教材 例1.2) 求矩阵⎪⎪⎪⎭⎫⎝⎛---=2163/115/12/13/13/1A 的特征值和特征向量的近似值.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6,1,-2}}; Eigensystem[A]则屏幕输出的结果很复杂,原因是矩阵A 的特征值中有复数且其精确解太复杂.此时,可采用 近似形式输入矩阵A ,则输出结果也采用近似形式来表达.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6.0,1,-2}}; Eigensystem[A]则输出{{-0.748989+1.27186i,-0.748989-1.27186i,0.831311}, {{0.179905+0.192168i,0.116133+0.062477I,0.955675+0.i}, {0.179905-0.192168i,0.116133-0.062477i,0.955675+0.i}, {-0.0872248,-0.866789,-0.490987}}}从中可以看到A 有两个复特征值与一个实特征值.属于复特征值的特征向量也是复的;属于实 特征值的特征向量是实的.例1.5 (教材 例1.3) 已知2是方阵⎪⎪⎪⎭⎫ ⎝⎛=32131003t A 的特征值,求t .输入Clear[A,q];A={{2-3,0,0},{-1,2-t,-3},{-1,-2,2-3}}; q=Det[A] Solve[q==0,t]则输出{{t →8}}即当8=t 时,2是方阵A 的特征值.例1.6 (教材 例1.4) 已知)1,1,1(-=x 是方阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量,求参数b a ,及特征向量x 所属的特征值. 设所求特征值为t ,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}}; v={1,1,-1}; B=A.v;Solve[{B[[1]]==0,B[[2]]==0,B[[3]]==0},{a,b,t}]则输出{{a →-3, b →0, t →-1}}即0,3=-=b a 时,向量)1,1,1(-=x 是方阵A 的属于特征值-1和特征向量.矩阵的相似变换例1.7 (教材 例1.5) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=222222114A ,求一可逆矩阵P ,使AP P 1-为对角矩阵.方法1 输入Clear[A,P];A={{4,1,1},{2,2,2},{2,2,2}}; Eigenvalues[A]P=Eigenvectors[A]//Transpose则输出{0,2,6}{{0,-1,1},{-1,1,1},{1,1,1}}即矩阵A 的特征值为0,2,6.特征向量为⎪⎪⎪⎭⎫ ⎝⎛-110,⎪⎪⎪⎭⎫ ⎝⎛-111与⎪⎪⎪⎭⎫ ⎝⎛111,矩阵⎪⎪⎪⎭⎫ ⎝⎛--=111111110P .可验证AP P 1-为对角阵, 事实上,输入 Inverse[P].A.P则输出{{0,0,0},{0,2,0},{0,0,6}}因此,矩阵A 在相似变换矩阵P 的作用下,可化作对角阵.方法2 直接使用JordanDecomposition 命令, 输入jor=JordanDecomposition[A]则输出{{{0,-1,1},{-1,1,1},{1,1,1}},{{0,0,0},{0,2,0},{0,0,6}}}可取出第一个矩阵S 和第二个矩阵Λ,事实上,输入jor[[1]] jor[[2]]则输出{{0,-1,1},{-1,1,1},{1,1,1}} {{0,0,0},{0,2,0},{0,0,6}}输出结果与方法1的得到的结果完全相同.例1.8 方阵⎪⎪⎭⎫⎝⎛=1201A 是否与对角阵相似?输入Clear[A]; A={{1,0},{2,1}}; Eigensystem[A]输出为{{1,1},{{0,1}{0,0}}}于是,1是二重特征值,但是只有向量{0,1}是特征向量,因此,矩阵A 不与对角阵相似.例1.9 (教材 例1.6) 已知方阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002x A 与⎪⎪⎪⎭⎫⎝⎛-=y B 00020001相似, 求y x ,.注意矩阵B 是对角矩阵,特征值是y ,2,1-.又矩阵A 是分块下三角矩阵,-2是矩阵A 的特 征值.矩阵A 与B 相似,则2-=y ,且-1,2也是矩阵A 的特征值.输入Clear[c,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}}; Solve[Det[v]==0,x]则输出{{x →0}}所以,在题设条件,0=x ,2-=y .例1.10 对实对称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A ,求一个正交阵P ,使AP P 1-为对角阵. 输入<<LinearAlgebra\Orthogonalization Clear[A,P]A={{0,1,1,0 },{1,0,1,0},{1,1,0,0},{0,0,0,2}}; Eigenvalues[A] Eigenvectors[A]输出的特征值与特征向量为{-1,-1,2,2}{{-1,0,1,0},{-1,1,0,0},{0,0,0,1},{1,1,1,0}}再输入P=GramSchmidt[Eigenvectors[A]]//Transpose输出为已经正交化和单位化的特征向量并且经转置后的矩阵P{}}{0,1,0,0,31,0,61,21,31,0,32,0,31,0,61,21⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-为了验证P 是正交阵,以及AP P AP p T=-1是对角阵,输入Transpose[P].PInverse[P].A.P//Simplify Transpose[P].A.P//simplify则输出{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}}第一个结果说明E P P T =,因此P 是正交阵;第二个与第三个结果说明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==-22111AP P AP P T例1.11 求一个正交变换,化二次型243231212222x x x x x x x f +++=为标准型.二次型的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A这恰好是例1.10的矩阵, 因此,用例1.10中的正交矩阵P ,作正交变换PY X =,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛43214321010031061213103203106121y y y y x x x x将f 化作标准型.输入f=T able[x[j],{j,4}].A.Table[x[j],{j,4}]//Simplify则输出2(x[2]x[3]+x[1](x[2]+x[3])+x[4]2)这是原来的二次型f .把上式中的x[1],x[2],x[3],x[4]用y[1],y[2],y[3],y[4]表示,输入代换命令f/.T able[x[j]→(P .T able[y[j],{j,4}])[[j]],{j,4}]// Simplify则输出-y[1]2-y[2]2 +2(y[3]2 +y[4]2)这就是二次型f 的标准型.例1.12 (教材 例1.7) 已知二次型3231212322213212422),,(x x x x x x x x x x x x f +-++-=(1)求标准形; (2)求正惯性指数; (3)判断二次型是否正定. 输入A={{1,1,-2},{1,-2,1},{-2,1,1}}Eigenvalues[A]则输出矩阵A 的特征值为{-3,0,3}所以二次型的标准形为222133y y f +=;正惯性指数为1;该二次型不是正定的. 例1.13 (教材 例1.8) 求正交变换将二次型43324121242322213212222),,(x x x x x x x x x x x x x x x f -+-++++=化为标准形.输入A={{1,1,0,-1},{1,1,1,0},{0,1,1,-1},{-1,0,-1,1}} MatrixForm[A] X={x1,x2,x3,x4}; Expand[X.A.X]<<LinearAlgebra\Orthogonalization.m P=GramSchmidt[Eigenvectors[A]] P .A.Inverse[P]//MatrixForm则输出所求的正交变换矩阵P 与二次型矩阵A 标准形. 从结果知, 所求二次型的标准型为24232221y y y y g +++-=实验2 层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica 解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、 相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法.运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互 关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这 个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层:第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层;第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则 层;第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.图2-1决策目标准则1准则2准则n方案1方案2方案m…………注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2) 整个层次结构中层次数不受限制.2.构造判断矩阵构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即.,,2,1,,)(n j i a A n n ij ==⨯ 称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素ij a 满足下列性质:)(,1),(1j i a j i a a ii ijji ==≠=当0>ij a 时,我们称判断矩阵A 为正互反矩阵.怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素y 的影响可直接定量表示时, i x 与j x 对y的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.表1 比较尺度ij a 的取值97531/ijj i a x x 绝对强很强强较强相等3.计算层次单排序权重并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序. 具体做法是: 根据同一层n 个元素n x x x ,,,21 对上一层某元素y 的判断矩阵A ,求出它们对 于元素y 的相对排序权重,记为n w w w ,,,21 ,写成向量形式T n w w w w ),,,(21 =, 称其为A 的层次单排序权重向量, 其中i w 表示第i 个元素对上一层中某元素y 所占的比重, 从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵A 的特征值与特征向 量来计算排序权重向量w .关于正互反矩阵A ,我们不加证明地给出下列结果. (1) 如果一个正互反矩阵n n ij a A ⨯=)(满足),,2,1,,(n k j i a a a ik jk ij ==⨯则称矩阵A 具有一致性, 称元素k j i x x x ,,的成对比较是一致的; 并且称A 为一致矩阵.(2) n 阶正互反矩阵A 的最大特征根n ≥max λ, 当n =λ时, A 是一致的. (3) n 阶正互反矩阵是一致矩阵的充分必要条件是最大特征值 n =max λ.计算排序权重向量的方法和步骤设T n w ),,,(21ωωω =是n 阶判断矩阵的排序权重向量, 当A 为一致矩阵时, 根据n阶判断矩阵构成的定义,有⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n nn A ωωωωωωωωωωωωωωωωωω212221212111 (2.1) 因而满足,nw Aw = 这里n 是矩阵A 的最大特征根, w 是相应的特征向量; 当A 为一般的 判断矩阵时w Aw max λ=, 其中max λ是A 的最大特征值(也称主特征根), w 是相应的特征向 量(也称主特征向量). 经归一化(即11=∑=ni iω)后, 可近似作为排序权重向量, 这种方法称为特征根法.一致性检验在构造判断矩阵时, 我们并没有要求判断矩阵具有一致性, 这是由客观事物的复杂性与人的认识的多样性所决定的. 特别是在规模大、因素多的情况下, 对于判断矩阵的每个元 素来说,不可能求出精确的j i ωω/, 但要求判断矩阵大体上应该是一致的. 一个经不起推敲 的判断矩阵有可能导致决策的失误. 利用上述方法计算排序权重向量, 当判断矩阵过于偏离 一致性时, 其可靠性也有问题. 因此,需要对判断矩阵的一致性进行检验, 检验可按如下步骤 进行: (1) 计算一致性指标CI1max --=n nCI λ (2.2)当,0=CI 即n =max λ时, 判断矩阵A 是一致的. 当CI 的值越大, 判断矩阵A 的不一致的程 度就越严重. (2) 查找相应的平均随机一致性指标RI表2给出了n )11~1(阶正互反矩阵的平均随机一致性指标RI , 其中数据采用了 100~150个随机样本矩阵A 计算得到.(3) 计算一致性比例CRRICICR =(2.3)当10.0<CR 时, 认为判断矩阵的一致性是可以接受的; 否则应对判断矩阵作适当修正.4. 计算层次总排序权重并做一致性检验计算出某层元素对其上一层中某元素的排序权重向量后, 还需要得到各层元素, 特别 是最底层中各方案对于目标层的排序权重, 即层次总排序权重向量, 再进行方案选择. 层次 总排序权重通过自上而下地将层次单排序的权重进行合成而得到. 考虑3个层次的决策问题: 第一层只有1个元素, 第二层有n 个元素, 第三层有m 个元 素.设第二层对第一层的层次单排序的权重向量为 Tn w ),,,()2()2(2)2(1)2(ωωω = 第三层对第二层的层次单排序的权重向量为n k w w w w Tkn k k k ,,2,1,),,,()3()3(2)3(1)3( ==以)3(k w 为列向量构成矩阵:n m nm m mn n n w w w w w w w w w w w w W ⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==)3()3(2)3(1)3(2)3(22)3(12)3(1)3(21)3(11)3()3(2)3(1)3(,,,,,,,,,,,),,,( (2.4)则第三层对第一层的层次总排序权重向量为)2()3()3(w W w =(2.5) 一般地, 若层次模型共有s 层, 则第k 层对第一层的总排序权重向量为s k w W w k k k ,,4,3,)1()()( ==-(2.6)其中)(k W 是以第k 层对第1-k 层的排序权向量为列向量组成的矩阵,)1(-k w 是第1-k 层对第 一层的总排序权重向量. 按照上述递推公式, 可得到最下层(第s 层)对第一层的总排序权重 向量为)2()3()1()()(w W W W w s s s -=(2.7)对层次总排序权重向量也要进行一致性检验. 具体方法是从最高层到最低层逐层进行 检验.如果所考虑的层次分析模型共有s 层. 设第l (s l ≤≤3)层的一致性指标与随机一致性 指标分别为)()(2)(1,,,l n l l CI CI CI (n 是第1-l 层元素的数目)与)()(2)(1,,,l nl l RI RI RI , 令)1()(1)(1)(],,[-=l l l l w CI CI CI(2.8) )1()(1)(1)(],,[-=l l l l w RI RI RI(2.9)则第l 层对第一层的总排序权向量的一致性比率为s l RICI CRCRl l l l ,,4,3,)()()1()( =+=- (2.10)其中)2(CR 为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率.当最下层对第一层的总排序权重向量的一致性比率1.0)(<s CR 时, 就认为整个层次结构 的比较判断可通过一致性检验.应用举例问题 在选购电脑时, 人们希望花最少的钱买到最理想的电脑. 试通过层次分析法建立 数学模型,并以此确定欲选购的电脑.1. 建立选购电脑的层次结构模型选择的目标性能价格质量外观售后服务品牌1品牌2品牌3目标层准则层方案层图2-2该层次结构模型共有三层:目标层(用符号z 表示最终的选择目标); 准则层(分别用符号 521,,,y y y 表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准则); 方案层(分别用符号321,,x x x 表示品牌1, 品牌2, 品牌3三种选择方案).2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度, 从建模者的个人观点出发, 设准则层对目标层的成对比较判断矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=13123/13/113/12/19/113123/12/122/115/139351A (2.11)(2) 建立方案层对准则层的成对比较判断矩阵,113/1113/1331,123/12/115/13511252/1135/13/11,12/15/1213/1531,1252/1135/13/1154321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B B B B B3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入<<Miscellaneous\RealOnly.m (*调用只求实数运算的软件包*)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算, 可避免精确解太长、太复杂*) T=Eigensystem[A]//Chop(*输入//Chop, 把与零非常接近的数换成零*)则输出{{5.00974,Nonreal,Nonreal,0,0},{{0.88126,0.167913,0.304926,0.0960557,0.304926}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {-0.993398,0,0.0673976,0.0662265,0.0650555}, {-0.65676,0,0.57431,0.043784,-0.486742}}} (输出中的Nonreal 表示复数)从中得到A 的最大特征值,00974.5max =λ及其对应的特征向量T x )304926.0,0960557.0,304926.0,167913.0,88126.0(=输入Clear[x]; x=T[[2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量T w )173739.0,0547301.0,173739.0,0956728.0,502119.0()2(=计算一致性指标1max --=n nCI λ,其中,00974.5,5max ==λn 故.002435.0=CI查表得到相应的随机一致性指标 12.1=RI 从而得到一致性比率002174.0)2(==RICICR 因,1.0)2(<CR 通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一 化后的特征向量)2(w 作为排序权重向量. 下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量, 输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}}; B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}}; B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}}; T1=Eigensystem[B1]//ChopT2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop则输出 {{3.00369,Nonreal, Nonreal}, {{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal, 0.871137}}};{{3.00369,Nonreal, Nonreal}, {{0.928119,0.328758,0.174679}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.163954,0.46286,0.871137}, { Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal,0.871137}}}{{3.00369, Nonreal, Nonreal}, {{0.928119,0.174679,0.328758}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}} {{3,0,0},{{0.904534,0.301511,0.301511}, {-0.973329,0.162221,0.162221}, {-0.170182,-0.667851,0.724578}}从上面的输出可以分别得到)5,,2,1( =j B j 的最大特征值000.3,00369.3,00369.3,00369.3,00369.354321=====λλλλλ以及上述特征值所对应的特征向量TT T TT x x x x x )301511.0,301511.0,904534.0()328758.0,174679.0,928119.0()871137.0,46286.0,163954.0()174679.0,328758.0,928119.0()871137.0,46286.0,163954.0(54321=====其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[x1,x2,x3,x4,x5]; x1=T1[[2,1]];w1=x1/Apply[Plus,x1] x2=T2[[2,1]];w2=x2/Apply[Plus,x2] x3=T3[[2,1]];w3=x3/Apply[Plus,x3] x4=T4[[2,1]];w4=x4/Apply[Plus,x4] x5=T5[[2,1]];w5=x5/Apply[Plus,x5]则输出TT T TT w w w w w )200000.0,200000.0,600000.0()229651.0,12202.0,648329.0()581552.0,308996.0,109452.0()12202.0,229651.0,648329.0()581552.0,308996.0,109452.0(54321===== 计算一致性指标)5,,2,1(1=--=i n nCI i i λ,其中,3=n 输入lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]} CI=(lamda-3)/(3-1)//Chop则输出0,0018473.0,0018473.0,0018473.0,0018473.054321=====CI CI CI CI CI查表得到相应的随机一致性指标)5,,2,1(58.0 ==i RI i计算一致性比率5,,2,1, ==i RI CI CR iii ,输入CR=CI/0.58则输出.0,003185.0,003185.0,003185.0,003185.054321=====CR CR CR CR CR因),5,,2,1(,1.0 =<i CR i 通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许 的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4. 计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表3.以矩阵表示第三层对第二层的排序权重计算结果为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2.0229651.0581552.012202.0581552.02.012202.0308996.0229651.0308996.06.0648329.0109452.0648329.0109452.0)3(W )3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为)2()3()3(w W w =为了计算上式, 输入W3=Transpose[{w1,w2,w3,w4,w5}]; ww3=W3.ww2则从输出结果得到T w )452037.0,272235.0,275728.0()3(=为了对总排序权向量进行一致性检验, 计算)2(521)3().,,.,.(w I C I C I C CI =输入CI.ww2则从输出结果得到00152635.0)3(=CI 再计算)2(51)3(],,[w RI RI RI =,输入RI=T able[0.58,{j,5}]; RI.ww2则从输出结果得到 58.0.)3(=I R 最后计算 )3()3()2()3(./...I R I C R C R C +=,可得00480575.0.)3(=R C因为,1.0.)3(<R C 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值, 品牌3的电脑是建模者对这三种品牌机的首选. 实验报告1.根据你的设想购置一台计算机, 需考虑什么样的判断准则? 利用层次分析法及数学 软件做出最佳的决策.2.根据你的经历设想如何报考大学, 需要什么样的判断准则? 利用层次分析法及数学 软件做出最佳的决策.3.假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业, 正面临择业的问题, 你对工作的选择着重考虑下面几个因素: (1)单位的声誉; (2)收入; (3)专业是否对口; (4)是否有机会深造或晋升; (5)工作地点; (6)休闲时间. 对上述各种因素你可以根据自己的具体情况排序,也可以增加或减少所考虑的因素. 现在有四个单位打算你, 但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择.。