第二章 聚合反应工程基础(2-3五)要点
聚合反应工程基础(全套课件567P)

1.1.1 高分子化合物的分类和命名
2. 结构系统命名法:由(International Union of Pure and Applied
Chemistry, IUPAC)提出
I 26
1.1.2 高分子化合物的基本特点
H--NH(CH2)6NH--CO(CH2)4CO--OH
重复结构单元
结构单元
结构单元
n
例2:尼龙66 的重复单元与结构单元
----( CH2--CH=CH--CH 2 -)--(-CH --CH-)---2 y x
n
例3:丁苯橡胶 的重复结构单元与结构单元
I 24
1.1.2 高分子化合物的基本特点
实际上,分子量的大小并无明确的界限,一般
-- -- - --< 1,000 < - - - - - - < 10,000 < - - - - - < 1,000,000 < - - - - 低分子物 低/齐聚物 (Oligomer) 高聚物 (Polymer)
PS
PVC PTFE PAA PET
polystyrene
Polyvinyl chloride Polytetrafluoroethylene polyacrylic acid polyester
聚甲基丙烯酯 甲酯
聚醋酸乙烯 聚乙烯醇 聚丁二烯 聚丙烯腈
PMMA
PVAc PVA PB PAN
polymethylmet hacrylate
主要参考书目
1. 陈甘棠著,《聚合反应工程基础》,中国石化出版社,1991 2. 史子瑾主编,《聚合反应工程基础》,化学工业出版社, 1991 3. C.McGreavy(Ed),“Polymer Reactor Engineering”,Blackie
聚合反应工程基础复习提纲

聚合反应工程基础复习提纲第一章绪论1. 说明聚合反应工程基础研究内容①以工业规模的聚合过程为对象,以聚合反应动力学和聚合体系传递规律为基础;②将一般定性规律上升为数学模型,从而解决一般技术问题到复杂反应器设计,放大等提供定量分析方法和手段;③为聚合过程的开发,优化工艺条件等提供数学分析手段.简而言之:聚合反应工程研究内容为:进行聚合反应器最佳设计;进行聚合反应操作的最佳设计和控制. 第二章化学反应工程基础1.间歇反应器、连续反应器间歇反应器:物料一次放入,当反应达到规定转化率后即取出反应物,其浓度随时间不断变化,适用于小规模,多品种,质量不均。
连续反应器:连续加料,连续引出反应物,反应器内任一点的组成不随时间而改变,生产能力高,易实现自动化,适用于大规模生产。
2. 平推流、平推流反应器及其特点:当物料在长径比很大的反应器中流动时,反应器内每一位原体积中的流体均以同样的速度向前移动,此时在流体的流动方向上不存在返混,这种流动形态就是平推流。
具有此种流动型态的反应器叫平推流反应器。
特点:①在稳态操作时,在反应器的各个截面上,物料浓度不随时间而变化,②反应器内物料的浓度沿着流动方向而改变,故反应速率随时间位置而改变,及反应速率的变化只限于反应器的轴向。
3. 理想混合流、理想混合流反应器及其特点:反应器中强烈的搅拌作用使刚进入反应器的物料微元与器内原有物料微元间瞬时达到充分混合,使各点浓度相等,且不随时间变化,出口流体组成与器内相等这种流动形态称之为理想混合流。
与理想混合流相适应的反应器称为理想混合流反应器。
特点:①反应器内物料浓度和温度是均一的,等于出口流体组成②物料质点在反应器内停留时间有长有短③反应器内物质参数不随时间变化。
5. 容积效率:指同一反应在相同的温度、产量、和转化率的条件下,平推流反应器与理想混合反应器所需的总体积比7.返混:指反应器中不同年龄的流体微元间的混合8、宏观流体、微观流体宏观流体:流体微元均以分子团或分子束存在的流体;微观流体:流体微元均以分子状态均匀分散的流体;9.宏观流动、微观流动宏观流体指流体以大尺寸在大范围内的湍动状态,又称循环流动;微观流体指流体以小尺寸在小范围内的湍动状态11.微观混合、宏观混合P70微元尺度上的均匀化称为宏观混合;分子尺度上的均匀化称为微观混合。
聚合反应工程基础 - 整理

理想流动和理想反应器的设计
进行化学反应时,动量、热量、与质量的传递对反应速率有直接的影响, 所以在设计反应器时必须进行物料,热量及动量的衡算。
由于在有的反应器内,物料的浓度和温度是随着时间和空间的变化而变化 的,要准确地建立物料衡算方程式,有必要先对时间或空间进行微分,然后再 积分的方法进行计算。
不为零。
理想流动和理想反应器的设计
理想化学反应器
理想化学反应器的定义: 当反应器中没有任何传递过程的影响因素存在,反应的结果唯一地
由化学因素决定时,就称它为理想化学反应器。
实践中性能和行为接近于这种理想化学反应器的两种反应器: • 搅拌充分的间歇釜式反应器 • 连续流动的理想管式反应器
作为问题的另一方面,有时把无限偏离理想化学反应器的反应器也 作为“理想”化学反应器,如:
2 聚合反应的装置
2.塔式聚合反应器
一般用于连续生产且对物料的停留时间有一定要求的较高粘度的物 料体系,主要是一些缩聚反应。
苯乙烯本体聚合反应器
己内酰胺连续缩聚用的VK塔
2 聚合反应的装置
3. 管式聚合反应器
优点:简单,单位体积所具有的传热面积大,单位体积生产能力大、 单程转化率高,适用高温、高压操作。
均相反应动力学
2.化学反应动力学的表达式 影响化学反应速率的最主要因素是反应物料的浓度和反应温度,可
写成:
ri f (C,T )
式中: r i——组份I 的反应速率; C——反应物料的浓度向量; T——反应温度。
对于多组分多反应的系统,由于化学计量关系的约束,在反应过程
中只要某一组分的浓度确定,其它各组分的浓度也将随之而定 :
3 聚合反应的操作方式
2.连续式操作(有反混)
第二章 聚合反应工程基础(2-3、2-4)

稳定性是指对系统外加一个干扰,使过 程失去平衡,当外干扰消失后,若过程 有能力回复到原来的状态,则过程具有 稳定性,否则是不稳定。稳定性是系统 的一种动态特征。 自衡能力
第四节 理想混合反应器的热稳定性
如聚合过程中的爆聚,特别对于那些放 热量大,初始反应物浓度高,反应速度 快的反应过程,更应充分注意热稳定性 问题。
聚合反应工程
第三节 理想反应器设计
(2)连串反应
第三节 理想反应器设计
第三节 理想反应器设计
将A与B迅速混合
有三种加料方式 A慢慢加入B中 B 慢慢加入A中 将A与B迅速混合 S逐渐增多 R逐渐增多 R S
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
结论 (1)对于单一反应,因不存在产物分布 问题,所以在反应器选择时主要考虑容 积效率大小。 (2)对于复杂反应,在反应器的选择时 提高目的产物的收率。 (3)温度对复杂反应的产物分布也有重 大的影响。
第四节 理想混合关系, 所以反应过程的热变化对化学反应有决 定性的影响,反应器的设计必须考虑温 盘的控制。 另一方面,反应器操作时,总会遇到温 度的失控,偏离设定的操作条件,此时 反应器能否正常操作与反应器的热稳定 性有很大的关系。
第四节 理想混合反应器的热稳定性
这是热稳定性的又一条件。
第四节 理想混合反应器的热稳定性
第四节 理想混合反应器的热稳定性
第四节 理想混合反应器的热稳定性
第四节 理想混合反应器的热稳定性
第四节结束
第四节 理想混合反应器的热稳定性
• 当体系处于稳态时,放热度率与 除热速率应相等。
第四节 理想混合反应器的热稳定性
聚合物反应工程基础第二章

Company Logo
Company Logo
4. 复合反应
复合反应:是几个反应同时进行的,常
见的复合反应有平行反应,连锁反应,平行- 连锁反应等。
k1 A k2
R
A
k1
R
k2
S
S
Company Logo
⑴ 平行反应
k1 A k2 R S
rA =
dCA = k1CA + k2CA = ( k1+k2 )CA dt
Company Logo
例1 某厂以己二酸与己二醇等摩尔缩聚反应生产醇酸 树脂。用间歇反应器,反应温度70℃,催化剂为H2SO4。 已知:cA0=4 kmol· -3;反应动力学方程为: m
m3· kmol-1· -1 min 若每天处理2400kg己二酸,每批操作辅助生产时
间为1h,反应器装填系数为0.75,求:
第二章 化学反应工程基础
Company Logo
3. 等温恒容单一反应动力学方程
⑴ 一级不可逆反应
A
1 dnA rA= V dt
恒容
S
dCA 一级 KCA dt
对于等温系统,k为常数,初始条件: t=0,CA=CA0
1 lnCA0 1 1 t= = ln 1-x K CA K A
Company Logo
tr=tt-t‘
④ 求cAf:
⑤ 若计算的cAf小于任务要求的cAf则满足要求
rA = -
1 V
nA 0
dn A dt
= dx A dt
dx A dt
1 V
dn A0 (1-x A ) dt
= V 0 (1+ε A x A )
CA0 = 1+ε A x A
第二章 聚合物反应工程基础(2-5,2-6,2-7)

第六节 流动模型
长度
第六节 流动模型
1.返混很小的情况
第六节 流动模型
第六节 流动模型
2.返混程度较大的情况
第六节 流动模型
(1)对闭式容器
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
(四)带死角和短路的理想混合模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
第六节 流动模型
(五)停留时间分布曲线的应用 上面介绍的各种流动模型,对于实际反应器来说,流体在 其间的流动状况十分复杂,各种流动类型没有一个能完美 无缺地描述一个真实反应器中的流动特性。 更多的流动模型要经过适当修正才能比较接近实际情况。 从反应器的设计和放大角度来看,总希望反应器中的流动 型态接近于平推流或理想混合流,这样在设计,放大时比 较简便,且把握性更大一些。 故在实际工什中,往往不是要寻找一个复杂的模型去描述 非理想流动,而是在反应器的结构方面加以改进,避免非 理想流动。
第五节 连续流动反应器的停留时间分 布
第五节 连续流动反应器的停留时间分 布
第五节 连续流动反应器的停留时间分 布
三、停留时间分布的数字特征 对连续反应一般总希望物科在系统内停留时间均 匀一些,也就是希望停留时间分布密度函数的峰 形窄一些。为了对不同流动型态下的停留时间函 数进行定量的比轮可采用平推流或理想混合反应 器的停留时间分布作为基准,而将被研究的实际 停留时间分布曲线与这些基准的偏差作为定量比 较的指标。停留时间分布密度函数E(t),数学期 望和方差
聚合反应工程基础

聚合反应工程基础
聚合反应工程是一项对聚合反应做出反应结果的工程,是一种合成技术,旨在改善已有物质的性能,从而获取新物质。
与它相关的反应条件是:反应成分、反应温度、反应压力、反应时间和反应环境等因素。
反应成分是指反应时有害物质和原料,需要考虑事先性能和安全性;反应温度对反应有重要影响,选定的反应温度可能会影响反应的速度和产物的性质;反应压力也是影响反应的重要因素,一般情况下越高的压力会使反应终止更快;反应时间是指反应发生的时间,反应时间的不同可能会影响反应的结果;反应环境一般有液相反应和气相反应,液相反应对热反应有一定的特点,气相反应则更加灵活,在重要的应用领域可能会产生有用的物质。
通过调整上述反应因素,我们可以实现理想的反应结果,从而获取理想的物质。
聚合反应工程的研究主要集中在调节上述反应条件,以获得最终产品的最佳性能,重点是获得较高的生产效率。
同时,随着反应条件的变化,反应物和生成物之间的变化也会有所不同,这些变化也需要观察并进行改进。
总之,聚合反应工程主要是通过调节反应条件,使反应物和生成物在必要的条件下,实现理想的反应结果,以及高效的生产效率,为后续工程提供资源资源。
聚合物反应工程基础知识总结

体系具有热稳定性必须具备以下两个条件:
① 放热速率与除热速率相等,即:稳态条件 Qr Qc
② 稳定条件 dQc dQr dT dT
影响热稳定性的因素: 1、化学反应的特性,如 k、△H、E 等
2、反应过程的操作条件.如 v0 、 C A0 、T 等。
3、反应器的结构,如 A;
4、操作条件,如 v0 、T、TW 、K 等
的生产
3) 按操作方式分类 间歇反应器:在反应之前将原料一次性加入反应器中,直到反应达到规定的转化率,即得反应物, 通常带有搅拌器的釜式反应器。优点是:操作弹性大,主要用于小批量生产。 连续操作反应器 :反应物连续加入反应器产物连续引出反应器,属于稳态过程,可以采用釜式、管 式和塔式反应器。优点是:适宜于大规模的工业生产,生产能力较强,产品质量稳定易于实现自动 化操作 。 半连续操作反应器 :预先将部分反应物在反应前一次加入反应器,其余的反应物在反应过程中连续 或断连续加入,或者在反应过程中将某种产物连续地从反应器中取出,属于非稳态过程。优点是: 反应不太快,温度易于控制,有利于提高可逆反应的转化率 。 (PS:造成三种反应器中流体流动型态不同是由于物料在不同反应器中的返混程度不一样。返混: 是指反应器内不同年龄的流体微元之间的混合,返混代表时间上的逆向混合。 )
4、缩聚反应
反应程度: p N0 N (表示已反应的官能团数与原始官能团数的比) N0
间歇操作时:
F ( 缩聚反应聚合度分布函数可以写为: n j) pi1 (1 p)
FW ( j) j(1 p)2 p j1
CA0 (ek2t
ek1t )
Cs CA0 (1 ek2t )
(PS:在连串反应中,R
的浓度会有最大值,出现最大值的时间为: tm a x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 理想反应器设计
2.图解法 当各级反应器的体积相等时,可将式(2—59)改写为
上式表示第i级反应器进口浓度CAi-1一定时, 出口浓度CAi 与反应速度rAi间的关系。 在CAi-1及τ一定时,在rAi- CAi 图上是直线。
第三节 理想反应器设计
Y=kx+b K= -1/τ b= CAi-1 (1/τ) 当 rAi =0时,CAi= CAi-1 ,即 CAi-1为与横轴的截距
第三节 理想反应器设计
1.代数法(进行逐级计算一直到要求的转化率 为止)
等温一级反应
第一级反应器出口物料
第三节 理想反应器设计
对第二级反应器
对最终级反应器则有
第三节 理想反应器设计
当各釜的容积vi相等时,则
第三节 理想反应器设计
式(2—61)、(2—62)中包含”XAN N V及V。 四个参执当确定其中三个即可求得第四个参数
随着级数N的增加,容积效率逐渐增加,当级 数无限多时,容积效率趋于1。(理想混合反 应器?)
第三节 理想反应器设计
第三节 理想反应器设计
2.复合反应
• 对复合反应除了要考虑反应器的容积效率外,更 重要的是考虑不同型式反应器对产物分布的影响, 因为产物分布直接影t晌到顾料的消耗定额,成本 及分离,精制等后处理过程。
度温
影度
响影
了响
值
的 是
曲 线 的 斜 率 , 因 为 温
第三节 理Байду номын сангаас反应器设计
图解法只适用于反应速率可用单一组分浓度来 表达的情况,故对于平行、串连等复杂反应是 不适用的。
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
• 平行反应和连串反应是复合反应的代表,又是组 成文复杂反应的基本反应,下面仅就这二类反应 进行讨论。
第三节 理想反应器设计
(1)平行反应
第三节 理想反应器设计
间歇反应器或平推流反应器 采用理想混合反应器
第三节 理想反应器设计
反应器型式对目的产物R的收率没影响 改变温度或采用催化剂
第三节 理想反应器设计
聚合反应工程基础
徐德增
第三节 理想反应器设计
五、多级串联理想混合反应器 将数个体积相等(或不相等)的理想混合反应器串
联起来操作即为多级串联理想混合流反应器。
第三节 理想反应器设计
对第 j 级反应器中的A组分列出下面的物料衡算式。 整理后可得:
第三节 理想反应器设计
在多级串联理想温合反应器的设计中,通常需 要计算下列四个参数中的一个即每级反应器的 体积vi反应器的级数N、最终转化率XAN及原 料流量v0可通过代数法或图解法进行计算。
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
对二级反应 若CA0=CB0 且各级反应器的体积及温度均相同,则
代入式(2—59)则有
第三节 理想反应器设计
对第一级反应器 于是由上式可得
对第二釜可得
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
反应器的总体积为
两釜串联反应器所需的体积要比单釜小得多。
CAi
CAi-1
第三节 理想反应器设计
二个式予绘于rA-CA图上,则二条线的交点的 横座标即为出口浓度CA.
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
第三节 理想反应器设计
用体 体积 积影 计响 算的 出是 来斜 的率
, 因 为 斜 率 是
第三节 理想反应器设计
f-t k
第三节 理想反应器设计
第三节 理想反应器设计
六、反应器型式和操作方法的评比和选择 二个方面来考虑: ① 反应器的体积要小。 ② 用等量的原料得到的目的产物要多。 对单一反应,主要是考虑反应器容积的大小。 对复合反应,首先要考虑产物分布。
第三节 理想反应器设计
1.单一反应 容积效率η是指同一反应,在相同的温度,产量 和转化率条件下,平推流反应器与理想混合反应 器所需的总体积比,即
第三节 理想反应器设计
第三节 理想反应器设计
对零级反应 对一级反应
第三节 理想反应器设计
对二级反应
第三节 理想反应器设计
第三节 理想反应器设计
结论 (1)零级反应时,η=1,两种反应器的体积相等, 即反应器的型式对反应速率没有影响。 (2)当转化率一定时,反应级数高的反应 宜采用平推流反应器。