初中数学动点问题归纳,推荐文档

合集下载

(完整word版)初中数学动点问题专题复习及答案

(完整word版)初中数学动点问题专题复习及答案

初中数学动点问题练习题1、佇夏回族自治区)已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B 时运动终止),过点M、N分别作AB边的垂线,与△ ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.1、线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t .求四边形MNQP的面C积S随运动时间t变化的函数关系式,并写岀自变量t的取值范围.QPAM N B2、如图,在梯形ABCD中,AD // BC,AD 3,DC 5,AB 4. 2,Z B 45 .动点M 从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD 以每秒1个单位长度的速度向终点D运动•设运动的时间为t秒.(1)求BC的长.(2)当MN // AB时,求t的值.(3)试探究:t为何值时,△ MNC为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC是梯形,OA// BC,点A的坐标为(6,0),点B 的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN // OC?⑵设△ CMN的面积为S,求S与t之间的函数解析式, 并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?x(3)连接AC,那么是否存在这样的 t ,使MN 与AC 互相垂直? 若存在,求出这时的t 值;若不存在,请说明理由.4、(河北卷)如图,在 Rt A ABC 中,/ C = 90°, AC = 12, BC = 16,动点P 从点A 出发沿 AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P, Q 分别从点A , C 同时出发,当其中一点到达端点时,另一点也随之 停止运动.在运动过程中,△ PCQ 关于直线PQ 对称的图形是△ PDQ.设运动时间为t (秒). (1 )设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2) t 为何值时,四边形 PQBA 是梯形?(3) 是否存在时刻t ,使得PD // AB ?若存在,求出t 的值;若不存在,请说明理由; (4) 通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD 丄AB ?若存在,请估计t 的值在括号中的哪个时间段内( O W t < 1 ; 1 v t w 2 ; 2v t w 3; 3 v t < 4);若不存在,请简要说明理由.5、(山东济宁)如图, A 、B 分别为x 轴和y 轴正半轴上的点。

初中数学动点问题总结

初中数学动点问题总结

初中数学动点问题总结第一篇:初中数学动点问题总结初二动点问题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于 E 则四边形ABED为矩形∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC 的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP 的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= =,CM=(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t 解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB 即:(1+t)+1+t=(3+4+5)解得:t=(5分)而MN= NC=(1+t).∴S△MNC=(1+t)2=(1+t)2×4×3 当t= 时,S△MNC=(1+t)2= ≠ ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC 即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t 解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2 而MN= NC=(1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ∴[(1+t)]2+(2t-3)2=(4-t)2 解得:t1= ∴当t=,t=,t2=-1(舍去),t=时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN 为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1=-1,x2=--1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x=-1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由 PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM=(16-t)×12=96-6t(0≤t≤(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况).:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得合题意,舍去).综上所述,当形.或时,以B、P、Q为顶点的三角形是等腰三角,t2=16(不点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=-34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t (秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=-35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,-35t2+245t= 485 ∴t=4 ∴PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325 ∴OD=8-325= 85 ∴P(85,245)M1(285,245),M2(-125,245),M3(125,-245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.第二篇:初中数学几何动点问题初中数学几何动点问题动点型问题是最近几年中考的一个热点题型,从你初二的动点问题就不是很好这点来看,我认为你对动点问题缺乏技巧。

八年级数学动点题型归纳

八年级数学动点题型归纳

八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,求公式的长度。

解析:过点公式作公式于点公式。

因为公式,等腰三角形三线合一,所以公式。

在公式中,根据勾股定理公式。

当公式时,公式,则公式。

在公式中,根据勾股定理公式。

2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。

解析:已知公式,则公式,公式。

根据三角形面积公式公式,对于公式,底为公式,高为公式。

所以公式。

二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。

因为四边形公式是矩形,所以公式,公式。

则公式,公式。

在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。

因为公式且公式,所以四边形公式是梯形。

2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。

求四边形公式的面积公式与公式的函数关系式。

解析:四边形公式的面积公式。

过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。

所以公式。

因为公式,则公式。

公式。

所以公式。

三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。

初中数学动点问题例题集-推荐下载

初中数学动点问题例题集-推荐下载

△CQP 是否全等,请说明理由;
A
②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q
的运动速度为多少时,能够使 △BPD 与 △CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原
来的运动速度从点 B 同时出发,都逆时针沿 △ABC 三边 B
运动,求经过多长时间点 P 与点 Q 第一次在 △ABC 的哪
系式;
(3)当 S 48 时,求出点 P 的坐标,并直接写出以点 O、P、 Q 为顶点的平行 5
四边形的第四个顶点 M 的坐标.
y
B
解(1)A(8,0)B(0,6)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 分
(2)OA 8,OB 6 AB 10 点 Q 由 O 到 A 的时间是 8 8 (秒)
8 5
,25,4 ,,M 2,
12 5
24 5
M
3

12 5

24 5
3 如图,在平面直角坐标系中,直线 l:y=-2x-8 分别与 x 轴,y 轴相交于 A,B 两点,点 P(0,k)是 y 轴的负半轴上的一个动点,以 P 为圆心,3 为半径作⊙P. (1)连结 PA,若 PA=PB,试判断⊙P 与 x 轴的位置关系,并说明理由; (2)当 k 为何值时,以⊙P 与直线 l 的两个交点和圆心 P 为顶点的三角形
∴点 P ,点 Q 运动的时间 t BP 4 秒, 33
∴ vQ

CQ t

5 4
3Leabharlann 15 4厘米/秒. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7

中考动点问题经典题型归类总结附答案

中考动点问题经典题型归类总结附答案

专题十动点型问题考点一:建立动点问题的函数解析式(或函数图像)例1 (2013•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.1.(2013•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

(一)点动问题.例2 (2013•河北)如图,梯形ABCD中,AB∥DC,DE⊥AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止.设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是()A.B.C.D.思路分析:分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t 的函数表达式,继而可得出函数图象. 解:在Rt △ADE 中,AD=2213AE DE +=,在Rt △CFB 中,BC=2213BF CF +=,①点P 在AD 上运动:对应训练2.(2013•北京)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2.设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .2.A(二)线动问题例3 (2013•荆门)如右图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是( )A.B.C.D.解:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;结合选项可得,A选项的图象符合.故选A.对应训练3.(2013•永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A.B.C.D.3.A(三)面动问题例4 (2013•牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()A.B.C.D.解:根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-Vt×1=4-Vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,A符合;故选A.对应训练4.(2013•衡阳)如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.4.A究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(4)△QMN 为等腰三角形的情形有两种,需要分类讨论,避免漏解.解:(1)∵C (7,4),AB ∥CD ,∴D (0,4).∵sin ∠DAB=22, ∴∠DAB=45°,∴OA=OD=4,∴A (-4,0).设直线l 的解析式为:y=kx+b ,则有4-40b k b =⎧⎨+=⎩, 解得:k=1,b=4,∴y=x+4.∴点A 坐标为(-4,0),直线l 的解析式为:y=x+4.(2)在点P 、Q 运动的过程中:①当0<t≤1时,如答图1所示:过点C 作CF ⊥x 轴于点F ,则CF=4,BF=3,由勾股定理得BC=5.过点Q 作QE ⊥x 轴于点E ,则BE=BQ•cos ∠CBF=5t•35=3t . ∴PE=PB -BE=(14-2t )-3t=14-5t ,S=12PM•PE=12×2t×(14-5t )=-5t 2+14t ; ②当1<t≤2时,如答图2所示:过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5,PE=AF-AP-EF=11-2t-(5t-5)=16-7t,S=12PM•PE=12×2t×(16-7t)=-7t2+16t;③当点M与点Q相遇时,DM+CQ=CD=7,即(2t-4)+(5t-5)=7,解得t=167.当2<t<167时,如答图3所示:MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,S=12PM•MQ=12×4×(16-7t)=-14t+32.(3)①当0<t≤1时,S=-5t2+14t=-5(t-75)2+495,∵a=-5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,S=-7t2+16t=-7(t-87)2+647,∵a=-7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647;③当2<t<167时,S=-14t+32∵k=-14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)△QMN为等腰三角形,有两种情形:①如答图4所示,点M在线段CD上,MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,由MN=MQ,得16-7t=2t-4,解得t=209;②如答图5所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209或t=125时,△QMN为等腰三角形.对应训练5.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B-A-D-A 运动,沿B-A运动时的速度为每秒13个单位长度,沿A-D-A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q 两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A-D-A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B-A-D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B-A-D运动过程中,当线段PQ 扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.5.解:(1)当点P沿A-D运动时,AP=8(t-1)=8t-8.当0<t<1时,如图①.作过点Q作QE⊥AB于点E.S△ABQ=12AB•QE=12BQ×12,4当0<t≤1时,如图③.∵S △BPM =S △BQM ,∴PM=QM .∵AB ∥QR ,∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中PBM QRMBPM MQR PM QM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB∴13t=13,解得:t=1当1<t≤83时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.34∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或83时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(4)如图⑥,当P在A-D之间或D-A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13,解得:t=7或t=95 13.当P在A-D之间或D-A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50-5t+13=8(t-1)-50,解得:t=121 13.∴当t=7,t=9513,t=12113时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.中考真题演练一、选择题1.(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.51.D2.(2013•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变2.D3.(2013•盘锦)如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为()A.B.C.D.3.B4.(2013•龙岩)如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.54.B5.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.516、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A、①②③B、①④⑤(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.6.解:(1)∵A(8,0),B(0,6),8.(2013•宜昌)半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF 重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O如图,过O 点作OK ⊥MN 于K ,∴∠MON=2∠NOK ,MN=2NK ,在Rt △ONK 中,sin ∠NOK=2NK NK ON =, ∴∠NOK 随NK 的增大而增大,∴∠MON 随MN 的增大而增大,∴当MN 最大时∠MON 最大,当MN 最小时∠MON 最小,①当N ,M ,A 分别与D ,B ,O 重合时,MN 最大,MN=BD ,∠MON=∠BOD=90°,S 扇形MON 最大=π(cm 2),②当MN=DC=2时,MN 最小,∴ON=MN=OM ,∴∠NOM=60°,S 扇形MON 最小=23π(cm 2), ∴23π≤S 扇形MON ≤π. 故答案为:30°.9.(2013•重庆)已知:如图①,在平行四边形ABCD 中,AB=12,BC=6,AD ⊥BD .以AD 为斜边在平8.解:(1)∵四边形ABCD是平行四边形,∴AD=BC=6.在Rt△ADE中,AD=6,∠EAD=30°,∴AE=AD•cos30°=33,DE=AD•sin30°=3,∴△AED的周长为:6+33+3=9+33.(2)在△AED向右平移的过程中:(I)当0≤t≤1.5时,如答图1所示,此时重叠部分为△D0NK.∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=3t,∴S=S△D0NK=12ND0•NK=12t•3t=32t2;(II)当1.5<t≤4.5时,如答图2所示,此时重叠部分为四边形D0E0KN.∵AA0=2t,∴A0B=AB-AA0=12-2t,∴A0N=12A0B=6-t,NK=A0N•tan30°=33(6-t).∴S=S四边形D0E0KN=S△ADE-S△A0NK=12×3×33-12×(6-t)×33(6-t)=-36t2+23t-332;(III)当4.5<t≤6时,如答图3所示,此时重叠部分为五边形D0IJKN.∵AA 0=2t,∴A0B=AB-AA0=12-2t=D0C,∴A0N=12A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=3(6-t);易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,S=S梯形BND0I-S△BKJ=12[t+(2t-6)]• 3(6-t)-12•(12-2t)•33(12-2t)=-1336t2+203t-423.综上所述,S与t之间的函数关系式为:S=2223(0 1.5)2333-23-(1.5 4.5)62133-203-423(4.56)6t tS t t tt t t⎧≤≤⎪⎪⎪⎪=+<≤⎨⎪⎪+<≤⎪⎪⎩.(3)存在α,使△BPQ为等腰三角形.理由如下:经探究,得△BPQ∽△B1QC,故当△BPQ为等腰三角形时,△B1QC也为等腰三角形.(I)当QB=QP时(如答图4),则QB1=QC,∴∠B1CQ=∠B1=30°,即∠BCB1=30°,∴α=30°;(II)当BQ=BP时,则B1Q=B1C,若点Q在线段B1E1的延长线上时(如答图5),∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,即∠BCB1=75°,∴α=75°.10.(2013•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB、(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.11.解:(1)当点P 运动到点F 时,∵F 为AC 的中点,AC=6cm ,∴AF=FC=3cm ,∵P 和Q 的运动速度都是1cm/s ,∴BQ=AF=3cm ,∴CQ=8cm -3cm=5cm ,故答案为:5.(2)设在点P 从点F 运动到点D 的过程中,点P 落在MQ 上,如图1,则t+t -3=8,t=112, BQ 的长度为112×1=112(cm );(3)∵D 、E 、F 分别是AB 、BC 、AC 的中点,∴DE=12AC=12×6=3, DF=12BC=12×8=4, ∵MQ ⊥BC ,∴∠BQM=∠C=90°,∵∠QBM=∠CBA ,∴△MBQ ∽△ABC ,∴BQ MQ BC AC=, ∴86x MQ =,MQ=34x,分为三种情况:①当3≤x<4时,重叠部分图形为平行四边形,如图2,y=PN•PD=34x(7-x)即y=-34x2+214x;②当4≤x<112时,重叠部分为矩形,如图3,y=3[(8-X)-(X-3))]即y=-6x+33;③当112≤x≤7时,重叠部分图形为矩形,如图4,y=3[(x-3)-(8-x)]即y=6x-33.213.解:(1)如图,2如图2,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小∵B(6,0),C(0,2)(3)如图3,连接ME ,∵CE 是⊙M 的切线∴ME ⊥CE ,∠CEM=90°由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD 与△MED 中COA DEMODC MD EOC ME∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM设OD=x 则CD=DM=OM -OD=4-x 则RT △COD 中,OD 2+OC 2=CD 2, ∴x 2+22=(4-x )2∴x=32,∴D (32,0)设直线CE 的解析式为y=kx+b ∵直线CE 过C (0,2),D (32,0)两点,则3022k b b ⎧+=⎪⎨⎪=⎩,解得:432k b ⎧=-⎪⎨⎪=⎩。

初中数学动点问题归纳

初中数学动点问题归纳

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析 过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点、、 、 31(2009年齐齐哈尔市)直线 y x 6与坐标轴分别交于 A 、B 两点,动点P 、Q 同时从O 点出发,4同时到达A 点,运动停止•点 Q 沿线段OA 运动,速度为每秒1个单 7 yB位长度,点P 沿路线O T B T A 运动.(1) 直接写出A 、B 两点的坐标;t 秒,△ OPQ 的面积为S ,求出S 与t 之间 _ O(3)当S 时,求出点P 的坐标,并直接写出以点 O 、P 、Q 为顶点的平行四边形的第四个顶点M 的5坐标.解:1、A (8, 0) B (0, 6)22、当 0 v t v 3 时,S=t当 3 v t v 8 时,S=3/ 8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点 OP 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类 的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是O O 的直径,弦 BC=2cm / ABC=60).(1) 求O O 的直径;(2) 若D 是AB 延长线上一点,连结 CD 当BD 长为多少时,CD 与O O 相切;(3) 若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为 t(s)(0 ::: t ::: 2),连结EF ,当t 为何值时,△ BEF 为直角三角形.(2)设点Q 的运动时间为的函数关系式;P fQ注意:第(图问按直角位置分类讨论图(2)3、(2009重庆綦江)如图,已知抛物线y= a(x -1)2 3、-3(a = 0)经过点A(-2, 0),抛物线的顶点为Bx注意:第(2)问按点P 到拐点B 所用时间分段分类;过O 作射线0M // AD .过顶点D 平行于x 轴的直线交射线 OM 于点C , B 在x 轴正半轴上,连结BC . (1) 求该抛物线的解析式;(2) 若动点P 从点0出发,以每秒1个长度单位的速度沿射线 0M 运动,设点P 运动的时间为t(s).问 当t 为何值时,四边形 DAOP 分别为平行四边形?直角梯形?等腰梯形? (3) 若OC =0B ,动点P 和动点Q 分别从点0和点B 同时出发,分别以每秒 1 单位和2个长度单位的速度沿 0C 和B0运动,当其中一个点停止运动时另一个点也随 之停止运动.设它们的运动的时间为 t (s),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时 PQ 的长. 注意:发现并充分运用特殊角/DAB=60当厶0PC 面积最大时,四边形 BCPQ 勺面积最小。

(完整word)初中数学动点问题归纳,推荐文档

(完整word)初中数学动点问题归纳,推荐文档

图(1) 图(2) 图(3)题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点31、( 2009年齐齐哈尔市)直线 y x 6与坐标轴分别交于 A B 两点,动点P 、Q 同时从O 点出发,4同时到达A 点,运动停止•点 Q 沿线段OA 运动,速度为每秒1个单 7 yB位长度,点P 沿路线O T B T A 运动. (1) 直接写出A 、B 两点的坐标; (2)设点Q 的运动时间为t 秒,△ OPQ 的面积为S ,求出S 与t 之间 _ .- O「 48(3)当S 时,求出点P 的坐标,并直接写出以点 O 、P 、Q 为顶点的平行四边形的第四个顶点M 的5坐标.解:1、A ( 8, 0) B (0, 6)r , 22、当 0 v t v 3 时,S=t当 3 v t v 8 时,S=3/ 8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点 O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不 同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后 画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是O O 的直径,弦 BC=2cm , / ABC=60 o .(1) 求O O 的直径;(2) 若D 是AB 延长线上一点,连结 CD ,当BD 长为多少时,CD 与O O 相切;(3) 若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点 F 以1cm/s 的速度从B 点出发沿动点问题的函数关系式;P tQBC方向运动,设运动时间为t(s)(0 t 2),连结EF,当t为何值时,△ BEF为直角三角形. 注意:第(3)问按直角位置分类讨论D共3、(2009重庆綦江)如图,已知抛物线y a(x 1)2 3. 3(a 0)经过点A( 2, 0),抛物线的顶点为D , 过O作射线OM// AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒 1 单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s),连接PQ ,当t为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ的长.注意:发现并充分运用特殊角/ DAB=60 °当△OPQ面积最大时,四边形BCPQ的面积最小。

(完整版)初二数学动点问题归类复习(含例题、练习及答案)

(完整版)初二数学动点问题归类复习(含例题、练习及答案)

初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目. 解决这类问题的关键是动中求静, 灵活运用有关数学知识解决问题.关键: 动中求静. 数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。

一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013 年上海市虹口区中考模拟第25 题)如图1,在Rt△ABC 中,∠ A=90°,AB=6,AC =8,点 D 为边BC 的中点,DE⊥BC 交边AC 于点E,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠ PDQ =90°.(1)求ED 、EC 的长;(2)若BP=2,求CQ 的长;(3)记线段PQ与线段DE的交点为F,若△ PDF 为等腰三角形,求BP的长.思路点拨1.第(2)题BP= 2 分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF 时,根据相似三角形的传递性,转化为探求等腰三角形CDQ .解答:(1)在Rt△ ABC 中,AB=6,AC=8,所以BC=10.3 15 25在Rt△CDE 中,CD =5,所以ED CD tan C 5 ,EC .4 4 4(2)如图2,过点 D 作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN 是△ABC 的两条中位线,DM=4,DN=3.由∠ PDQ =90°,∠ MDN =90°,可得∠ PDM =∠ QDN .因此△ PDM∽△ QDN.①如图3,当BP=2,P在BM 上时,PM=1.3 3 3 19此时QN 3PM 3.所以CQ CN QN 4 3 19.4 4 4 4②如图4,当BP=2,P在MB 的延长线上时,PM=5.所以PMQNDM 4.所以QN 3PM ,PM 4QN.DN 3 4 3图2图33 15 15 31此时QN 3PM 15.所以CQ CN QN 4 15 31.4444(3)如图5,如图2,在Rt △PDQ 中,tan QPD QD DN3PD DM4在Rt△ ABC 中,tan C BA 3BA 3.所以∠ QPD=∠ C.CA 4由∠ PDQ =90°,∠ CDE =90°,可得∠ PDF=∠ CDQ.因此△ PDF∽△ CDQ.当△ PDF 是等腰三角形时,△ CDQ 也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图 3 所示).4 4 4 5此时PM QN .所以BP BM PM 3 .3 3 3 3②如图6,当QC=QD 时,由CH cosC CH,可得CQ5425 CQ25825所以QN=CN-CQ=4257(如图 2 所示).8847此时PM QN .所以BP BM PM 3 7253666③不存在DP=DF 的情况.这是因为∠ DFP≥∠ DQP >∠ DPQ (如图5,图6所示).图5 图 6考点伸展:如图6,当△ CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三25角形,PB=PD .在△ BDP 中可以直接求解BP .6二、直角三角形:因动点产生的直角三角形问题4 例2:(2008年河南省中考第23题)如图1,直线y x 4和x轴、y轴的交点分别为B、C,点3A 的坐标是(-2,0).(1)试说明△ ABC 是等腰三角形;2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒 1 个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S.① 求S与t 的函数关系式;②设点M 在线段OB 上运动时,是否存在S=4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△ MON 为直角三角形时,求t 的值.5思路点拨:1.第( 1)题说明△ ABC 是等腰三角形,暗示了两个动点 M 、N 同时出发,同时到达终点. 2.不论 M 在 AO 上还是在 OB 上,用含有 t 的式子表示 OM 边上的高都是相同的,用含有 t 的 式子表示 OM 要分类讨论.3.将 S =4 代入对应的函数解析式,解关于 t 的方程.4.分类讨论△ MON 为直角三角形,不存在∠ ONM = 90°的可能. 解答:4( 1)直线 y3 x4 与 x 轴的交点为 B (3,0)、与 y 轴的交点 C ( 0,4).3Rt △BOC 中, OB = 3,OC = 4,所以 BC = 5.点 A 的坐标是( -2,0),所以 BA =5. 因此 BC = BA ,所以△ ABC 是等腰三角形.( 2)①如图 2,图 3,过点 N 作 NH ⊥AB ,垂足为 H .44 在 Rt △BNH 中, BN =t , sin B ,所以 NH t . 55 如图 2,当 M 在 AO 上时, OM =2-t ,此时1 1 42 2 4 S OM NH (2 t) t t t .定义域为 0< t ≤2.2 2 5 5 5如图 3,当 M 在 OB 上时, OM =t - 2,此时11 42 2 SOM NH (t 2) t t 2 2 25 5解得 t 1 2 11, t 2 2 11(舍去负值)因此,当点 M 在线段 OB 上运动时,存在 S =4 的情形,此时 t 2 11 .3③ 如图 4,当∠ OMN =90°时,在 Rt △BNM 中, BN = t ,BM 5 t ,cosB ,4.55 5 54t5t 325 所以 .解得 t .t 58如图 5,当∠ OMN =90°时, N 与 C 重合, t 5. 不存在∠ ONM =90°的可能.考点伸在本题情景下,如果△ MON 的边与 AC 平行,求 t 的值.如图 6,当 ON//AC 时, t =如图 7,当 MN //AC 时, t =2.5.6,BA =3 5 .分别以 OA 、OC 边所在直线为 x 轴、 y 轴建立如图 1 所示的平面直角坐标系.图1图2 思路点拨: 1.第( 1)题和第( 2)题蕴含了 OB 与 DF垂直的结论,为第( 3)题讨论菱形提供了计 算基础.2.讨论菱形要进行两次 (两级)分类,先按照 DO 为边和对角线分类, 再进行二级分类,图6三、平行四边形问题:因动点产生的平行四边形问题 例 3:( 2010年山西省中考第 26 题)在直角梯形 OABC 中,CB//OA ,∠ COA =90°, CB =3,OA( 1)求点 B 的坐标;(2)已知 D 、E 分别为线段 OC 、OB 上的点, 直线 DE 的解析式;(3)点 M 是(2)中直线 DE 上的一个动点,在 D 、M 、N 为顶点的四边形是菱形?若存在,请求OD =5,OE =2EB ,直线 DE 交 x 轴于点 F .求 x 轴上方的平面内是否存在另一点 N ,使以 O 、 N 的坐标;若不存在,请说明理由.DO 与DM、DO 与DN 为邻边.解答:(1)如图2,作BH⊥x 轴,垂足为H,那么四边形BCOH 为矩形,OH=CB=3.在Rt△ ABH 中,AH =3,BA=3 5,所以BH=6.因此点 B 的坐标为(3,6).22(2) 因为OE=2EB,所以x E x B 2 ,y E y B 4 ,E(2,4).33 b 5, 1设直线DE 的解析式为y=kx+b,代入D(0,5),E(2,4),得解得k ,b 5 .所2k b 4. 21 以直线DE 的解析式为y x 5 .21(3) 由y x 5,知直线DE 与x轴交于点F(10,0),OF=10,DF=5 5 .2①如图3,当DO 为菱形的对角线时,MN 与DO 互相垂直平分,点M 是DF 的中点.此时点M55 的坐标为(5, ),点N 的坐标为( -5, ).22②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM 为菱形的邻边时,NO =5,延长MN交x轴于P.考点伸展如果第( 3)题没有限定点N 在x 轴上方的平面内,那么菱形还有如图 6 的情形.由△ NPO ∽△ DOF ,得NP POOFNO,即NP PO 5.解得NP 5DF 5 10 5 5图3图5 图6DOPO四、相似三角形:因动点产生的相似三角形问题例4:(2013 年苏州中考28 题)如图,点O 为矩形ABCD 的对称中心,AB=10cm,BC=12cm,点E、F、G 分别从A、B、C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点 E 的运动速度为1cm/s,点 F 的运动速度为3cm/s,点G 的运动速度为 1.5cm/s,当点 F 到达点 C (即点 F 与点 C 重合)时,三个点随之停止运动.在运动过程中,△ EBF 关于直线EF 的对称图形是△EB′F.设点E、F、G 运动的时间为t(单位:s).(1)当t= s 时,四边形EBFB ′为正方形;(2)若以点E、B、F 为顶点的三角形与以点F,C,G 为顶点的三角形相似,求t 的值;(3)是否存在实数t,使得点B′与点O 重合?若存在,求出t的值;若不存在,请说明理由.相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t 值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF ,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:① 若△EBF∽△FCG ,则有,即,解得:t=2.8;② 若△EBF∽△GCF ,则有,即,解得:t=﹣14﹣2 (不合题意,舍去)或t=﹣14+2 .∴当t=2.8 s或t=(﹣14+2 )s时,以点E、B、F 为顶点的三角形与以点F,C,G 为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O 重合.如图,过点O 作OM⊥BC 于点M,则在Rt△OFM 中,OF =BF =3t,FM = BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM 2=OF2,即:52+(6﹣3t)2=(3t)2解得:t= ;过点O 作ON⊥AB 于点N,则在Rt△OEN 中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵ ≠3.9,∴不存在实数t,使得点 B ′与点O 重合.考点伸本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在.拓展练习:1、如图1,梯形ABCD 中,AD∥ BC,∠ B=90 °,AB=14cm,AD=18cm,BC=21cm, 点P从 A 开始沿AD 边以1cm/秒的速度移动,点Q 从 C 开始沿CB 向点 B 以 2 cm/秒的速度移动,如果P,Q 分别从A,C同时出发,设移动时间为t 秒。

初中数学数轴动点问题经典

初中数学数轴动点问题经典

初中数学数轴动点问题经典
初中数学中的数轴动点问题是一个常见的问题类型,主要考察学生对于数轴、坐标系以及速度、时间等概念的理解和应用。

以下是一些经典的数轴动点问题:
1. 相遇问题:两个动点在数轴上分别从A、B两点同时向对方移动,求何时何地相遇。

示例:点A从原点出发,以每秒3个单位的速度向左移动,点B从
表示数2的点出发,以每秒1个单位的速度向右移动,求A、B两点相遇的点。

2. 追及问题:一个动点追赶另一个动点,求何时追上。

示例:点A从表示数-1的点出发,以每秒2个单位的速度向右移动,点B从表示数5的点出发,以每秒1个单位的速度向左移动,求A追上B
的时间和位置。

3. 速度与加速度问题:一个动点在数轴上移动,其速度随时间变化,求某时刻的位置或某段时间内的位移。

示例:点A从表示数-3的点出发,初始速度为每秒2个单位,并在接下来的2秒内,速度每秒增加1个单位,求2秒末A的位置。

4. 周期性移动问题:一个动点在数轴上按照某种周期性规律(如正弦、余弦函数)移动,求某时刻的位置或某段时间内的位移。

示例:点A从表示数0的点出发,按照正弦函数的规律上下移动,求5秒内A经过的路径长度。

5. 角度与距离问题:一个动点在数轴上以某个角度和速度移动,求某时刻的位置或某段时间内的位移。

示例:点A从表示数1的点出发,以每秒30°的速度顺时针旋转,求3秒后A移动的距离。

解决这类问题的关键是理解并应用数轴上的距离、速度和时间的关系,以及速度、加速度等物理概念在数学上的表达。

同时,还需要有一定的几何直觉和代数运算能力。

初一数学动点问题归类及解题技巧

初一数学动点问题归类及解题技巧

初一数学动点问题归类及解题技巧下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、问题归类动点问题是初中数学中常见的一类问题,主要涉及到物体的移动、时间、速度等概念。

(完整版)七年级动点问题大全(给力)

(完整版)七年级动点问题大全(给力)

七年级动点问题大全例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

初中数学几何动点问题分类专题汇总全书

初中数学几何动点问题分类专题汇总全书

初中数学几何动点问题分类专题汇总全书近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴).我们知道“对称、平移、旋转” 是三种保形变换。

通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。

数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。

(1)去伪存真。

刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。

(2)科学选择。

捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。

(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。

(完整版)初中数学动点问题归纳

(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。

初中数学动点问题专题(含答案)

初中数学动点问题专题(含答案)

中考动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG P O A B 图1 xy例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.3(1) ABCO 图8HCABCDEOlA ′一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长.(二)线动问题在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题1.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.2已知:在△ABC 中,AB =AC ,∠B =30º,BC =6,点D 在边BC 上,点E 在线段DC 上,DE =3,△DEF 是等边三角形,边DF 、EF 与边BA 、CA 分别相交于点M 、N . (1)求证:△BDM ∽△CEN ;(2)设BD =x ,△ABC 与△DEF 重叠部分的面积为y ,求y关于x 的函数解析式,并写出定义域.(3)当点M 、N 分别在边BA 、CA 上时,是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切,如果存在,请求出x 的值;如不存在,请说明理由.CABF DEMNC例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 .变式1:已知△ABC 是半径为2的圆内接三角形,若32 AB ,求∠C 的大小.变式2: 如图,半经为1的半圆O 上有两个动点A 、B ,若AB=1,判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化范围,若不变化,求出它的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点31、( 2009年齐齐哈尔市)直线 y x 6与坐标轴分别交于 A B 两点,动点P 、Q 同时从O 点出发,4同时到达A 点,运动停止•点 Q 沿线段OA 运动,速度为每秒1个单 7 yB位长度,点P 沿路线O T B T A 运动. (1) 直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△ OPQ 的面积为S ,求出S 与t 之间 _ .-O「 48(3)当S 时,求出点P 的坐标,并直接写出以点 O 、P 、Q 为顶点的平行四边形的第四个顶点M 的5坐标.解:1、A ( 8, 0) B (0, 6)r , 22、当 0 v t v 3 时,S=t当 3 v t v 8 时,S=3/ 8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点 O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不 同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后 画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是O O 的直径,弦 BC=2cm , / ABC=60 o .(1) 求O O 的直径;(2) 若D 是AB 延长线上一点,连结 CD ,当BD 长为多少时,CD 与O O 相切;(3) 若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点 F 以1cm/s 的速度从B 点出发沿动点问题的函数关系式;P t QBC 方向运动,设运动时间为 t(s)(0 t 2),连结EF ,当t 为何值时,△ BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线y a(x 1)2 3. 3(a 0)经过点A( 2, 0),抛物线的顶点为 D , 过O 作射线OM // AD •过顶点D 平行于x 轴的直线交射线 OM 于点C , B 在x 轴正半轴上,连结BC •(1) 求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为t(s).问当t 为何值时,四边形 DAOP 分别为平行四边形?直角梯形?等腰梯形?(3) 若OC OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒 1 单位和2个长度单位的速度沿 OC 和BO 运动,当其中一个点停止运动时另一个点也随 之停止运动.设它们的运动的时间为 t (s),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时 PQ 的长.注意:发现并充分运用特殊角/ DAB=60 °当△OPQ 面积最大时,四边形 BCPQ 的面积最小。

二、特殊四边形边上动点4、(2009年吉林省)如图所示,菱形 ABCD 的边长为6厘米, B 60°.从初始时刻开始,点 P 、Q 同 时从A 点出发,点 P 以1厘米/秒的速度沿 A C B 的方向运动,点 Q 以2厘米/秒的速度沿ABC D 的方向运动,当点 Q 运动到D 点时,P 、Q 两点同时停止运动,设 P 、Q 运动的时间为x 秒时,△ APQ 与厶ABC 重叠部分的面积为y 平方厘米(这里规定: 解答下列问题:(1) __________________________________ 点P 、Q 从出发到相遇所用时间是 ___________________________________ 秒;(2)点P 、Q 从开始运动到停止的过程中,当△ APQ 是等边三角形时(3) 求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类; 提醒-----高相等的两个三角形面积比等 于底边的点和线段是面积为 O 的三角形),D共比5、(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(3 , 4),点C在x轴的正半轴上,直线AC交y轴于点M , AB边交y轴于点H .(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线设厶PMB的面积为S ( S 0),点P的运动时间为的取值范围);(3)在(2)ABC方向以2个单位/秒的速度向终点C匀速运动,t秒,求S与t之间的函数关系式(要求写出自变量t / MPB与/ BCO互为余角,图(1) 图(2)并求此时直线OP与直线AC所夹锐角的正切值.注意:第(2)问按点P到拐点B所用时间分段分类;第(3 )问发现/ MBC=90。

,启CO与/ABM互余,画出点P运动过程中,ZMPB= /ABM的两种情况,求出t值。

利用OB丄AC,再求OP与AC夹角正切值6、(2009年温州)如图,在平面直角坐标系中,点A( 3 , 0) , B(3 3 , 2) , C (0, 2).动点 D 以每秒 1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA DF.设运动时间为t秒.(1) 求/ ABC的度数;⑵当t为何值时,AB// DF;⑶设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线y=x2+mx经过动点E,当S<2-.. 3时,求m的取值范围(写出答案即可).注意:发现特殊性,DE //OA7、( 07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且/ AOC=60。

,点B的坐标是(0,8、、3),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q 从点O开始以每秒a( K a w 3)个单位长度的速度沿射线OA 方向移动,设t(0 t 8)秒后,直线PQ交OB于点D.(1)求/ AOB的度数及线段OA的长;(2)求经过A , B, C三点的抛物线的解析式;(3)当a 3,OD S3时,求t的值及此时直线PQ的解析3式;(4)当a为何值时,以O , P, Q , D为顶点的三角形与OAB相似?当a为何值时,以O, P, Q , D为顶点的三角形与OAB不相似?请给出你的结论,并加以证明&( 08黄冈)已知:如图,在直角梯形COAB中,OC // AB,以O为原点建立平面直角坐标系,A, B, C三点的坐标分别为A(8,0), B(810) , C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线 OABD 的路线移动,移动的时间为 t 秒. (1) 求直线BC 的解析式;2(2) 若动点P 在线段0A 上移动,当t 为何值时,四边形 OPDC 的面积是梯形COAB 面积的 ?7(3) 动点P 从点0出发,沿折线OABD 的路线移动过程中,设厶OPD 的面积为S ,请直接写出S 与t 的 函数关系式,并指出自变量 t 的取值范围;(4) 当动点P 在线段AB 上移动时,能否在线段 0A 上找到一点Q ,使四边形CQPD 为矩形?请求出此9、(09年黄冈市)如图,在平面直角坐标系1 2 4y x x 10与x 轴的交点为点A,与y 轴的交点为点 B.18 9过点B 作x 轴的平行线BC,交抛物线于点C ,连结AC .现有两动 点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿 OA 向终点A 移动,点Q 以每秒1个单位的速度沿 CB 向点B 移动, 点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D , 过点D 作DE // OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点 P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标 ;⑵当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;时动点P 的坐标;若不能,请说明理由.CC若不是,请说明理由;P Axoy 中,抛物线O9⑶当0 v t v 时,A PQ F的面积是否总为定值?若是,求出此定值,2(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.提示:第(3)问用相似比的代换,得PF=OA(定值)。

第(4)问按哪两边相等分类讨论① PQ=PF ② PQ=FQ③ QF=PF.三、直线上动点28、(2009年湖南长沙)如图,二次函数y ax bx c (a 0)相交于点C .连结AC、BC, A、C两点的坐标分别为A( 3,0)、函数的函数值y相等.(1)求实数a, b, c的值;(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分(此题备用)别沿达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN恰好落在AC边上的P处,求t的值及点P的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点的图象与x轴交于A B两点,与y轴C(0, 3),且当x 4和x 2时二次BA、BC边运动,其中一个点到,将△BMN沿MN翻折,B形与△ ABC 相似?如果存在,请求出点 Q 的坐标;如果不存在,请说明理由.提示:第(2)问发现特殊角/ CAB=30 ° /CBA=60 特殊图形四边形 BNPM 为菱形;第(3)问注意到厶ABC 为直角三角形后,按直角位置对应分类;先画出与厶断是否在对称轴上。

19、(2009眉山)如图,已知直线 y —x 1与y 轴交于点A ,与x 轴交于21 2点D,抛物线y x bx c 与直线交于 A 、E 两点,与x 轴交于B 、C 两2点,且B 点坐标为(1 , 0)。

⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△ PAE 是直角三角形时,求点 P 的坐标P 。

M 使| AM MC |的值最大,求出点 M 的坐标。

提示:第(2 )问按直角位置分类讨论后画出图形 ----①P 为直角顶点AE 为斜边时,以 AE 为直径画圆与 x 轴交点即为所求点 P ,②A 为直角顶点时,过点 A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。

10、( 2009年兰州)如图①,正方形 ABCD 中,点A B 的坐标分别为(0, 10), (8, 4),点C 在第一象 限.动点P 在正方形 ABCD 勺边上,从点A 出发沿 2B T C T D 匀速运动,同时动点 Q 以相同速度在x 轴正 半轴上运动,当 P 点到达D 点时,两点同时停止运动,设运动的 时间为t 秒. (1) 当P 点在边AB 上运动时,点 Q 的横坐标x (长度单位)关于 运动时间t (秒)的函数图象如图②所示,请写出点 Q 开始运动 时的坐标及点 P 运动速度;(2) 求正方形边长及顶点 C 的坐标;⑶ 在(1)中当t 为何值时,△ OPC 的面积最大,并求此时 P 点 的坐标;⑷ 如果点P 、Q 保持原速度不变,当点P 沿A T 4 C T D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.ABC 相似的△ BNQ ,再判⑶在抛物线的对称轴上找一点U以题” 12、(2009年上海市) PC AB提示:第(2)问,平分周长时,直线过菱形的中心;第(3)问,转化为点G 到A 的距离加G 到(2)中直线的距离 和最小;发现(2)中直线与x 轴夹角为60°.见“最短路线问(1)当AD=2且点Q 与点B 重合时(如图2所示),3S (2)在图8中,联结AP.当AD -,且点Q 在线段AB 上时,设点B Q 之间的距离为x ,丄竺? y ,其2 SA PBC中S A APQ 表示△ APQ 的面积,S A PBC 表示△ PBC 的面积,求y 关于X 的函数解析式,并写出函数定义域;注意:第(4 )问按点P 分别在AB 、BC 、CD 边上分类讨论;求t 值时,灵活运用等腰三角形 “三线合一” 11、(2009年北京市)如图,在平面直角坐标系xOy 中,△ ABC 三个顶点的坐标分别为A 6,0 ,B 6,0 ,C 0,4.3,延长AC 到点D,使CD= — AC ,过点D 作DE // AB 交BC 的延长线于2点E.(1) 求D 点的坐标;(2) 作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b 将四边形CDFE 分成 周长相等的两个四边形,确定此直线的解析式;(3) 设G 为y 轴上一点,点 P 从直线y kx b 与y 轴的交点出发,先沿 y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线 GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上 述要求到达A 点所用的时间最短。

相关文档
最新文档