《圆的切线的判定和性质》教学设计与反思

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆的切线的判定和性质》教学设计与反思

学习目标:理解切线的判定定理和性质定理并熟练掌握以上内容解决一些实际问题.

重(难)点预见重点:切线的判定定理;切线的性质定理及其运用它们解决一些具体的题目: 学习流程 一、揭示目标

二、自学指导 1.复习下列内容

1、直线与圆的位置关系有几种?分别是那些关系?直线与圆的位置关系的判断方法有哪几种?

2、直线与圆相切有哪几种判断方法?

3、思考作图:已知:点A 为⊙o 上的一点,如和过点A 作⊙o 的切线呢? 交流总结:根据直线要想与圆相切必须d=r,所以连接OA 过A 点作OA 的垂线 从作图中可以得出:

经过_________________并且___________与这条半径的的直线是圆的切线 思考:如图所示,它的数学语言该怎样表示呢?

3、思考探索;如图,直线l 与⊙O 相切于点A ,OA 是过切点的半径, 直线l 与半径OA 是否一定垂直?你能说明理由吗?

小结:

(1)圆的切线 ( ) 过切点的半径。

(2)一条直线若满足①过圆心,②过切点,③垂直于切线这三条中的( )两条,就必然满

足第三条。 4、例题精析:

例1、(教材103页例1)如图,直线AB 经过⊙O 上的点C ,并且OA=OB,CA=CB,求证直线AB 是⊙O 的切线。

o

C

A

B

例2.如图,点D 是∠AOB 的平分线OC 上任意一点,过D 作DE ⊥OB 于E ,以DE 为半径作⊙D ,判断⊙D 与OA 的位置关系, 并证明你的结论。(无点作垂线证半径)

方法小结:如何证明一条直线是圆的切线 四、当堂检测

1、下列说法正确的是( )

A .与圆有公共点的直线是圆的切线.

B .和圆心距离等于圆的半径的直线是圆的切线;

C .垂直于圆的半径的直线是圆的切线;

D .过圆的半径的外端的直线是圆的切线

2、已知:如图,A 是⊙O 外一点,AO 的延长线交⊙O 于点C,点B 在圆上,且

AB=BC,

A

C

D

∠A=30.

求证:直线AB是⊙O的切线.

C O A

3.:如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由。

五、归纳总结

教学反思

反思:一、合理设计课堂结构和问题。新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,我认为“动”不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,才是数学课堂需要的动。动得有序,动而不乱。

课堂教学要的不是热闹场面,而是对问题的深入研究和思考。因此,根据这节课的教学内容,我设计了三个活动:(一)、在动手画图的过程中,经历动脑思考、归纳、总结的过程。得到“经过半径外端且垂直于这条直径的直线是圆的切线”的结论。(二)、分析结论。应用好命题的前提是理解好命题。为了能让学生更好的理解命题我设置了三个问题,并且画图帮助学生理解分析。得到证明一条直线是圆的切线的两个思路“连半径,证垂直和做垂直,证半径”。(三)、应用命题。根据活动二的两个结论,我设计了两个不同类型的例题。因为有活动二做铺垫,所以例题解决的很顺利。

二、注意培养学生的解题能力。根据学生的数学学习情况和明年就面临中考的现实,教学中我注意引

导学生分析认真分析每个已知条件,由每个条件可以得到哪些信息,结合要证明的结论及信息之间的联系,

分析哪些信息有用,哪些没用。再理清思路,然后整理出来。

三、注意多种评价手段的运用。教学中面向大多数学生,并且给予及时的鼓励和评价。一个会心的微

笑、学生的掌声、翘起的拇指、真诚的语言…让学生及时感觉到被认可,他就更有动力投入到下面的学习中。

相关文档
最新文档