2.4《《绝对值与相反数(2)》教案设计
2.3《相反数与绝对值》教案
《相反数与绝对值》教案教学目标1.知识目标:要求从代数与几何两个角度,借助数轴理解相反数、绝对值的概念,会求一个数的相反数和绝对值.2.能力目标:通过应用相反数、绝对值解决实际问题,使学生体会相反数和绝对值的意义与作用.3.情感目标:培养学生运用数学的意识及合作交流的学习习惯.教学重难点重点:理解、掌握相反数、绝对值的概念、求法及运用.难点:若a<0时,则|a|=-a.教学过程一、创设情景,引入新课之前我们学习了负数,也学会了在数轴上表示有理数,如-4和4,它们有什么相同点和不同点?2.5和-2.5呢?二、探索新知1.将-4和4在数轴上表示出来,它们在数轴上所对应的点有什么关系?与同伴进行交流.如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.2.引入绝对值概念在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等.在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.给出几对相反数,让学生求出它们的绝对值后,引导学生思考:互为相反数的两个数的绝对值有什么关系?3.教学举例.求下列各数的绝对值:-3.5,7,-8,2/3,0.4.从代数角度理解绝对值定义.学生认识绝对值符号“||”,通过学生提问、观察、理解、总结,讨论出代数定义.正数的绝对值是它本身负数的绝对值是它的相反数0的绝对值是0设a为有理数,用字母a表示绝对值的代数定义a (a >0)| a | = 0 (a =0)-a (a <0)5.教学例1.比较43-与54-的大小. 6.做一做:(1)在数轴上表示下列各数,并比较它们的大小: -1.5,-3,-1,-5.(2)求出(1)中各数的绝对值,并比较它们的大小;(3)你发现了什么?(老师可引导学生多举一些例子,让学生合作讨论完成)三、结论0的相反数和绝对值都是0.互为相反数的两个数的绝对值一定相等.绝对值为同一正数的数有两个,它们互为相反数. 两个负数,绝对值大的负数反而小.。
冀教版七年级数学上册《绝对值和相反数》说课稿
冀教版七年级数学上册《绝对值和相反数》说课稿一、教材分析《绝对值和相反数》是冀教版七年级数学上册的一篇教学内容,主要介绍了绝对值的概念和性质,以及相反数的定义和运算规律。
本单元的教学内容对于培养学生的数学思维能力和运算能力具有重要意义。
二、教学目标1.知识目标:通过本节课的学习,学生应该掌握绝对值的概念和性质,能够正确计算和运用绝对值;同时能够理解相反数的概念和运算规律,能够进行相反数的加减运算。
2.能力目标:培养学生观察问题、分析问题、解决问题的能力,同时提高他们的逻辑思维能力和数学推理能力。
3.情感目标:通过多样化的教学方法和教学活动,激发学生的学习兴趣,培养他们积极参与课堂讨论,发散思维,培养学习自主性和合作精神。
三、教学重难点1.教学重点:帮助学生准确理解绝对值的概念,正确运用绝对值进行计算;引导学生理解相反数的概念,掌握相反数的加减运算规律。
2.教学难点:引导学生独立思考绝对值和相反数的概念,培养他们灵活运用数学知识解决问题的能力。
四、教学过程与方法(一)导入环节通过展示一些实际生活中的例子,引起学生对于绝对值和相反数的兴趣,如一个物体上升的高度和下降的深度、温度的正负表示等。
(二)知识讲解1.绝对值的定义:向学生解释绝对值的概念,即一个数在不考虑其正负时,它与0之间的距离。
例如,|2|的绝对值是2,|-5|的绝对值是5。
2.绝对值的性质:–非负性:任意实数的绝对值都是非负数,即|a| ≥ 0。
–等于性:如果一个数的绝对值为0,则该数必须是0。
–正负性:如果一个数的绝对值大于0,则该数可以是正数或负数。
3.相反数的定义:一个数的相反数是指与这个数的和等于0的数。
相同绝对值,符号相反。
–例如,5的相反数是-5,-7的相反数是7。
(三)示例分析通过一些实际问题和算术运算,引导学生运用绝对值和相反数进行计算和问题解决。
(四)练习与巩固出示一些具体的练习题,让学生通过练习巩固所学的知识。
如: 1. 计算 |3| + |-4| 的结果。
初中数学_《绝对值与相反数 》教学设计学情分析教材分析课后反思
《绝对值与相反数》教学设计内容:《义务教育课程标准实验教科书》青岛版七上第二章第三节<相反数与绝对值>一.教学目标1.知识与技能:1.理解相反数的概念,会求一个数的相反数。
2.理解绝对值的概念,会求一个数的绝对值。
3.会利用绝对值比较两个负数的大小。
2.过程与方法:(1)经历观察、操作、交流等探究过程,体会由具体到抽象、由特殊到一般的认知规律,培养学生发现问题、提出问题的能力;(2)经历探索有理数加法法则的过程,深刻感受分类讨论、数形结合的思想方法.3.情感态度与价值观:(1)在动手操作以及探索的过程中,培养学生的问题意识和严谨科学的态度,从而提高学习的积极性;(2)在探索和交流的过程中,培养学生主动参与探索获得数学知识意识;(3)在探索和交流的过程中,培养善于观察、勤于思考的学习习惯,进一步体会数学源于生活并服务于生活.二.教学重点:经历探索发现“相反数与绝对值”概念的过程,发展学生发现问题、提出问题、分析问题和解决问题的能力。
教学难点:从数轴上发现数与数的不同之处;借助教具探索相反数的概念;探索绝对值的概念和代数意义。
三.复习回顾:1、数轴的三要素;2、比较两个数的大小(目的:一是让学生结合自己已有的学习经验,尝试探索相反数,绝对值的概念。
二是通过利用数轴比较两个数的大小为引出利用绝对值比较两个负数的大小打下基础。
)四.教学过程:一、交流与发现教师引导语预设:教师适时的引导,学生合作学习,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想。
1.观察数轴上的两对点A与A′,B与B′它们分别表示什么数,它们有怎样的位置关系?根据学生的观察发现,讨论数-4与4有什么相同点和不同点?2.5与-2.5呢?你还能说出几对具有为种特征的两个数吗?【设计意图】:引入互为相反数的概念.2.看谁反应快 1.分别说出下面各数的相反数2.(1)-3.2的相反数是____,____的相反数是2.6;(2)11和____ 互这相反数,0的相反数是____【设计意图】给出相反数的描述性定义后,要让练习以巩固概念. 活动一:实验与探索(1)数轴上表示有理数5, 的点到原点的距离各是多少? (2)数轴上表示有理数-5, 的点到原点的距离各是多少?(3)数轴上表示0的点到原点的距离是多少?【设计意图】是将数学问题,建立数学模型,在此,引导学生独立阅读思考.活动二:实验与探索从上面的填空,你发现一个数和它的绝对值有什么关系?【设计意图】归纳出绝对值的代数意义活动三:实验与探索9818,,0,17.2,519---1212-2___;5___;0___=-==【设计意图】互为相反数的两个数的绝对值相等.活动四:小试牛刀1 .在数轴上,距离原点3个单位长度的点表示的是什么数?2.一个数的绝对值是12,那么这个数是:3. 若|x|=15,那么x=【设计意图】是为了巩固会求一个数的绝对值活动五:实验与探索【设计意图】通过利用数轴比较两个数的大小,寻找归纳比较两个负数大小的特殊方法活动五:例题讲解【设计意图】进一步巩固本节的重点,培养应用所学知识解决问题的能力,为本章以后的学习夯实基础五、课堂小结()()()()1-3 -1 2-0.5 -211353- - 4- -422234.45比较-和-的大小问题:本节课主要学习了哪些内容?我们一起来梳理一下,我们可以从哪些方面来总结我们的收获呢?要求:以小组为单位进行交流,学生分工明确:1人组织,1人记录,2人展示,要求组内人人参与,积极发言。
七年级上册教案:2_4绝对值与相反数(学生版)
初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。
3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。
(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。
请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。
例如:3的绝对值记为 ,读作 。
3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。
例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。
如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。
苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿
苏科版数学七年级上册2.4.3《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册》2.4.3《绝对值与相反数》这一节主要介绍了绝对值和相反数的概念及其性质。
绝对值是数轴上表示一个数的点到原点的距离,相反数是在数轴上与原数相对的数。
这一节内容是初中数学的基础,对于学生理解实数的概念,以及后续学习代数和几何有着重要的意义。
二. 学情分析七年级的学生已经初步接触了实数的概念,对于数轴也有了一定的了解。
但是,他们对于绝对值和相反数的定义及性质可能还不是很清楚,需要通过具体例子和练习来加深理解。
同时,学生可能对于数轴上的距离和相对概念有一定的困惑,需要教师进行详细的解释和引导。
三. 说教学目标1.理解绝对值和相反数的概念,掌握它们的性质。
2.能够运用绝对值和相反数的性质解决一些实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 说教学重难点1.绝对值和相反数的定义及性质。
2.如何运用绝对值和相反数的性质解决实际问题。
五. 说教学方法与手段1.采用讲授法,教师详细讲解绝对值和相反数的定义及性质,引导学生进行思考。
2.使用举例法,通过具体例子让学生理解绝对值和相反数的概念,加深记忆。
3.利用练习法,让学生通过做练习题,巩固所学知识,提高解决问题的能力。
4.采用小组讨论法,让学生分组讨论,培养学生的合作意识和沟通能力。
六. 说教学过程1.引入:通过数轴引导学生回顾实数的概念,然后提出绝对值和相反数的定义,让学生初步了解。
2.讲解:详细讲解绝对值和相反数的定义及性质,让学生理解并能够运用。
3.举例:给出具体例子,让学生理解绝对值和相反数的概念,加深记忆。
4.练习:让学生做练习题,巩固所学知识,提高解决问题的能力。
5.讨论:让学生分组讨论,分享解题心得,培养学生的合作意识和沟通能力。
6.小结:对本节课的内容进行总结,强调绝对值和相反数的重要性。
七. 说板书设计板书设计如下:绝对值与相反数1.绝对值:数轴上表示一个数的点到原点的距离。
冀教版七年级数学上册《绝对值和相反数》教案及教学反思
冀教版七年级数学上册《绝对值和相反数》教案及教学反思一、教学设计1.教学内容本课程教学的是《绝对值和相反数》。
该课程主要包括以下三个部分:•绝对值的定义及性质•相反数的定义及性质•绝对值和相反数的实际应用2.教学目标本课程的教学目标主要包括以下几个方面:•学生能正确理解绝对值和相反数的概念及本质•学生掌握绝对值的计算方法及其基本性质•学生掌握相反数的计算方法及其基本性质•学生能够运用绝对值和相反数解决实际问题3.教学方法本课程采用多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
4.教学步骤第一步:引入课题引导学生回顾数学知识,引出“绝对值”和“相反数”的概念,探究实际生活中的应用。
第二步:讲授知识讲解绝对值和相反数的概念、性质、计算方法及其在实际问题中的应用。
第三步:练习及巩固通过一些练习来巩固学生对绝对值和相反数的理解和掌握,加深对绝对值和相反数的印象和认识。
第四步:拓展应用引导学生运用所掌握的知识解决实际问题,培养学生的数学思维能力和解决实际问题的能力。
第五步:总结反思对本节课的知识点、难点、疑点以及授课过程中存在的问题、教师的讲授方式、学生的学习情况和反应进行总结和反思,并对后续的教学进行布置和建议。
二、教学反思本节课的教学过程相对比较顺利,学生在课堂上的表现也比较出色。
主要表现在以下几个方面:1.教学运用了多种不同的教学法本课程采用了多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
这样的方式可以让每个学生都有机会参与到教学当中,提高课程的互动性和探索性。
2.教学中强调了实际生活中的应用本节课在讲解绝对值和相反数的时候,更加注重与实际生活中的应用进行联系,让学生能够更加真实地理解和把握知识点,而不仅仅是停留在抽象的概念上。
3.课堂气氛比较活跃在教学过程中,教师时不时会与学生互动,通过问题、练习等形式来检测学生掌握知识的情况,引导学生探究知识。
这样的方式可以让学生更加活跃地参与到课堂中,培养学生的好奇心和探究精神。
2.4《绝对值与相反数(2)》导学案2
2.3绝对值与相反数(2)目的与要求 加深对绝对值的概念的理解,能借助数轴理解相反数的概念,能求一个数的相反数。
知识与技能 理解相反数的两种概念,①只有符号不同的两个数是互为相反数;②符号不同,且到原点距离相等的两个数是互为相反数。
情感、态度与价值观 利用数轴帮助理解相反数的概念。
了解辩证唯物主义观点中的矛盾论与相对论。
重点、难点 绝对值与相反数的联系。
教学过程一、情境创设引入在数轴上分别找到下列每一对数所表示的点;并指出它们与原点的距离的关系,再求它们的绝对值,你会发现一些什么共同点?将你的结论与同伴交流发现,每一对数,①它们的绝对值相等②它们到原点的距离相等,并且分别在原点的两侧。
③它们只有符号不同。
你还能举出有这样特征的几对数吗?自主探究1.在数轴上到原点的距离是2的点有 个,它们到原点的距离各是 它们之间还有什么关系?2.像5与-5、-2.5与2.5 …这样 、 的两个数,叫做互为相反数,其中一个是另一个的________(只有符号不同的两个数).规定:零的相反数是零3.正数的相反数是__________;负数的相反数是___________;0的相反数是_________.例题剖析例1 求出3、-4.5、0、74的相反数(在一个数的前面添一个“-”,就表示这个数的相反数)例2 化简下列各数的符号:(1)+(—25) (2)-(+18) (3)+(+60)(4)-{-[-(+3)]} (5)—(—88) (6)—[—(+1)]例3 (1)+2.3的相反数是____, |+2.3|=____(2)-10.5的相反数是____,|-10.5|=____(3)0的相反数是____, |0|=___由此可知:正数的绝对值等于 ;负数的绝对值等于 ;0的绝对值等于 。
例4 已知|x -2|+|y+4|=0,试求x 和y 的值。
例5 若|x|= 2 |y|=9,且x<y ,求x +y 的值例6 有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小,并用“>”把它们连接起来。
七年级数学上册《绝对值与相反数》教案
2.3绝对值与相反数教学目标:1.理解有理数的绝对值概念,并掌握其表示方法;2.熟练掌握求一个有理数的绝对值的方法;3.渗透数形结合等思想方法,培养学生的概括能力教学重点:理解有理数的绝对值概念,并掌握其表示方法;难点:熟练掌握求一个有理数的绝对值的方法。
教学过程:一、情境引入小明的家在学校西边3km 处,小丽的家在学校东边2km 处。
他们上学所花的时间与各家到学校的距离有什么关系?二、新授如果学校门前的大街看成一条数轴,把学校看作原点,那么你能把小明和小丽家的相对位置在数轴上表示出来吗?议一议:1.数轴上A 、B 两点离原点的距离各是多少?2.数轴上点A 、B 分别所表示什么数.3.从数轴上看,A 点、B 点两点哪一点离学校较近?定义: 叫做这个数的绝对值. 例如: 1.在数轴上表示数-2的点与原点的距离是2,所以-2的绝对值是 记为: .2.在数轴上表示数3的点与原点的距离是3,所以3的绝对值是 记为: .3. —4的绝对值是 .记作 ,在数轴上表示 口答:1.(1)|+6|= ,|0.2|= , |+8.2|= ;(2)|0|= ;(3)|-3|= ,|-0.2|= , |-8.2|= .2.如图,你能说出数轴上A 、B 、C 、D 、E 、F 各点所表示的数的绝对值吗?三、例题分析例1.在数轴上画出表示下列各数的点:5,0,5.0,211,3--并写出它们的绝对值.例2. 求下列各组数的绝对值,并分别比较它们绝对值的大小:B A(1)-3.5与4 (2)-3与-6例3. (1)|—32|-|—21| (2)|—3.4| + |4.3—2| (3)|+43|÷|—41|例4.请利用数轴思考下列问题:1.-5的绝对值是 , 5的绝对值是 ;如果一个数的绝对值是5,那么这个数是 .2.绝对值不大于2的整数有 .3. 绝对值不大于2.5的非负整数是 .4.绝对值大于2小于5的整数是 .课堂练习:1.填空:|-3|= ,|112|= ,|-0.4|= , |0|= __,|9|= __,|-2|= .2. 把下列各数|-3|、|-0.4|及|-2|在数轴上表示出来,并用“<”连接起来.3.(1) 在数轴上A 表示-65,点B 表示43,则点 离原点的距离近些. (2)绝对值小于3的所有整数是 ,非正整数是 .4.某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径12 3 4 5 6 7 8 +0.3 -0.2 -0.3 +0.4 0 -0.1 -0.5 +0.3指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?。
苏科版数学七年级上册2.4《绝对值与相反数》说课稿
苏科版数学七年级上册2.4《绝对值与相反数》说课稿一. 教材分析《苏科版数学七年级上册2.4《绝对值与相反数》》这一节的内容是在学生已经学习了有理数的基础上,进一步引导学生理解绝对值和相反数的概念,并掌握它们的性质和运用。
教材通过例题和练习,让学生在实际问题中运用绝对值和相反数的知识,提高解决问题的能力。
二. 学情分析七年级的学生已经初步掌握了有理数的概念,对数学有了一定的认识。
但是,对于绝对值和相反数的概念和性质,他们可能还比较模糊,需要通过具体的例子和实际问题来加深理解。
此外,学生的学习习惯和思维方式也有所不同,需要教师在教学中进行引导和调整。
三. 说教学目标1.知识与技能:学生能够理解绝对值和相反数的概念,掌握它们的性质和运用。
2.过程与方法:学生能够通过观察、实验、推理等方法,探索绝对值和相反数的性质。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高解决实际问题的能力。
四. 说教学重难点1.重点:绝对值和相反数的概念及其性质。
2.难点:绝对值和相反数在实际问题中的应用。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的数学思维能力。
2.教学手段:利用多媒体课件、实物模型、数学软件等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考绝对值和相反数的概念。
2.新课讲解:讲解绝对值和相反数的概念,并通过例题演示它们的性质。
3.学生练习:让学生通过练习题,巩固对绝对值和相反数的理解。
4.应用拓展:引导学生运用绝对值和相反数的知识解决实际问题。
5.课堂小结:总结本节课的主要内容,强调重点和难点。
6.作业布置:布置适量的作业,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点内容。
可以设计一些图表、公式等,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况、练习题的正确率等方面进行。
《相反数与绝对值》教学设计
《相反数与绝对值》教学设计教学目标:1.学生能够理解和定义相反数和绝对值的概念。
2.学生能够通过实例和练习计算给定数的相反数和绝对值。
3.学生能够将相反数和绝对值在实际问题中应用。
教学资源:1.教科书或教学参考书.2.白板和黑板笔.3.纸和铅笔.4.练习册.教学步骤:步骤1:引入概念(15分钟)教师向学生介绍相反数和绝对值的概念。
让学生举例说明相反数和绝对值在日常生活中的应用。
例如,相反数可以用来表示盈亏,温度等;绝对值可以用来表示距离,高度等。
步骤2:相反数(20分钟)教师向学生解释相反数的定义和计算规则。
然后,通过例子来演示相反数的计算。
教师可以使用数轴图来帮助学生理解相反数的概念。
学生们可以借助数轴图,找到一个数及其相反数之间的关系。
学生也可以通过以下练习来练习相反数的计算:练习1:计算以下数的相反数:a)5b)-3c)0d)-8步骤3:绝对值(20分钟)教师向学生解释绝对值的定义和计算规则。
然后,通过例子来演示绝对值的计算。
教师可以使用数轴图来帮助学生理解绝对值的概念。
让学生理解绝对值是一个数到零的距离,所以绝对值必须是非负的。
练习2:计算以下数的绝对值:a)5b)-3c)0d)-8步骤4:相反数与绝对值的关系(20分钟)教师向学生解释相反数与绝对值之间的关系。
相反数的绝对值是相同的。
学生们可以通过例子来理解这个概念。
练习3:判断以下陈述是否正确,并给出理由:a)相反数的绝对值是相同的。
b)绝对值的相反数是相等的。
步骤5:应用练习(20分钟)教师给学生分发应用练习册,并让他们完成一些练习,以帮助他们巩固和应用所学的知识。
练习4:根据实际情况计算以下问题:a)小明从家里走了5公里,然后又走了5公里回到家。
他总共走了多少公里?b)温度计显示室内温度为-3摄氏度。
如果室外温度比室内温度高8摄氏度,那么室外温度是多少摄氏度?c)一个高山的海拔高度是3000米,下面的山谷海拔是-1500米。
那么高山的绝对高度是多少米?步骤6:总结和评价(15分钟)教师与学生一起回顾和总结本节课学习的主要概念和技巧。
七年级数学上册 2.3 绝对值与相反数(第2课时)教案 苏科版
-6和6位于原点两旁,且与原点的距离相等,也就是说,ห้องสมุดไป่ตู้们相对于原点的位置只有方向不同,
1.5和
-1.5也是这样.
解5的相反数是-5.
-7的相反数是7.
+11.2的相反数是-11.2.
我们通常在一个数的前面添上"-"号,用这个新数表示原来那个数的相反数.例如,-4,+5.5、0的相反数为:
-(-4)= 4,-(+5.5)= -5.5,-0=0.
教、学具
投影片,小黑板
教 师 活 动
学生活动
设计意图
一、创设情境:
1.在数轴上表示下列各数,并分别写出它们的绝对值:
2.让学生在数轴上画出表示以下两对数的点:
-6和6 , 1.5和-1.5.
请同学们观察后回答:这两对点,各有哪些相同?哪些不同?你还能写出两对具有上述特点的数来吗?
二、新知讲解:
通过上面的讨论,让学生归纳上面的两对数和这两对数在数轴上对应的两组点的特点:
(3)相反数和我们以前学过的倒数是一样的.
4.分别写出下列各数的相反数:
5.画出数轴,在数轴上表示下列各数及它们的相反数:
(1)这两对数中,每一对数,只有符号不同;
(2)这两对数所对应的两组点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.
像以上这样只有符号不同的两个数称互为相反数(opposite number).
例如:-6和6 , 1.5和-1.5就是称互为相反数.
三、实践应用
例1分别写出下列各数的相反数:
同样,在一个数前面添上"+"号,表示这个数本身.
例如,+(-4)= -4,+(+12)=12,+0=0.
《绝对值与相反数》教学设计
《绝对值与相反数》教学设计一、教材分析:本节课是苏科版七年级上册第二章的第四节课《绝对值与相反数》,主要介绍了绝对值与相反数的概念和运算法则。
学生在学习这一章之前已经学过了有理数的概念和比较大小的方法,对于正数、负数已经有一定的了解。
二、教学目标:1. 知识与能力目标:a) 理解绝对值的概念,并能正确计算绝对值;b) 理解相反数的概念,并能正确计算相反数;c) 掌握绝对值与相反数的基本运算法则。
2. 过程与方法目标:a) 培养学生的观察能力和逻辑思维能力;b) 培养学生的合作学习和独立思考能力;c) 激发学生的学习兴趣,提高学习动力。
三、教学重点和教学难点:1. 教学重点:a) 绝对值的概念及计算方法;b) 相反数的概念及计算方法;c) 绝对值与相反数的基本运算法则。
2. 教学难点:a) 帮助学生理解绝对值与相反数的概念;b) 引导学生正确运用绝对值与相反数的运算法则。
四、学情分析:学生已经学习了有理数的概念和比较大小的方法,对于正数、负数已经有一定的了解。
但对于绝对值和相反数的概念可能还不够清晰,对于运算法则也可能存在一些困惑。
因此,在教学过程中需要针对学生的学情进行启发式教学,引导学生主动思考和探索。
五、教学过程:第一环节:新课导入1、引入问题:教师可以提问学生:“你们知道什么是绝对值和相反数吗?可以举例说明吗?”通过这个问题,激发学生思考和回忆相关知识。
2、学生回答问题,教师引导学生思考并梳理思路,可以请几个学生上台回答问题,并与其他学生进行互动。
第二环节:概念讲解与示范1、绝对值的概念讲解:教师向学生解释绝对值的概念,可以使用图形或实际物体来帮助学生理解。
例如,教师可以拿出一把尺子,将其放在黑板上,然后指着一个点A,解释绝对值是从该点到0的距离,用两个竖线表示,例如|-3|=3。
2、相反数的概念讲解:教师向学生解释相反数的概念,可以使用实际生活中的例子来帮助学生理解。
例如,教师可以问学生:“如果你手上有3块钱,你的朋友欠你3块钱,那么你们两个人手上的钱总共是多少?”引导学生思考并得出结论:两个数的和为0,它们互为相反数,例如3和-3互为相反数。
苏教版数学七年级上册说课稿《2-4绝对值与相反数》第2课时
苏教版数学七年级上册说课稿《2-4 绝对值与相反数》第2课时一. 教材分析苏教版数学七年级上册第2-4节绝对值与相反数,是学生在学习有理数之后,进一步理解数学概念的重要内容。
绝对值与相反数是数学中的基础概念,不仅在初中阶段的学习中占据重要地位,而且在高中乃至大学数学中也有广泛的应用。
本节课的内容对于培养学生的逻辑思维能力、抽象思维能力以及解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对正数、负数、整数、分数等有了初步的认识。
但是,对于绝对值与相反数这两个概念,学生可能还比较陌生,理解起来可能会有一定的难度。
因此,在教学过程中,我需要从学生的实际出发,用通俗易懂的语言和生动形象的例子,帮助学生理解和掌握这两个概念。
三. 说教学目标1.知识与技能目标:使学生理解绝对值与相反数的概念,掌握它们的性质和运算法则。
2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题的能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的抽象思维能力,使学生体验到数学学习的乐趣。
四. 说教学重难点1.教学重点:绝对值与相反数的概念,性质和运算法则。
2.教学难点:绝对值与相反数的内在联系和应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生探究问题,解决问题。
2.教学手段:利用多媒体课件,生动形象地展示绝对值与相反数的概念和性质,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过复习有理数的概念,引出绝对值与相反数的概念。
2.讲解与演示:利用多媒体课件,生动形象地讲解绝对值与相反数的概念、性质和运算法则。
3.练习与讨论:学生自主练习,合作交流,解决练习题,加深对绝对值与相反数概念的理解。
4.应用拓展:通过解决实际问题,让学生体验到绝对值与相反数在生活中的应用。
5.总结与反思:教师引导学生总结本节课的学习内容,学生分享自己的学习心得。
苏教版数学七年级上册教学设计《2-4 绝对值与相反数》第1课时
苏教版数学七年级上册教学设计《2-4 绝对值与相反数》第1课时一. 教材分析苏教版数学七年级上册第2-4节讲述了绝对值与相反数的概念、性质和运用。
本节内容是初中的基础知识点,对于学生理解数学概念、培养逻辑思维能力具有重要意义。
通过对绝对值与相反数的讨论,使学生掌握实数的分类,理解绝对值和相反数在数学中的作用。
二. 学情分析七年级的学生已具备了一定的数学基础,但对新的概念的理解和运用还需引导。
在教学过程中,要关注学生的个体差异,因材施教,让学生在原有基础上得到提高。
同时,激发学生的学习兴趣,使他们主动参与到课堂中来。
三. 教学目标1.知识与技能:使学生了解绝对值与相反数的概念,掌握它们的性质和运用。
2.过程与方法:通过自主学习、合作探讨,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 教学重难点1.重点:绝对值与相反数的概念、性质和运用。
2.难点:绝对值和相反数在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入绝对值与相反数的概念,让学生在实际情境中理解知识。
2.自主学习法:鼓励学生自主探索,合作交流,培养学生的学习兴趣和能力。
3.实践操作法:通过大量的练习,让学生在实践中巩固知识,提高解决问题的能力。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示知识点。
2.练习题:准备适量的练习题,用于课堂练习和课后巩固。
3.教学素材:收集与绝对值和相反数相关的实际问题,用于教学拓展。
七. 教学过程1.导入(5分钟)利用生活实例,如地图上的距离、气温等,引出绝对值与相反数的概念。
提问:什么是绝对值?什么是相反数?让学生思考并回答,从而激发学生的学习兴趣。
2.呈现(10分钟)讲解绝对值与相反数的定义,利用课件展示它们的性质和运用。
如绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
七年级数学上册《绝对值与相反数》教案2 北师大版【教案】
2.3绝对值与相反数(2)数学目标: 1.使学生能说出相反数的意义。
2.使学生能求出已知数的相反数和绝对值。
3.使学生能根据相反数的意思进行化简。
教学重点:理解相反数的意义,会求已知数的相反数。
教学难点:多重符号的数化简。
教学过程:一.引入新课:1.思考:数轴上到原点的距离是3的点有 个?它们是 在数轴上到原点的距离是2.5的点有 个?它们是2.观察3与-3,2.5与-2.5这两对有理数,你有什么发现?你还能举出这样的几对数吗?3.揭示课题。
二.新知展开(一) 揭示概念:1.在学生观察,交流的基础上,得出互为相反数的定义:像3与-3 、-2.5与2.5 …这样 不同、 相同的两个数,叫做互为相反数,其中一个是另一个的________2.想一想:0的相反数是(二)例题解析:例1.求3、-4.5、0、74的相反数 试一试:11.2的相反数是 ,9的相反数是 ,47的相反数是 -4.6的相反数是 ,-15的相反数是 ,的相反数是312 -(-7)是 的相反数,-(+4)是 的相反数归纳总结:①相反数的表示方法:表示一个数的相反数,可以在这个数的前面添一个“-”号。
在一个数前面添上一个“+”号,就等于它本身。
②正数的相反数是_________;负数的相反数是_________;0的相反数是________. 例2. 说出下列各数的意义,并化简:① -(+5) ②-(-6) ③ +(+2) ④ +(-3)归纳:多重符号化简的方法:例3. 根据绝对值与相反数的意义填空:(1)______;3.2______,3.2______,3.2=-=-=(2)=--=--=+-=-)5(______;5______,5______,5课堂练习1.判断:⑴任何一个正数的相反数都是负数( ) ⑵互为相反数的两个数一定不相等( )⑶符号不同的两个数是相反数 ( )(4)任何一个有理数的相反数都与原来小。
( )(5)互为相反数的两个数表示的点关于原点对称 ( )(6) 互为相反数的两个数绝对值相等 ( )2.填空:+(+123)=_______ ,-(-0.5)=_______,-(+10)=_______,-(+24)=_______,-[-(-3.2)]=_______,+(-0.15)=-(-5)=_______,-│-2│=________,)5.3(--= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 绝对值与相反数(2)
教学目标 1.能说出一个数的绝对值与相反数的意义;
2.会求已知数的绝对值与相反数;
3.会用绝对值比较两个负数的大小;
4.经历将实际问题数学化的过程,感受数学与生活的关系.
教学重点 1.一个数的绝对值与相反数的意义;
2.求已知数的绝对值与相反数;
3.用绝对值比较两个负数的大小.
教学难点 绝对值与相反数的意义.
教学过程(教师)
学生活动 二次备课 相反数的意义
议一议: 1.如图,观察数轴上点A 、点B 的位置及它们到原点的距
离,你有什么发现? 2.观察下列各对有理数,你发现了什么?请与同学交流.
5与5-,2.5与5.2-,32与32-,π与-π. 符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数.例如5与-5互为相反数,其中5是-5的相反数,-5是5的相反数,π的相反数是-π.
0的相反数是0.
1.(1)点A 、B 在原点两侧,分别表
示-5和5;
(2)点A 、B 与原点的距离都是5.
2.(1)各组数的符号不同;
(2)各组数的绝对值相同.
解:3的相反数是-3,-4.5的相反数
是4.5,47的相反数是-47. .
例3 求3、-4.5、47的相反数.
利用相反数的意义化简一个数的符号 表示一个数的相反数,可以在这个数的前面添一个“-”号.如-5的相反数可以表示为-(-5),而我们知道-5的相反数是5,所以-(-5)=5. 一般的,a 的相反数是-a ,-a 的相反数是a ,即
-(-a )=a .
例4 化简:-(+2),-
(+2.7),-(-3),
-(-34).
解:因为+2的相反数是-2,所以-
(+2)=-2. 类似地,-(+2.7)=-2.7. 因为-3的相反数是3,所以-(-3)=3. 类似地,-(-34)=34.
练一练:
1.写出下列各数的相反数:
0,58,-4,
3.14,-23
. 2.在数轴上画出表示下列各数
以及它们的相反数的点:
-4,0.5,3,
-2.
3.填空:
(1))7(--是__________的相反
数,)7(--=__________; 独立完成,课堂交流.。