第4章 非线性规划01-基本概念与凸规划

合集下载

第4章 非线性规划

第4章 非线性规划

x
( 2)
x
2、凸性的判别 (1)一阶条件 设R为开凸集, f ( x ) 在R上有一阶连续偏导数 , 则f ( x) 在R上为 凸函数的充要条件是对任意X (1) , X ( 2 ) R, X (1) X ( 2 ) , 恒有 f ( X ( 2 ) ) f ( X (1 ) ) f ( X (1 ) ) T ( X ( 2 ) X (1 ) )
* *
邻域N ( x * ) {x R n | x x * }( 0), 使
* x x ) X,
则称x *为(MP)的(严格 )局部最优解或(严格 )局部极小点,
称f ( x * )为(MP)的(严格 )局部最优值或(严格 )局部极小值。
数学规划问题的解决现状
3.凸函数的极值
对于定义在凸集上的凸函数,其极小点就是最 小点,极小值就是最小值。
4.凸规划
当X为凸集,目标函数f(x)为X上的凸函数,则
min f ( x ) 为凸规划 . x X
下述问题就是凸规划
f (X ) min X R R X g i ( X ) 0, i 1, , p 其中f ( X )为R上凸函数, g i ( X )为凸函数.
2 S X R g 2 ( X ) x1 x2 1 0 x1 , x2 0
为凸集。
又因为, f ( X )的海赛矩阵 2 f 2 f x 2 x x 2 0 1 1 2 H f (X ) , 正定, 凸函数. 2 2 f f 0 2 x x x 2 2 1 2 所以,该问题为凸规划。
或约束最优化问题。
定义1
对于(MP),若x * X , 并且 f ( x ) () f ( x), x X

凸优化与非线性规划

凸优化与非线性规划

凸优化与非线性规划凸优化和非线性规划是数学领域中重要的优化问题研究方向。

它们在工程、经济学、计算机科学等领域中具有广泛的应用。

本文将介绍凸优化和非线性规划的基本概念、性质、求解方法以及应用场景。

一、凸优化1. 凸集与凸函数在凸优化中,凸集和凸函数是基本的概念。

凸集是指集合中的任意两点之间的连线上的所有点都属于该集合。

而凸函数是指定义域上的任意两点连线上的函数值都小于等于函数上其他点的函数值。

2. 凸优化问题凸优化问题是指在定义域上的凸函数的约束下,寻找使目标函数最小化(或最大化)的变量的取值。

通常的形式化描述是: min f(x)s.t. g_i(x) <= 0, i=1,...,mh_j(x) = 0, j=1,...,px ∈ X其中,f(x)是凸函数,g_i(x)是凸函数不等式约束,h_j(x)是等式约束,X是定义域。

3. 凸优化的性质凸优化具有以下重要性质:(1)局部最优解即为全局最优解:任何一个局部极小点都是全局极小点。

(2)凸优化问题的最优解是唯一的:只有一个点使得目标函数最小(最大)。

(3)约束最优化问题:在约束条件下寻找最优解。

当所有约束条件都是线性的时候,就是线性规划。

二、非线性规划1. 非线性规划问题非线性规划(Nonlinear Programming, NLP)是在定义域上的非线性函数的约束下,寻找使目标函数最小化(或最大化)的变量的取值。

通常的形式化描述为:min f(x)s.t. g_i(x) <= 0, i=1,...,mh_j(x) = 0, j=1,...,px ∈ X不同于凸优化,非线性规划问题中的目标函数和约束函数都可以是非线性的,定义域也可以是非凸的。

2. 非线性规划的求解方法非线性规划的求解方法有很多,包括梯度下降法、牛顿法、拟牛顿法等。

其中,拟牛顿法是非常常用且有效的算法之一。

拟牛顿法利用目标函数的一阶导数和二阶导数信息来近似求解最优解。

它通过迭代的方式逐步逼近最优解,直到满足一定的收敛条件。

非线性规划

非线性规划

min f ( x) s.t. g i ( x) 0, i 1,, p h j ( x) 0, j 1,, q
gi ( x) 0, i 1,, p n X x R h ( x ) 0 , j 1 , , q 称 j 为约束集或可行域。
f ( x* ) f ( x), x X, x x*
则称 x*是(MP)的严格整体最优解(或严格整体极小点), 称 f(x*)是(MP)的严格整体最优值(或严格整体极小值)。
2011年11月
山东大学 软件学院
9
局部最优解
定义 4.1.2 对于非线性规划 MP,若 x* X,并且存在 x*
* x N ( x ) X ,x x*,都有 如果
f ( x* ) f ( x) ,
则称 x*是 MP 的严格局部最优解(或严格局部极小点), 称 f(x*)是 MP 的严格局部最优值(或严格局部极小值)。
2011年11月 山东大学 软件学院 10
非线性规划方法,基本概念
n n n f : R R p R , p 0 。若存在 > x R 定义 4.1.3 设 , ,
山东大学 软件学院 6
2011年11月
数学规划
T n x ( x , , x ) R 设 ,f(x),gi(x), i = 1..p 和 hj(x), j = 1..q 1 n
n 是 R R 的函数。如下的数学模型称为数学规划
(Mathematical Programming, MP):

c1 c2 t e c t
3
t
2011年11月 山东大学 软件学院 3
例1,曲线的最优拟合

第4讲非线性规划-精品文档

第4讲非线性规划-精品文档

x 2 ( x ) a a x a x 过三点作抛物线: g 0 1 2 2 g ( x ) a a x a x f ( x ) 1 0 1 1 2 1 1 有 2 g ( x ) a a x a x f ( x ) 2 0 1 2 2 2 2 2 g ( x ) a a x a x f ( x ) 3 0 1 3 2 3 3



x x

注:迭代时,若出现退化情形 x x2 x 1 x 2 , 继续迭代。 可取 x 2
#
2. 最速下降法 设f(X) 可微,给定初始点X1,>0, 每次沿使f 下降得最快的负梯度 方向 D=-f (X)搜索,直到满足 终止条件为止。 第k次迭代
f (X)
X
D= -f (X)
x3
x i x j,
1 1 1
x1 x2 x3
x 12 x 22 0 x 32
故方程组有唯一解,且 a2 0
即抛物线的开口向上。
g ( x ) a 2 a x 0 1 2 a1 x 得极小值点 2a 2

,x ,x ,x中选出满足前面不等式的三点 , 再从 x 1 2 3 重复前面的过程,直到满足终止条件: | f ( x ) g ( x ) | ,| x x | 1 3 1 2
高维问题可通过一系列的一维搜索,求出其近似最优解。
沿某些方向作一维搜索
n min{ f ( X ) |X R }
化为无约束问题 min f ( X ) s . tg ( X ) 0 , i 1 , 2 , , m i h ( X ) 0 , j 1 , 2 , , p j
第四节 非线性规划模型的解

非线性规划的基本概念及问题概述

非线性规划的基本概念及问题概述

牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。

非线性规划01基本概念与凸规划

非线性规划01基本概念与凸规划

Objective: To minimize surface area of the box.
Model: min f (x, y, z) 2xy 2xz 2yz
s.t xyz V
x, y, z 0
Constrained
2020/7/4
Ludong University
6
数学规划
设 x (x1,L , xn )T Rn , f (x); gi (x),i 1,L , p;hj (x), j 1,L , q; Rn a R , 如下的数学模型称为数学规划(Mathematical Programming, MP):
非线性规划
Nonlinear Programming
Ludong University
第四章 非线性规划
由前几章知道,线性规划的目标函数和约束条件都是其自变 量的线性函数,如果目标函数或约束条件中包含有自变量的 非线性函数,则这样的规划问题就属于非线性规划。有些实 际问题可以表达成线性规划问题,但有些实际问题则需要用 非线性规划的模型来表达,借助于非线性规划解法来求解。
若 xk1 满足某种终止条件,停止,输出近似解 xk1 。
定义 4.1.3 设 f : Rn a R, x Rn , p Rn , p 0 ,若存在 0 ,使 f (x tp) f (x), t (0, 处的下降方向。
定义 4.1.4 设 X Rn , x X , p Rn , p 0 ,若存在 t 0 ,使 x tp X ,
f (x*) f (x), x X, x x*,
则称 x* 是(MP)的严格整体最优解或严格整体极小点,称 f (x*) 是(MP)的严格整 体最优值或严格整体极小值。
定义 4.1.2 对于非线性规划(MP),若 x* X ,并且存在 x* 的一个领域

非线性规划的基本概念

非线性规划的基本概念
处的最速下降方向,并求沿这个方向移动一个单位长度后
新点的目标函数值。
解: 由于
f x1 6 x1 4 x2 ,
f x2 4x1 2x2
则函数在 x =[0,1]T 处的最速下降方向是
P
f
x
f
x1 f
x2 x1 0
6 x1 4 x2
4 x1 2 x2
x1 0
4 2
(2)若f1, f2是S上的凸函数, f1 f2是S上的凸函数。 性质2: 设S Rn是非空凸集, f是凸函数,cR1,则集合
HS ( f ,c)xS| f ( x) c 是凸集。
证明:略.
➢ (3) 凸函数的判定 定理1:(一阶条件)
m in f ( x)
s.t. gi ( x) 0, i 1,, p
hi ( x) 0, j 1,, q
➢(4)可行域和可行解:

X
x
Rn
gi ( x) hi ( x)
0, i 1,, p 0, j 1,, q
为MP问题的约束集或可行域。
若x在X内,称x为MP的可行解或者可行点。
则称f是S上的凸函数,或f在S上是凸的。 若 f (x1 (1 )x2 ) f ( x1 ) (1 ) f ( x2 ),x1, x2 S
则称f是S上的严格凸函数,或f在S上是严格凸的。
若 f 是S上的(严格)凸函数,称f是S上的(严格) 凹函数, 或f在S上是(严格)凹的。
例 f ( x)|| x||其中xRn是凸函数
4 2
42 22
2
5 1
5
5
5
新点是: x1
x
e
0 1
2
5 1
5

非线性规划

非线性规划

非线性规划如果目标函数或约束条件中含有一个或多个是变量的非线性函数,我们称这类规划问题为非线性规划(nonlinear programming ,可简记为NP )。

一般地,解非线性规划问题要比解线性规划问题困难的多,因为它不像解线性规划问题有单纯形法这一通用的方法,非线性规划目前还没有适合于各种问题的一般算法,各个方法都有自己特定的应用范围。

非线性规划的基本概念和基本原理第一节 非线性规划的数学模型例:某金属制品厂要加工一批容积为1米3的长方形容器,按规格要求,上下底的材料为25元/m2,侧面的材料为40元/m2,试确定长、宽、高的尺寸,使这个容器的成本最低。

设容器的长为1x ,宽为2x ,则高为211x x 。

根据题意得:⎪⎩⎪⎨⎧≥++=0,)](1[8050),(min 2121212121x x x x x x x x x x f 例:某公司经营两种设备,第一种设备每件售价30元,第二种设备每件售价为450元,根据统计,售出一件第一种设备所需营业时间平均为0.5小时,第二种设备为()225.02x +时,其中2x 是第二种设备的售出数量,已知该公司在这段时间内的总营业时间为800小时,试决定使其营业额最大的营业计划。

解:设该公司计划经营第一种设备为错误!未找到引用源。

件,第二种设备为错误!未找到引用源。

件,根据题意得:⎪⎩⎪⎨⎧≥≤+++=0,800)25.02(5.045030),(max 212212121x x x x x x x x x f 由这两个例子可以看出,这两个例子在高等数学中代表了两类不同类型的极值问题。

例1是无条件极值;例2是有条件极值。

如果令),,,(21n x x x X =是n 维空间)(n E上的点,则一般非线性的数学模型为:⎪⎩⎪⎨⎧=≥==l j X g m i X h X f ji ,,2,1 ,0)(,,2,1 ,0)()(min)(X f 为目标函数,)()(X g X h j i ,为约束条件,X 为自变量。

第4章 非线性规划4.2

第4章 非线性规划4.2

由定义知函数为凸函数。证毕。 由定义知函数为凸函数。证毕。
定理4.2.2 (函数凸性的二阶条件) 设D是 E n 的非空开凸集,函数 f : D → E1 具有 是 的非空开凸集, 二阶连续的偏导数, 二阶连续的偏导数, 则函数f 则函数 为凸函数的充要条件是 上为半正定矩阵。 函数 f 的Hesse矩阵 H(X)在D 上为半正定矩阵。 矩阵 ( ) 函数f 函数 为严格凸函数的充要条件是函数 f 的Hesse矩 矩 矩阵 H(X)在D 上为正定矩阵。 上为正定矩阵。 ( )
X (1) + λ ( X (2) − X (1) ) = (1 − λ ) X (1) + λ X (2) ∈ D
因为函数f 为凸函数, 因为函数 为凸函数, 所以
f ( X (1) + λ ( X (2) − X (1) ) ) ≤ λ f ( X (2) ) + (1 − λ ) f ( X (1) )
定理4.2.1 (函数凸性的一阶条件) 函数凸性的一阶条件) 定理 设D是 ห้องสมุดไป่ตู้ n 的非空开凸集,函数 f : D → E1 具有 是 的非空开凸集, 一阶连续的偏导数, 一阶连续的偏导数, 则函数f 则函数 为凸函数的充要条件是 恒有 f ( X (2) ) ≥ f ( X (1) ) + ∇f ( X (1) )Τ ( X (2) − X (1) )
证明: 必要性。 因为D是 证明: 必要性。 因为 是 E n 的非空开凸集,所以 的非空开凸集,
∀λ ∈ [0, 1], 有
X (1) + λ ( X (2) − X (1) ) = (1 − λ ) X (1) + λ X (2) ∈ D n 因为D是 n ∀ f 为严格凸函数, X ∈ D, Z ∈ E , 因为 是 E 的 为严格凸函数, 非空开凸集, 非空开凸集, 所以存在 λ > 0, 当 λ ∈ [−λ , λ ] 时,

第4章 非线性规划42讲解

第4章 非线性规划42讲解

也是D上的凸函数。
性质4.2.4 设f(X)是凸集D上的凸函数,对任一
实数 ,集合S X | X D, f (X ) , 也是凸
集。
证明: 任取 X (1) , X (2) S , 则 X (1) D, X (2) D.

f ( X (1) ) , f ( X (2) ) .
注1:若f 是D 上的(严格)凸函数, 则称-f 是我们也可以仿照定义4.2.1来定义凹函数, 只要令式(4.2.1)和(4.2.2)不等号反向。
当n=1时,如图4.2.1所示凸(凹)函数的函数曲 线上任意两点间的连线总在函数曲线的上(下)方。
§4.2 凸函数与凸规划
求解非线性规划问题的算法很多,但一般情况下求出的都 是局部最优解。而我们的目的是求问题的全局最优解。为 了达到这个目的,我们一般可以从两个方面着手考虑,一 是寻求求全局极值的计算方法,二是从理论上说明在何种 情况下,求出的局部极值一定是问题的全局极值。实际上, 研究结果表明,对于凸规划来说,局部最优解一定是全局 最优解(对极值问题而言)。
定理4.2.1 (函数凸性的一阶条件)
设D是 En的非空开凸集,函数 f : D E1 具有
一阶连续的偏导数,则函数f 为凸函数的充要条件是
恒有 f ( X (2) ) f ( X (1) ) f ( X (1) ) ( X (2) X (1) )
X (1) , X (2) D
本节首先介绍凸函数的概念和性质,再介绍凸规划的 概念与性质。
§4.2.1 凸函数及其性质
定义4.2.1 设f (X)为定义在非空凸集D En 上的函
数。若对任意的 (0,1)及D 中任意两点 X (1) 和

数模(非线性规划模型)

数模(非线性规划模型)

{
}
( )
( )
( )
( )
6
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数 时的最优化问题就叫做非线性规划问题. 时的最优化问题就叫做非线性规划问题. 一般形式: 一般形式:
min f ( X )
gi ( X ) ≥ 0 i = 1,2,..., m; s.t. (1) h j ( X ) = 0 j = 1,2,..., l. f 其中 X = (x1, x2 ,L, xn )T ∈ E n , , gi , h j 是定义在 En 上的实值函
14
定义
设X ⊂ R n , x∈ X , p∈ R n , p ≠ 0,若存在 t > 0,使得
x + tp∈ X
则称向量 p是点 x处 的可行方向。 关于 X 的可行方向。
解非线性规划问题, 解非线性规划问题,关键在于 找到某个方向, 找到某个方向,使得在此方向 上,目标函数得到下降,同时 目标函数得到下降, 还是可行方向。 还是可行方向。 这样的方向称为可行下降方向。 这样的方向称为可行下降方向。
{
}
( )
( )
( )
( )
8
三. 非线性规划的图解法
线性规划问题: 用图解法求解下面的非 线性规划问题: min s .t .
2 2 f ( x1,x2 ) = x1 + x2
1- x1 − x2 ≤ 0 x1 − 1 ≤ 0 x2 − 1 ≤ 0
9
三角形表示的是可行域。 三角形表示的是可行域。 同心圆表示的是目标函数的等值 线。 最优解为( , ) 最优解为(1/2,1/2) 最优值为1/2 最优值为 1/2 1/2

非线性规划基本概念

非线性规划基本概念

序列二次规划法原理及步骤
• 原理:序列二次规划法是一种迭代求解非线性规划问题的方法。它在每次迭代中构造一个二次规划子问题,通 过求解该子问题得到原问题的一个近似解,然后利用该近似解的信息构造下一个二次规划子问题,如此循环直 至收敛到最优解。
序列二次规划法原理及步骤
2. 求解二次规划子问题,得到近 似解。
与线性规划不同,非线性规划中的目标函数或约 束条件至少有一个是非线性的。
非线性规划问题通常更加复杂,需要采用特定的 算法和工具进行求解。
非线性规划重要性
01
广泛适用性
非线性规划在各个领域都有广泛 应用,如经济、金融、工程、管 理等。
02
解决复杂问题
03
推动技术进步
非线性规划能够处理涉及复杂非 线性关系的问题,提供更精确的 解决方案。
THANKS
感谢观看
REPORTING
https://
VS
5. 判断终止条件
若满足终止条件,则停止迭代,输出当前 迭代点作为近似最小值点;否则,返回步 骤2继续迭代。
拟牛顿法原理及步骤
原理
1. 初始化
拟牛顿法是一种改进牛顿法的方法, 其基本思想是通过构造一个近似海森 矩阵的逆矩阵来避免直接计算海森矩 阵及其逆矩阵。拟牛顿法利用目标函 数的一阶导数信息来构造一个满足拟 牛顿条件的矩阵来逼近海森矩阵的逆 矩阵,从而在保证收敛速度的同时降 低了计算复杂度。
选择初始点 x0,设置迭代终止条件。 初始化拟牛顿矩阵 B0(或其逆矩阵 H0)。
2. 计算梯度
计算函数在 x0 处的梯度 g0 和 g1。
拟牛顿法原理及步骤
3. 求解搜索方向 通过解线性方程组 Bdp = -gp 或 Hdp = -gp 得到搜索方向 dp。

非线性规划

非线性规划

非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。

数学中的非线性规划与凸优化

数学中的非线性规划与凸优化

数学中的非线性规划与凸优化数学广泛应用于各个领域,其中非线性规划和凸优化是数学中重要且常见的概念。

非线性规划是指在给定的约束条件下,寻找一个目标函数的最优解;而凸优化是指在给定的凸约束条件下,寻找一个凸函数的最优解。

本文将分别介绍非线性规划和凸优化的基本概念、求解方法和应用领域。

一、非线性规划非线性规划是求解非线性优化问题的数学方法。

与线性规划相比,非线性规划没有线性约束条件,目标函数和约束条件都是非线性的。

非线性规划在实际问题中的应用非常广泛,比如工程设计、金融投资和生产优化等领域。

1.1 基本概念非线性规划问题可以用如下形式表示:$$\begin{align*}\text{minimize} \quad & f(\mathbf{x}) \\\text{subject to} \quad & g_i(\mathbf{x}) \leq 0, \quad i = 1,2,\ldots,m \\ & h_j(\mathbf{x}) = 0, \quad j = 1,2,\ldots,p \\\end{align*}$$其中,$f(\mathbf{x})$是目标函数,$\mathbf{x} \in\mathbb{R}^n$是优化变量,$g_i(\mathbf{x}) \leq 0$和$h_j(\mathbf{x}) = 0$是约束条件。

1.2 求解方法求解非线性规划问题的方法有很多,常用的方法包括梯度下降法、牛顿法和拟牛顿法等。

这些方法都是通过迭代的方式,逐步优化目标函数,直到找到最优解或接近最优解。

1.2.1 梯度下降法梯度下降法是一种常用的求解非线性规划问题的方法。

它通过不断沿着负梯度方向更新优化变量,逐步接近最优解。

具体步骤如下:(1)初始化优化变量$\mathbf{x}^{(0)}$和学习率$\alpha$;(2)计算目标函数$f(\mathbf{x}^{(k)})$的梯度$\nablaf(\mathbf{x}^{(k)})$;(3)更新优化变量:$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} -\alpha \nabla f(\mathbf{x}^{(k)})$;(4)重复步骤(2)和(3),直到满足终止条件。

非线性规划基础PPT课件

非线性规划基础PPT课件

f
(
xk
tkdk
)
min t 0
f(xk
tdk
),
令 xk 1 xk tk dk ;k=k+1,转第1步。
第32页/共35页
• 一维搜索的方法很多,归纳起来,可分为试探 法和函数逼近法。试探法中包括如黄金分割法、 Fibonacci法等;函数逼近法中包括如牛顿法、 割线法等。
第33页/共35页
x (3,1)T
• 例13.6:
是下列优化问题的最优解,验
证x满足Fmrixitnzf-(Jxo) h(nx1定 7理)2 。 (x2 3)2
s.t.gg12((xx))
x12 x1
x22 x2
10 0, 4 0,
g
3
(
x)
x2
0,
第23页/共35页
紧指标集 I={1,2}
f(x)
-
• 在x点取到局部最优值的条件为:F0 G0
g f
i (x)T (x)T
d d
0 0
无解
第21页/共35页
• 定理13.11(Gorden):
设 A (A1,, Am ), Ai Rn ,i 1,, m ,则Ax<0有解
y( Rm ) 0
的充A分T y必 0要(i 条 1件,为, m:) 不存在非零向量
G {d | d 0, x D, 0, (0, ), x d D}
定理13.6 若f(x)在点 x 可微,如果存在方向d,
使 f (x)T d 0 ,则 0 使 (0, ) 有
f (x d) f (x)
第17页/共35页
一、无约束优化的最优性条件
• 在无约束规划问题中,由于不涉及到可行域的 问题,因此,只涉及下降方向。不涉及可行方 向的问题。

第4章 非线性规划-张

第4章 非线性规划-张

第四章 非线性规划模型第一节 非线性规划的实例与基本概念一、非线性规划的实例例1 化学反应的平衡组成设现有原料由m 种原子组成,各种原子数量依次为12,,,,m b b b 共生成n 种分子(产品),设生产数量(待求)依次为12,,,n x x x 。

设第j 种分子中含各种原子的数量依次为12,,,j j mj a a a 1,2,j n = 所有产品中含第i 种原子数之和为1122,i i i n n a x a x a x +++ 1,2,i m = 由熟知的质量守恒定律有1122,i i i n n i a x a x a x b+++= 1,2,i m = 在一定的温度、压力下,每种化合物都具有一定的自由能,根据化学热力学原理,当化学反应达到平衡状态时,系统的总自由能最小。

用12()(,)j j n f x f x x x = 表j 种化合物具有的自由能,它的表达式为1()(l n l n ())nj j j j i i f x x c x x ==+-∑其中j c 是与温度、压力及j 有关的常数。

总自由能为 1()()nj j x f x ϕ==∑ 问题变为求12,,,n x x x 使min ()x ϕ=1()njj fx =∑ (4-1)1122,1,2,..0,1,2,i i in n i j a x a x a x b i m s t x j n+++==⎧⎪⎨≥=⎪⎩ (4-2)式(4-1),(4-2)构成的数学模型显然与前几章的数学模型不同,它就是我们即将介绍的非线性规划模型。

例2 成组气田开发的最优化模型设有一组m 个气田,要求在一定开发期内产气总量为s Q ,而si Q 为第i 个 气田的极限产量,gi Q 为第i 个气田的最优产量(待求),i n 为第i 个气田的生产井数,可按公式22123[()]i i gi i ei wi i gi n E Q E P P E Q =--计算,其中ei P ,wi P 分别为第i 个气田的地层边界压力和井底流动压力,1i E ,2i E ,3i E 是与第i 个气田的地层形状、流动条件、井排数、井排半径及井距有关的常数。

非线性规划

非线性规划

返回
结束
非线性规划
解:确定决策变量
设 x i 表示第 i个季度的产量 ( i = 1,2,3 )。 约束条件: 1 ()每季度的最大生产能 力为100:x i ≤ 100( i = 1,2,3)
限制: (2 每季度的交货数量的 限制: ) 第一季度: 第一季度: x1 ≥ 40 第二季度: 第二季度:( x 1 − 40 ) + x 2 ≥ 60
料场位置为 ( h j , g j ),日储量为 e j , j = 1, 2 .
决策变量:
设 x ij 为从料场 j向工地 i的运送量 , j = 1, 2 .i = 1, 2 ,L ,6
返回 结束
非线性规划
在问题 ( 2)中, 两个新建料场的位置 ( h j , g j )也是决策变量 .
约束条件: (1 )各工地的日用量必须满 足 : ∑ x ij = d i ( i = 1, 2 ,L ,6 ).
一、模型的建立
返回
结束
非线性规划
[实例 某工厂向用户提供发动机,按合同规定,其交货 实例] 某工厂向用户提供发动机,按合同规定, 实例 数量和日期是:第一季度末交40台 第二季末交60台 数量和日期是:第一季度末交 台,第二季末交 台,第 三季末交80台 工厂的最大生产能力为每季100台,每季 三季末交 台。工厂的最大生产能力为每季 台 ),其中 的生产费用是 f ( x ) = 50 x + 0 .2 x 2 ( 元),其中 x 为该季生
返回
结束
非线性规划
练习题 飞行管理问题 在约10,000m高空的某边长160km的正方形区域内,经 常有若干架飞机作水平飞行。区域内每架飞机的位置和速 度向量均由计算机记录其数据,以便进行飞行管理。当一 架欲进入该区域的飞机到达区域边缘时,记录其数据后, 要立即计算并判断是否会与区域内的飞机发生碰撞。如果 会碰撞,则应计算如何调整各架(包括新进入的)飞机飞 行的方向角,以避免碰撞。现假定条件如下: 1)不碰撞的标准为任意两架飞机的距离大于8km; 2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800km;

第4章 非线性规划01-基本概念与凸规划

第4章 非线性规划01-基本概念与凸规划

2021/2/1
Ludong University
21
谢谢观赏!
2020/11/5
22
其中
f
(
x1
)
(
f (x1 x1
)
,
,
f (x1 xn
)
)T
是函数
f
在点 x1 处的一阶导数
或梯度。
f(x)
(2) f 是 S 上的严格凸
函数的充要条件是
f (x1)T (x2 x1)
f x1x2 x1
f (x2 ) f (x1),
x1, x2 S, x1 x2.
x1
x2
x
2021/2/1
为 Rn 上的凸函数, hj (x), j 1, , q 皆为线性函数,并且
f 是 X 上的凸函数,则(MP)是凸规划。
定理4.2.6 凸规划的任一局部最优解都是它的整体最优解。
2021/2/1
Ludong University
20
思考题和练习题
思考题:习题3,6(P.151)
练习题:习题7,8(P.151)
2 f (x)
x12
2 f (x)
2
f
(
x)
x2x1
2
f
(
x)
xnx1
2 f (x) x1 x2 2 f (x)
x22
2 f (x) xnx2
2 f ()
x2xn
2
f
(
x)
xn2
注:该逆命题不成立。
2021/2/1
Ludong University
18
则称向量 p 是函数 f x 在点 x 处关于 X 的可行方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
则称 x * 是(MP)的严格整体最优解或严格整体极小点,称 体最优值或严格整体极小值。
定义 4.1.2 对于非线性规划(MP),若 x *
N (x ) x R
*
* *
f ( x ) 是(MP)的严格整
*
X
*
,并且存在 x * 的一个领域
( 0, R ) ,

Ludong University
10
非线性规划方法概述
选取初始点 x 0 ,构造搜索方向 p k ,确定步长 t k ,令
x
k 1
x tk p
k
k

若 x k 1 满足某种终止条件,停止,输出近似解 x k 1 。
定义 4.1.3 设 f : R n R , x R n , p R n , p 0 ,若存在 0 ,使 f ( x tp ) f ( x ), t (0, ) , 则称向量 p 是函数 f x 在点 x 处的下降方向。
注:两个凸函数的乘积不一定是凸函数。
定理 4.2.2 设 S R n 是非空凸集, f : S R 是凸函数, c R ,则集 合
H S ( f , c ) x S f ( x ) c

是凸集。
注:一般地定理 4.2.2 的逆定理不成立。称集合 H S 在集合 S 上关于数 c 的水平集。
定义 4.1.4 设 X R n , x X , p R n , p 0 ,若存在 t 0 ,使
x tp X ,
则称向量 p 是函数 f x 在点 x 处关于 X 的可行方向。
2012-10-25 Ludong University 11
非线性规划基本跌代格式
第 1 步 选取初始点 x 0 , k
1 2 1 2
2012-10-25 Ludong University
x
1
x

2
x
17
凸函数及其性质
定理 4.2.4 设 S R n 是非空开凸集, f : S R 二阶连续可导,则 f 是 S 上的凸函数的充要条件是 f 的 Hesse 矩阵 2 f ( x ) 在 S 上是半正定的。 当 2 f ( x ) 在 S 上是正定矩阵时, f 是 S 上的严格凸函数。
2 f (x) 2 x1 2 f (x) x 2 x1 2 f (x) 2 f (x) x n x1 f (x)
2
x1 x 2 f (x)
2

x
2 2

f (x)
2
xn x2
2012-10-25
f(x)
f(αx1+(1-α)x2)
x1
ax1+(1-a)x2
x2
x
15
Ludong University
凸函数及其性质
定理 4.2.1 设 S R n 是非空凸集。 (1) 若 f : R n R 是 S 上的凸函数, 0 ,则 f 是 S 上的凸函数; (2) 若 f1 , f 2 : R n R 都是 S 上的凸函数,则 f 1 f 2 是 S 上的凸函数。
n
,
如下的数学模型称为数学规划(Mathematical Programming, MP):
m in f ( x ) s .t . g i ( x ) 0 , i 1, , p , h j ( x ) 0 , j 1, , q .
g i ( x ) 0, i 1, , p n 其中X x R h j ( x ) 0, j 1, , q
f ( x )
1
x
1
, ,
f ( x )
1
x
n
)
T
是函数 f 在点 x 1 处的一阶导数
或梯度。 f(x) (2) f 是 S 上的严格凸 函数的充要条件是
f (x ) (x x )
1 T 2 1
f x
1
x
2
x
1

f ( x ) f ( x ),
2 1
x , x S, x x .
0;
第 2 步 构造搜索方向 p k ; 第 3 步 根据 p k ,确定步长 t k ; 第 4 步 令 x k 1 x k t k p k 。 若 x k 1 已满足某种终止条件,停止迭代,输出近似 解 x k 1 ;否则令 k k 1 ,转回第 2 步。
2012-10-25
非线性规划方法概述

2012-10-25
Ludong University
4
Example 1
(a1,b1)
(a2,b2)

(x, y)
(a3,b3)


Three customers with known locations on a plane described by coordinates (ai,bi ), i=1,2,3. Problem:To find a location for a depot so that the total distance to the three customers is minimized. Variable: (x,y) the coordinates of the depot Model:
m in f ( x ) s .t . g (x) 0 , h( x) 0.
或者 m in f ( x ) 。
x X
当p=0,q=0时,称为无约束非线性规划或无约束最优化问 题。否则称为约束非线性规划或约束最优化问题。
2012-10-25 Ludong University 8
g i ( x ) 0 , i 1, , p n 其中X x R h j ( x ) 0 , j 1, , q
(M P )
约束集
如果(MP)的约束集X是凸集,目标函数f是X上的凸函数,则 (MP)叫做非线性凸规划,或简称为凸规划。
n
xx

使 f ( x ) f ( x ), x N ( x ) X ,则称 x * 是(MP)的局部最优解或局部极小点,称 f ( x * ) 是(MP)的局部最优值或局部极小点。如果有 f ( x ) f ( x ), x N ( x ) X , x x ,则称 * * x 是(MP)的严格局部最优解或严格局部极小点,称 f ( x ) 是(MP)的严格局部最优值 或严格局部极小点。
f(x)
0
2012-10-25
Local minimum Global minimum
Ludong University
x
2
第四章 非线性规划



基本概念 凸函数和凸规划 一维搜索方法 无约束最优化方法 约束最优化方法
2012-10-25
Ludong University
3
基本概念

非线性规划问题

f (x) x1 x n 2 f (x) x2xn 2 f (x) 2 xn
2
注:该逆命题不成立。
2012-10-25 Ludong University 18
凸规划及其性质
m in f (x) i s .t . g i ( x ) 0 , 1, , p , h j ( x ) 0 , 1, , q . j

m in f ( x , y , z ) 2 xy 2 xz 2 yz s.t xyz V x, y, z 0
Constrained
2012-10-25 Ludong University 6
数学规划
设 x ( x1 , , x n ) T R n ,
f ( x ); g i ( x ), i 1, , p ; h j ( x ), j 1, , q ; R R
最优解和极小点
定义 4.1.1 对于非线性规划(MP),若 x *
f ( x ) f ( x ),
*
X
,并且有
f ( x ) 是(MP)的整体最优值或整
*
x X,
则称 x * 是(MP)的整体最优解或整体极小点,称 体极小值。如果有
*
f ( x ) f ( x ), x X , x x ,
min f ( x , y )

3
( x a i ) ( y bi )
2
2
2012-10-25
i 1
Unconstrained
Ludong University
5
Example 2
Using the minimum material to make a box. The volume of the box has to be V=1000. Decision: Box length: x, width: y, height: z. Objective: To minimize surface area of the box. Model:
注: (1)若 f 是 S 上的(严格)凸函数,则称 f 是 S 上的(严格) αf(x1)+(1-α)f(x2) 凹函数,或 f 在 S 上是(严格)凹的。 (2)线性函数 f x a T x b , a , x R n , b R 在 R n 上既是凸函数 也是凹函数。
约束集或可行域
x X
2012-10-25
相关文档
最新文档