浙教版初中数学知识点
浙教版初一数学知识点总结
浙教版初一数学知识点总结一、整数1. 正整数、负整数及零2. 整数的加、减法3. 整数的乘法4. 整数的除法5. 整数的绝对值6. 整数的比较大小二、分数1. 分数的概念2. 分数的加、减法3. 分数的乘法4. 分数的除法5. 分数的化简6. 分数的比较大小三、小数1. 小数的概念2. 小数的加、减法3. 小数的乘法4. 小数的除法5. 小数的比较大小6. 小数与分数的互化四、代数1. 代数的概念2. 代数式的概念3. 代数式的加、减、乘、除4. 代数式的因式分解5. 代数式的展开6. 代数式的合并同类项7. 代数式的化简五、方程与不等式1. 一元一次方程的概念2. 一元一次方程的解3. 一元一次不等式的概念4. 一元一次不等式的解5. 一元一次方程和不等式的应用六、平行线与全等1. 平行线的概念2. 平行线性质及判定方法3. 全等的概念4. 全等三角形的判定方法5. 全等三角形性质6. 全等三角形的证明七、相似1. 相似的概念2. 相似三角形的判定方法3. 相似三角形的性质4. 相似三角形的证明5. 相似多边形的性质八、直角三角形1. 直角三角形的概念2. 直角三角形的性质3. 勾股定理4. 正弦、余弦、正切的定义及性质5. 直角三角形的应用九、不规则图形的周长和面积1. 不规则图形的面积估算2. 不规则图形的周长的计算3. 简单多边形的周长和面积的计算4. 圆的周长和面积的计算5. 直角三角形和一般三角形的面积计算十、数据的收集与整理1. 数据的收集方法2. 数据的整理方法3. 数据的图形表示4. 数据的分析及应用综上所述,浙教版初一数学知识点主要包括整数、分数、小数、代数、方程与不等式、平行线与全等、相似、直角三角形、不规则图形的周长和面积以及数据的收集与整理。
这些知识点构成了初一数学的基础,对于后续学习中的数学知识有着重要的作用。
在学习过程中,学生不仅需要掌握这些知识点的概念和性质,还需要掌握其运用方法,以及学会将数学知识运用到日常生活中。
浙教版初中数学全套知识点汇总
七年级(上册)1.有理数1.1.从自然数到有理数分数都可以化为小数。
分数在化成小数时,结果可能是有限小数,也可能是无限循环小数。
大于0的数,叫正数;小于0的数,叫负数;0既不是正数也不是负数。
整数和分数统称为有理数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数零正整数整数有理数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数1.2.数轴像这样规定了原点、单位长度和正方向的直线叫做数轴。
任何一个有理数都可以用数轴上的点表示。
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
0的相反数是0。
在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。
1.3.绝对值我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
一个数a 的绝对值表示为|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
1.4.有理数的大小比较在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数。
两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
2.有理数的运算2.1.有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不变。
a +b =b +a加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
(a +b )+c =a +(b +c )2.2.有理数的减法减去一个数,等于加上这个数的相反数。
有理数加减混合运算的一般步骤是先利用减法法则,将减法转换成加法,再运用加法交换律和结合律,使计算简便。
九年级数学浙教版知识点归纳总结
九年级数学浙教版知识点归纳总结数学作为一门学科,在九年级的学习中起到了至关重要的作用。
为了更好地帮助同学们复习和巩固九年级数学浙教版的知识点,特将各个章节的重点内容进行归纳总结,并提供一些解题技巧和注意事项,希望能够对同学们的学习有所帮助。
一、函数与方程1. 一元一次方程与一次函数- 一元一次方程的概念及解法- 一次函数的概念与图像特征- 一元一次方程与一次函数之间的关系2. 二元一次方程组- 二元一次方程组的概念及解法- 二元一次方程组的几何意义3. 二次根式与二次函数- 二次根式的概念及运算规则- 二次函数的概念与图像特征- 二次函数与二次根式之间的关系二、平面图形的认识1. 三角形- 三角形的分类及性质- 三角形的内角和与外角性质2. 平行四边形与菱形- 平行四边形的性质- 菱形的性质3. 等腰梯形与等腰直角梯形- 等腰梯形的性质及面积计算- 等腰直角梯形的性质及面积计算三、立体几何与空间图形1. 立体图形的认识- 立体图形的分类及性质- 立体图形的表面积和体积计算2. 圆锥与圆台- 圆锥与圆台的性质- 圆锥与圆台的体积计算3. 圆柱与圆球- 圆柱与圆球的性质- 圆柱与圆球的体积计算四、统计与概率1. 统计的基本概念- 数据的收集与整理- 数据的图表表示及分析2. 概率的初步认识- 随机事件及其概率- 两个独立事件的概率计算3. 抽样与推测- 抽样调查的基本原则- 样本推断与总体估计通过对九年级数学浙教版各章节的知识点进行归纳总结,我们可以清晰地了解到每个章节的重点内容。
在复习时,我们应该重点关注每个知识点的概念及相关的解题方法,掌握基本的计算技巧和推理能力。
除此之外,我们还要注重实际问题与数学模型之间的联系,培养数学思维和应用能力。
在解题过程中,我们需要注意以下几点:- 阅读题目时要认真理解题意,并推断出问题所需的数学思路。
- 分析问题时要分清已知条件和需求,合理运用已学知识进行问题求解。
浙教版初中数学知识点
八年级上
第一章三角形的初步知识
1.认识三角形(三角形、三角形的内角、内角和;三角形按角分类;三角形三边关系;三角形的平分线、中线、高线);
2.定义与命题(定义、命题、命题的条件和结论、真命题、假命题、定理);3.证明(证明、三角形的外角、三角形的外角和);4.全等三角形(全等图形、全等三角形、对应边、对应顶点、对应角、全等三角形的性质);5.三角形全等的判:SSS(三角形的稳定性)、SAS(线段中垂线的定义及性质定理)、ASA、AAS(角平分线的性质);6.尺规作图
1、四边形的定义和性质
2、多边形的定义和性质
3、平行四边形的定义、性质和判定条件
1、定义:有两组对边分别平行的四边形叫做平行四边形。
2、性质:
(1)平行四边形的对边相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分。
3、判定:
第四章 特殊四边形
1、掌握正方形的性质、判定
2、掌握菱形的性质、判定
4.等腰三角形的判定、等边三角形的判定
5.逆命题和逆定理
6.直角三角形、直角三角形的性质及判定
7.勾股定理及逆定理
8.直角三角形全等的判定
熟练运用三线合一来解题;
熟练记忆几组特殊的勾股数。
第三章一元一次不等式
1.认识不等式(不等式的定义、不等号、不等式的数轴表示);2.不等式的基本性质;3.一元一次不等式的定义及解集、解一元一次不等式的一般步骤;4.一元一次不等式组及其解、解一元一次不等式组的一般步骤;5.不等式(组)应用题。
1.直线与圆的位置关系定理;
直线与圆相切的判定定理;
切线的性质;
2.切线长定理;
初中数学知识点总结浙教版
初中数学知识点总结浙教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。
- 整数的四则运算规则及其应用。
- 分数的加减乘除运算,分数的化简和比较大小。
- 代数式的基本概念,包括单项式、多项式、同类项和合并同类项。
2. 代数表达式与方程- 代数表达式的书写和简化。
- 一元一次方程、二元一次方程的解法及其应用。
- 不等式及其解集的表示,一元一次不等式和一元一次不等式组的解法。
3. 函数的初步认识- 函数的概念,函数的定义域和值域。
- 线性函数、二次函数的图像和性质。
- 函数的简单运算,包括加减乘除和复合函数。
二、几何1. 几何图形初步- 点、线、面的基本性质。
- 角的概念,包括邻角、对角、同位角等。
- 直线、射线、线段的性质和关系。
2. 平面图形- 三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形。
- 四边形的分类和性质,重点是矩形、正方形、平行四边形、梯形。
- 圆的基本性质,包括圆心、半径、直径、弦、弧、切线等。
3. 几何图形的计算- 三角形、四边形和圆的面积计算公式。
- 矩形、正方形和圆的周长(或称“围长”)计算。
- 体积和表面积的计算,主要是长方体和圆柱体。
4. 几何变换- 平移、旋转和轴对称(反射)的概念及其在几何图形中的应用。
- 通过具体操作改变图形的位置和形状,理解变换的不改变性质。
三、统计与概率1. 统计- 数据的收集、整理和描述。
- 频数分布表和频数分布直方图的绘制和解读。
- 平均数、中位数和众数的概念及其计算方法。
2. 概率- 随机事件的概念和分类。
- 概率的初步认识,包括确定事件和随机事件的概率计算。
- 简单事件发生的可能性分析。
四、应用题1. 数的应用- 利用所学的数的知识解决实际问题,如购物、时间计算等。
- 利率、比例和百分数的应用。
2. 代数的应用- 一元一次方程和不等式在实际问题中的应用。
- 通过代数表达式简化和运算解决实际问题。
浙教版九年级数学知识点
浙教版九年级数学知识点•相关推荐浙教版九年级数学知识点在学习中,不管我们学什么,都需要掌握一些知识点,知识点在教育实践中,是指对某一个知识的泛称。
还在为没有系统的知识点而发愁吗?以下是小编收集整理的浙教版九年级数学知识点,欢迎阅读,希望大家能够喜欢。
浙教版九年级数学知识点11、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的'距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
浙教版初中数学知识点总结归纳
浙教版初中数学知识点总结归纳一、整数运算1.整数的概念及表示法2.整数的加法、减法、乘法、除法运算3.各种运算法则的应用4.合并同类项、去括号、去分子分母算式的能力二、小数运算1.小数的概念及表示法2.小数的加法、减法、乘法、除法运算3.小数的大小比较4.有限小数和循环小数的判断和处理5.小数的四舍五入和位数对齐三、分数运算1.分数的概念及表示法2.分数的加法、减法、乘法、除法运算3.分数的化简和比较4.加减混合数的运算5.分数的倒数和互换律的运用四、代数与方程1.代数式的概念及表示法2.代数式的合并同类项、合并同底数、约分公因式3.一元一次方程的概念及解法4.一元一次方程的应用:问题的转化、列方程、解方程5.二元一次方程组的概念及解法6.二元一次方程组的应用:实际问题的转化、列方程组、解方程组五、比例与百分数1.比例的概念及性质2.倍数与倍数关系3.比例的四则运算4.百分数的概念及表示法5.百分数与分数、小数的互化6.百分数的四则运算7.百分数的应用:百分比换算、增加和减少百分数、利息、折扣、税率等问题六、几何与图形1.各种平面图形的概念及性质2.三角形和四边形的面积计算3.圆的面积和周长计算5.三角形的概念、分类及性质6.四边形的概念、分类及性质7.圆的概念、性质及相关定理8.空间图形的概念及性质:长方体、正方体、球体、棱锥、棱柱、圆柱等9.相似与全等:相似的概念、相似三角形的性质、相似比例、全等的概念及性质10.几何变换:平移、旋转和翻折的概念及性质七、统计与概率1.数据的收集、整理、分析与表示2.统计图表的分析与应用3.概率的概念及基本性质4.概率的计算:实验法、几何法和古典概型5.事件的概念、对立事件及事件的发生规律八、函数与图像1.函数的概念、自变量、因变量及表示法2.函数的图像及性质3.函数的增减性与最值5.一次函数、一次函数的图像及性质6.二次函数、二次函数的图像及性质7.解一元一次方程和一元二次方程的图像法九、立体几何1.空间图形的概念、分类及性质2.空间图形的展开图及体积计算3.空间图形的表面积计算4.立体几何的应用问题。
浙教版初中数学知识点总结
浙教版初中数学知识点总结一、整数与有理数1.整数的比较和整数的加减法整数的加法:同号相加,异号相减,规定正数在前,负数在后。
整数的减法:减法的本质是加法的逆运算,减去一个整数等于加上这个整数的相反数。
2.整数的乘除法整数的乘法:同号得正,异号得负,乘法交换律。
整数的除法:除法的本质是乘法的逆运算,除以一个整数等于乘以这个整数的倒数,即分数。
3.三者关系正数大于零,零等于零,负数小于零。
4.数轴数轴上的点与有理数的对应关系,数轴上点的坐标。
5.有理数的运算有理数的加法、减法、乘法、除法,对运算法则的理解和运用。
6.有理数的乘方与开方幂的概念,有理数的乘方运算,主要是平方和立方。
有理数的开方运算,开二次方的有理数不能是负数。
7.数与式数与式,式与式之间的计算关系,运算法则的灵活应用。
8.数轴与有理数的运算数轴与有理数的加减法运算,数轴上点的坐标的减法和加法运算,数轴上两点距离的计算。
二、代数初步1.代数初步字母的概念,字母的用途和含义。
代数式与数的关系,代数式之间的计算关系。
与字母相关的关系,如a=1时,2a=22.平方与平方根二次幂的概念,立方根的概念,开平方根的计算。
3.开方与幂的运算开方的运算法则,开方与幂的关系。
幂的整数指数的性质和运算规则。
4.二元一次方程解一元一次方程的方法,应用一元一次方程解决实际问题。
解二元一次方程的常用方法。
三、图形的初步认识1.图形的初步认识图形的概念和分类,几何图形的共同特征和不同特点。
2.点、线、面分类讨论直线、线段、射线的特点和关系。
面的概念,平面与直线、线段、点之间的关系。
四、平面图形与变换1.角的初步认识角的概念和分类,余角的概念和性质。
2.三角形和四边形三角形和四边形的分类和特点,相应的性质。
3.平行线平行线的概念和性质,平行线之间的关系。
4.三角形的相似相似三角形的概念和性质,相似三角形之间的关系。
5.对称与中心对称对称的概念和性质,利用对称性解决问题。
浙教版初中数学知识点
浙教版初中数学知识点1、 相反数:只有符号不同的两个数,我们说其中一个是另一个的相反数,也称为这两个数互为相反数。
的相反数是 0。
用数学语言表述为:若a 、b 互为相反数,则 a+b=0 即 a b ,反之也成立。
数 a 的相反数是 -a 。
2、 倒数:若 a 、b ( a 、 b 均不为 0)互为倒数,则 ab=1 即 a1,反之也成立。
a 的倒数是b1 。
0 没有倒a数, 1 和-1 的倒数是它们本身。
3、 有理数和无理数统称为实数。
实数分为有理数和无理数,也可分为正实数、0、负实数。
实数与数轴上的点一一对应。
4、 有理数分为正有理数、 0、负有理数,它们均是有限小数或无限循环小数;也可分为整数和分数,整数又分为正整数、 0、负整数;分数又分为正分数、负分数。
无理数分为正无理数和负无理数,它们都是无限不循环小数。
22 5、 π是无理数,7是分数是小数是有理数, 0 是自然数。
6、 绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值,数a 的绝对值记为“ |a 。
| ”代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0 的绝对值是 0。
于是, |a|=aa 0 ;|a|=-a a ≤0。
7、 任何一个实数的绝对值都是非负数,即|a| ≥。
0a( a a0(a a(a 0) 0) 或 a 0)a(a a( a 0),或 a0)a(a 0) a(a 0)8、 若|x|=a(a ≥,0则) 9、数轴上两点 A ( x= ±a ,即绝对值的原数的双值性。
x )、B ( x )之间的距离为 |AB|=|x - x |,其中点所表示的数为x Ax B。
坐标平 ABAB2面内两点 A ( x , y )、B ( x , y )的距离为: |AB|=(xx )2( yy )2,中点 C 的坐标为AABBx A x B y Ay BABAB22(,),点 A 到 x 轴的距离为 | y A |,到 y 轴的距离为 | x A |,到原点的距离为22x A y A ,如果 x A = x B 且 y A ≠y B ,则直线 AB 平行于 y 轴;如果 y A = y B 且 x A ≠x B ,则直线 AB 平行于 x 轴。
(完整版)(完整版)浙教版初中数学知识点总结归纳,推荐文档
初中数学教学大纲七年级上册第1章有理数1.1从自然数到有理数正数负数0既不是正数也不是负数整数分数有理数1.2 数轴原点单位长度正方向数轴相反数1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1有理数的加法加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2.2 有理数的减法减去一个数,等于加上这个数的相反数2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘,积为零互为倒数乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得0除以一个数(不等于0),等于乘以这个数的倒数2.5 有理数的乘方幂底数指数科学记数法2.6 有理数的混合运算先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算2.7 近似数准确数近似数第3章实数3.1 平方根平方根开平方算数平方根3.2 实数无理数3.3 立方根3.4 实数的运算先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式单项式系数次数多项式常数项4.5 合并同类项把同类项的系数相加,所得结果作为系数,字母和字母的指数不变4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法5.4 一元一次方程的应用第6章图形的初步认识6.1 几何图形6.2 线段、射线和直线6.3 线段的长短的比较两点之间线段最短6.4 线段的和差中点6.5 角与角的度量6.6 角的大小比较直角锐角钝角6.7 角的和差角的平分线6.8 余角和补角同角或等角的余角相等同角或等角的补角相等6.9 直线的相交对顶角相等连接直线外一点与直线上各点的所有线段中,垂线段最短初中数学教学大纲七年级下册第1章平行线1.1平行线1.2同位角、内错角、同旁内角1.3 平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行1.4 平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补1.5图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组代入消元法加减消元法2.4 二元一次方程组的应用2.5 三元一次方程组及其解法第3章整式的乘除3.1 同底数幂的乘法同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘3.2 单项式的乘法3.3 多项式的乘法(a+n)(b+m)=ab+am+nb+mn3.4 乘法公式(a+b)(a-b)=a ²-b ²(a+b) ²=a ²+2ab+b ²(a-b) ²=a ²+2ab+b ²3.5 整式的化简3.6 同底数幂的除法同底数幂相除,底数不变,指数相减3.7 整式的除法(a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义5.2 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变最简分式5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理全面调查抽样调查总体个体样本样本的容量简单随机抽样 6.2 条形统计图和折线统计图6.3 扇形统计图6.4 频数与频率组距频数频数统计表频率6.5 频数直方图初中数学教学大纲八年级上册第1章三角形的初步认识1.1认识三角形三角形三个内角的和等于180°三角形任何两边的和大于第三边三角形的角平分线三角形的中线三角形的高线1.2定义与命题定义命题条件结论真命题假命题定理1.3证明三角形的外角等于与它不相邻的两个内角的和1.4全等三角形全等三角形的对应边相等,对应角相等1.5三角形全等的判定三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)线段垂直平分线上的点到线段两端的距离相等角平分线上的点到角两边的距离相等1.6 尺规作图第2章特殊三角形2.1 图形的轴对称对称轴垂直平分连结两个对称点的线段成轴对称的两个图形是全等图形2.2 等腰三角形2.3等腰三角形的性质定理等腰三角形的两个底角相等在同一个三角形中,等边对等角等边三角形的各个内角都等于60°等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一2.4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形在同一个三角形中,等角对等边三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形2.5 逆命题和逆定理2.6 直角三角形直角三角形的两个锐角互余直角三角形斜边上的中线等于斜边的一半有两个角互余的三角形是直角三角形2.7 探索勾股定理直角三角形两条直角边的平方和等于斜边的平方a²+b²=c²如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形2.8 直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”“HL”)角的内部,到角两边距离相等的点,在这个角的平分线上第3章一元一次不等式3.1 认识不等式3.2不等式的基本性质a>b→a+c>b+c,a-c>b-ca<b→a+c<b+c,a-c<b-ca>b,且c>0→ac>bc,a/c>b/ca>b,且c<0→ac<bc,a/c<b/c3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内图形的轴对称和平移在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)第5章一次函数5.1 常量与变量5.2 函数5.3 一次函数一般地,函数y=kx+b(k,b都是常数,且k≠0) 叫做一次函数正比例函数比例系数待定系数法5.4 一次函数的图像对于一次函数y=kx+b(k,b为常数,且k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
浙教版初中数学知识点
浙教版初中数学知识点一、数与代数1.数的性质及运算:整数、有理数、无理数的概念与性质,加减乘除、乘方、开方等运算法则的应用。
2.整式的加减乘除:整数幂运算法则的应用,整式的加减乘除的规则及运算应用,整式的系数、次数、和展开式等概念。
3.整式的因式分解与乘法公式:根据整式的特点进行因式分解,利用乘法公式进行整式的简化和计算。
4.一元一次方程与不等式:一元一次方程与不等式的概念、解法及应用,包括两个方程及不等式的等价性质及解析解法。
5.二元一次方程组:二元一次方程组的概念、解法以及应用,包括二元一次方程组的图像表示法、解集等。
6.分式的概念与应用:分式的概念、运算规则以及应用,包括分式方程与不等式的解法等。
7.百分数与比例:百分数与比例的概念与运算,百分数方程与比例方程的解法,比例的应用解题等。
二、几何1.平面图形:平面图形的基本概念与性质,包括直线、线段、射线、角的概念等,计算线段长度、角的度数等。
2.三角形:三角形的性质、分类及计算,包括三角形的内角和、外角和、三角形的面积等。
3.圆:圆的性质与计算,包括圆周长、圆面积的计算等。
4.直线与线段的位置关系:直线与线段相交的情况,包括垂直、平行、相交等关系的判断与应用。
5.平面镶嵌:平面镶嵌的概念、判断方法及应用,包括平面镶嵌的构造、计数等问题。
6.三视图与展开图:三视图的概念与应用,展开图的概念、构造与计数等。
三、函数与方程1.一元二次函数:一元二次函数的概念、图像特点及应用,包括抛物线的开口方向、顶点坐标、零点、最值等的计算与应用。
2.图像的平移、翻转与旋转:平移、翻转与旋转的概念与应用,包括图像的变化规律、坐标的计算等。
3.实际问题的函数模型:根据实际问题建立函数模型,包括线性函数、二次函数等。
4.算法与程序设计:算法的概念与设计,面向实际问题的编程思维,包括流程图、拆解问题、编写代码等。
四、统计与概率1.数据的整理与表示:数据的收集与整理方法,包括频数表、频率分布表、条形统计图等。
浙教版初中数学知识点总结(较全)
浙教版初中数学知识点总结(较全)1、有理数:(1)整数和分数统称有理数、正整数、0、负整数统称整数;正分数、负分数统称分数;(注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数)(2)有理数的分类: ① ②2、数轴:数轴是规定了原点、正方向、单位长度的一条直线、3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a、b互为相反数、4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;如:丨-丨=;丨3、14-π丨=π-3、14、5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数、6、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0、第二章有理数的运算1、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数、2、有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)、3、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)、4、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;5、有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a (b+c)=ab+ac 、6、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,、7、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n 、8、乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;9、科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法、10、近似数:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位、从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字、如:0、05972精确到0、001得0、060,结果有两个有效数字6,0、11、混合运算法则:先乘方,后乘除,最后加减、有括号先小括号,中括号,大括号第三章实数1、有理数和无理数统称为实数、整数和分数统称有理数如:-3,0、231,0、…,,、无限不环循小数叫做无理数、-如:π,-,0、…(两个1之间依次多1个0)、2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根。
浙教版 初中数学 中考总复习
浙教版 初中数学 中考总复习第一章 有理数 七年级上1.有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式的数。
2.一般地,a 和-a 互为相反数。
特别地,0的相反数仍是0。
3.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
4.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
5.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
6.有理数加法交换律:a+b=b+a ,即两个数相加,交换加数的位置,和不变。
7.有理数加法结合律:(a+b )+c=a+(b+c ),即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
8.有理数减法法则:减去一个数,等于加这个数的相反数。
9.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
10.乘积是1的两个数互为倒数。
11.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
12.有理数乘法交换律:ab=ba ,即两个数相乘,交换因数的位置,积相等。
13.有理数乘法结合律:(ab )c=a (bc ),即三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
14.有理数乘法分配律:a (b+c )=ab+ac ,即一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
15.有理数除法法则:a ÷b=a ∙b1(b ≠0),即除以一个不等于0的数,等于乘这个数的倒数。
16.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
17.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0。
18.有理数的混合运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
浙教版初中数学知识点总结归纳
初中数学教学大纲七年级上册第1章有理数1.1从自然数到有理数正数负数 0既不是正数也不是负数整数分数有理数1.2 数轴原点单位长度正方向数轴相反数1.3 绝对值1.4 有理数的大小比较第2章有理数的运算2.1有理数的加法加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)2.2 有理数的减法减去一个数,等于加上这个数的相反数2.3 有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘,积为零互为倒数乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c2.4 有理数的除法两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得0除以一个数(不等于0),等于乘以这个数的倒数2.5 有理数的乘方幂底数指数科学记数法2.6 有理数的混合运算先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算2.7 近似数准确数近似数第3章实数3.1 平方根平方根开平方算数平方根3.2 实数无理数3.3 立方根3.4 实数的运算先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式单项式系数次数多项式常数项4.5 合并同类项把同类项的系数相加,所得结果作为系数,字母和字母的指数不变4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 等式的基本性质5.3 一元一次方程的解法5.4 一元一次方程的应用第6章图形的初步认识6.1 几何图形6.2 线段、射线和直线6.3 线段的长短的比较两点之间线段最短6.4 线段的和差中点6.5 角与角的度量6.6 角的大小比较直角锐角钝角6.7 角的和差角的平分线6.8 余角和补角同角或等角的余角相等同角或等角的补角相等6.9 直线的相交对顶角相等连接直线外一点与直线上各点的所有线段中,垂线段最短初中数学教学大纲七年级下册第1章平行线1.1平行线1.2同位角、内错角、同旁内角1.3 平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行1.4 平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补1.5图形的平移第2章二元一次方程组2.1 二元一次方程2.2 二元一次方程组2.3 解二元一次方程组代入消元法加减消元法2.4 二元一次方程组的应用2.5 三元一次方程组及其解法第3章整式的乘除3.1 同底数幂的乘法同底数幂相乘,底数不变,指数相加幂的乘方,底数不变,指数相乘积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘3.2 单项式的乘法3.3 多项式的乘法(a+n)(b+m)=ab+am+nb+mn3.4 乘法公式(a+b)(a-b)=a ²-b ²(a+b) ²=a ²+2ab+b ²(a-b) ²=a ²+2ab+b ²3.5 整式的化简3.6 同底数幂的除法同底数幂相除,底数不变,指数相减3.7 整式的除法(a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)第4章因式分解4.1 因式分解4.2 提取公因式法4.3 用乘法公式分解因式第5章分式5.1 分式分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义5.2 分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变最简分式5.3 分式的乘除5.4 分式的加减5.5 分式方程第6章数据与统计图表6.1 数据的收集与整理全面调查抽样调查总体个体样本样本的容量简单随机抽样6.2 条形统计图和折线统计图6.3 扇形统计图6.4 频数与频率组距频数频数统计表频率6.5 频数直方图初中数学教学大纲八年级上册第1章三角形的初步认识1.1认识三角形三角形三个内角的和等于180°三角形任何两边的和大于第三边三角形的角平分线三角形的中线三角形的高线1.2定义与命题定义命题条件结论真命题假命题定理1.3证明三角形的外角等于与它不相邻的两个内角的和1.4全等三角形全等三角形的对应边相等,对应角相等1.5三角形全等的判定三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)两边及其夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)两个角及其夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)两角及其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)线段垂直平分线上的点到线段两端的距离相等角平分线上的点到角两边的距离相等1.6 尺规作图第2章特殊三角形2.1 图形的轴对称对称轴垂直平分连结两个对称点的线段成轴对称的两个图形是全等图形2.2 等腰三角形2.3等腰三角形的性质定理等腰三角形的两个底角相等在同一个三角形中,等边对等角等边三角形的各个内角都等于60°等腰三角形的顶角平分线、底边上的中线和高线互相重合,简称等腰三角形的三线合一2.4 等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形在同一个三角形中,等角对等边三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形2.5 逆命题和逆定理2.6 直角三角形直角三角形的两个锐角互余直角三角形斜边上的中线等于斜边的一半有两个角互余的三角形是直角三角形2.7 探索勾股定理直角三角形两条直角边的平方和等于斜边的平方a²+b²=c²如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形2.8 直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”“HL”)角的内部,到角两边距离相等的点,在这个角的平分线上第3章一元一次不等式3.1 认识不等式3.2不等式的基本性质a>b→a+c>b+c,a-c>b-ca<b→a+c<b+c,a-c<b-ca>b,且c>0→ac>bc,a/c>b/ca>b,且c<0→ac<bc,a/c<b/c3.3 一元一次不等式3.4 一元一次不等式组第4章图形与坐标4.1 探索确定位置的方法4.2 平面直角坐标系4.3 坐标平面内图形的轴对称和平移在直角坐标系中,点(a,b)关于x轴的对称点的坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)第5章一次函数5.1 常量与变量5.2 函数5.3 一次函数一般地,函数y=kx+b(k,b都是常数,且k≠0) 叫做一次函数正比例函数比例系数待定系数法5.4 一次函数的图像对于一次函数y=kx+b(k,b为常数,且k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
初中浙教版数学知识点总结
初中浙教版数学知识点总结一、数与代数1. 有理数的运算- 正数、负数、整数、分数、小数的概念- 有理数的加、减、乘、除运算- 乘方、开方运算- 绝对值的概念及运算- 有理数的比较大小2. 整式的运算- 单项式、多项式的概念- 整式的加减、乘法、除法运算- 因式分解:提公因式、公式法、分组分解法3. 代数式的化简与求值- 代数式的化简- 代数式的求值:直接代入、化简后代入4. 一元一次方程与不等式- 方程的建立、解法:移项、合并同类项、系数化为1 - 不等式的建立、解法:移项、合并同类项、系数化为1 - 线性方程组的解法:代入法、消元法5. 二元一次方程组- 二元一次方程组的建立- 解法:代入法、消元法(加减消元、代数乘法消元)6. 一元二次方程- 一元二次方程的建立- 解法:直接开平方法、配方法、公式法、因式分解法7. 函数的概念与性质- 函数的定义、表示法- 函数的性质:定义域、值域、映射、单调性、奇偶性- 函数图像的绘制与识别8. 一次函数与反比例函数- 一次函数的概念、图像(直线)与性质- 反比例函数的概念、图像(双曲线)与性质9. 二次函数- 二次函数的概念、图像(抛物线)与性质- 顶点、对称轴的求法- 最大值、最小值问题10. 序列与数列- 等差数列的概念、通项公式、前n项和公式- 等比数列的概念、通项公式、前n项和公式- 数列的求和:分组求和、错位相减法二、几何1. 平面图形的认识- 点、线、面的基本性质- 角的概念:邻角、对顶角、同位角、内错角- 直线与角的关系:平行、相交、垂直2. 三角形- 三角形的分类:按边分类、按角分类- 三角形的性质:内角和定理、外角性质、三角形的中位线- 等腰三角形、等边三角形的性质与判定 - 直角三角形的性质与勾股定理3. 四边形- 四边形的分类与性质- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定- 梯形的性质与中位线定理4. 圆的基本性质- 圆的定义、圆心、弦、直径、半径- 圆的基本性质:弧、弦、直径的关系 - 圆周角定理、圆心角定理5. 圆的计算- 扇形、弧长、圆锥的体积计算- 切线的性质与判定- 圆与圆、圆与多边形的位置关系6. 空间几何- 空间图形的基本概念:点、线、面、体 - 空间直线与平面的位置关系- 空间图形的计算:体积、表面积7. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形的判定与性质- 相似比的计算与应用8. 解析几何初步- 坐标系的建立与应用- 直线、圆的解析表达式- 点、线、圆之间的距离与角度计算三、统计与概率1. 统计- 数据的收集、整理与描述- 频数、频率、频数分布表的概念与绘制 - 平均数、中位数、众数的计算与意义 - 方差、标准差的概念与计算2. 概率- 随机事件的概念与分类- 概率的定义与计算-。
浙教版初中数学知识点总结
浙教版初中数学知识点总结浙教版初中数学知识点总结浙教版初中数学是根据《浙江省义务教育课程标准实验教材》编写的教材,内容全面、系统、科学。
下面是对浙教版初中数学的知识点总结,供大家参考。
一、数与代数数集与数的表示:自然数、整数、有理数、无理数、实数、负数、小数、分数、百分数等数的概念及表示方法。
数的比较和估算:数的大小比较、数的估算。
数的四则运算:加法、减法、乘法、除法以及它们的性质。
数的整除与求余:倍数、约数、质数、素数、合数、最大公约数、最小公倍数、整除法等概念和方法。
分数与比例:分数的概念与表示方法、分数的运算、比例的概念与性质。
二、代数代数式的概念:代数式、字母、常数、项、同类项、异类项等概念。
代数式的运算:代数式的加减乘除运算、乘方、因式分解、约分等。
解一元一次方程:方程和等式的概念、一元一次方程、方程的解等。
解实际问题:实际问题与一元一次方程的应用。
三、图形与几何角与直线:角的概念、角的分类、角的度量、平角、直角、钝角、锐角等。
多边形与三角形:多边形的概念和性质、三角形的概念和性质、等边三角形、等腰三角形、直角三角形、等腰直角三角形、全等三角形等。
四边形和圆:四边形的分类和性质、平行四边形、矩形、正方形、菱形、梯形、圆的概念和性质。
图形的尺度:长度、面积与体积的概念、尺度的概念和应用、长度、面积、体积的单位等。
四、数据与统计统计表和图:统计表、统计图、折线图、条形图、面积图、扇形图等概念和绘制方法。
数据的分析与处理:平均数、中位数、众数的概念和计算方法、数据的整理、分析和处理。
以上是对浙教版初中数学的知识点进行的总结,涵盖了数与代数、代数、图形与几何、数据与统计等方面的内容。
希望这些知识点总结能够对初中数学的学习有所帮助。
初中数学知识点总结浙江版
初中数学知识点总结浙江版初中数学知识点总结(浙江版)一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。
- 有理数的分类:正有理数、负有理数和零。
- 有理数的运算:加法、减法、乘法、除法及混合运算。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法、减法、乘法和除法。
- 整除与余数:整除的定义、最大公约数和最小公倍数。
3. 分数与小数- 分数的基本概念:真分数、假分数、带分数。
- 分数的运算:加减乘除运算法则。
- 小数的基本概念:小数的性质和四则运算。
4. 代数表达式- 代数式的概念:单项式与多项式。
- 代数式的运算:加减、乘除、因式分解。
5. 一元一次方程- 方程的建立:等式与不等式。
- 方程的解法:移项、合并同类项、系数化为1。
6. 二元一次方程组- 方程组的建立:二元一次方程组的概念。
- 解法:代入法、加减消元法。
7. 不等式与不等式组- 不等式的性质:基本性质。
- 不等式的解集:表示方法。
- 不等式组的解法:同向相加、交叉相减。
8. 函数- 函数的概念:定义、函数图像。
- 线性函数:斜率、截距、方程。
- 二次函数:顶点、对称轴、开口方向。
二、几何1. 平面图形- 点、线、面:基本概念。
- 角:分类、性质、角的计算。
- 三角形:分类、性质、内角和定理。
- 四边形:分类、性质、对角线关系。
2. 圆- 圆的基本性质:圆心、半径、直径。
- 圆的计算:周长、面积。
- 圆的位置关系:相离、相切、相交。
3. 空间图形- 立体图形的基本概念:多面体、旋转体。
- 棱柱、棱锥:体积计算。
- 圆柱、圆锥、球:体积与表面积计算。
4. 几何变换- 平移:基本概念、坐标变化。
- 旋转:基本概念、旋转角度。
- 轴对称:对称轴、对称点。
5. 相似与全等- 全等三角形:判定条件。
- 相似三角形:相似比、对应角相等。
- 相似多边形:判定条件、性质。
三、统计与概率1. 统计- 数据的收集与整理:普查、抽样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
熟练掌握公式法进行因式分解。
第五章分式
分式的定义及分式有(无)意义需要满足的条件;分式的基本性质、约分、最简分式;分式的乘除;分式的加减、通分;分式方程、解分式方程。
会解决分式无解和增根问题。
掌握分式方程的解题步骤。
第六章数据与统计图表
数据的收集与整理、划记法、全面调查、抽样调查、总体、个体、样本、样本容量、简单随机抽样;条形统计图和折线统计图;扇形统计图;频数与频率、组距、频数统计表;频数直方图
平方根、算术平方根定义的把握;无理数的整数部分和小数部分;实数的简便运算。
第四章代数式
1.用字母表示数(把数和数量关系一般化);2.代数式(注意代数式的书写规范);3.代数式的值;4.整式、单项式、多项式;5.同类项、合并同类项及其法则;6.去括号法则
熟练掌握单项式、多项式的系数、次数、项数(注意:计算次数的时候只算字母的次数);规律题;应用题(电费、收入等)
选择合理的运算律进行简便运算。
理解并掌握乘方的定义;
负数的奇数次方为负,负数的偶数次方为正;
常用 或 来调整正负符号;
计算24点。
第三章实数
1.平方根(非负数a的平方根 )、开平方、算术平方根(非负数a的算术平方根 );2.无理数、无理数分类、实数的定义、实数的分类、实数间比较大小;3.立方根、开立方(实数a的立方根是 );4.实数的运算(运算律同有理数)。
2.函数(自变量、函数的三种表示方法、函数值)
3.一次函数、正比例函数(比例系数)、待定系数法求一次函数解析式;
4.一次函数的图像(列表、描点、连线)及性质;
熟练掌握本章节出现的各种概念;度分秒的转换;钟表中特定时间时针分针所成角的计算。
七年级下
第一章平行线
平行线定义、平行线做法;
同位角、内错角、同旁内角;
平行线判定、性质;
图形的平移的定义、性质。
三线八角定义的掌握、复杂图形中数相关角的对数(如同位角);会用五种方法判定平行;掌握折叠问题的解题方法;会利用平移的性质解决面积问题。
第五章一元一次方程
1.一元一次方程、一元一次方程的解;2.等式性质一和二、利用等式性质解方程;3.解一元一次方程的一般步骤;4.一元一次方程应用题。
熟练运用解一元一次方程的一般步骤解题;熟练掌握一元一次方程应用题各种类型。
第六章图形的初步知识
1.几何图形(平面图形、立体图形)、常见几何图形识别;2.直线、射线、线段的定义及表示方法;3.两点确定一条直线、两点之间线段最短、两点间距离定义;4.线段和、线段差、中点;5.角、顶点、始边、终边、平角、周角、度分秒的进制、量角器的运用;6.利用量角器比较角的大小、钝角、直角、锐角;7.角的和差、角平分线;8.互余、余角、互补、补角;9.相交、交点、对顶角、互相垂直、垂线、垂足、垂线段最短、点到直线的距离。
同底数幂乘法法则、幂的乘方法则、积的乘方法则;单项式与单(多)项式乘法法则;多项式与多项式乘法法则;乘法公式(平方差公式、完全平方公式);整式的化简;同底数幂除法法则及两个规定。
理解并熟练运用本章出现的公式。
第四章因式分解
因式分解的定义;提公因式法因式分解、添括号法则;乘法公式分解因式(平方差公式、完全平方公式)。
七年级上
章节
知识点
重难点
第一章有理数
1.自然数及其四大应用、有理数分类;
2.数轴的定义、几何意义及三大要素,相反数及几何意义;
3.绝对值的定义及性质、取绝对值;
4.有理数比较大小(正负零的大小比较、整数负数间大小比较、作差比较法、作商比较法)。
取绝对值、带绝对值的方程解法。
第二章有理数的运算
1.有理数的加法法则、加法运算律;2.有理数减法法则;3.有理数乘法法则、倒数、乘法运算律;4.有理数除法法则、除法与乘法的关系;5.乘方、幂、底数、指数;6.有理数的混合运算法则;7.准确数(可以计数的)、近似数(测量或估计的)、精确度
注意不等式性质3不要用错;
会利用不等式解决比较典型的应用题。
第四章图形与坐标
1.确定物体位置的方法:有序数对、方向和距离。
2.平面直角坐标系(x轴、y轴、四大象限、坐标平面、点的横纵坐标);
3.坐标平面内图形的轴对称和平移
此章节比较简单,重ቤተ መጻሕፍቲ ባይዱ掌握坐标平面内图形的对称和平移。
第五章一次函数
1.常量与变量
本章概念性的东西比较多,熟练掌握概念是重点。
八年级上
第一章三角形的初步知识
1.认识三角形(三角形、三角形的内角、内角和;三角形按角分类;三角形三边关系;三角形的平分线、中线、高线);
2.定义与命题(定义、命题、命题的条件和结论、真命题、假命题、定理);3.证明(证明、三角形的外角、三角形的外角和);4.全等三角形(全等图形、全等三角形、对应边、对应顶点、对应角、全等三角形的性质);5.三角形全等的判:SSS(三角形的稳定性)、SAS(线段中垂线的定义及性质定理)、ASA、AAS(角平分线的性质);6.尺规作图
4.等腰三角形的判定、等边三角形的判定
5.逆命题和逆定理
6.直角三角形、直角三角形的性质及判定
7.勾股定理及逆定理
8.直角三角形全等的判定
熟练运用三线合一来解题;
熟练记忆几组特殊的勾股数。
第三章一元一次不等式
1.认识不等式(不等式的定义、不等号、不等式的数轴表示);2.不等式的基本性质;3.一元一次不等式的定义及解集、解一元一次不等式的一般步骤;4.一元一次不等式组及其解、解一元一次不等式组的一般步骤;5.不等式(组)应用题。
第二章二元一次方程组
二元一次方程、二元一次方程的解;二元一次方程组、二元一次方程组的解;解二元一次方程组的方法(代入消元法、加减消元法);二元一次方程组的应用;三元一次方程组、三元一次方程组解法。
会用含一个字母的式子表示另一个字母;熟练运用两种消元法解题;会解看错字母类型题;掌握各种类型的应用题。
第三章整式的乘除
熟练云用三角形的内角和解决相关角度问题;熟练运用三角形三边关系解决边长问题;熟练掌握证三角形全等的方法和解题格式;理解尺规作图的作图方法,并能够熟练使用。
第二章特殊三角形
1.图形的轴对称(轴对称图形、对称轴、轴对称图形的性质、图形的轴对称及其性质)
2.等腰三角形、等边三角形
3.等腰三角形的性质定理(等边对等角、三线合一)