最新人教版数学七年级上册第一单元复习知识点

合集下载

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点
归纳总结
1. 自然数与整数:
- 自然数:1, 2, 3, 4, ...
- 整数:... -3, -2, -1, 0, 1, 2, 3, ...
2. 整式与代数式:
- 整式:由数字与字母通过运算符号组成的表达式,如3x + 4y。

- 代数式:由数字与字母组成的表达式,如x + 2。

3. 数轴与坐标:
- 数轴:用来表示有序数的直线。

0点位于数轴的中心,正数
向右延伸,负数向左延伸。

- 坐标:有序数在数轴上的位置。

4. 平行线与垂线:
- 平行线:在同一个平面内,永不相交的两条直线。

- 垂线:与另一条直线交点处呈直角的直线。

5. 解方程:
- 解方程是指找出方程中的未知数的值,使得等式成立。

- 方程的解是使方程成立的值。

6. 解不等式:
- 解不等式是指找出使得不等式成立的值。

- 不等式的解是满足不等式条件的值。

7. 测量与估算:
- 测量是通过使用合适的单位和测量工具来确定物体的长度、面积、体积等。

- 估算是通过近似计算来确定一个大致的数值。

8. 三角形与四边形:
- 三角形:具有三条边的图形。

- 四边形:具有四条边的图形。

以上是新人教版七年级上册数学第一单元的知识点归纳总结。

---
注:本文档内容整理自教材内容,确保准确性。

人教版版七年级数学上册知识点总结

人教版版七年级数学上册知识点总结

人教版版七年级数学上册知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

弧:圆上A、B两点之间的部分叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

最新人教版七年级数学上册第一章知识点归纳及练习

最新人教版七年级数学上册第一章知识点归纳及练习

新人教版七年级数学上册第一章知识点归纳及练习一、正数,负数的定义:大于0的数叫做正数;小于0的数叫做负数.注意:0既不是正数也不是负数.练习:如果收入50元记作+50元,那么支出80元应该记作二、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 例:观察下面9个数,并给它们进行分类.5、5.6、-6、-3.7、0、3、-2、3/2、-1/2正整数: 零: 负整数:正分数: 负分数:三、数轴:(1)数轴是规定了原点、正方向、单位长度的一条直线.注意:(1)数轴是一条直线,可以向两方无限延伸;(2)原点·正方向·单位长度缺一不可.例.在数轴上记出下列各数:-5, -2.5,-1,+2,+3,练习:1、若点A 在数轴上原点的左边,则A 点表示的数是( )A 正数B 负数C 整数2、数轴上表示两个数,________边的数总比________边的数大.A 、左边 右边B 右边 左边3、数轴上到原点距离5个单位长度的点表示的数是( )A +5B -5C ±54、下列说法不正确( )A 、数轴是一条直线B 、数轴上所有的点并不都表示有理数C 、在数轴上表示2和-2的点到原点的距离相等D 、数轴上一定取向右为正方向5、在数轴上原点及原点左边的点所表示的数是( )A 、正数B 、负数C 、不是负数D 、不是正数6在数轴上0与3之间(不包括0,3)还有 个数.( )A 、、2个B 、3个C 、4个D 、无数个7、一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-9利用数轴比较有理数的大小(2)数轴上的两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数四、相反数:一般地a 的相反数是–a(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;(2)在数轴上,表示互为相反数的两个点位于原点的两侧,且与原点的距离相等.注意:0的相反数还是0; (2)相反数的和为0 (3)相反数的商为-1.例:–3的相反数是: ;9的相反数是: ;–5+5= ;7÷(-7)= 练习:1. 判断:(1)-5是5的相反数( );(2)5是-5的相反数( );(3)5与-5互为相反数( ); (4)-5是相反数( )2.-1.6是____的相反数,___的相反数是0.3.3.下列几对数中互为相反数的一对为( ).A . 和B . 与C . 与4.5的相反数是____;a 的相反数是___; a-b 的相反数是____ .5.若a=-13,则-a= ;若-a=-6,则a= .五、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值(1)正数的绝对值等于它本身,(2)0的绝对值是0,(3)负数的绝对值等于它的相反数; 注意:(1)绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a(3) | a |是重要的非负数,即|a|≥0;(4)相反数的绝对值相等例1.求下列各数绝对值:8.5、-5、74 ,-0.3,0 ,-74 , -8.5例2. ___412=--; ___5=-- ;___5=+-; ___5=-+ ;___)3.0(=---;练习:判断:(1)一个数的绝对值是 2 ,则这数是2 . ( )(2)|5|=|-5|. ( )(3)|-0.3|=|0.3|. ( )(4)|3|>0. ( )(5)|-1.4|>0. ( )(6)有理数的绝对值一定是正数. ( )(7)若a =b,则|a|=|b|. ( )(8)若|a|=|b|,则a =b. ( )(9)若|a|=-a,则a 必为负数. ( )(10)互为相反数的两个数的绝对值相等.填空:_____32)1(相反数是-;(2)绝对值最小的数是______.(3)绝对值等于本身的数是_________;(4)绝对值小于3的正整数是_________六.倒数:乘积为1的两个数互为倒数;a ×a 1=1,则a 与a 1互为倒数.注意:0没有倒数例:-7的倒数 ;-71的倒数 .七、有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;的大小。

人教版初一数学上册知识点七年级上(1)

人教版初一数学上册知识点七年级上(1)

人教版初一数学上册知识点七年级(上)数学知识点归纳与总结第一章:一、知识梳理知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。

它们都是比0小的数。

0既不是正数也不是负数。

我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。

有理数的分类主要有两种:注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).知识点5:相反数的概念:(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。

0的相反数是0。

知识点6:有理数大小的比较:有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.知识点8:有理数加法运算律:加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

人教版七年级数学上册一至四章知识点归纳

人教版七年级数学上册一至四章知识点归纳

人教版七年级数学上册一至四章知识点归纳第一章有理数(一)正数和负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数有理数:由整数和分数组成的数。

包括:正整数、0、负整数、正分数和负分数。

它可以写成两个整数之比的形式。

(无理数不能以两个整数之比的形式写入。

它是以十进制形式写入的。

小数点后的数字是无限的且非循环的。

例如,π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数字轴:数字由直线上的点表示,称为数字轴。

(画一条直线。

在直线上的任意点上取一点代表数字0。

该零点称为原点。

指定直线从原点向右或向上为正方向;选择适当的长度作为单位长度,在数字轴上取一点。

)2.数字轴的三个元素:原点、正方向和单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的对立面;0的绝对值是0。

有两个负数。

如果绝对值大,它就小。

(4)有理数的加减1。

首先确定符号,然后计算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换定律:a+B=B+a加两个数,交换加数的位置,保持不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.A-B=A+(-B)减去一个数字与加这个数字相反。

(5)有理数乘法(首先确定乘积的符号,然后确定乘积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换定律:ab=ba4。

乘法组合定律:(AB)C=a(BC)5。

乘法分布律:a(B+C)=AB+AC(VI)有理数除1.先将除法化成乘法,然后定符号,最后求结果。

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点归纳总结1. 整数的认识- 整数的概念:整数是正整数、负整数和0的统称。

- 整数的表示:整数可以表示在数轴上,正整数向右,负整数向左。

- 整数的大小比较:绝对值越大的整数,其值越小。

2. 相反数和绝对值- 相反数定义:相反数指数值相等,符号相反的两个整数。

- 相反数的关系:一个整数与它的相反数相加等于0。

- 绝对值定义:一个数去掉符号得到的非负数。

- 绝对值的计算:正数的绝对值是它本身,负数的绝对值是去掉符号后的数。

3. 加减法运算- 同号整数相加:将整数的绝对值相加,最终结果符号与原数相同。

- 异号整数相加:将较大的绝对值减去较小的绝对值,最终结果符号与较大的整数同号。

- 加减法运算的性质:交换律和结合律在加减法中仍然成立。

4. 数轴与有向数- 数轴的表示:数轴是一个直线,可以用来表示整数和有理数,方便进行定位和计算。

- 有向数的概念:有向数是指除0以外的整数和分数,具有方向性的数。

- 有向数的表示:有向数可以用数轴上的点来表示,正数向右,负数向左。

5. 整数的乘除法运算- 同号整数相乘:两个整数的符号相同,乘积为正数;两个整数的符号不同,乘积为负数。

- 异号整数相除:两个整数的符号相反,商为负数;两个整数的符号相同,商为正数。

- 乘除法运算的性质:交换律在乘除法中仍然成立,结合律在乘法中成立,但不成立于除法。

6. 整数的混合运算- 整数的混合运算:整数的加减乘除运算可以混合进行,根据运算性质和顺序进行计算。

- 混合运算的顺序:先进行括号内的计算,然后进行乘除法运算,最后进行加减法运算。

以上是新人教版七年级上册数学第一单元的知识点归纳总结,希望能对学习和理解整数有所帮助。

请同学们根据这些知识点,结合练习题进行复习和巩固,提高数学能力。

新人教版_七年级数学上册总复习

新人教版_七年级数学上册总复习
3、乘法交换律:ab ba 4、乘法结合律:abc a(bc)
5、分配律: a(b c) ab ac
有理数混合运算的运算顺序 先算乘方,再算乘除,最后算加减。 如果有括号就先算括号里面的。
同级运算从左到右进行。
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
• 2、根据题意找出能够表示应用题全部含义的一个 相等关系;(关键的一步)
• 3、根据相等关系,正确列出方程,即所列的方程 应满足两边的量要相等;方程两边的代数式的单位 要相同;题中条件应充分利用;
• 4、求出所列方程的解; • 5、检验后明确地、完整地写出答案(注意单位)
这里要求的检验应是,检验所求出的解既能使方程 成立,又能使应用题有意义。
⑷交点:当两条不同的直线有一个公共点时,我们 就称这两条直线相交,这个公共点叫做它们的交点。
6、射线:把线段向一方无限延伸的图形叫做射线。 ①表示方法:端点字母必须写在前 ②射线可以看做是直线的一部分,识别射线是否相同---端点相同、延伸方向也相同。
7.线段:直线上两个点和它们之间的部分叫做线段,这两个 点叫做线段的端点。
新人教版_七年级数学上册总复习
新人教版 七年级数学上册 (各章知识点课件)
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
一个正数的绝对值是 是它本身 ,一个负数的绝对值是

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。

部编人教版七年级上册数学第一单元复习资料

部编人教版七年级上册数学第一单元复习资料

部编人教版七年级上册数学第一单元复习资料一、知识点总结1. 整数的概念及表示法整数是由自然数、0和负整数组成,用正负号表示。

整数的加减法运算规则需要掌握。

2. 整数的比较比较两个整数的大小,可以按照大小关系进行比较,也可以通过绝对值进行比较,并注意正负号的影响。

3. 整数的加减法运算整数的加法运算可以从数轴的角度理解,分为正数加整数、整数加负数和负数加负数三种情况。

整数的减法运算可以转化为加法运算来进行。

4. 分数的概念及表示法分数由分子和分母组成,分子表示被分割的部分,分母表示分割的份数。

分数的加减法运算需要找到公共分母进行计算。

5. 不等式的表示及解法不等式可以用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)来表示。

通过移项、合并同类项等方法可以解不等式。

二、重点题型复1. 计算题:根据给定的整数进行加减法运算。

例题:计算-4+7-2。

2. 比较题:根据给定的两个整数,比较大小关系。

例题:比较-8和-3的大小,写出比较结果。

3. 填空题:根据分数的概念和运算规则,填写适当的数值。

例题:-3/5 _ 2/5 = -1/5。

4. 解不等式题:根据给定的不等式,解出符合条件的整数解。

例题:解不等式 -2x + 5 ≤ 13。

三、研究建议1. 多进行整数的计算练,熟练掌握加减法运算规则。

2. 注意整数大小的比较方法,学会快速判断大小关系。

3. 对于分数的加减法,要注意寻找公共分母进行计算。

4. 解不等式时,要注意合理运用移项和合并同类项的方法。

四、总结本文档主要总结了部编人教版七年级上册数学第一单元的复资料,包括了整数的概念、表示法、比较、加减法运算,分数的概念、表示法和加减法运算,以及不等式的表示和解法等知识点。

同时给出了重点题型的复内容和研究建议。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

人教版七年级数学上册第一单元知识点

人教版七年级数学上册第一单元知识点

人教版七年级数学上册第一单元知识点人教版七年级数学上册知识点第一章有理数正数和负数大于的数叫做正数.在正数前加上符号“-”(负)的数叫做负数.一个数前面的“+”“-”号叫做它的符号.既不是正数,也不是负数.“负”与“正”相对.增长-1,就是减少1;既没有增加又没有减少的情况下增长率是0.增长1就是增加1.归纳如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们.把以外的数分为正数和负数,它们表示具有相反意义的量.通常用正数表示高于海平面的某地的海拔高度,用负数表示低于海平面的某地的海拔高度.通常用正数表示收入款额,用负数表示支出款额.是正数与负数的分界. 0℃是一个确定的温度,海拔0m表示海平面的平均高度.0的意义已不仅是表示“没有”.有理数有理数正整数、负整数统称为整数;正分数、负分数统称为分数.整数和分数统称为有理数.所有正整数组成正整数集合,所有负整数组成负整数集合.数轴在数学中,可以用一条直线上的点表示数,这条直线叫做数轴.它满足以下要求:(1)取直线上的任意一点来表示数,这个点称为原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选择合适的长度作为单位长度,在直线上从原点向右,每隔一个单位长度取一点,代表1,2,3,从原点向左,-1,-2,-3,都以类似的方式表达。

是正数和负数的分界点;原点是数轴的参考点。

分数或小数也可以用数轴上的点来表示。

归纳一般地,设a是一个正数,则数轴上表示数a的点在原点的▁边,与原点的距离是▁个单位长度;表示数-a的点在原点的▁边,与原点的距离是▁个单位长度.相反数归纳一般地,设a是一个正数,数轴上与原点的距离是a 的点有两个,它们分别在原点左右,表示-a和a,我们说这两关于原点对称.只有两个符号不同的数叫做倒数。

一般a和-a是相反的数。

特别地,的相反数是0。

这里a 代表任意数,可以是正数,负数,也可以是0。

例如:当a=1,-a=-1时,1的逆是-1;同时,-1的倒数是1。

人教版数学七年级上册第一章知识点总结

人教版数学七年级上册第一章知识点总结

人教版数学七年级上册第一章知识点总结第一章有理数知识点总结正数:大于的数叫做正数。

01.概念负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

有理数:整数和分数统称有理数。

1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

π是正数但不是有理数!2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

三、数轴比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

“—”号)(注意不带“+”代数:只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

四、相反数两个符号:符号相同是正数,符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b 互为倒数。

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。

省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。

⑶表示一个确切的量。

例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

例如,π是无限不循环小数,不能写成分数形式,不是有理数。

有限小数和无限循环小数都可化成分数,都是有理数。

整数也能化成分数,也是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

七年级上册数学第一单元知识点。

七年级上册数学第一单元知识点。

七年级上册数学第一单元知识点。

摘要:一、七年级上册数学第一单元知识点概述1.知识点涵盖范围2.知识点的重要性3.知识点的学习方法二、数与代数的基本概念1.数的分类2.有理数的概念及性质3.整数和分数的运算三、几何图形的初步认识1.点、线、面的基本概念2.直线、射线、线段3.角的概念及分类四、相交线与平行线1.相交线的性质2.平行线的性质与判定3.平行线与相交线的应用五、数据的收集与整理1.数据的收集方法2.数据的整理与展示3.数据的分析与应用正文:七年级上册数学第一单元知识点主要涵盖数与代数的基本概念、几何图形的初步认识、相交线与平行线以及数据的收集与整理。

这些知识点是数学学习的基础,对于学生建立数学思维和解决实际问题具有重要意义。

首先,数与代数的基本概念包括数的分类、有理数的概念及性质以及整数和分数的运算。

学生需要理解有理数的概念,掌握有理数的加、减、乘、除运算,并能在实际问题中灵活运用。

其次,几何图形的初步认识包括点、线、面的基本概念、直线、射线、线段以及角的概念及分类。

学生需要掌握这些基本概念,并能运用这些概念描述和分析实际问题。

再次,相交线与平行线部分涉及相交线的性质、平行线的性质与判定以及平行线与相交线的应用。

学生需要理解相交线与平行线的性质,熟练运用判定方法,并能在实际问题中发现和应用相交线与平行线的规律。

最后,数据的收集与整理部分包括数据的收集方法、数据的整理与展示以及数据的分析与应用。

学生需要学会收集数据,整理数据并用适当的方式展示,同时能对数据进行分析,发现数据背后的规律。

总之,七年级上册数学第一单元知识点是数学学习的基础,学生需要掌握这些知识点,为后续学习打下坚实的基础。

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。

- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。

- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。

- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。

单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。

- 分数的相等:两个分数相等表示代表同一量的两个数。

- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。

- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。

- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。

- 分数的除法:分数除法可以先求倒数,再进行相乘。

单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。

- 代数式的运算:代数式的运算包括加法、减法和乘法。

- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。

...
(继续写下去,覆盖全册)。

人教版七年级上册数学第一单元知识点总结(一)

人教版七年级上册数学第一单元知识点总结(一)

人教版七年级上册数学第一单元知识点总结(一)前言本文将对人教版七年级上册数学第一单元的知识点进行总结,帮助同学们回顾和强化学习。

第一单元主要涵盖了有理数的概念、有理数的比较和运算、绝对值等内容,这些知识点都是数学学习的基础,掌握好了对后续学习大有裨益。

正文1. 有理数的概念•有理数的定义:有理数是可以表示为两个整数的比的数,可用分数或小数形式表示。

有理数集包括正整数、零、负整数、正分数和负分数等。

•有理数的绝对值:有理数a的绝对值记作|a|,表示a到0的距离。

当a≥0时,|a|=a;当a<0时,|a|=-a。

2. 有理数的比较和运算•有理数的大小比较:对于两个不相等的有理数a和b,可以根据它们的大小关系来比较。

若a<b,称a小于b,记作a<b;若a>b,称a大于b,记作a>b;若a=b,称a等于b,记作a=b。

•有理数的加法、减法、乘法和除法:有理数的加法、减法和乘法都遵循相应的运算法则。

有理数的加法满足交换律、结合律和存在“零元素”;减法和乘法也满足相应的运算法则。

除法的运算规则是将除法转化为乘法进行计算。

3. 绝对值•绝对值的概念:绝对值是一个数到0的距离,它不考虑数的正负。

绝对值的结果一定是非负的。

•绝对值的性质:绝对值有非负性、正定性、相等性和三角不等式等重要性质。

结尾通过对人教版七年级上册数学第一单元的知识点总结,我们对有理数的概念、比较和运算,以及绝对值等重要内容有了更深入的理解。

这些知识点是数学学习的重要基础,同学们要加强对这些知识点的掌握,在解题过程中灵活运用。

希望同学们通过这份总结文稿能够更好地巩固知识,为之后的学习打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
1.1 正数与负数
①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。

(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n ≠0)表示有理数。

2.数轴
(1)定义:通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

(2)数轴三要素:原点、正方向、单位长度。

(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。

(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

只有符号不同的两个数叫做互为相反数(opposite number)。

(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a 叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何次幂都是0。

有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。

比如:3.5449精确到0.01就是3.54而不是3.55.
第二章整式的加减
2.1 整式
单项式:由数字和字母乘积组成的式子。

系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。

判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。

多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指
在多项式中,每一个单项式.特别注意多项式的项包
包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。

注意单项式和多项式的每一项都包括它前面的符号。

单项式和多项式统称为整式。

2.2整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。

与字母前面的系数(≠0)无关。

同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。

可以运用交换律,结合律和分配律。

合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。

整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号.
2、结合同类项.
3、合并同类项
2.3整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2015年儿科院感管理工作总结
本年度,在医院领导的正确领导和大力支持下,认真贯彻落实卫生部颁布的《医院感染管理办法》、《消毒技术规范》、《医疗卫生机构医疗废物管理办法》等有关医院管理的法律法规,强化环节质量管理及全院医院感染知识培训,严格质量监测及考核,降低了医院感染发病率,保证了医疗安全,全年医院感染率为0%。

器械消毒合格率100%,有效的控制了院内感染,确保了医疗安全。

现全年工作总结如下:
一、健全组织,完善管理
为了进一步加强医院感染管理工作,明确职责,落实任务,感染管理小组成员,成立了感染质量检查小组,负责每月的感染质量大检
查,完善了三级管理体系,将任务细化,落实到人,感控组长负责整改,逐步落实各项工作,使院感工作得到持续改进。

二、加强质量管理,确保医疗安全
(一)质量控制:每月进行一次大检查,每周随即检查,系统调查收集、整理、分析有关医院感染情况,对存在问题及时反馈、整理,有效的预防和控制医院感染。

(二)环节质量控制
1、加强重点部门的医院感染管理:儿科病房、新生儿科病房、。

相关文档
最新文档