九年级数学矩形的判定(基础)(含答案)

合集下载

北师大版数学九年级上册《矩形的判定》教案

北师大版数学九年级上册《矩形的判定》教案

北师大版数学九年级上册《矩形的判定》教案一. 教材分析《矩形的判定》是北师大版数学九年级上册第二章“平面几何”的一个学习单元。

本节课的主要内容是让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。

在教材中,矩形的判定被放在了一个重要的位置,因为它不仅是学习平面几何的基础,也是后面学习其他几何图形的基础。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本概念,如点、线、面等,并对这些概念有了初步的理解。

同时,学生也学习了一些基本的几何运算,如加减、乘除等。

但是,学生对矩形的认识可能只停留在直观的层面,对其定义和性质可能不够清晰。

三. 教学目标1.让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。

2.培养学生的逻辑思维能力和空间想象力。

3.提高学生的几何运算能力。

四. 教学重难点1.矩形的判定方法的掌握。

2.如何将矩形的判定方法应用于实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和发现来掌握矩形的判定方法。

2.使用多媒体辅助教学,通过动画和图形来帮助学生直观地理解矩形的性质和判定方法。

3.采用分组合作的学习方式,让学生在讨论和交流中提高自己的理解和应用能力。

六. 教学准备1.多媒体教学设备。

2.矩形的判定方法的动画和图形。

3.分组合作的学习材料。

七. 教学过程1.导入(5分钟)通过一些实际问题,如判断一个窗户是否为矩形,引导学生思考矩形的判定方法。

2.呈现(10分钟)使用多媒体展示矩形的判定方法的动画和图形,让学生直观地理解矩形的性质和判定方法。

3.操练(10分钟)让学生分组合作,通过解决一些实际问题来运用矩形的判定方法。

4.巩固(10分钟)对学生的操练结果进行讲解和点评,帮助学生巩固矩形的判定方法。

5.拓展(10分钟)引导学生思考如何将矩形的判定方法应用于实际问题,如设计一个矩形的房间。

6.小结(5分钟)对本节课的内容进行小结,帮助学生梳理矩形的判定方法。

1.2 课时2 矩形的判定 课件 (共26张PPT) 数学北师版九年级上册

1.2 课时2 矩形的判定 课件 (共26张PPT) 数学北师版九年级上册
归纳总结
矩形的四个角都是直角,反过来,一个四边形至少有几个角是直角时,这个四边形才是矩形呢?
猜想 一个四边形至少有3个角是直角时,这个四边形是矩形.
探究3:有三个角是直角的四边形是矩形
分析:利用同旁内角互补,两直线平行来证明四边形是平行四边形,可使问题得证.
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.
有一个角是直角的平行四边形是矩形.
用矩形的定义判定:一个平行四边形有一个角是直角,这个图形是矩形.
探究2:对角线相等的平行四边形是矩形
动手操作,拿一个可以活动的平行四边形教具,轻轻拉动一个点.
思考:(1)随着∠α的变化,两条对角线的长度将发生怎样的变化?
答:随着∠α的增大,较长的对角线会变短,较短的对角线会变长.
(2)当两条对角线的长度相等时,平行四边形有什么特征?你能证明吗?
矩形
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
已知:如图,在□ABCD中,对角线AC=BD.求证:平行四边形ABCD是矩形.
证明:∵四边形ABCD是平行四边形. ∴AB=CD, AB∥CD. 又∵AC=DB, BC=CB. ∴ △ABC≌△DCB. ∴∠ABC=∠DCB. 又∵AB∥CD. ∴∠ABC+∠DCB=180°. ∴∠ABC=∠DCB=90°. ∴□ABCD是矩形.(矩形的定义).
AC=BD (答案不唯一)
3.如图,□ABCD的四个内角的平分线分别相交于E,F,G,H四点.求证:四边形EFGH是矩形.
证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵□ABCD的四个内角平分线分别相交于E,F,G,H四点,由角平分线性质,得∠HAB= ∠DAB,∠ABH= ∠ABC,∴∠HAB+∠ABH= (∠DAB+∠ABC)=90°,∴∠H=90°.同理可求得∠HEF=∠F=90°,∴四边形EFGH是矩形.

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业
( B)
A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.

2020北师大版九年级数学上《矩形的判定》常考题(含有详细的解析)

2020北师大版九年级数学上《矩形的判定》常考题(含有详细的解析)

【文库独家】矩形的判定常考题1一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形2、如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A、AB=CDB、AC=BDC、当AC⊥BD时,它是菱形D、当∠ABC=90°时,它是矩形3、如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A、四边形AEDF是平行四边形B、如果∠BAC=90°,那么四边形AEDF是矩形C、如果AD平分∠BAC,那么四边形AEDF是矩形D、如果AD⊥BC且AB=AC,那么四边形AEDF是菱形4、下列命题中,错误的是()A、矩形的对角线互相平分且相等B、对角线互相垂直的四边形是菱形C、等腰梯形的两条对角线相等D、等腰三角形底边上的中点到两腰的距离相等5、如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A、AB∥DCB、AC=BDC、AC⊥BDD、AB=DC6、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A、AB=CDB、AD=BCC、AB=BCD、AC=BD7、下列命题中错误的是()A、平行四边形的对边相等B、两组对边分别相等的四边形是平行四边形C、矩形的对角线相等D、对角线相等的四边形是矩形8、平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A、AB=BCB、AC=BDC、AC⊥BDD、AB⊥BD9、顺次连接菱形的各边中点所得到的四边形是()A、平行四边形B、菱形C、矩形D、正方形10、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角线是否都为直角D、测量其中三角形是否都为直角11、已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A、等腰梯形B、正方形C、菱形D、矩形12、下列命题中正确的是()A、对角线互相垂直的四边形是菱形B、对角线相等的四边形是矩形C、对角线相等且互相垂直的四边形是菱形D、对角线相等的平行四边形是矩形13、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等B、乙量得窗框的对角线相等C、丙量得窗框的一组邻边相等D、丁量得窗框的两组对边分别相等且两条对角线也相等二、填空题(共5小题)14、用两块完全重合的等腰三角形纸片能拼出什么图形_________.15、在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是_________.16、如图,四边形ABCD是平行四边形,使它为矩形的条件可以是_________.17、如图,从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为_________.(只填写拼图板的代码)18、如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三、解答题(共12小题)19、如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;(3)四边形ACEF有可能是矩形吗?为什么?20、如图,在ABCD中,对角线AC,BD交于O点(BD>AC),E、F是BD上的两点.(1)当点E、F满足条件:_________时,四边形AECF是平行四边形(不必证明);(2)若四边形AECF是矩形,那么点E、F的位置应满足什么条件?并给出证明.21、如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.22、如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.23、如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.24、将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为.(1)四边形ABCD是平行四边形吗?说出你的结论和理由:_________.(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_________.(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为_________时,四边形ABC1D1为矩形,其理由是_________;当点B的移动距离为_________时,四边形ABC1D1为菱形,其理由是_________.(图3、图4用于探究)25、直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.26、如图,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.(1)求证:△ABD≌△EDB;(2)只需添加一个条件,即_________等,可使四边形ABCD为矩形.请加以证明.27、已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.28、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.29、如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由.30、如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试说明四边形AECF是平行四边形;(2)若EF与AC垂直,试说明四边形AECF是菱形;(3)当EF与AC有怎样的数量和位置关系时,四边形AECF是矩形(不必证明).答案与评分标准一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形考点:勾股定理;反比例函数图象上点的坐标特征;矩形的判定;极差。

1.2 矩形的性质和判定 课时练习(含答案解析)

1.2 矩形的性质和判定 课时练习(含答案解析)

北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。

北师大版数学九年级上册《矩形的判定》教案1

北师大版数学九年级上册《矩形的判定》教案1

北师大版数学九年级上册《矩形的判定》教案1一. 教材分析北师大版数学九年级上册《矩形的判定》是学生在学习了平行四边形、菱形、正方形的基础上,进一步对矩形进行研究的。

矩形是特殊的平行四边形,具有平行四边形的性质,又有自己独特的性质。

本节课通过探究矩形的判定,让学生理解矩形的性质,并能运用性质判定一个图形是否为矩形。

二. 学情分析九年级的学生已经掌握了平行四边形、菱形、正方形的性质,具备了一定的几何知识基础。

但是,对于矩形的性质和判定,还需要通过实例和探究来进一步理解和掌握。

此外,学生对于图形的判定,还停留在直观的认识阶段,需要通过推理和证明来提高判断能力。

三. 教学目标1.理解矩形的性质,并能运用性质判定一个图形是否为矩形。

2.提高学生的推理和判断能力。

3.培养学生的合作意识和团队精神。

四. 教学重难点1.矩形的性质及其运用。

2.如何引导学生进行推理和证明。

五. 教学方法采用问题驱动法、合作学习法和探究学习法,引导学生通过观察、操作、思考、推理、证明等活动,自主学习矩形的性质和判定。

六. 教学准备1.矩形的图片和实例。

2.几何画图工具。

3.教学PPT。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的矩形图片,如教室窗户、电视屏幕等,引导学生观察矩形的特征,激发学生的学习兴趣。

2.呈现(10分钟)呈现矩形的性质,如矩形的对边平行且相等,矩形的对角相等,矩形的四个角都是直角等。

同时,引导学生思考如何用这些性质来判定一个图形是否为矩形。

3.操练(10分钟)学生分组进行操练,每组选取一个图形,运用矩形的性质进行判断。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师选取一些判断题,让学生独立完成,检验学生对矩形判定的掌握程度。

5.拓展(10分钟)引导学生思考:除了矩形,还有哪些四边形也具有类似的性质?学生通过思考和讨论,得出平行四边形、菱形、正方形等也具有类似的性质。

6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调矩形性质和判定的重要性。

第04讲 矩形的判定、判定与性质综合(原卷版)-初中数学暑假自学课讲义(9年级北师大版)

第04讲 矩形的判定、判定与性质综合(原卷版)-初中数学暑假自学课讲义(9年级北师大版)

第04讲矩形的判定、判定与性质综合1.掌握矩形的判定定理.2.学会用矩形的性质与判定综合解题.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.考点一:矩形的判定例1.下列条件不能判定一个四边形是矩形的是()A .四个内角都相等B .四条边都相等C .对角线相等且互相平分D .对角线相等的平行四边形例2.下列说法不正确的是()A .有一个角为直角的平行四边形是矩形B .有三个角为直角的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是矩形例3.在平行四边形ABCD 中,对角线AC ,BD 相交于点O .下列条件不能..判定平行四边形ABCD 为矩形的是()A .∠ABC =90°B .AC =BD C .AC ⊥BD D .∠BAD =∠ADC例4.能判断一个平行四边形是矩形的条件是()A .两条对角线互相平分B .一组邻边相等C .两条对角线互相垂直D .两条对角线相等考点二:添加一个条件成为矩形例5.如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO =例6.如图,在平行四边形ABCD 中,在不添加任何辅助线的情况下,添加以下哪个条件,能使平行四边形ABCD 是矩形()A .AD AB ⊥B .AB BC =C .AB CD D .A C∠=∠例7.如图,在四边形ABCD 中,AD BC ∥,AC 交BD 于点O ,再添加什么条件可以判定四边形ABCD 为矩形()A .,AB CD AB AD =∥B .,OA OC BC CD==C .,AB CD AC BD ==D .,AD BC AC BD==例8.如图,AD 是ABC 的中线,四边形ADCE 是平行四边形,下列条件中,能判定四边形ADCE 是矩形的是()A .90BAC ∠=︒B .AC 平分DAE ∠C .AB AC =D .AB AE =考点三:矩形的判定的证明例9.如图,BD 是平行四边形ABCD 的一条对角线,E 是CD 的中点,连接AE 并延长交BC 的延长线于F .(1)求证:BC CF =.(2)当DB DF =时,求证:四边形ABCD 是矩形.例10.如图,在平行四边形ABCD 中,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,BD ,90BDF ∠=︒.(1)求证:四边形ABDF 是矩形;(2)若4BC =,3DF =,求四边形ABCF 的面积S .例11.如图,四边形ABCD 的对角线AC BD 、交于点O ,BE AC ⊥于E ,DF AC ⊥于F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:BOE DOF ≌;(2)若12OA BD =,求证:四边形ABCD 是矩形.例12.如图,平行四边形ABCD 的对角线AC BD ,交于点O ,E 为OC 中点,过点C 作CF BD ∥交BE 的延长线于F ,连接DF .(1)求证:FCE BOE ≅ (2)当ADC △满足什么条件时,四边形OCFD 为矩形?请说明理由.考点四:根据矩形的判定与性质求长度例13.如图,在矩形ABCD 中,EG 垂直平分BD 于点G ,若4AB =,3BC =,则线段EG 的长度是______.例14.四边形ABCD 的对角线相交于点O ,且OA OB OC OD ===,60AOB ∠=︒,则:AB AC =_______.例15.如图,在平行四边形ABCD 中,∠ACB =90°,过点D 作DE ⊥BC 交BC 的延长线于点E ,连接AE 交CD 于点F ,连接BF .若∠ABC =60°,CE =2,则BF =_____.例16.如图,在矩形ABCD 中,AB =4,AD =6,O 为对角线AC 的中点,点P 在AD 边上,且AP =2,点Q 在BC 边上,连接PQ 与OQ ,则PQ −OQ 的最大值为______.考点五:根据矩形的判定与性质求角度例17.如图,矩形ABCD 中,BE ⊥AC 于点E ,若∠ACB =23°,则∠DBE =_______度.例18.如图,在矩形ABCD 中,2=AD AB ,点E 在AD 上,且BE AD =,则ECD ∠=________.例19.如图,在ABCD Y 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若40BAE ∠=︒,10CEF ∠=︒,则D ∠的大小为______度.例20.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,DE 平分∠ADC .若∠AOB =60°,则∠COE 的大小为____.例21.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.考点六:根据矩形的判定与性质求面积例22.已知矩形ABCD ,点E 在AD 边上,DE AE <,连接BE ,点G 在BC 边上,连接EG ,BE 平分AEG ∠,若5BG GC =,2DE CG =,10BE =ABE 的面积是___________.例23.如图,在矩形ABCD 中,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.有下面的结论:①ODC ∆是等边三角形;②135AOE ∠=︒;③AOE COE S S ∆∆=.其中,正确结论的个数为_________.例24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE =CD ;②∠DGF =135°;③△BEG ≌△DCG ;④∠ABG +∠ADG =180°;⑤若23AB AD =,则3S △BDG =13S △DGF .其中正确的结论是_____.(请填写所有正确结论的序号)一、单选题1.(2020·湖北·中考真题)已知ABCD Y 中,下列条件:①AB BC =;②AC BD =;③AC BD ⊥;④AC 平分BAD ∠,其中能说明ABCD Y 是矩形的是()A .①B .②C .③D .④2.(2020·山东菏泽·统考中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A .互相平分B .相等C .互相垂直D .互相垂直平分3.(2013·河北·中考真题)如已知:线段AB ,BC ,∠ABC ="90°."求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对二、填空题4.(2021·黑龙江·统考中考真题)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形ABCD 是矩形..交DC 的延长线于点F ,延长(1)求证:△ABE ≌△FCE 别是OA ,OC 的中点.(1)求证:BE DF =;BD一、单选题1.如图,在四边形ABCD 中,对角线条件,不能判定四边形ABCD A .AB AD =2.连接菱形各边中点,可得到的A .菱形的四条边都相等C .菱形的对角线互相平分3.如图,平行四边形89EF AE ==,,AB 的长为(A .10B .73O ,若AO =BO ,AD A .42AB =,则四边形AECF 的面积为(A .3B .17.已知如图,AD BC ∥,面积为()A .2B .38.如图,在平行四边形ABCD 的延长线于点E ,连接AE ,交BC 于点F A .5B .259.如图,矩形1111D C B A 在矩形ABCD 结1BB ,1DB ,1BD ,1DD ,若矩形知道下列哪个值就一定可以求得四边形A .矩形ABCD 的面积2A .①②④B .②③④二、填空题11.矩形的判定定理包括:(1)___________的平行四边形是矩形;(2)____________的平行四边形是矩形;(3)____________的四边形是矩形.12.四边形ABCD 中,AC BD 、交于O ,给出条件①,OA OC OB OD ==;②,AB CD AC BD ==;③OA OB OC OD ===;④,AB BC AC BD ⊥=.其中能推得四边形ABCD 是矩形的是(填序号)___________.13.如图,AB ∥CD ,∠A =∠B =90°,AB =4cm ,BC =3cm ,则AB 与CD 之间的距离为________.14.如图,在ABC 中,AC BC =,D ,E 分别是边AB ,AC 的中点,将ADE V 绕点E 旋转180︒得CFE ,则四边形ADCF 的形状为______.15.如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .16.如图,在ABC 中,=AB AC ,120A ∠=︒,D 是BC 上任意一点,分别作DE AB ⊥于E ,DF AC ⊥于F .如果12BC =,那么+=DE DF ________.17.如图,ABC 是等腰直角三角形,90C = ∠,4AC BC ==,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE BC ⊥于点E ,PF AC ⊥于点F ,连接EF .(1)四边形PECF 的形状是______;(2)线段EF 的最小值为______.18.如图,在矩形ABCD 中,8AB =,10AD =,点E F 、分别是AB BC 、上的动点,点E 不与AB 、重合,且EF AB =,点G 是五边形AEFCD 内点,GE GF =,且90EGF ∠=︒.①当点E 为AB 的中点时,AEG ∠=_____________.②点G 到AB 边距离为m ,则m 的取值范围为_____________.三、解答题19.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点,E 点F 在CD 边上,,CF AE =连接,.AF BF (1)求证:四边形BFDE 是矩形;(2)若AF 平分,DAB ∠3,5,CF DF ==求四边形BFDE 的面积.21.如图,ABCD Y 四个内角的平分线围成四边形EFGH ,猜想四边形EFGH 的形状,并说明理由.22.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若55A ∠=︒,则当BOD ∠=__________时,四边形BECD 是矩形(不用证明)23.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,分别过点B 、C 作BE AC ∥,CE BD ∥,BE 与CE 交于点E .(1)求证:四边形OBEC 是矩形;(2)当60ABD ∠=︒,4=AD 时,求ED 的长.24.如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE BD ∥,∥DE AC ,CE 和DE 交于点E .(1)判断四边形ODEC 的形状并说明理由;(2)连接AE ,交CD 于点F ,当602ADB AD ∠=︒=,时,求AE 的长.25.如图,平行四边形ABCD 的对角线交于点O ,以OD ,CD 为邻边作平行四边形DOEC ,OE 交BC 于点F ,连接BE .(1)求证:F 为BC 中点.(2)若OB ⊥AC ,OF =1,求平行四边形ABCD 的周长.26.如图,已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠,CF 平分GCD ∠,EF BC ∥交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.27.如图1,在DBF 中,DB DF =,DC BF ⊥于点C ,点E 是BD 的中点,连接CE 并延长,使AE CE =,连接AD AB 、.(1)求证:四边形ABCD 是矩形.(2)如图2,点H 为DF 的中点,连接CH ,若4AB =,2BC =,求四边形ECHD 的面积.28.如图,四边形ABCD 的对角线AC ,BD 交于点O ,其中AD ∥BC ,AD =BC ,AC =2OB ,AE 平分∠BAD 交CD 于点E ,连接(1)求证:四边形ABCD 是矩形;(2)若∠OAE =15°,①求证:DA =DO =DE ;②直接写出∠DOE 的度数.29.如图1,在平行四边形ABCD F .(1)当90ABC ∠=︒时,G 是EF 的中点,联结,DB DG (如图2),请直接写出BDG ∠的度数中点.(1)求证:C ABE DF ≌△△;(2)延长AE 至G ,使EG AE =,连接CG ,延长①当AB 与AC 满足什么数量关系时,四边形②若210AP DP ==,25CP =,5CD =,求四边形31.如图所示,在菱形ABCD 中,P 为边过点E 作EF AC ⊥于点F ,延长EF 交AD 点N .(1)当点E 与点P 重合时,求证:AFE BNE △≌△(2)如图①,若点E 在线段AP 上,且5AD =,△是什么特殊三角形?并证明你(3)如图②,若点E在线段BP上,连接NP、FP,则NFP的结论.。

中考数学复习----《矩形的判定》知识点总结与专项练习题(含答案解析)

中考数学复习----《矩形的判定》知识点总结与专项练习题(含答案解析)

中考数学复习----《矩形的判定》知识点总结与专项练习题(含答案解析)知识点总结1.直接判定:有三个角(四个角)都是直角的四边形是矩形。

2.利用平行四边形判定:①定义:有一个角是直角(邻边相互垂直)的平行四边形是矩形。

②对角线的特殊性:对角线相等的平行四边形是矩形。

专项练习题1、(2022•聊城)要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【解答】解:A、测量两条对角线是否相等,不能判定为平行四边形,更不能判定为矩形,故选项A不符合题意;B、度量两个角是否是90°,不能判定为平行四边形,更不能判定为矩形,故选项B不符合题意;C、测量对角线交点到四个顶点的距离是否都相等,可以判定是否为矩形,故选项C符合题意;D、测量两组对边是否相等,可以判定为平行四边形,故选项D不符合题意;故选:C.2、(2022•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4s时,四边形ABMP为矩形B.当t=5s时,四边形CDPM为平行四边形C.当CD=PM时,t=4sD.当CD=PM时,t=4s或6s【分析】根据题意,表示出DP,BM,AP和CM的长,当四边形ABMP为矩形时,根据AP=BM,列方程求解即可;当四边形CDPM为平行四边形,根据DP=CM,列方程求解即可;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,②四边形CDPM是等腰梯形,分别列方程求解即可.【解答】解:根据题意,可得DP=tcm,BM=tcm,∵AD=10cm,BC=8cm,∴AP=(10﹣t)cm,CM=(8﹣t)cm,当四边形ABMP为矩形时,AP=BM,即10﹣t=t,解得t=5,故A选项不符合题意;当四边形CDPM为平行四边形,DP=CM,即t=8﹣t,解得t=4,故B选项不符合题意;当CD=PM时,分两种情况:①四边形CDPM是平行四边形,此时CM=PD,即8﹣t=t,解得t=4,②四边形CDPM是等腰梯形,过点M作MG⊥AD于点G,过点C作CH⊥AD于点H,如图所示:则∠MGP=∠CHD=90°,∵PM=CD,GM=HC,∴△MGP≌△CHD(HL),∴GP=HD,∵AG=AP+GP=10﹣t+,又∵BM=t,∴10﹣t+=t,解得t=6,综上,当CD=PM时,t=4s或6s,故C选项不符合题意,D选项符合题意,故选:D.3、(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.4、(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项C不符合题意;D、∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.5、(2022•怀化)下列说法正确的是()A.相等的角是对顶角B.对角线相等的四边形是矩形C.三角形的外心是它的三条角平分线的交点D.线段垂直平分线上的点到线段两端的距离相等【分析】根据对顶角的定义,矩形的判定,三角形的外心,线段垂直平分线的性质可得出答案.【解答】解:A、相等的角不一定是对顶角,故本选项说法错误,不符合题意;B、对角线相等的四边形不一定是矩形,故本选项说法错误,不符合题意;C、三角形的外心是它的三条边的垂直平分线的交点,故本选项说法错误,不符合题意;D、线段垂直平分线上的点到线段两端的距离相等,故本选项符合题意.故选:D.6、(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.【分析】先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.【解答】解:需添加的一个条件是∠A=90°,理由如下:∵AB∥DC,AD∥BC,∴四边形ABCD 是平行四边形,又∵∠A =90°,∴平行四边形ABCD 是矩形,故答案为:∠A =90°(答案不唯一).7、(多选).(2022•潍坊)利用反例可以判断一个命题是错误的,下列命题错误的是( )A .若ab =0,则a =0B .对角线相等的四边形是矩形C .函数y =x2的图像是中心对称图形 D .六边形的外角和大于五边形的外角和【分析】由等式的性质、矩形的判定、反比例函数的图像以及多边形的外角和分别对各个选项进行判断即可.【解答】解:A 、若ab =0,则a =0或b =0,故选项A 符合题意;B 、对角线相等的平行四边形是矩形,故选项B 符合题意;C 、函数y =的图像是中心对称图形,故选项C 不符合题意;D 、六边形的外角和=五边形的外角和=360°,故选项D 符合题意;故选:ABD .。

北师大版九年级(上)数学第2讲:矩形的性质与判定(教师版)——王琪

北师大版九年级(上)数学第2讲:矩形的性质与判定(教师版)——王琪

矩形的性质与判定一、矩形的定义有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.二、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).三、矩形的判定①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等四、矩形判定解题思路①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.五、矩形的面积设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.1.如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OD=OB,AC=BD,∴OA=OD=OC=OB,∵AE平分∠BAD,∴∠DAE=45°,∵∠CAE=15°,∴∠DAC=30°,∵OA=OD,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=(180°﹣∠OBE)=75°,∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=S COE,∴④正确;故选C.2.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正确的个数是()A.1 B.2 C.3 D.4解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB==,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,∴AD∥BC,AC=BD,AC=2AO,BD=2BO,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,∠AOB=∠BAO=60°=∠COE,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∵AD∥BC,∴∠DAF=∠AFB,∴∠BAF=∠AFB,∴AB=BF,∵AB=BO,∴BF=BO,∴②正确;∵∠BAO=60°,∠BAF=45°,∴∠CAH=15°,∵CE⊥BD,∴∠CEO=90°,∵∠EOC=60°,∴∠ECO=30°,∴∠H=∠ECO﹣∠CAH=30°﹣15°=15°=∠CAH,∴AC=CH,∴③正确;∵△AOB是等边三角形,∴AO=OB=AB,∵四边形ABCD是矩形,∴OA=OC,OB=OD,AB=CD,∴DC=OC=OD,∵CE⊥BD,∴DE=EO=DO=BD,即BE=3ED,∴④正确;即正确的有3个,故选C.3.在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:①如果∠BAC=90°,那么四边形AEDF是矩形②如果AD平分∠BAC,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形其中正确的有()A.3个B.2个C.1个D.0个解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;∵∠BAC=90°,∴四边形AEDF是矩形;∵AD平分∠BAC,∴∠EAD=∠FAD,∴∠FAD=∠ADF,∴AF=DF,∴四边形AEDF是菱形;∵AD⊥BC且AB=AC,∴AD平分∠BAC,∴四边形AEDF是菱形;故①②③正确.故选A.4.下列命题中,真命题是()A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形解:A、对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;正确;即可得C 错误;B、D、对角线互相垂直且相等的四边形可能是如图:所以错误;故选:A.5.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.5解:连接AP,∵∠A=90°,PE⊥AB,PF⊥AC,∴∠A=∠AEP=∠AFP=90°,∴四边形AFPE是矩形,∴EF=AP,要使EF最小,只要AP最小即可,过A作AP⊥BC于P,此时AP最小,在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:BC=5,由三角形面积公式得:×4×3=×5×AP,∴AP=2.4,即EF=2.4,故选C.6.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A.2 B.2 C.3 D.3解:连接CF,如图所示:∵DE是AC的中垂线,∴AF=CF,∠CDE=90°,∴∠ACF=∠A=30°,∴∠CFB=∠A+∠ACF=60°,∵AF=BF,∴CF=BF,∴△BCF是等边三角形,∴CF=BC=2,∠BCF=60°,∴CD=CF•cos30°=,∠BCD=60°+30°=90°,∵BE⊥DF,∴∠E=90°,∴四边形BCDE是矩形,∴四边形BCDE的面积=BC•CD=2×=2;故选:A.7.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7°B.21° C.23° D.24°解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选:C.8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.D.解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC==2,∴BO=AC=,故选D.9.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.10.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.11.下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形解:A、错误.菱形的对角线互相垂直平分.B、正确.矩形的对角线相等且互相平分.C、错误.对角线互相垂直的四边形不一定是菱形.D、错误.对角线相等的四边形不一定是矩形.故选B.12.下列关于矩形的说法,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线相等且互相平分D.矩形的对角线互相垂直且平分解:A、对角线相等的四边形是矩形,不正确;B、对角线互相平分的四边形是矩形,不正确;C、矩形的对角线相等且互相平分,正确;D、矩形的对角线互相垂直且平分,不正确;故选:C.13.已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.证明:∵AF⊥DE.∴∠AFE=90°.∵在矩形ABCD中,AD∥BC,∠C=90°.∴∠ADF=∠DEC.∴∠AFE=∠C=90°.∵AD=DE.∴△ADF≌△DEC.∴AF=DC.∵DC=AB.∴AF=AB.14.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=2,AB=4,求BF的长度.(1)证明:连接AC,交BD于O,如图所示:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC,OB=OD,∵DE=FB,∴OE=OF,∴四边形AFCE是平行四边形;(2)解:∵DE=EF=BF,AE⊥BD,∴AD=AF=2,∴BD===2,∴BF=BD=.15.已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形(有两组对边分别平行的四边形是平行四边形),∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形(有一个角是直角的平行四边形是矩形).16.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.18.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.19.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.20.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.21.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD 的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠OCE=∠BCE,∠OCF=∠DCF,∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF,∴∠OEC=∠OCE,∠OFC=∠OCF,∴OE=OC,OF=OC,∴OE=OF;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF=90°,在Rt△CEF中,由勾股定理得:EF==10,∴OC=OE=EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.22.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).23.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?解:根据题意得:CQ=2t,AP=4t,则BP=24﹣4t,∵四边形ABCD是矩形,∴∠B=∠C=90°,CD∥AB,∴只有CQ=BP时,四边形QPBC是矩形,即2t=24﹣4t,解得:t=4,答:当t=4s时,四边形QPBC是矩形.24.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AD=DF,求证:AF平分∠BAD.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,即BE∥DF,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)由(1)可知AB∥CD,∴∠BAF=∠AFD,∵AD=DF,∴∠DAF=∠AFD,∴∠BAF=∠DAF,即AF平分∠BAD.基础演练1.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC解:∵四边形ABCD是矩形,∴AB∥DC,AC=BD,OA=OC,不能推出AC⊥BD,∴选项A、B、D正确,选项C错误;故选C.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等 B.对边相等C.对角线相等D.对角线互相平分解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.4.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量其中三个角是否都为直角解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、对角线相等的四边形不一定是矩形,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF 中点,则AM的最小值为()A.B.C.D.解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即等于,∴AM的最小值是.故选D.6.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.7.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.8.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是()A.3cm B.6cm C.10cm D.12cm解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3,故选A.9.已知四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,下列判断中错误的是()A.如果AB=CD,AC=BD,那么四边形ABCD是矩形B.如果AB∥CD,AC=BD,那么四边形ABCD是矩形C.如果AD=BC,AC⊥BD,那么四边形ABCD是菱形D.如果OA=OC,AC⊥BD,那么四边形ABCD是菱形解:A、如果AB=CD,AC=BD,那么四边形ABCD是等腰梯形,不一定矩形;B、如果AD∥BC,AB∥CD,则四边形ABCD是平行四边形,又AC=BD,那么四边形ABCD是矩形;C、如果AD∥BC,AD=BC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;D、如果AD∥BC,OA=OC,则四边形ABCD是平行四边形,又AC⊥BD,那么四边形ABCD是菱形;故选:A.10.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.11.下列说法中,正确的是()A.同位角相等B.矩形的对角线一定互相垂直C.对角线相等的四边形是矩形 D.四条边相等的四边形是菱形解:A、错误.应该是两直线平行,同位角相等.B、错误.应该是矩形的对角线相等且互相平分.C、错误.对角线相等的四边形不一定是平行四边形.D、正确.四条边相等的四边形是菱形.故选D.12.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P是斜边BC上一动点,PE⊥AB于E,PF⊥AC 于F,EF与AP相交于点O,则OF的最小值为()A.4.8 B.1.2 C.3.6 D.2.4解:∵四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,OE=OF,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即OF的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.在Rt△ABC中,由勾股定理,得BC==10.∵AB=6,AC=8,∴10AP=6×8,∴AP=.∴OF=EF=故选D.巩固提高13.如图,两张宽为2(cm)的矩形纸条交叉叠放,其中重叠部分是四边形ABCD.(1)试判断四边形ABCD的形状,并说明理由;(2)若∠BAD=60°,求重叠部分的面积.解:(1)四边形ABCD是菱形.理由如下:如图,过点B作BE⊥AD与E,作BF⊥CD于F,∵两纸条为矩形纸条,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵两纸条宽度都是2cm,∴BE=BF,∴平行四边形ABCD的面积=AD•BE=CD•BF,∴CD=AD,∴四边形ABCD是菱形;(2)∵∠BAD=60°,∴∠ABE=90°﹣∠BAD=90°﹣60°=30°,∴AE=AB,在Rt△ABE中,根据勾股定理得,AB2=AE2+BE2,即AB2=(AB)2+22,解得AB=,所以,重叠部分的面积=×2=.14.如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,如果点P,Q同时出发,用t(s)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,说明是否与t的大小有关.解:(1)∵点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,∴AP=2t,AQ=AD﹣DQ=6﹣t,∵△QAP为等腰直角三角形,∴AP=AQ,∴2t=6﹣t,解得t=2,∴t=2s时,△QAP为等腰直角三角形;(2)四边形QAPC的面积=12×6﹣×12•t﹣×6•(12﹣2t)=36,所以,四边形QAPC的面积与t无关.15.已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.证明:(1)∵AF∥DC,∴∠AFE=∠DCE,又∵∠AEF=∠DEC(对顶角相等),AE=DE(E为AD的中点),∴△AEF≌△DEC(AAS),∴AF=DC;(2)矩形.由(1),有AF=DC且AF∥DC,∴四边形AFDC是平行四边形,又∵AD=CF,∴AFDC是矩形(对角线相等的平行四边形是矩形).16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.17.如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:如图,过点B作BH⊥AE于点H.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得.在Rt△AHB中,∠HAB=45°,∴BH=AB•sin45°=7.∵在Rt△BHE中,∠BHE=90°,∴sin∠AEB=.18.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.证明:∵DE、DF是△ABC的中位线,∴DE∥BC,DF∥AC,∴四边形DECF是平行四边形,又∵∠ACB=90°,∴四边形DECF是矩形,∴EF=CD.19.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.21.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50°,则当∠BOD= 100 °时,四边形BECD是矩形.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案为:100.22.如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.23.平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DF∥BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)∵AB∥CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD==5,∴矩形的面积为20.24.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.1.一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cm B.10cm C.5cm D.无法确定解:如图,∵四边形ABCD是矩形,∴OA=OB,∵AC、BD的夹角∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=2×5=10cm.故选B.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.3.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等 B.对角线互相垂直平分C.对角线相等且互相垂直 D.对角线互相垂直解:A、对角线互相平分且相等的四边形是矩形,故正确;B、对角线互相垂直平分的是菱形,故错误;C、对角线相等且互相垂直的四边形不一定是矩形,故错误;D、对角线互相垂直的四边形不一定是矩形,故错误,故选A.4.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A.平行四边形B.矩形 C.正方形D.菱形解:∵OA=OB=OC=OD,∴四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形.故选B.5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=EF=AP,当AP⊥BC时,AP值最小,此时S△BAC=×6×8=×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).综上所述,x的取值范围是:2.4≤x<4.故选:D.6.如图,在△ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE⊥AB于点E,DF⊥BC于点F,则EF的最小值为()A.2.4 B.3 C.4.8 D.5解:如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB2+BC2=AC2,即∠ABC=90°.又∵DE⊥AB于点E,DF⊥BC于点F,∴四边形EDFB是矩形,∴EF=BD.∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,∴EF的最小值为4.8,故选:C.7.已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF(全等三角形对应边相等);证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).8.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC ∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.9.在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若DE=BC,试判断四边形BFCE是怎样的四边形,并证明你的结论.(1)证明:∵CE∥BF,∴∠CED=∠BFD,∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,∴△BDF≌△CDE(AAS);(2)四边形BFCE是矩形,证明:∵△BDF≌△CDE,∴DE=DF,∵BD=DC,∴四边形BFCE是平行四边形,∵BD=CD,DE=BC,∴BD=DC=DE,∴∠BEC=90°,∴平行四边形BFCE是矩形.10.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.证明:∵AB=AC,D为BC边的中点,∴AD⊥BC,BD=CD,∴∠ADC=90°,∵四边形ABDE是平行四边形,∴AE∥BD,AE=BD,∴AE∥CD,AE=CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴四边形ADCE是矩形.11.如图所示,BD,BE分别是∠ABC与它的邻补角∠ABP的平分线.AE⊥BE,AD⊥BD,E,D为垂足,求证:四边形AEBD是矩形.证明:∵BD,BE分别是∠ABC,∠ABP的平分线,∴∠ABD+∠ABE=(∠ABC+∠ABP)=90°.即∠EBD=90°.又∵AE⊥BE,AD⊥BD,∴∠AEB=∠ADB=90°,∴四边形AEBD是矩形.12.如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.试说明:(1)AE=DC;(2)四边形ADCE为矩形.证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.1.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2 B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选D.3.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形解:A、根据邻边相等的平行四边形是菱形可以得到该结论正确;B、根据对角线互相垂直的平行四边形是菱形可以得到该选项正确;C、根据对角线相等的平行四边形是矩形可以判断该选项正确;D、不能得到一个角是直角,故错误,故选D.4.如图,要使▱ABCD成为矩形,需添加的条件是()A.AB=BC B.AO=BO C.∠1=∠2 D.AC⊥BD解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AO=BO,∴OA=OC=OB=OD,即AC=BD,∴平行四边形ABCD是矩形,故本选项正确;C、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠ACB,∵∠1=∠2,∴∠1=∠ACB,∴AB=BC,∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选B.5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()。

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

中考数学真题解析矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半(含答案)

(2012年1月最新最细)2011全国中考真题解读120考点汇编矩形的性质与判定,直角三角形斜边上的中线等于斜边的一半一、选择题1.(2011•南通)如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=4cm.考点:翻折变换(折叠问题)。

分析:根据题意推出AB= A'B=2,由AE=CE推出AB1=B1C,即AC=4.解答:解:∵AB=2cm,A'B=AB,,∴A'B=2,∵矩形ABCD,AE=CE,∴∠ABE=∠AB1E=90°,∵AE=CE,∴A'B='B C,∴AC=4.故答案为4.点评:本题主要考察翻折的性质、矩形的性质、等腰三角形的性质,解题的关键在于推出AB= A'B.2.(2011江苏无锡,5,3分)菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补考点:矩形的性质;菱形的性质。

专题:推理填空题。

分析:根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.解答:解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项错误;B、菱形和矩形的对角线都相等;故本选项正确;C、菱形和矩形的对角线都互相平分;故本选项正确;D、菱形对角相等,但不互补;故本选项正确;故选A.点评:此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.(2011•宁夏,2,3分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AB 的长是( )A 、2B 、4C 、23D 、43考点:矩形的性质;等边三角形的判定与性质。

分析:本题的关键是本题的关键是利用等边三角形和矩形对角线的性质即锐角三角函数关系求长度.解答:解:∵在矩形ABCD 中,AO=21AC ,DO=21BD ,AC=BD , ∴AO=DO , 又∵∠AOD=60°, ∴∠ADB=60°, ∴∠ABD=30°, ∴AB AD=tan30°, 即AB 2=33, ∴AB=23. 故选C .点评:本题考查了矩形的性质和锐角三角函数关系,具有一定的综合性,难度不大属于基础性题目.4.(2011台湾,29,4分)如图,长方形ABCD 中,E 为BC 中点,作∠AEC 的角平分线交AD 于F 点.若AB =6,AD =16,则FD 的长度为何?( )A .4B .5C .6D .8考点:矩形的性质;角平分线的性质;勾股定理。

1.矩形的判定(含答案)

1.矩形的判定(含答案)

四边形 (2)
是矩形
【答案】四边形
的面积为

【解析】在
中,

中,
四边形 11. (1)
的面积
【答案】略
【解析】


四边形
是平行四边形,








(2)
【答案】略
【解析】
四边形
是平行四边形,





四边形
为平行四边形.




四边形 12. (1)
为矩形.
【答案】略
【解析】
是等边三角形,


B.四个角都相等的四边形是矩形
C.有一个角是直角的平行四边形是矩形
D.对角线互相平分的四边形是矩形
5.已知:如图,在平行四边形 中,对角线 , 相交于点 ,
.求证:平行四边形
是矩形.
6.如图,在
中,
, 平分
.四边形
是平行四边形, 交 于点 ,连
接 .求证:四边形
是矩形.
7.已知:如图,平行四边形
各角的平分线分别相交于点 、 、 、 .求证:四边形
是矩
形.
8.如图,已知
为平行四边形
的对角线上的两点,且

为矩形.
.求证:四边形
9.如图,将平行四边形 的边 延长到点 ,使
, 交边 于点 .
(1) 求证:
;
(2) 若
,求证:四边形 是矩形
10.如图,四边形
是平行四边形, , 交于点 ,

(1) 求证:四边形 (2) 若 11.如图,在

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2矩形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为()A.60°B.75°C.72° D2.关于矩形的性质、下面说法错误的是()A.矩形的四个角都是直角B.矩形的两组对边分别相等C.矩形的两组对边分别平行D.矩形的对角线互相垂直平分且相等3.在矩形ABCD中,以A为圆心,AD长为半径画弧,交AB于F点,以C为圆心,CD长为半径画弧,交AB于E点,若AD=2,CD=√5则EF=()A.1B.4−√5C.√5−2 D4.顺次连接矩形各边中点得到的四边形是()A.梯形B.矩形C.菱形D.正方形5.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC边于点E,点F是AE的中点,连接OF,若∠BDC=2∠ADB,AB=1则FO的长度为()A.√32B.12C.√3−1 D6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.57.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,下列结论中,不正确...的是()A.当AB⊥AD时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当AB=AC时,四边形ABCD是菱形8.依据所标数据,下列四边形不一定为矩形的是()A.B.C.D.二、填空题9.如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可)10.如图,矩形ABCD中,点A坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是;11.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5且OE=2DE,则DE的长为.12.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm213.如图,在矩形ABCD中AD=4,AB=6作AE平分∠BAD,若连接BF,则BF的长度为。

九年级数学矩形的判定

九年级数学矩形的判定

我微不足道;可是,对于我自己,我 就是一切。" 我何尝不知道,在宇宙的生成变化中,我只是一个极其偶然的存在,我存在与否完全无足轻 重。面对无穷,我确实等于零。然而,我可以用同样的道理回敬这个傲慢的宇宙:倘若我不 存在,你对我来说岂不也等于零?倘若没有人类及其
众多自我的存在,宇宙的永恒存在究竟 有何意义?而每一个自我一旦存在,便不能不从自身出发估量一切,正是这估量的总和使本 无意义的宇宙获得了意义。 我何尝不知道,在人类的悲欢离合中,我的故事极其普通。然而,我不能不对自己的故事倾 注更多的悲欢。对于我来说,我的
时候,日常生活的外壳仿佛突然破裂了,熟悉的环境变得陌生,我的存在失去了参 照系,恍兮惚兮,不知身在何处,我是谁,世上究竟有没有一个我。 庄周梦蝶,醒来自问:"不知周之梦为蝴蝶与,蝴蝶之梦为周与?"这一问成为千古迷惑。 问题在于,你如何知道你现在不是在做梦?你
又如何知道你的一生不是一个漫长而短促的梦? 也许,流逝着的世间万物,一切世代,一切个人,都只是造物主的梦中景象? 我的存在不是一个自明的事实,而是需要加以明的,于是有笛卡儿的命题:"我思故我在 。" 但我听见佛教导说:诸法无我,一切众生都只是随缘而起的幻像。
的是一种伦常和习惯。浩瀚宇宙间,也许 只有我们的星球开出了生命的花朵,可是,在这个幸运的星球上,比比皆是利益的交换,身 份的较量,财产的争夺,最罕见的偏偏是生命与生命的相遇。仔细想想,我们是怎样地本末 倒置,因小失大,辜负了造化的宠爱。 是的--我是,你是,
每一个人都是一个多么普通又多么独特的生命,原本无名无姓,却到 底可歌可泣。我、你,每一个生命都是那么偶然地来到这个世界上,完全可能不降生,却毕 竟降生了,然后又将必然地离去。想一想世界在时间和空间上的无限,每一个生命的诞生的 偶然,怎能不感到一个生命与另一个

2021-2022学年九年级数学北师大版上册《矩形的性质与判定》训练含答案

2021-2022学年九年级数学北师大版上册《矩形的性质与判定》训练含答案

2021年北师大版九年级数学上册《1.2矩形的性质与判定》训练一.矩形的性质1.菱形和矩形都具有的性质是()A.对角线互相垂直B.对角线长度相等C.对角线平分一组对角D.对角线互相平分2.矩形具有而一般平行四边形不一定具有的性质是()A.对角线互相平分B.邻角互补C.对边相等D.对角线相等3.在▱ABCD中,O为AC的中点,点E,M为AD边上任意两个不重合的动点(不与端点重合),EO的延长线与BC交于点F,MO的延长线与BC交于点N.下面四个推断:①EF=MN;②EN∥MF;③若▱ABCD是菱形,则至少存在一个四边形ENFM是菱形;④对于任意的▱ABCD,存在无数个四边形ENFM是矩形.其中,所有正确的有()A.①③B.②③C.①④D.②④4.已知矩形的对角线为1,面积为m,则矩形的周长为()A.B.C.2D.25.如图、在平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别是(4,﹣2),(1,2),点B在x轴上,则点B的横坐标是()A.4B.2C.5D.46.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA =1:2,且AC=8,则EC的长度为()A.2B.2C.4D.7.如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,作矩形DEBF,则其对角线EF的长为()A.8B.9C.10D.118.如图,在矩形ABCD中,AD>AB,AB=5cm,AC,BD交于点O,∠AOD=2∠AOB=120°,则BC=()A.5cm B.5cm C.5cm D.5cm9.如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.2010.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小11.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为.12.如图,矩形ABCD中,AB=3,AD=2,点E是BC的中点,点F在AB上,FB=1,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为.13.如图,矩形ABCD中,AB=6,AD=8,E是AD边上的中点,P是AB边上的一动点,M、N分别是PE、PC的中点,则线段MN的长为.二.矩形的判定14.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,下列选项能使平行四边形ABCD成为矩形的条件是()A.AB=AD B.∠AOB=60°C.AC⊥BD D.∠OBC=∠OCB三.矩形的判定与性质15.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.矩形的对角线相等D.平行四边形是轴对称图形16.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.517.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B 重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.18.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F,则线段EF的最小值为.19.如图,在△ABC中,AB=AC,D是BC中点,过点A作AE∥BC,使AE=BD.(1)求证:四边形AEBD是矩形;(2)取AB中点F,作GF⊥AB,交EB于点G,若AD=8,BD=4,求EG的长.20.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求AB的长.21.如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:四边形OBEC为矩形;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.22.如图,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F、G在CD边上,EF⊥CD,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若FG=5,EF=4,求CG的长.23.如图,已知在△OAB中AO=BO,分别延长AO,BO到点C、D,使得OC=AO,OD =BO,连接AD,DC,CB.(1)求证:四边形ABCD是矩形;(2)以AO,BO为一组邻边作平行四边形AOBE,连接CE.若CE⊥AE,求∠AOB的度数.24.如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.26.如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)如图2,M为AD的中点,N为AB中点,∠BNC=2∠DCM,BN=2,求CN的长参考答案一.矩形的性质1.解:∵矩形的对角线相等且互相平分,菱形的对角线垂直且互相平分,∴菱形和矩形都具有的性质为对角线互相平分,故选:D.2.解:A、平行四边形与矩形都具有两条对角线互相平分的性质,故A不符合题意;B、平行四边形与矩形都不具有邻角互补的性质,故B不符合题意;C、平行四边形与矩形都具有两组对边分别相等的性质,故C不符合题意;D、平行四边形的两条对角线不相等,矩形具有两条对角线相等的性质,故D符合题意.故选:D.3.解:如图,连接EN,MF,∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠EAC=∠FCA,在△EAO和△FCO中,,∴△EAO≌△FCO(ASA),∴EO=FO,同理可得OM=ON,∴四边形EMFN是平行四边形,∴EN∥MF,EF与MN不一定相等,故①错误,②正确,若四边形ABCD是菱形,∴AC⊥BD,∵点E,M为AD边上任意两个不重合的动点(不与端点重合),∴∠EOM<∠AOD=90°,∴不存在四边形ENFM是菱形,故③错误,当EO=OM时,则EF=MN,又∵四边形ENFM是平行四边形,∴四边形ENFM是矩形,故④正确,故选:D.4.解:设矩形的长、宽分别为a、b,∵矩形的对角线为1,面积为m,∴a²+b²=1,ab=m,∴a+b===,∴矩形的周长为2(a+b)=2,故选:C.5.解:连接AC,∵点A(4,﹣2),点C(1,2),∴AC==5,∵四边形ABCO是矩形,∴OB=AC=5,∴点B的横坐标为5,故选:C.6.解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=8,OA=OC=AC=4,OB=OD=BD=4,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,∵DE⊥AC,∴∠DEC=90°,∴∠DAC=30°,∴DC=AC=4,∴EC=DC=2,故选:B.7.解:∵BD⊥AD,AB=10,AD=6,∴DB=8,∵矩形DEBF,∴EF=DB=8,故选:A.8.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=2∠AOB=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=10(cm),∴BC===5(cm),故选:C.9.解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC=6,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=4,连接PE,CE,则BE=2AB=8,∵P A⊥BE,∴P A是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,∴CE===10,∴PC+PB的最小值为10,即PC+QD的最小值为10,故选:B.10.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△GFC,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,故选:C.11.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵OE⊥BC,∴BE=CE,∠BOE=∠COE,又∵BC=2AF,∵AF=BE,在Rt△AFO和Rt△BEO中,,∴Rt△AFO≌Rt△BEO(HL),∴∠AOF=∠BOE,∴∠AOF=∠BOE=∠COE,又∵∠AOF+∠BOE+∠COE=180°,∴∠BOE=60°,∵OB=OD=6,∴BE=OB•sin60°=6×=3,故答案为:3.12.解:如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心OE的长度为半径,画⊙O交CD于P3.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵AB=3,AD=2,点E是BC的中点,FB=1,∴BE=,AF=2,∴tan∠FEB=tan∠ADF=,∴∠ADF=∠FEB=30°,∵EF===2,DF===4,∴OE=OF=EF=2,∴△OEF是等边三角形,∴∠EP1F=∠FP2F=∠FP3E=30°,∴FP1=2,FP2=4,FP3=2,故答案为2或4或2.13.解:连接CE,如图所示:∵四边形ABCD是矩形,∴CD=AB=6,∠D=90°,∵E是AD边上的中点,∴DE=AD=4,∴CE===2,∵M,N分别是PE、PC的中点,∴MN是△PCE的中位线,∴MN=CE=,故答案为:.二.矩形的判定14.解:A、∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形,故选项A不符合题意;B、由四边形ABCD是平行四边形,∠AOB=60°,不能判定平行四边形ABCD为矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形,故选项D符合题意;故选:D.三.矩形的判定与性质15.解:A、∵对角线互相垂直的平行四边形是菱形,∴选项A不符合题意;B、∵对角线相等的平行四边形是矩形,∴选项B不符合题意;C、∵矩形的对角线相等,∴选项C符合题意;D、∵平行四边形是中心对称图形,不是轴对称图形,∴选项D不符合题意;故选:C.16.解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.17.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S△ABO=OA•OB=AB•OP,∴OP==,∴EF的最小值为,故答案为:.18.解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得:CD⊥AB时,线段CD的长最小,在Rt△ABC中,AC=3,BC=4,∴AB===5,当CD⊥AB时,∵△ABC的面积=AB×CD=AC×BC,∴CD===,∴EF的最小值为,故答案为:.19.(1)证明:AE∥BC,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADB=90,∴四边形AEBD是矩形;(2)解:连接AG,∵F是AB的中点,GF⊥AB,∴GA=GB,∵四边形AEBD是矩形,AD=8,BD=4,∴EB=AD=8,EA=BD=4,设EG=x,则GB=GA=8﹣x,∵四边形AEBD是矩形,∴∠E=90°,在Rt△AEG中,∵EA2+EG2=AG2,∴42+x2=(8﹣x)2,∴x=3,即EG=3.20.证明(1)∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DC∥AB,∴四边形DFBE是平行四边形,又∵DE⊥AB,∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB,∴AE=,DE=AE=,∵四边形DFBE是矩形,∴BF=DE=,∵AF平分∠DAB,∴∠F AB=∠DAB=30°,且BF⊥AB,∴AB=BF=.21.(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形;(2)解:由(1)得:四边形OBEC为矩形,∴OE=CB,设OC=x,则OB=2x,∴BC===x,∵BC=OE=2,∴x=2,∴OC=2,OB=4,∴AC=2OC=4,BD=2OB=8,∴S菱形ABCD=AC•BD=×4×8=16.22.(1)证明:∵四边形ABCD是菱形,∴OA=OC,∵E是AD的中点,∴OE是△ACD的中位线,∴OE∥CD,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥CD,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)解:由(1)得:四边形OEFG是矩形,∴OE=FG=5,∵四边形ABCD是菱形,∴AD=CD,AC⊥BD,∴∠AOD=90°,∵E是AD的中点,∴OE=AD=DE=5,CD=AD=2OE=10,在Rt△DEF中,DF===3,∴CG=CD﹣FG﹣DF=10﹣5﹣3=2.23.证明:(1)∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)连接OE交AB于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.24.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴平行四边形AMCN是矩形;(2)解:由(1)得:MN=AC,∵四边形ABCD是平行四边形,∴AB=CD=2,AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=45°,∵AB⊥AC,∴∠BAC=90°,∴△ABC是等腰直角三角形,∴AC=AB=2,∴MN=2.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=4,∴AO=AC=2,AB=4,BO=2,∴矩形AEFD的面积=菱形ABCD的面积=×4×4=8.26.证明:(1)∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD为矩形;(2)如图2,延长BA,CM交于点E,∵M为AD的中点,N为AB中点,∴AN=BN=2,AM=MD,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,,∴△AME≌△DMC(AAS),∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.。

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学矩形的性质和判定课堂讲义及练习(含答案)【矩形的性质】1.矩形的定义有一个角是直角的平行四边形叫做矩形.温馨提示①对于矩形的定义要注意两点a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。

2. 矩形的性质(1)矩形具有平行四边形的所有性质 .(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴. 矩形又是中心对称图形,对角线的交点为对称中心,过中心的任意直线可将矩形分成完全全等的两部分..矩形中相等的线段:AC=BD, OA = OC=OB = OD.矩形中相等的角:∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°.矩形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决 (转化思想).温馨提示:①矩形具有平行四边形的一切性质;②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③“矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;④矩形的两条对角线分矩形为面积相等的四个等腰三角形。

【练习】1.如图,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.52.如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC的度数是( )A.30° B.° C.15° D.10°3第4题第5题第6题第7题4.在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF =________cm.5.△ABC中,∠ACB=90°,∠B=55°,D是斜边AB的中点,那么∠ACD的度数为( )A.15° B.25° C.35° D.45°6.已知矩形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.67.在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.208.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点.求证:CE=DE.9.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【矩形的判定】1.矩形的判定定理(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形。

2023学年九年级上学期数学同步精讲精练(北师大版)1-2 矩形的性质与判定(讲义)(原卷版)

2023学年九年级上学期数学同步精讲精练(北师大版)1-2 矩形的性质与判定(讲义)(原卷版)

1.2矩形的性质及判定同步教材划重点知识点01矩形的定义有一个角是直角的平行四边形叫做矩形.【点石成金】矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点02矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.【点石成金】(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点03矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.【点石成金】在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点04直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 【点石成金】(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典例分析】【典例1】如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.【变式1】如图所示,已知四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.【变式2】如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处.'=;(1)求证:B E BF、、之间有何等量关系,并给予证明.(2)设AE=a,AB=b,BF=c,试猜想a b c【典例2】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点.(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.【典例3】如图所示,矩形ABCD中,AC、BD相交于O,AE平分∠BAD 交BC于E,∠CAE=15°,求∠BOE的度数.【变式3】如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE 是平行四边形.求证:四边形ADCE是矩形.【典例4】)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC 于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.【变式4】如图所示,已知平行四边形ABCD ,AC 、BD 相交于点O ,P 是平行四边形ABCD 外一点,且∠APC =∠BPD =90°.求证:平行四边形ABCD 是矩形.【典例5】如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO=CO ,BO=DO 中,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF :∠FDC=3:2,DF ⊥AC ,则∠BDF 的度数是多少?【典例6】如图所示,BD 、CE 是△ABC 两边上的高,G 、F 分别是BC 、DE 的中点. 求证:FG ⊥DE . 【变式5】如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为( ) A.21 B.5 C.1455 D.52【跟踪训练】1.将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则AD AB 的值为( ) A .65 B .2 C .32D .3 2.如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点D 为斜边BC 上的一个动点,过D 分别作DM ⊥AB 于点M ,作DN ⊥AC 于点N ,连接MN ,则线段MN 的最小值为 .3.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE =3,AF =5,则AC 的长为( )A .4B .4C .10D .84.如图,矩形ABCD 中,AB =4,AD =2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .2B .4C .D .5.如图,矩形ABCD 的顶点A ,B ,C 分别落在∠MON 的边OM ,ON 上,若OA =OC ,要求只用无刻度的直尺作∠MON 的平分线.小明的作法如下:连接AC ,BD 交于点E ,作射线OE ,则射线OE 平分∠MON .有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是( )B D M NCAA.①②B.①③C.②③D.①②③6.如图,在矩形ABCD中,3AB=,2AD=,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是___________(结果保留π).CDBE7.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=12S△PCD,则PC+PD的最小值是________.DABP。

九年级数学上2矩形的性质与判定第2课时矩形的判定习题北师大

九年级数学上2矩形的性质与判定第2课时矩形的判定习题北师大
【答案】A
4.【2019·重庆】下列命题正确的是( A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
5.【2018·上海】已知平行四边形ABCD,下列条件中,
不能判定这个ቤተ መጻሕፍቲ ባይዱ行四边形为矩形的是( B )
A.∠A=∠B
*9.【2019·安顺】如图,在Rt△ABC中,∠BAC=90°, 且BA=3,AC=4,点D是斜边BC上的一个动点,过 点 D分别作 DM⊥AB于点 M,DN⊥AC于点 N,连接 MN,则线段MN的最
小值为________.
【点拨】连接 AD.∵∠BAC=90°,BA=3,AC=4, ∴BC= BA2+AC2=5.∵DM⊥AB,DN⊥AC, ∴∠DMA=∠DNA=∠BAC=90°.∴四边形 AMDN 是矩形. ∴MN=AD.当 AD⊥BC 时,AD 的值最小. 此时,△ ABC 的面积=12AB·AC=12BC·AD, ∴AD=ABB·CAC=152.∴MN 的最小值为152. 【答案】152
(2)若∠AOB:∠ODC=4:3,求∠ADO的度数. 解:∵四边形 ABCD 是矩形,∴AB∥CD,∠BAO=∠ABO. ∴∠ABO=∠CDO.∵∠AOB:∠ODC=4:3, ∴∠BAO:∠AOB:∠ABO=3:4:3. ∴∠ABO=3+34+3×180°=54°,∵∠BAD=90°, ∴∠ADO=90°-54°=36°.
13.【2019·新疆】如图,在菱形ABCD中,对角线AC, BD相 交 于 点 O, E是 CD的 中 点 , 连 接 OE.过 点 C 作 CF∥BD交OE的延长线于点F,连接DF.求证:
(1)△ODE≌△FCE;
证明:∵CF∥BD, ∴∠ODE=∠FCE.∵E 是 CD 的中点,∴DE=CE. 在△ ODE 和△ FCE 中,∠DEO=DCEE=,∠FCE,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的判定(基础)
一、单选题(共10道,每道10分)
1.下列识别图形不正确的是( )
A.有一个角是直角的平行四边形是矩形
B.有三个角是直角的四边形是矩形
C.对角线相等的四边形是矩形
D.对角线互相平分且相等的四边形是矩形
答案:C
解题思路:
1.解题要点:
矩形的判定:
有一个角是直角的平行四边形叫做矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
2.解题过程:
A,B选项都是正确的
C选项是错误的
D选项:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故对角线互相平分且相等的四边形是矩形;正确
试题难度:三颗星知识点:略
2.已知平行四边形ABCD,对角线交于点O,下列条件不一定能确定为矩形的是( )
A.∠ABC=90°
B.OA=OB
C.AB=BC
D.AC=BD
答案:C
解题思路:
1.解题要点:
矩形的判定:
有一个角是直角的平行四边形叫做矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
2.解题过程:
A选项:有一个角是直角的平行四边形叫做矩形;正确
B选项:对角线相等的平行四边形是矩形;正确
D选项:对角线相等的平行四边形是矩形;正确
C选项:有一组邻边相等的平行四边形叫做菱形;错误
试题难度:三颗星知识点:略
3.如图所示,在平行四边形ABCD中,已知下列条件:①AC=BD,②AB=AD,③∠1=∠2,
④AB⊥BC.其中能说明平行四边形ABCD是矩形的有( )
A.①④
B.②④
C.①②④
D.①③④
答案:A
解题思路:
1.解题要点:
矩形的判定:
有一个角是直角的平行四边形叫做矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
2.解题过程:
①对角线相等的平行四边形是矩形;正确
②有一组邻边相等的平行四边形叫做菱形;错误
③由∠1=∠2只能得到AD∥BC;错误
④有一个角是直角的平行四边形叫做矩形;正确
故①④能说明平行四边形ABCD是矩形
试题难度:三颗星知识点:略
4.在等腰三角形ABC中,AB=AC,分别延长BA,CA到点D,E,使DA=AB,EA=CA,则四边形BCDE是( )
A.菱形
B.矩形
C.正方形
D.任意的平行四边形
答案:B
解题思路:
1.解题要点:
平行四边形的判定:对角线互相平分的四边形是平行四边形
矩形的判定:对角线相等的平行四边形是矩形
2.解题过程:
如图,
∵DA=AB,EA=AC
∴CE与BD相互平分
∴四边形BCDE是平行四边形
∵AB=AC
∴DA=AB=EA=AC
∴CE=BD
∴平行四边形BCDE是矩形
试题难度:三颗星知识点:略
5.如图,在平行四边形ABCD中,AC,BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( )
A.∠BAC=∠ACB
B.∠BAC=∠ACD
C.∠BAC=∠DAC
D.∠BAC=∠ABD
答案:D
解题思路:
1.解题要点:
矩形的判定:对角线相等的平行四边形是矩形
2.解题过程:
A选项:由∠BAC=∠ACB得到AB=BC;有一组邻边相等的平行四边形叫做菱形;错误
B选项:由∠BAC=∠ACD只能得到AB∥CD;错误
C选项:由∠BAC=∠DAC得到∠BAC=∠ACB,与A选项一致;错误
D选项:由∠BAC=∠ABD得到AC=BD;对角线相等的平行四边形是矩形;正确
故D选项能判断这个平行四边形是矩形
试题难度:三颗星知识点:略
6.如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判断四边形ABCD是矩形的是( )
A.AD=BC
B.AB=CD
C.∠DAB=∠ABC
D.∠DAB=∠DCB
答案:B
解题思路:
1.解题要点:
矩形的判定:
有一个角是直角的平行四边形叫做矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
平行四边形的判定:
一组对边平行且相等的四边形是平行四边形
两组对边分别平行的四边形叫做平行四边形
2.解题过程:
A选项:由AD∥BC,AD=BC得到平行四边形ABCD,由AC=BD得到平行四边形ABCD是矩形;正确
B选项:不能判断四边形ABCD是矩形;错误
C选项:由AD∥BC,∠DAB=∠ABC得到∠DAB=∠ABC=90°,由AC=BD,AB=AB得到△ABC≌△BAD,进而得到AD=BC,四边形ABCD是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确
D选项:由AD∥BC,∠DAB=∠DCB得到∠ABC+∠DCB=180°,进而得到AB∥CD,四边形ABCD 是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确
故B选项不能判断四边形ABCD是矩形
试题难度:三颗星知识点:略
7.如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=AC
B.MB=MO
C.BD⊥AC
D.∠AMB=∠CND
答案:A
解题思路:
1.解题要点:
矩形的判定:
对角线相等的平行四边形是矩形
平行四边形的判定:
对角线互相平分的四边形是平行四边形
2.解题过程:
在□ABCD中OA=OC,OB=OD
∵BM=DN
∴OM=ON
∴四边形AMCN是平行四边形
∴平行四边形AMCN只需满足AC=MN或者四个顶角中有直角即可判断四边形AMCN是矩形A选项OM=AC可得到AC=MN,可判断四边形AMCN是矩形
试题难度:三颗星知识点:略
8.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE,DC,AD,则下列说法不正确的是( )
A.平移至点O为AC中点时,四边形AECD为矩形
B.平移至点E为BC中点时,四边形AECD为矩形
C.平移过程中,ED=AB
D.平移过程中,AD∥CE且AD=CE
答案:D
解题思路:
1.解题要点:
平移的性质:
一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等
矩形的判定:
有一个角是直角的平行四边形叫做矩形;
对角线相等的平行四边形是矩形;
有三个角是直角的四边形是矩形.
2.解题过程:
A选项:由平移可知,DE=AC,∠OCE=∠OEC,则点O为AC中点时,DE与AC相互平分,四边形AECD为矩形;正确
B选项:点E为BC中点时,AD=CE且AD∥CE,又DE=AC,四边形AECD为矩形;正确
C选项:由平移可知,ED=AB;正确
D选项:由平移可知,平移过程中,AD∥CE且AD=BE,当点E为BC中点时,才有AD∥CE 且AD=CE;错误
试题难度:三颗星知识点:略
9.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,CE.若∠A=50°,则当∠BOD=_______时,四边形BECD是矩形.( )
A.50°
B.80°
C.90°
D.100°
答案:D
解题思路:
在平行四边形ABCD中,AB∥CD
∴∠CBE=∠BCD=∠A=50°
∵点O是BC的中点
∴OB=OC
∵∠BOE=∠COD
∴△BOE≌△COD(ASA)
∴BE=CD
∴四边形BECD是平行四边形
若四边形BECD是矩形,则∠DBE=90°,OB=OD
∴∠OBD=∠ODB=40°
∴∠BOD=100°
试题难度:三颗星知识点:略
10.如图,DB∥AC,且DB=AC,E是AC的中点,连接AD,BE.下列说法:①四边形AEBD 是平行四边形;②AB=BC时,四边形AEBD是矩形;③当∠C=90°时,四边形DBCE是矩形.正确说法的个数是( )
A.0个
B.1个
C.2个
D.3个
答案:D
解题思路:
①∵DB∥AC,且,E是AC的中点
∴DB=AE=CE
∴四边形AEBD和四边形DBCE是平行四边形,①正确
②∵四边形DBCE是平行四边形
∴BC=DE
∴当AB=BC时,AB=DE
∴平行四边形AEBD是矩形,②正确
③由①知,四边形DBCE是平行四边形
∴当∠C=90°时,四边形DBCE是矩形,③正确
故正确说法的个数是3个
试题难度:三颗星知识点:略。

相关文档
最新文档