初中动点问题题目汇总

合集下载

初中数学动点题试卷及答案

初中数学动点题试卷及答案

一、选择题(每题5分,共50分)1. 下列关于动点的说法正确的是()A. 动点在平面直角坐标系中一定沿着直线运动B. 动点的运动轨迹可以是曲线C. 动点的速度和加速度都是不变的D. 动点的位置随时间变化而变化2. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x+y=0B. x-y=0C. x^2+y^2=1D. x^2-y^2=13. 一个动点在平面直角坐标系中,从原点出发,先向x轴正方向运动2个单位,然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。

则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线4. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。

则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线6. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=47. 一个动点在平面直角坐标系中,从原点出发,先向x轴正方向运动2个单位,然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。

则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线8. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4然后向y轴负方向运动3个单位,最后向x轴负方向运动4个单位。

则该动点的运动轨迹是()A. 直线B. 抛物线C. 圆D. 双曲线10. 设动点P的坐标为(x,y),则下列关于P点的运动轨迹方程正确的是()A. x^2+y^2=1B. x^2+y^2=4C. x^2-y^2=1D. x^2-y^2=4二、填空题(每题5分,共50分)1. 动点的运动轨迹可以是()、()、()等。

初二数学动点练习题

初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。

2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。

求证:无论点P在圆上如何移动,OP的长度始终为5。

3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。

当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。

4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。

求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。

5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。

求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。

6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。

当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。

7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。

求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。

8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。

点C是线段AB上的动点,其坐标为(x,y)。

求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。

练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。

- 对于圆上的动点问题,可以利用圆的半径性质来证明。

- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。

- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。

八年级数学动点题型归纳

八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,求公式的长度。

解析:过点公式作公式于点公式。

因为公式,等腰三角形三线合一,所以公式。

在公式中,根据勾股定理公式。

当公式时,公式,则公式。

在公式中,根据勾股定理公式。

2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。

解析:已知公式,则公式,公式。

根据三角形面积公式公式,对于公式,底为公式,高为公式。

所以公式。

二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。

因为四边形公式是矩形,所以公式,公式。

则公式,公式。

在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。

因为公式且公式,所以四边形公式是梯形。

2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

求四边形公式的面积公式与公式的函数关系式。

解析:四边形公式的面积公式。

过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。

所以公式。

因为公式,则公式。

公式。

所以公式。

三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。

初一动点问题题目

初一动点问题题目

初一动点问题题目主要涉及数轴、方程、几何等知识点。

下面是一些具体的题目例子:
1. 数轴动点问题:在数轴上,点A表示的数为3,点B表示的数为9。

点P是数轴上的一点,表示的数为x。

当点P在点A和点B之间移动时,求线段AP和线段BP的长度。

2. 方程动点问题:已知一次函数y = kx + b的图像上,点A的横坐标为2,纵坐标为6;点B 的横坐标为4,纵坐标为10。

求k和b的值。

3. 几何动点问题:在平面直角坐标系中,点A的坐标为(2, 3),点B的坐标为(8, 7)。

点P是坐标系上的一点,坐标为(x, y)。

当点P在直线AB上移动时,求线段AP和线段PB的长度。

4. 三角形动点问题:在平面直角坐标系中,点A的坐标为(0, 0),点B的坐标为(6, 0),点C 的坐标为(3, 4)。

点P是坐标系上的一点,坐标为(x, y)。

当点P在三角形ABC内部移动时,求线段AP、线段BP和线段CP的长度。

5. 圆形动点问题:在平面直角坐标系中,圆心O的坐标为(0, 0),半径为5。

点P是坐标系上的一点,坐标为(x, y)。

当点P在圆内部移动时,求线段OP的长度。

以上是一些初一动点问题的题目例子,涉及数轴、方程、几何等知识点。

在解决这些题目时,学生需要掌握数轴的概念、一次函数的性质、几何图形的特点等,并能灵活运用所学的知识。

通过不断的练习,学生能够提高解题能力,培养逻辑思维和空间想象能力。

初一年级数学动点问题例题集

初一年级数学动点问题例题集

初一数学动点问题集锦1、如图,已知中,厘米,厘米,点为的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,与就是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使与全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿三边运动,求经过多长时间点P 与点Q 第一次在的哪条边上相遇?解:(1)①∵秒,∴厘米, ∵厘米,点为的中点,∴厘米.又∵厘米, ∴厘米,∴. 又∵, ∴,∴. (4分)②∵, ∴,又∵,,则,∴点,点运动的时间秒,AQDB∴厘米/秒. (7分) (2)设经过秒后点与点第一次相遇,由题意,得,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇. (12分)2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.解(1)A(8,0)B(0,6)1分xAOQPBy(2)点由到的时间就是(秒)点的速度就是(单位/秒) 1分当在线段上运动(或0)时,1分当在线段上运动(或)时,, 如图,作于点,由,得, 1分1分(自变量取值范围写对给1分,否则不给分.)(3)1分3分3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)就是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P、(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点与圆心P为顶点的三角形就是正三角形?解:(1)⊙P与x轴相切、∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8、由题意,OP=-k,∴PB=PA=8+k、在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切、(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E、∵△PCD为正三角形,∴DE=CD=,PD=3,∴PE=、∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,∴△AOB∽△PEB,∴,∴∴,∴,∴、当圆心P在线段OB延长线上时,同理可得P(0,--8),∴k=--8,∴当k=-8或k=--8时,以⊙P与直线l的两个交点与圆心P为顶点的三角形就是正三角形、4 如图1,在平面直角坐标系中,点O就是坐标原点,四边形ABCO就是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:BEQDA C图165在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间就是t秒(t>0).(1)当t = 2时,AP = ,点Q 到AC 的距离就是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,;(2)作QF ⊥AC 于点F,如图3, AQ = CP= t,∴.由△AQF ∽△ABC,,得.∴.∴,即.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ,∴PQ ⊥QB,四边形QBED 就是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得,即. 解得.②如图5,当PQ ∥BC 时,DE ⊥BC,四边形QBED 就是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得,即. 解得.(4)或.A CBPQED图4初一年级数学动点问题例题集①点P 由C 向A 运动,DE 经过点C. 连接QC,作QG ⊥BC 于点G,如图 6.,.由,得,解得.②点P 由A 向C 运动,DE 经过点C,如图7.,】6如图,在中,,.点就是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点.过点作交直线于点,设直线的旋转角为.(1)①当 度时,四边形就是等腰梯形,此时的长为 ; ②当 度时,四边形就是直角梯形,此时的长为 ;(2)当时,判断四边形就是否为菱形,并说明理由.解(1)①30,1;②60,1、5; ……………………4分 (2)当∠α=900时,四边形EDBC 就是菱形、 ∵∠α=∠ACB=900,∴BC//ED 、∵CE//AB, ∴四边形EDBC 就是平行四边形、 ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300、∴AB=4,AC=2、∴AC (E ) BPQD图6GA C (E )B PQD图7GO E CB DAlOCA(备用图)AO== 、 ……………………8分在Rt △AOD 中,∠A=300,∴AD=2、 ∴BD=2、 ∴BD=BC 、又∵四边形EDBC 就是平行四边形,∴四边形EDBC 就是菱形 ……………………10分7如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.(1)求的长.(2)当时,求的值.(3)试探究:为何值时,为等腰三角形. 解:(1)如图①,过、分别作于,于,则四边形就是矩形 ∴1分 在中,2分在中,由勾股定理得,∴ 3分ADCBN(图①)ADCBK H(图②)ADCBG MN(2)如图②,过作交于点,则四边形就是平行四边形∵ ∴ ∴ ∴4分 由题意知,当、运动到秒时,∵∴又∴∴ 5分即解得, 6分(3)分三种情况讨论: ①当时,如图③,即∴ 7分ADCBMN(图③)(图④)AD CBM NH E②当时,如图④,过作于解法一:由等腰三角形三线合一性质得在中,又在中,∴解得 8分解法二: ∵∴∴即∴ 8分③当时,如图⑤,过作于点、解法一:(方法同②中解法一)(图⑤)ADCBH N MF解得解法二:∵∴∴即∴综上所述,当、或时,为等腰三角形9分8如图1,在等腰梯形中,,就是的中点,过点作交于点.,、(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设、①当点在线段上时(如图2),的形状就是否发生改变?若不变,求出的周长;若改变,请说明理由;②当点在线段上时(如图3),就是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由、初一年级数学动点问题例题集解(1)如图1,过点作于点1分∵为的中点,∴在中,∴2分∴即点到的距离为 3分 (2)①当点在线段上运动时,的形状不发生改变. ∵∴∵∴,同理 4分 如图2,过点作于,∵∴∴A D EB FC 图4(备用) ADE BF C 图5(备用) A D E BF C 图1 图2 AD E B F C P NM图3 A D E BFCP N M (第25题) 图1A D EBF CG图2A D EBFCPNMG H∴则在中,∴的周长=6分②当点在线段上运动时,的形状发生改变,但恒为等边三角形.当时,如图3,作于,则类似①, ∴ 7分∵就是等边三角形,∴此时,8分当时,如图4,这时此时,当时,如图5,则又∴图3A D E BFCPN M 图4A D EBF CP M N 图5A D EBF (P ) CMN GGRG因此点与重合,为直角三角形.∴此时,综上所述,当或4或时,为等腰三角形. 10分 9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)(1,0)1分 点P 运动速度每秒钟1个单位长度. 2分(2) 过点作BF ⊥y 轴于点,⊥轴于点,则=8,.∴. 在Rt △AFB 中, 3 过点作⊥轴于点,与的延长线交于点.∵ ∴△ABF ≌△BCH.∴.∴.∴所求C 点的坐标为(14,12). 4分AB CDEF G H M N PQOxy(3) 过点P作PM⊥y轴于点M,PN ⊥轴于点N,则△APM∽△ABF.∴. .∴. ∴.设△OPQ 的面积为(平方单位)∴(0≤≤10) 5分说明:未注明自变量的取值范围不扣分.∵<0 ∴当时, △OPQ的面积最大. 6分此时P的坐标为(,) . 7分(4) 当或时, OP与PQ相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD就是正方形,点E就是边BC的中点.,且EF 交正方形外角的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E就是边BC的中点”改为“点E就是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,您认为小颖的观点正确不?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E就是BC的延长线上(除C点外)的任意一点,其她条件不变,结论“AE=EF”仍然成立.您认为小华的观点正确不?如果正确,写出证明过程;如果不正确,请说明理由.A DFC GEB图1 A DFC GEB图2A DFC GEB图3解:(1)正确. (1分) 证明:在上取一点,使,连接. (2分).,.就是外角平分线,, . .,,.(ASA). (5分).(6分)(2)正确. (7分) 证明:在的延长线上取一点.使,连接. (8分)..四边形就是正方形,.. .(ASA). (10分).(11分)11已知一个直角三角形纸片,其中.如图,A DF C GEBM ADFC GE BN将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点.(Ⅰ)若折叠后使点与点重合,求点的坐标;(Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围;(Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标.解(Ⅰ)如图①,折叠后点与点重合,则、设点的坐标为、 则、 于就是、在中,由勾股定理,得,即,解得、点的坐标为、 4分(Ⅱ)如图②,折叠后点落在边上的点为,y BO Ay BOAyBO A则、由题设,则,在中,由勾股定理,得、,即6分由点在边上,有,解析式为所求、当时,随的增大而减小,的取值范围为、7分(Ⅲ)如图③,折叠后点落在边上的点为,且、则、又,有、、有,得、 9分在中,设,则、由(Ⅱ)的结论,得,解得、点的坐标为、 10分 12问题解决如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.类比归纳在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示)联系拓广如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示)解:方法一:如图(1-1),连接.方法指导: 为了求得的值,可先求、的长,不妨设:=2图(2)N ABCD EFM图(1)A BCDEFMN N 图(1-1)A BCDEFM由题设,得四边形与四边形关于直线对称.∴垂直平分.∴1分 ∵四边形就是正方形,∴∵设则在中,.∴解得,即 3分在与在中,, , 5分设则∴解得即 6分∴ 7分方法二:同方法一, 3分 如图(1-2),过点做交于点,连接N 图(1-2)A BCDEFMG∵∴四边形就是平行四边形.∴同理,四边形也就是平行四边形.∴∵与中∴5分∵6分∴7分类比归纳(或);; 10分联系拓广12分。

中考动点问题经典题型归类总结附答案

中考动点问题经典题型归类总结附答案

专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦

九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。

过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。

1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。

2) 四边形MNQP的面积为S,运动时间为t。

因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。

函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。

动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。

设运动的时间为t 秒。

1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。

3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。

3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。

动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。

初中动点问题题目汇总定稿版

初中动点问题题目汇总定稿版

初中动点问题题目汇总精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】一.选择题1.(2015湖南邵阳第9题3分)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()2.(2015湖北荆州第9题3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A 点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A B C.D.3.(2015?甘肃武威,第10题3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()4.(2015?四川资阳,第8题3分)如图4,AD、BC是⊙O的两条互相垂直的直径,点P 从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是5. (2015?四川省内江市,第11题,3分)如图,正方形ABCD 的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.6. (2015?山东威海,第 11题3分)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()7. (2015山东省德州市,11,3分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A. ②③B. ②④C. ①③④D.②③④二.解答题1. (2015?四川甘孜、阿坝,第28题12分)如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.2. (2015?山东威海,第25题12分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A 运动至点E的过程中,线段MN长度的最大值.3.(2015?山东日照,第22题14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?4.(2015?山东聊城,第25题12分)如图,在直角坐标系中,Rt△OAB的直角顶点A在x 轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N 从点O 出发,以每秒1.25个单位长度的速度,沿OB 向终点B 移动.当两个动点运动了x 秒(0<x <4)时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示);(2)设△OMN 的面积是S ,求S 与x 之间的函数表达式;当x 为何值时,S 有最大值最大值是多少(3)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.5.(2015·深圳,第22题 分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm /s 的速度向右移动。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

七年级数学动点题50道

七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。

(1)当t = 1时,求PQ的长度。

(2)求经过多少秒后,PQ = 5。

解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。

所以公式。

(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。

则公式。

当公式时,即公式。

则公式或公式。

当公式时,公式,公式(舍去,因为时间不能为负)。

当公式时,公式,公式。

2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。

解析:因为点C在点A、B之间,公式,公式。

又因为公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式。

解得公式。

3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。

(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。

解析:(1)点P表示的数为公式。

当点P到点B的距离为2时,公式。

则公式或公式。

解得公式或公式。

(2)点Q表示的数为公式,公式。

当公式时,公式。

即公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。

(1)求t秒后,点M表示的数和点N表示的数。

(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。

(2)当点M与点N相距4个单位长度时,公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

初中动点问题题目

初中动点问题题目

选择题在数轴上,点A从原点出发,以每秒2个单位的速度向右移动,同时点B从数轴上的-5点出发,以每秒3个单位的速度向左移动,经过多少秒后,A、B两点相距15个单位?A. 2秒B. 3秒C. 4秒(正确答案)D. 5秒直角三角形ABC中,∠C=90°,AC=3,BC=4,点P从A出发沿AC边以每秒1个单位的速度向C移动,同时点Q从C出发沿CB边以每秒2个单位的速度向B移动,设移动时间为t秒,则当t为何值时,∠PCQ的面积等于2?A. t=1/2(正确答案)B. t=1C. t=3/2D. t=2在平行四边形ABCD中,AB=6,AD=8,∠B=60°,点E从A出发沿AB边以每秒2个单位的速度向B移动,点F从D出发沿DA边以每秒1个单位的速度向A移动,若E、F同时出发,设移动时间为x秒,则当以E、F为端点的线段与BC平行时,x的值为?A. 2秒B. 2.4秒(正确答案)C. 3秒D. 3.6秒点M、N分别在等腰三角形ABC的底边BC、顶角A的角平分线AD上,且BM=CN,若点M 从B出发沿BC以每秒3个单位的速度向C移动,同时点N从A出发沿AD以每秒2个单位的速度向D移动,当其中一个点到达终点时,另一个点也停止移动,则当MN∠AC时,移动的时间为?A. 1秒B. 1.5秒(正确答案)C. 2秒D. 2.5秒在矩形ABCD中,AB=6,BC=8,点E从A出发沿AB边以每秒1个单位的速度向B移动,同时点F从C出发沿CD边以每秒2个单位的速度向D移动,设移动时间为t秒,则当四边形AECF为菱形时,t的值为?A. 2秒(正确答案)B. 3秒C. 4秒D. 5秒在梯形ABCD中,AD∠BC,AD=3,BC=7,AB=CD=4,点P从A出发沿AD边以每秒1个单位的速度向D移动,同时点Q从C出发沿CB边以每秒2个单位的速度向B移动,设移动时间为x秒,则当PQ∠BC时,x的值为?A. 1秒B. 1.5秒C. 2秒(正确答案)D. 2.5秒在∠ABC中,AB=AC=5,BC=6,点D、E分别是AB、AC上的动点,且保持DE∠BC,若DE=x,∠ADE的面积为y,则y与x之间的函数关系式及x的取值范围是?A. y=3/5x2, 0<x<5(正确答案)B. y=4/5x2, 0<x<6C. y=3/5x, 0<x<5D. y=4/5x, 0<x<6在正方形ABCD中,边长为4,点E从A出发沿AB边以每秒1个单位的速度向B移动,同时点F从B出发沿BC边以每秒2个单位的速度向C移动,设移动时间为t秒,则当∠EBF的面积为3时,t的值为?A. 1秒B. 1.5秒(正确答案)C. 2秒D. 2.5秒。

初中数学动点题

初中数学动点题

初中数学动点题
以下是一些初中数学动点题的例子:
1. 一个人在跑步,每分钟跑 100 米。

他的速度是 6 米/秒。

如果他以这个速度向前跑,那么他能够追上自己吗?如果会,那么他需要多少时间才能追上自己?
2. 一个篮球运动员在比赛中得到了 5 个进球,共得分 10 分。

他平均每场得分是多少?如果他在比赛中平均每场得分 2 分,那么他需要多少场比赛才能得满 10 分?
3. 一列火车长 200 米,以每秒 8 米的速度通过一座长 240 米的桥,需要 4 秒。

求这座桥的长度是多少?
4. 一个长度为 20 厘米的线段,在两端点各燃烧 1 秒钟,共烧了 2 秒钟。

求这条线段的总长度是多少?
5. 一个时钟的分针长为 5 厘米,每秒钟走过一格。

如果这只时钟的分钟数是 30,那么它的一面需要多少时间才能转完一圈?
希望这些例子能够提供帮助。

如果需要更多的帮助,请随时提问。

七年级动点问题大全

七年级动点问题大全

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题一、数轴上的动点问题。

1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。

(1)若点P到点A、点B的距离相等,求点P对应的数。

解析:因为点P到点A、点B的距离相等,所以PA = PB。

根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。

当x≥3时,x + 1=x 3,方程无解。

当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。

当x≤-1时,-(x + 1)=-(x 3),方程无解。

所以点P对应的数为1。

(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。

解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。

当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。

当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。

当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。

所以存在点P,x=(7)/(2)或x =-(3)/(2)。

2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。

(1)若点P到点A、点B的距离之和为5,求x的值。

解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。

当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。

当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。

当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。

7年级动点题10道

7年级动点题10道

7年级动点题10道一、数轴上的动点问题。

1. 已知数轴上点A表示的数为 -2,点B表示的数为4,点P从点A出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 当t = 1时,求点P和点Q所表示的数。

- 求经过多少秒,点P与点Q相遇?- 求经过多少秒,点P与点Q之间的距离为2个单位长度?解析:- 点P从 - 2出发,速度为每秒2个单位长度,当t = 1时,点P表示的数为-2 + 2×1=0;点Q从4出发,速度为每秒1个单位长度,当t = 1时,点Q表示的数为4-1×1 = 3。

- 设经过t秒点P与点Q相遇。

点P向右运动的路程为2t,点Q向左运动的路程为t,相遇时2t + t=4 - (-2),即3t = 6,解得t = 2秒。

- 分两种情况:- 相遇前相距2个单位长度:2t+t+2 = 4-(-2),3t+2 = 6,3t = 4,解得t=(4)/(3)秒。

- 相遇后相距2个单位长度:2t + t-2=4 - (-2),3t-2 = 6,3t = 8,解得t=(8)/(3)秒。

2. 数轴上点A对应的数为 -1,点B对应的数为3,点P为数轴上一动点,其对应的数为x。

- 若点P到点A、点B的距离相等,求点P对应的数。

- 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值;若不存在,请说明理由。

- 当点P以每分钟1个单位长度的速度从原点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A、点B的距离相等?解析:- 因为点P到点A、点B的距离相等,所以x=(-1 + 3)/(2)=1。

- 存在。

当点P在点A左侧时,-1 - x+3 - x = 5,-2x+2 = 5,-2x = 3,解得x =-(3)/(2);当点P在点B右侧时,x - (-1)+x - 3 = 5,2x - 2 = 5,2x = 7,解得x=(7)/(2)。

七年级动点问题20道含答案

七年级动点问题20道含答案

七年级动点问题20道含答案一、七年级动点问题20道1. 函数$y=3cos\frac{3\pi x}{4}$的图像称作:(A.余弦曲线)2. 斜率等于负一,斜截式为$y=7x-5$的直线称作:(B.负斜率直线)3. 求函数$f(x)=x^3-7x+2$在$x=2$处取得最大值:(D.8)4. 直线$y=mx+b$中,m 为:(A.斜率)5. 闭合曲线$\frac{x^2}{4}+\frac{y^2}{9}=1$在$x$=4处的坐标是:(C. $(4,\frac{3}{2})$)6. 函数$f(x)=2x^{2}-3$的最小值是:(B. -3)7. 函数$f(x)=\frac{x^2}{2}+1$的图像是:(A.抛物线)8. 函数$f(x)=2x+5$的大致图象是:(B.直线)9. 三维坐标中,z 轴表示的为:(C.高度)10. 绘制抛物线需要:(A.二个点)11. 点$A(-1,2)$绕原点旋转$90^{\circ}$后,其新坐标是:(B. $(2,-1)$)12. 子弹以15米/秒的速度射出,它从出射点到返回出射点所需要的时间为:(B.2秒)13. 平面内的向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为30°,且$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,则$\overrightarrow{a}\cdot\overrightarrow{b}$ 为:(D.6)14. 直线$y=2/3x-3$的斜率为:(B. 2/3)15. 一个三角形的两个锐角都为$60^{\circ}$,则这个三角形是:(D.等腰三角形)16. 半径为4的圆的面积为:(B.50.27公分平方)17. 在正方形ABCD中,点P到边AB的距离是4,A点到点P的垂直平分线的距离为:(D. 2)18. 圆$x^{2}+y^{2}+8x+2y-13=0$的圆心坐标是:(C. (-4, -1))19. $f(x)=-2x^2+4$的最小值是:(A. 0)20. 角A,B,C构成的夹角是60度,AB=5,BC=7,AC=:(B. 8)二、七年级动点文章今天,我们就来一起练习一下关于七年级动点的知识吧!首先,对于函数问题,函数$y=3cos\frac{3\pi x}{4}$的图像应当称作余弦曲线。

初中数学动点题型汇总

初中数学动点题型汇总

初中数学动点集一、线段和、差中的动点(一)利用垂线段最短的性质解决最大(小)值的问题1.如下图所示,△ABC 是以AB 为斜边的直角三角形,AC=4,BC=3,P 为AB 上的一动点,且PE⊥AC 于E,PF ⊥BC 于F,则线段EF 长度的最小值是。

2.如图所示,在菱形ABCD 中,过A 作AE⊥BC 于E,P 为AB 上一动点,已知135 AB BE ,EC=8,则线段PE 的长度最小值为。

3.如图所示,等边△ABC 的边长为1,D、E 两点分别在边AB、AC 上,CE=DE,则线段CE 的最小值为。

4.如右图所示,点A 的坐标为(0,22-),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为。

5.在平面直角坐标系xoy中,直线y=2x+m与y轴交于点A,与直线y=-x+4交于点B(3,n),p为直线y=-x+4上一动点。

(1)求m,n的值(2)当线段AP最短时,求点p的坐标。

2。

6.已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=30试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=。

(二)利用三点共线的特征解决最大(小)值的问题1.如图所示,四边形ABCD是正方形,边长是4,E是BC上一点,且BE=1,P是对角线AC上任意一点,则PE+PB的最小值是。

2.如图所示,点P是边长为1的菱形ABCD对角线AC上的一个动点,M、N分别是AB,BC边上的中点,PM+PN 的最小值是。

3.如图所示,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是。

4.如图1所示,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE。

直线BE、AF相交于点G,则有BE=AF,BE⊥AF;如图2所示,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),依然有BE=AF,BE⊥AF;若在上述的图1与图2中,正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化。

初中动点问题题目汇总情况

初中动点问题题目汇总情况

一.选择题1.(2015湖南邵阳第9题3分)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()2.(2015湖北荆州第9题3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B 点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A B C.D.3.(2015•甘肃武威,第10题3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()4.(2015•四川资阳,第8题3分)如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是5. (2015•四川省内江市,第11题,3分)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C. 2D.6. (2015•山东威海,第11题3分)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()7.(2015山东省德州市,11,3分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是()A. ②③B. ②④C. ①③④D.②③④二.解答题1. (2015•四川甘孜、阿坝,第28题12分)如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.2. (2015•山东威海,第25题12分)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.3.(2015•山东日照,第22题14分)如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(Ⅰ)求抛物线的解析式和tan∠BAC的值;(Ⅱ)在(Ⅰ)条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE 以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?4.(2015•山东聊城,第25题12分)如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N 的坐标(用含x 的代数式表示);(2)设△OMN 的面积是S ,求S 与x 之间的函数表达式;当x 为何值时,S 有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN 是直角三角形?若存在,求出x 的值;若不存在,请说明理由.5.(2015·深圳,第22题 分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm /s 的速度向右移动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题
1.(2015湖南邵阳第9题3分)如图,在等腰△ABC中,
直线l垂直底边BC,现将直线l沿线段BC从B点匀速
平移至C点,直线l与△ABC的边相交于E、F两点.设
线段EF的长度为y,平移时间为t,则下图中能较好反
映y与t的函数关系的图象是()
2.(2015湖北荆州第9题3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着
边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
A B C.D.
3.(2015?甘肃武威,第10题3分)如图,矩形ABCD
中,AB=3,BC=5,点P是BC边上的一个动点(点P
与点B、C都不重合),现将△PCD沿直线PD折叠,
使点C落到点F处;过点P作∠BPF的角平分线交
AB于点E.设BP=x,BE=y,则下列图象中,能表示
y与x的函数关系的图象大致是()
4.(2015?四川资阳,第8题3分)如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是
1。

相关文档
最新文档