非线性规划的基本概念和基本原理
第5讲 整数规划、非线性规划、多目标规划1
第5讲整数规划、非线性规划、多目标规划一、整数规划1、概念数学规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
整数规划的分类:如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。
2)变量部分限制为整数的,称混合整数规划。
2、整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1原线性规划为21min x x z +=s.t.⎩⎨⎧≥≥=+0,05422121x x x x 其最优实数解为:01=x ,452=x ,45min =z ③有可行解(当然就存在最优解),但最优值变差。
例2原线性规划为21min x x Z +=s.t.⎩⎨⎧≥≥=+0,06422121x x x x 其最优实数解为:01=x ,232=x ,23min =z 若限制整数得:11=x ,12=x ,2min =z 。
(ii )整数规划最优解不能按照实数最优解简单取整而获得。
3、0-1整数规划0−1型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。
这时j x 称为0−1变量,或称二进制变量。
j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,且为整数所代替,是和一般整数规划的约束条件形式一致的。
在实际问题中,如果引入0−1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。
引入10-变量的实际问题:(1)投资场所的选定——相互排斥的计划例3某公司拟在市东、西、南三区建立门市部。
拟议中有7个位置(点))7,,2,1( =i A i 可供选择。
规定在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;在南区:由76,A A 两个点中至少选一个。
运筹学中的非线性规划问题-教案
教案运筹学中的非线性规划问题-教案一、引言1.1非线性规划的基本概念1.1.1定义:非线性规划是运筹学的一个分支,研究在一组约束条件下,寻找某个非线性函数的最优解。
1.1.2应用领域:广泛应用于经济学、工程学、管理学等,如资源分配、生产计划、投资组合等。
1.1.3发展历程:从20世纪40年代开始发展,经历了从理论到应用的转变,现在已成为解决实际问题的有效工具。
1.1.4教学目标:使学生理解非线性规划的基本理论和方法,能够解决简单的非线性规划问题。
1.2非线性规划的重要性1.2.1解决实际问题:非线性规划能够处理现实中存在的非线性关系,更贴近实际问题的本质。
1.2.2提高决策效率:通过优化算法,非线性规划可以在较短的时间内找到最优解,提高决策效率。
1.2.3促进学科交叉:非线性规划涉及到数学、计算机科学、经济学等多个学科,促进了学科之间的交叉和融合。
1.2.4教学目标:使学生认识到非线性规划在实际应用中的重要性,激发学生的学习兴趣。
1.3教学方法和手段1.3.1理论教学:通过讲解非线性规划的基本理论和方法,使学生掌握非线性规划的基本概念和解题思路。
1.3.2实践教学:通过案例分析、上机实验等方式,让学生动手解决实际问题,提高学生的实践能力。
1.3.3讨论式教学:鼓励学生提问、发表观点,培养学生的批判性思维和创新能力。
1.3.4教学目标:通过多种教学方法和手段,使学生全面掌握非线性规划的理论和实践,提高学生的综合素质。
二、知识点讲解2.1非线性规划的基本理论2.1.1最优性条件:介绍非线性规划的最优性条件,如一阶必要条件、二阶必要条件等。
2.1.2凸函数和凸集:讲解凸函数和凸集的定义及其在非线性规划中的应用。
2.1.3拉格朗日乘子法:介绍拉格朗日乘子法的原理和步骤,以及其在解决约束非线性规划问题中的应用。
2.1.4教学目标:使学生掌握非线性规划的基本理论,为后续的学习打下坚实的基础。
2.2非线性规划的求解方法2.2.1梯度法:讲解梯度法的原理和步骤,以及其在求解无约束非线性规划问题中的应用。
生产运筹非线性规划的基本概念
生产运筹非线性规划的基本概念引言生产运筹是一种管理技术,通过运用经济原理和数学模型,来解决实际生产和运输中的各种问题。
非线性规划是生产运筹中的一种重要工具,可以用于优化生产过程中的决策问题。
本文将介绍生产运筹非线性规划的基本概念。
非线性规划的定义非线性规划是一类优化问题,其中目标函数和约束条件都是非线性的。
一般来说,非线性规划的目标是找到一组决策变量的取值,使得目标函数达到最大或最小值,同时满足一系列约束条件。
非线性规划的基本要素非线性规划包含以下几个基本要素:1. 决策变量决策变量是非线性规划中的可调整参数,用于描述决策者所要做的选择。
在生产运筹中,决策变量可以是产品的产量、投入资源的数量或者是生产过程中的各种参数。
2. 目标函数目标函数是非线性规划中要优化的函数,可以是生产成本、利润、产量或其他决策者关心的指标。
在非线性规划中,目标函数的形式可以是任意的非线性函数。
3. 约束条件约束条件描述了决策变量的取值范围或者彼此之间的关系。
约束条件可以是等式约束或者不等式约束。
在生产运筹中,约束条件可以包括物料的平衡方程、设备的容量限制等。
4. 可行域可行域是指满足约束条件的所有决策变量取值的集合。
在非线性规划中,决策变量的取值必须落在可行域内,才被认为是合理的解。
5. 优化算法非线性规划的求解过程需要使用优化算法来搜索最优解。
常用的优化算法包括梯度下降法、牛顿法、拟牛顿法等。
生产运筹非线性规划的应用生产运筹非线性规划的应用非常广泛,涵盖了生产计划、资源分配、供应链优化等领域。
以下是一些非线性规划在生产运筹中的应用案例:1.生产计划优化:通过优化决策变量,如产量、物料分配等,来最大化产量、最小化成本或缩短生产周期。
2.设备选择优化:通过优化设备的选择和使用策略,来最大化产量、降低能耗或最小化故障率。
3.供应链优化:通过优化物流和分配的决策变量,如运输路线、库存水平等,来最小化供应链成本或缩短物流时间。
非线性规划作业
非线性规划作业非线性规划是数学领域中的一个重要分支,它在实际应用中具有广泛的意义。
本文将从非线性规划的基本概念、应用领域、解决方法、优化算法和实例分析等五个方面进行详细介绍。
一、基本概念1.1 非线性规划的定义:非线性规划是在目标函数或约束条件中至少包含一个非线性函数的优化问题。
1.2 非线性规划的特点:与线性规划相比,非线性规划具有更为复杂的数学结构和求解困难度。
1.3 非线性规划的分类:根据目标函数和约束条件的性质,非线性规划可分为凸优化和非凸优化两类。
二、应用领域2.1 工程优化:非线性规划在工程领域中广泛应用,如结构设计、电力系统优化、交通规划等。
2.2 金融领域:在金融领域中,非线性规划被用于投资组合优化、风险管理等方面。
2.3 生产调度:生产调度中的资源分配、作业排序等问题也可以通过非线性规划进行求解。
三、解决方法3.1 数值方法:常用的非线性规划求解方法包括牛顿法、拟牛顿法、共轭梯度法等。
3.2 优化算法:遗传算法、粒子群算法、模拟退火算法等优化算法也可以用于非线性规划问题的求解。
3.3 全局优化:针对非凸优化问题,全局优化方法可以帮助找到全局最优解而不是局部最优解。
四、优化算法4.1 遗传算法:通过模拟生物进化过程,遗传算法能够在解空间中搜索最优解。
4.2 粒子群算法:模拟鸟群觅食的行为,粒子群算法通过个体之间的信息交流来寻找最优解。
4.3 模拟退火算法:模拟金属退火过程,模拟退火算法通过控制温度来逐步接近最优解。
五、实例分析5.1 生产调度问题:假设一家工厂需要安排不同作业的生产顺序和资源分配,可以通过非线性规划来优化生产效率。
5.2 投资组合优化:一位投资者需要在不同资产中分配资金以达到最大收益,非线性规划可以帮助优化投资组合。
5.3 电力系统优化:电力系统中存在多个发电机和负荷之间的优化问题,非线性规划可以帮助实现电力系统的最优调度。
综上所述,非线性规划在现代科学技术和实际生产中具有重要意义,通过合理选择求解方法和优化算法,可以有效解决复杂的优化问题,提高系统效率和资源利用率。
非线性规划01基本概念与凸规划
Objective: To minimize surface area of the box.
Model: min f (x, y, z) 2xy 2xz 2yz
s.t xyz V
x, y, z 0
Constrained
2020/7/4
Ludong University
6
数学规划
设 x (x1,L , xn )T Rn , f (x); gi (x),i 1,L , p;hj (x), j 1,L , q; Rn a R , 如下的数学模型称为数学规划(Mathematical Programming, MP):
非线性规划
Nonlinear Programming
Ludong University
第四章 非线性规划
由前几章知道,线性规划的目标函数和约束条件都是其自变 量的线性函数,如果目标函数或约束条件中包含有自变量的 非线性函数,则这样的规划问题就属于非线性规划。有些实 际问题可以表达成线性规划问题,但有些实际问题则需要用 非线性规划的模型来表达,借助于非线性规划解法来求解。
若 xk1 满足某种终止条件,停止,输出近似解 xk1 。
定义 4.1.3 设 f : Rn a R, x Rn , p Rn , p 0 ,若存在 0 ,使 f (x tp) f (x), t (0, 处的下降方向。
定义 4.1.4 设 X Rn , x X , p Rn , p 0 ,若存在 t 0 ,使 x tp X ,
f (x*) f (x), x X, x x*,
则称 x* 是(MP)的严格整体最优解或严格整体极小点,称 f (x*) 是(MP)的严格整 体最优值或严格整体极小值。
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个领域
第5章 非线性规划
(水力约束) (水力摩阻系数约束)
KD GC
L (热力约束)
(粘温关系约束)
(工艺要求约束) (管道强度约束)
在目标函数中,f1(TR)、f2(Pd)一般为非线性函数,约束条 件中亦存在不少非线性函数,显然是一个NLP问题。
非线性规划的基本概念和定理
例3:最小二乘问题:该问题大量存在于工业生产和科学 实验的数据处理中。例如原油的粘度可以表示为:
凹函数的几何意义:
对 于 一 元 函 数 f(x) , 若
函数曲线上任意两点之 间的连线永远不在曲线
的 上 方 , 则 f(x) 为 凹 函
数(参见右图) 。
非线性规划的基本概念和定理 f(X)
f [X 1 (1 ) X 2 ]
对于二元函数 f(x1,x2), 若函数曲面上任意两点 之间的连线永远不在曲 面的上方,则f(x1,x2)为 凹函数(参见右图)。
1、一元函数:
①必要条件:f(x)在x*处取得极值的必要条件是f'(x*)=0;
②充分条件:若f"(x*)<0,则x*为极大点; 若f"(x*)>0,则x*为极小点。 2、多元函数: ①必要条件: f(X)在D域内存在极值点X*的必要条件为 * f ( X ) 0 (即f(X)在X*处的所有一阶偏导数等于0)。
非线性规划的基本概念和定理
根据定义,线性函数既是凸函数,又是凹函数。 凸函数的几何意义: 对 于 一 元 函 在曲线的下方, 则 f(x) 为 凸 函 数 ( 参 见 右
图) 。
非线性规划的基本概念和定理 f(X)
f ( X 1 ) (1 ) f ( X 2 )
§5.1 非线性规划的基本概念和定理
一、什么是非线性规划?
非线性规划
非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。
其倒数至今在优选法中仍得到广泛应用。
在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。
例如阿基米德证明:给定周长,圆所包围的面积为最大。
这就是欧洲古代城堡几乎都建成圆形的原因。
但是最优化方法真正形成为科学方法则在17世纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。
以后又进一步讨论具有未知函数的函数极值,从而形成变分法。
这一时期的最优化方法可以称为古典最优化方法。
最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。
反之,某些最优化方法可适用于不同类型的模型。
最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。
(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。
求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。
(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。
此时可采用直接搜索的方法经过若干次迭代搜索到最优点。
这种方法常常根据经验或通过试验得到所需结果。
对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。
应用数学系研究生课程介绍(西安交通大学)
研究生课程介绍课程编码:091002课程名称:计算方法(A)Computational Methods (A)学分:3课内总学时数:72上机(实验)学时数:18课程内容简介:本课程讲授电子计算机上使用的各种基本的数值计算方法, 如插值法, 最小二乘法, 最佳一致逼近, 数值微积分, 方程求根法, 线性与非线性代数方程组解法, 矩阵特征值与特征向量求法, 常微分方程初值问题的解法, 求解数理方程定解问题的差分法, 有限元法等. 书中重点讨论了各种计算方法的构造原理和使用, 对稳定性, 收敛性, 误差估计等也作了适当讨论. 本课程适合于计算数学专业以外的理工科各专业研究生学习。
先修课:高等数学, 线性代数, C 语言或FORTRAN 语言参考书目:1. 邓建中,刘之行编, 计算方法,西安交通大学出版社,2002执笔人:梅立泉、李乃成、高静审定人:彭济根课程编码:091003课程名称:计算方法(B)Computational Methods (B)学分:3课内总学时数:54上机(实验)学时数:48课程内容简介:由于现代计算机技术的迅速发展,数值方法已成为科学研究的最重要的手段之一。
本课程在介绍数值计算的基本问题,包括浮点数、误差形成等的基础上,主要介绍:线性方程组的直接解法与迭代解法、离散数据的连续化处理(包括多项式插值、分段插值和最小二乘法)、数值积分和数值导数、非线性方程解法简介、常微分方程数值解法、以及最优化方法简介。
通过听课与相应的上机练习等途径,理解数值方法的形成原理,掌握最基本的数值方法,了解采用数值方法时应注意的主要问题,为以后在科研和工程技术工作中设计算法、应用数值软件进行数值计算奠定必要的基础。
先修课:高等数学、线性代数、算法语言(Fortran、C、C++、或Matlab 等)参考书目:1.凌永祥、陈明逵编,计算方法教程(第二版)西安交通大学出版社,2005执笔人:黄昌斌、苏剑、马军审定人:彭济根课程名称:工程优化方法及其应用Engineering Optimization Methods and Its Applications学分:2课内总学时数:40上机(实验)学时数:课程内容简介:讲述工程优化的数学基础,凸集、凸函数、凸规划的基本概念与基本理论;突出非线性规划各类算法的共性分析及其在计算机上可实现的步骤,并指出每类算法中所包含各种常用和著名算法;简介工程中常用到的几类特殊规划,如:线性规划、二次规划、几何规划和多目标规划的基本概念、常用和最新算法;简介工程优化设计应用实例(包括建立优化模型,根据模型特点构造或选用相适应的算法、计算流程图)。
学习非线性规划的基本方法
学习非线性规划的基本方法非线性规划(Nonlinear Programming,简称NLP)是数学规划中的一种重要方法,被广泛应用于工程、经济、管理、物理等领域。
与线性规划相比,非线性规划在模型的描述和求解方法上更为复杂,但也更为灵活和准确。
本文将介绍非线性规划的基本方法,包括问题的建模、常用的求解算法和实际应用。
一、非线性规划问题的建模在开始学习非线性规划之前,我们首先需要对非线性规划问题进行合理的建模。
通常,一个典型的非线性规划问题可以表示为以下形式:最小化 f(x)约束g_i(x) ≤ 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., n其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_j(x)是等式约束条件,x为决策变量,m和n分别表示不等式约束条件和等式约束条件的个数。
在建模时,需要特别注意以下几点:1. 选择合适的决策变量,使得问题的描述和求解更加精确和高效。
2. 明确目标函数和约束条件,确保数学模型的准确性。
3. 充分考虑实际问题的特性,对问题进行合理的简化和假设。
二、非线性规划问题的求解算法非线性规划问题的求解算法可以分为两类:直接法和间接法。
直接法直接对非线性规划问题进行求解,而间接法先将非线性规划问题转化为等价的特殊结构问题,再对等价问题进行求解。
下面介绍两种常用的求解算法:单纯形法和内点法。
1. 单纯形法单纯形法是线性规划中常用的一种求解算法,但也可以用于求解非线性规划问题。
该算法通过寻找可行解的连续改进路径,不断接近最优解。
单纯形法的核心思想是在可行域内搜索目标函数极小值点。
2. 内点法内点法是一类有效的非线性规划求解方法,其基本思想是将原问题转化为一个等价的凸优化问题,通过寻找问题凸对偶的极值点来求解原问题。
该方法的优点是能够处理大规模的非线性规划问题,并具有较好的收敛性和全局最优性。
三、非线性规划的实际应用非线性规划方法在实际应用中具有广泛的应用前景。
非线性规划算法在生产调度中的应用
非线性规划算法在生产调度中的应用随着生产技术的不断提高和信息化程度的不断加强,生产调度的效率也越来越高,但是面对大规模的生产任务和高度复杂的生产流程,如何尽可能地优化调度算法,提高操作效率成为了生产调度领域的一大难题。
非线性规划算法作为一种理论严谨,优化效果良好的算法,在生产调度中的应用也得到了广泛的重视和应用。
一、非线性规划算法的基本原理非线性规划算法是对非线性约束条件下的优化问题进行求解的算法。
其基本思想是在不断迭代的过程中,逐步逼近最优解,直到满足一定的精度要求为止。
在生产调度中,由于生产任务数量众多,而各项任务之间相互制约,而且常常存在时间紧迫等特殊情况,使用非线性规划算法可以有效处理这些问题,提高生产调度效率。
二、非线性规划算法的应用1、排产调度排产调度是生产调度中最基本的问题之一。
生产车间中常常存在多台机器,多道工序的情况,如何合理分配机器和工序,是排产调度的核心问题。
非线性规划算法可以针对每一个工序的时间、优先级和制约条件进行优化处理,以达到最佳排产计划的目的。
2、车间调度车间调度相对于排产调度更为复杂,因为车间中存在多个车间,多条生产线的情况。
如何协调不同车间和生产线之间的关系,平衡各项任务的优先级和完成时间,成为了车间调度的重要问题。
非线性规划算法可以结合车间的物理构造和生产流程,对不同车间和生产线的任务进行分配和调度,以达到最大化任务完成效益的目的。
3、生产过程优化在生产调度过程中,产生的数据量相对来说会比较庞大,如何从接收到的数据中提取出有价值的信息,对生产过程进行有效的优化,也是非线性规划算法的一大应用方向。
通过大量的历史数据和实时数据,非线性规划算法能够根据生产需求、工人数量、材料成本等多个维度对生产流程进行优化分析,以提高生产效率和降低成本。
三、非线性规划算法的发展趋势目前,随着人工智能和大数据分析技术的进一步发展,非线性规划算法也在不断完善和升级,不仅能够解决生产调度中单机和多机排产的问题,也能够对多机协同和多生产线间的任务协调进行优化处理。
数模(非线性规划模型)
{
}
( )
( )
( )
( )
6
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题. 时的最优化问题就叫做非线性规划问题. 一般形式: 一般形式:
min f ( X )
gi ( X ) ≥ 0 i = 1,2,..., m; s.t. (1) h j ( X ) = 0 j = 1,2,..., l. f 其中 X = (x1, x2 ,L, xn )T ∈ E n , , gi , h j 是定义在 En 上的实值函
14
定义
设X ⊂ R n , x∈ X , p∈ R n , p ≠ 0,若存在 t > 0,使得
x + tp∈ X
则称向量 p是点 x处 的可行方向。 关于 X 的可行方向。
解非线性规划问题, 解非线性规划问题,关键在于 找到某个方向, 找到某个方向,使得在此方向 上,目标函数得到下降,同时 目标函数得到下降, 还是可行方向。 还是可行方向。 这样的方向称为可行下降方向。 这样的方向称为可行下降方向。
{
}
( )
( )
( )
( )
8
三. 非线性规划的图解法
线性规划问题: 用图解法求解下面的非 线性规划问题: min s .t .
2 2 f ( x1,x2 ) = x1 + x2
1- x1 − x2 ≤ 0 x1 − 1 ≤ 0 x2 − 1 ≤ 0
9
三角形表示的是可行域。 三角形表示的是可行域。 同心圆表示的是目标函数的等值 线。 最优解为( , ) 最优解为(1/2,1/2) 最优值为1/2 最优值为 1/2 1/2
非线性规划求解
1 1
x1 x2
2.输入命令:
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
i =1 i =1
m
m
1 g i X
其中称 r lng i X 或 r
i =1 i =1
m
m
1 为障碍项, r为障碍因子. g i X
这样问题(1)就转化为求一系列极值问题: min I X , r
X D
0
k
得 X(r ).
k
k
内点法的迭代步骤
(1) 给定允许误差 0 ,取r1
??xfdx?min定义2对于问题1设若存在使得对一切且都有则称x是fx在d上的局部极小值点局部最优解特别地当时若dx?0??dx????xxxx????xfxf?nrx???????njirxxhxgxd????00局部极小值点局部最优解
数学建模与数学实验
非线性规划
实验目的
1. 直观了解非线性规划的基本内容.
2. 掌握用数学软件求解优化问题.
实验内容
1.非线性规划的基本理论.
2. 用数学软件求解非线性规划. 3. 钢管订购及运输优化模型. 4.实验作业.
非线性规划
非线性规划的基本概念
*非线性规划的基本解法
返回
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数, 则最优 x 2 2 2 0 x 1 0 x 2
第四章 非线性规划 山大刁在筠 运筹学讲义
第四章 非线性规划教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。
教学难点:约束最优化问题的最优性条件。
教学课时:24学时主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。
第一节 基本概念教学重点:非线性规划问题的引入,非线性方法概述。
教学难点:无。
教学课时:2学时主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。
1、非线性规划问题举例例1 曲线最优拟合问题已知某物体的温度ϕ 与时间t 之间有如下形式的经验函数关系:312c t c c t e φ=++ (*)其中1c ,2c ,3c 是待定参数。
现通过测试获得n 组ϕ与t 之间的实验数据),(i i t ϕ,i=1,2,…,n 。
试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点),(i i t ϕ拟合。
∑=++-n 1i 221)]([ min 3i t c i i e t c c ϕ例 2 构件容积问题通过分析我们可以得到如下的规划模型:⎪⎪⎩⎪⎪⎨⎧≥≥=++++=0,0 2 ..)3/1( max 212121222211221x x S x x x x a x x t s x x a V ππππ基本概念设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i :,...,1),(;,...,1),();(==,如下的数学模型称为数学规划(Mathematical Programming, MP):⎪⎩⎪⎨⎧===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..)( min约束集或可行域X x ∈∀ MP 的可行解或可行点MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划令 T p x g x g x g ))(),...,(()(1=T p x h x h x h ))(),...,(()(1=,其中,q n p n R R h R R g :,:,那么(MP )可简记为⎪⎩⎪⎨⎧≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。
非线性规划基本概念
序列二次规划法原理及步骤
• 原理:序列二次规划法是一种迭代求解非线性规划问题的方法。它在每次迭代中构造一个二次规划子问题,通 过求解该子问题得到原问题的一个近似解,然后利用该近似解的信息构造下一个二次规划子问题,如此循环直 至收敛到最优解。
序列二次规划法原理及步骤
2. 求解二次规划子问题,得到近 似解。
与线性规划不同,非线性规划中的目标函数或约 束条件至少有一个是非线性的。
非线性规划问题通常更加复杂,需要采用特定的 算法和工具进行求解。
非线性规划重要性
01
广泛适用性
非线性规划在各个领域都有广泛 应用,如经济、金融、工程、管 理等。
02
解决复杂问题
03
推动技术进步
非线性规划能够处理涉及复杂非 线性关系的问题,提供更精确的 解决方案。
THANKS
感谢观看
REPORTING
https://
VS
5. 判断终止条件
若满足终止条件,则停止迭代,输出当前 迭代点作为近似最小值点;否则,返回步 骤2继续迭代。
拟牛顿法原理及步骤
原理
1. 初始化
拟牛顿法是一种改进牛顿法的方法, 其基本思想是通过构造一个近似海森 矩阵的逆矩阵来避免直接计算海森矩 阵及其逆矩阵。拟牛顿法利用目标函 数的一阶导数信息来构造一个满足拟 牛顿条件的矩阵来逼近海森矩阵的逆 矩阵,从而在保证收敛速度的同时降 低了计算复杂度。
选择初始点 x0,设置迭代终止条件。 初始化拟牛顿矩阵 B0(或其逆矩阵 H0)。
2. 计算梯度
计算函数在 x0 处的梯度 g0 和 g1。
拟牛顿法原理及步骤
3. 求解搜索方向 通过解线性方程组 Bdp = -gp 或 Hdp = -gp 得到搜索方向 dp。
非线性规划
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
非线性规划理论与算法
或起作用约束(紧约束\积极约束\有效约束)。
记 I ( x ) { i | gi ( x ) 0,1 i l }, 称 I ( x )为点 x 处的积极约束指标集。
2 例:设 g1 ( x) 2 x12 x2 0, g 2 ( x) x12 x2 1 0, g3 ( x) x1 0 .
定义4: 可行下降方向
设点 x Q , 给定向量 d ,如果 d 既是点 x 处的可行方向, 又是该点的下降方向,则称 d 为点 x 处的可行下降方向。 6
min f ( x ) 给定点 x Q , 记点 x 的积极约束指标集为 ( x )。给定 s .t . g(x) 0 I
定理2:
向量 d ,如果 d 满足 gi ( x )T d 0 f ( x )T d 0 i I ( x)
则向量 d 是点 x 处的可行下降方向。
证略
③极值点的必要条件: 定理3:
设 x* Q,( x*)是其积极约束指标集。 I
f ( x ) 和 gi ( x ) (i I ( x*) ) 在点 x * 处可微,
9
最优性条件
无约束规划
min f ( x ) n
xR
定理:可微函数解的必要条件:x*是局部解,则: f ( x*) 0. x*是驻点(稳定点)
可微凸函数解的充要条件:x*是整体极小解当且仅当 f ( x*) 0.
(t ) f ( x * td )
10
约束规划最优性条件的几何表述
共面梯度被线性标示
12
约束规划最优性条件的几何表述
min f ( x ) s .t . ci ( x ) 0, i 1, ..., p
非线性规划和动态规划.
模型建立 设该容器的底边长和高分别为 x1 , x2
则问题的数学模型为
min f ( X ) 40 x1x2 20 x12
1x212xx12x
12 2 2
x1
2
68
x1
,
x
2
0
在LINGO中求解: min=40*x1*x2+20*x1^2; x1^2*x2=12; 12*x1*x2+2*x1^2<=68; 得到x1=2.690416,x2=1.657839,min
7
,决策点为D2
f
3
C 3
min
C3D1 C3D 2
f f
4 4
D1 D2
3 3*
min
3
4
6
,决策点为D1
第二阶段,由Bj到Cj分别均有三种选择,即:
B1C1 f3C1
7 6
f2 B1
min B1C2
线性规划:lindo/lingo 非线性规划:lingo 二次规划:lingo 整数规划:lindo/lingo 0-1整数规划:lindo/lingo
第四节 动态规划 (Dynamic Programming)
动 态 规 划 是 1951 年 由 美 国 数 学 家 贝 尔 曼 ( Richard Bellman)提出,它是解决一类多阶段决策问题的优化方法, 也是考察问题的一种途径,而不是一种算法(如LP单纯形法 )。因此它不象LP那样有一个标准的数学表达式和明确定义 的一组规则,而必须对具体问题进行具体分析处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(X2)
f(x1+(1- )x2 )
f(X1)
X1
x1+(1-
)x2
X2
X
35
f ( x)
f (x(1) (1 ) x(2) )
凹函数
o x (1)
f ( x)
x ( 2)
f ( x(1) ) (1 ) f ( x(2) ) x
非凸非凹函数
o x (1)
相应不等式反号,得到相应极大点,极大值定义。
8
定义
如果X满足(P)的约束条件
(i=1,2,….m)
hi(X)=0
gj(X) 0 (j=1,2….l)
则称X En 为(P)的一个可行解。 记(P)的所有可行解的集合为D, D称为(P)可行域。
9
定义 X*称为(P)的一个(整体)最优解,如 果X* D,满足 f(X) f(X*), X D。 定义 X*称为(P)的一个(局部)最优解,如 果X* D,且存在一个X*的邻域 N(X* ,)= 满足 f(X) f(X*), X D N(X* ,)
30
一、凸函数的定义
设R为凸集, X (1) , X ( 2) R及 (0, 1) 若f (X (1) (1 ) X ( 2) ) f ( X (1) ) (1 ) f ( X ( 2) ) 则称f ( X )为R上的凸函数. 若f (X (1) (1 ) X ( 2) ) f ( X (1) ) (1 ) f ( X ( 2) )
10
X En X- X* < , >0
局部最优解
f(X)
整体最优解
11
2.梯度向量 f(X)=grad f(X) =(f/x1 ,f/x2 ,…..,f/xn)T 区间内连续的梯度的性质: ①在某点的f(X(0))必与函数过该点的等值面的 切平面相垂直。 ②梯度方向是函数值增加最快的方向(函数变化 率最大的方向) 负梯度方向是函数值减小最快的方向。
第七章
非线性规划的基本概念 和基本原理
1
7.1 数学模型和基本概念
非线性规划是运筹学中包含内容最多, 应用最广泛的一个分支,计算远比线性 规划复杂。
2
一、数学模型 例 某单位拟建一排 厂房,厂房建筑平面如图 所示。由于资金及材料的 限制,围墙及隔墙的总长 度不能超过80米。为使建 筑面积最大,应如何选择 长宽尺寸?
* 若存在 X * S , 0 ,令 N { X | X X , 0} , * * X S N ( X * ), X X * 都有 f ( X ) f ( X ) , 则称 X 为 f ( X * ) 为严格局部极小值。 该问题的严格局部极小点,
驻点x*=(1,1,-2)
4
H(X) =2f(X) =
0
10 2
2
2 2
27
0 2
4
H(X) =2f(X)=
0
10
2
2
0
2
4 各阶主子式:4>0, 4 0 0 10 2 2 =24>0 0
2
0 10
2Hale Waihona Puke =40>0 H(X)正定, X*=(1,1,-2), f(X*)=0
28
2
2
2
例 利用极值条件解无约束非线性规划问题
14
2f/xnx1 2f/xnx2 …..
2f(X)是对称矩阵。( f(X)二阶偏导数连续时,混 合偏导数和取导数的顺序无关) f(X)是二次函数,则可写成 f(X)=1/2XTAX+BTX+C 则 2f(X)=A (与X的位置无关)
15
4、正定矩阵、负定、半定、不定 正定:特征值>0;各阶主子式>0(Ai>0) 半正定:特征值≥0;detA=0, Ai ≥ 0
解 因为
1 3 1 3 2 min f ( X ) x1 x2 x2 x1 4 3 3 f f
x1 x12 1 ,
2 1
2 x2 2 x2
2 0 f (X3) 0 2
2
2 0 f (X4) 0 2
解: a 5 0 11
5 A 2 2 2
5 2 26 0 2 6
2
6 0 80 0 0 4
A负定
17
例:判定正定性
2 5 2 A 2 6 0 0 4 2 1 0 1 B 1 0 3 1 3 0
5
一般模型 Min f(X)
s.t. hi(X) = 0
(i=1,2,….m)
(P)
gj(X) 0 (j=1,2….l)
X En f(X) hi(X) gj(X) 为En上的实函数。
或
(1) min f(x) g j(x) 0 ,j 1,2, ,l
目标函数 (2) 约束条件
o如果H(x) 不定的,该驻点X*就不是f(X)极值点。
22
二、极值点的必要条件和充分条件
最优性条件的研究是非线性规划理论研究的一个 中心问题。
为什么要研究最优性条件? o本质上把可行解集合的范围缩小。 o它是许多算法设计的基础。
23
无约束问题的最优性条件 (P1) Min f(X) X En 定理3(一阶必要条件) 设f(X)在X*点可微,则X*为(P1) 的一个局部极值点,一定有 f(X*)=grad f(X*)=0( X*称为驻点)
负定:特征值<0; Ai <0(i为奇), Ai >0(i为偶)
半负定:特征值≤0; detA=0,Ai ≤0(i为奇), Ai ≥0(i为偶) 不定:特征值有> 0及< 0;除了上述情况外即为不 定。
16
例:判定正定性
2 5 2 A 2 6 0 0 4 2 1 0 1 B 1 0 3 1 3 0
x1
x2
max f ( x ) x1 x2 2 x1 5 x2 80 x1 , x2 0
f(x)为非线性函数
3
分析:设长为 x1 米, 宽为 x2 米,则有
例 设某物理过程具有如下规律
用试验法 求得ti时的 (ti )值, i 1,2, , m。 现要确定参数 x1, x2 , x3 , 使所得试验点构成的曲线与理论曲线误差平 方和为最小,且满足 x1 x2 1, x3 非负。
此时h( x ) 0事实上不起约束作用 , x *直接由 min f ( x )求得.
非线性规划的最优解可能在可行域的 任一点达到。
21
一、用海赛矩阵判断驻点的性质
o若H(x)为正定,该驻点X*是严格局部极小值点; o若H(x)为负定,该驻点X*是严格局部极大值点;
o若H(x)为半正定(半负定),则进一步观察它在 该点某邻域内的情况,可能是可能不是;
6
二、基本概念
1、全局极值和局部极值
f ( X ) 为目标函数,S 为可行域。若存在 X * S , X S ,都 * 有 f ( X ) f ( X * ),则称 X 为该问题的全局极小点,
f ( X * ) 为全局极小值。
f ( X ) 为目标函数,S 为可行域。若有X * S , X X * , X S , * * 都有 f ( X ) f ( X ) ,则称 X 为该问题的严格全局极小点,
(t ) x1 x2e x3t
4
分析:
min f ( x) [ (ti ) ( x1 x2 e x3ti )]2
i 1 m
x1 x2 1 x3 0
f(x)为非线性函 数,求最小。
非线性规划: 目标函数或(和)约束条件为非线性函数 的规划。
24
无约束问题的最优性条件
(P1)
Min f(X)
X En
定理4(二阶必要条件) 设f(X)在X*点二阶可微,如果X*为 (P1) 的一个局部极小点,则有 f(X*) =0 和 H( X* )为半正定。
25
无约束问题的最优性条件
(P1)
Min f(X)
X En
定理5(二阶充分条件)
x2 x 1 0 2 令 f ( X ) 0 即 求得到4个驻点: x 2 x 0 2 2 1 1 1 1 X4 X1 X 2 X3 2 0 0 2 0 2 x1 2 f (X ) 0 2 x 2 2 2 0 2 0 2 2 f ( X1) f (X 2 ) 0 2 0 2
* 得到最优解x1
6
2 o
2
D(3,3)
* x2
3,
6
x1
最小值 min f ( x) f ( x* ) 2.
20
6
x2
min f ( x) ( x1 2) 2 ( x2 2) 2 x1 x2 6 0
2 o
2 6
分析:
x1
若h( x ) x1 x2 6 0, * * * x1 2, x2 2, f ( x ) 0, 最优解位于可行域内部 ,
几何解释
31
f(X)
X
32
f(X) f(X2)
f(X1)
X1
X2
X
33
f(X)
f( x1 ) +(1- ) f( x2)
f(X2)
f(x1+(1- )x2 )
f(X1)
X1
x1+(1-