九年级数学矩形的判定练习题

合集下载

矩形的判定专项练习30题(有答案)ok

矩形的判定专项练习30题(有答案)ok

矩形的判定专项练习30题(有答案)ok1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。

证明:(1)∠A=90°;(2)四边形ABCD 是矩形。

2.平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。

证明:(1)∠BGC=90°;(2)四边形GBMC是矩形。

3.O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E。

问:(1)四边形OCDE是矩形吗?说明理由;(2)将菱形改为另一种四边形,其它条件都不变,能得出什么结论?根据改编后的题目画出图形,并说明理由。

4.△ABC中,AD⊥BC于D,点E、F分别是△ABC中AB、AC中点,什么条件下四边形AEDF是矩形?说明理由。

5.菱形ABCD的对角线AC、BD交于点O。

问:(1)用尺规作图的方法,作出△AOB平移后的△DEC,其中平移的方向为射线AD的方向,平移的距离为线段AD的长;(2)观察图形,判断四边形DOCE是什么特殊四边形,并证明。

6.平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN。

证明四边形NDMB为矩形。

7.点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE相交于点E。

证明四边形OCED是矩形。

8.已知梯形ABCD中,AD∥BC,AB⊥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,连接BD。

证明:(1)四边形DBEM是平行四边形;(2)若BD=DC,证明四边形ABCM为矩形。

9.在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点。

证明四边形AECF是矩形。

九年级数学矩形的判定(基础)(含答案)

九年级数学矩形的判定(基础)(含答案)

矩形的判定(基础)一、单选题(共10道,每道10分)1.下列识别图形不正确的是( )A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A,B选项都是正确的C选项是错误的D选项:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故对角线互相平分且相等的四边形是矩形;正确试题难度:三颗星知识点:略2.已知平行四边形ABCD,对角线交于点O,下列条件不一定能确定为矩形的是( )A.∠ABC=90°B.OA=OBC.AB=BCD.AC=BD答案:C解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:有一个角是直角的平行四边形叫做矩形;正确B选项:对角线相等的平行四边形是矩形;正确D选项:对角线相等的平行四边形是矩形;正确C选项:有一组邻边相等的平行四边形叫做菱形;错误试题难度:三颗星知识点:略3.如图所示,在平行四边形ABCD中,已知下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC.其中能说明平行四边形ABCD是矩形的有( )A.①④B.②④C.①②④D.①③④答案:A解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:①对角线相等的平行四边形是矩形;正确②有一组邻边相等的平行四边形叫做菱形;错误③由∠1=∠2只能得到AD∥BC;错误④有一个角是直角的平行四边形叫做矩形;正确故①④能说明平行四边形ABCD是矩形试题难度:三颗星知识点:略4.在等腰三角形ABC中,AB=AC,分别延长BA,CA到点D,E,使DA=AB,EA=CA,则四边形BCDE是( )A.菱形B.矩形C.正方形D.任意的平行四边形答案:B解题思路:1.解题要点:平行四边形的判定:对角线互相平分的四边形是平行四边形矩形的判定:对角线相等的平行四边形是矩形2.解题过程:如图,∵DA=AB,EA=AC∴CE与BD相互平分∴四边形BCDE是平行四边形∵AB=AC∴DA=AB=EA=AC∴CE=BD∴平行四边形BCDE是矩形试题难度:三颗星知识点:略5.如图,在平行四边形ABCD中,AC,BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是( )A.∠BAC=∠ACBB.∠BAC=∠ACDC.∠BAC=∠DACD.∠BAC=∠ABD答案:D解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形2.解题过程:A选项:由∠BAC=∠ACB得到AB=BC;有一组邻边相等的平行四边形叫做菱形;错误B选项:由∠BAC=∠ACD只能得到AB∥CD;错误C选项:由∠BAC=∠DAC得到∠BAC=∠ACB,与A选项一致;错误D选项:由∠BAC=∠ABD得到AC=BD;对角线相等的平行四边形是矩形;正确故D选项能判断这个平行四边形是矩形试题难度:三颗星知识点:略6.如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判断四边形ABCD是矩形的是( )A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB答案:B解题思路:1.解题要点:矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.平行四边形的判定:一组对边平行且相等的四边形是平行四边形两组对边分别平行的四边形叫做平行四边形2.解题过程:A选项:由AD∥BC,AD=BC得到平行四边形ABCD,由AC=BD得到平行四边形ABCD是矩形;正确B选项:不能判断四边形ABCD是矩形;错误C选项:由AD∥BC,∠DAB=∠ABC得到∠DAB=∠ABC=90°,由AC=BD,AB=AB得到△ABC≌△BAD,进而得到AD=BC,四边形ABCD是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确D选项:由AD∥BC,∠DAB=∠DCB得到∠ABC+∠DCB=180°,进而得到AB∥CD,四边形ABCD 是平行四边形,由AC=BD得到平行四边形ABCD是矩形;正确故B选项不能判断四边形ABCD是矩形试题难度:三颗星知识点:略7.如图,在□ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND答案:A解题思路:1.解题要点:矩形的判定:对角线相等的平行四边形是矩形平行四边形的判定:对角线互相平分的四边形是平行四边形2.解题过程:在□ABCD中OA=OC,OB=OD∵BM=DN∴OM=ON∴四边形AMCN是平行四边形∴平行四边形AMCN只需满足AC=MN或者四个顶角中有直角即可判断四边形AMCN是矩形A选项OM=AC可得到AC=MN,可判断四边形AMCN是矩形试题难度:三颗星知识点:略8.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.连接AE,DC,AD,则下列说法不正确的是( )A.平移至点O为AC中点时,四边形AECD为矩形B.平移至点E为BC中点时,四边形AECD为矩形C.平移过程中,ED=ABD.平移过程中,AD∥CE且AD=CE答案:D解题思路:1.解题要点:平移的性质:一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等矩形的判定:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.2.解题过程:A选项:由平移可知,DE=AC,∠OCE=∠OEC,则点O为AC中点时,DE与AC相互平分,四边形AECD为矩形;正确B选项:点E为BC中点时,AD=CE且AD∥CE,又DE=AC,四边形AECD为矩形;正确C选项:由平移可知,ED=AB;正确D选项:由平移可知,平移过程中,AD∥CE且AD=BE,当点E为BC中点时,才有AD∥CE 且AD=CE;错误试题难度:三颗星知识点:略9.如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,CE.若∠A=50°,则当∠BOD=_______时,四边形BECD是矩形.( )A.50°B.80°C.90°D.100°答案:D解题思路:在平行四边形ABCD中,AB∥CD∴∠CBE=∠BCD=∠A=50°∵点O是BC的中点∴OB=OC∵∠BOE=∠COD∴△BOE≌△COD(ASA)∴BE=CD∴四边形BECD是平行四边形若四边形BECD是矩形,则∠DBE=90°,OB=OD∴∠OBD=∠ODB=40°∴∠BOD=100°试题难度:三颗星知识点:略10.如图,DB∥AC,且DB=AC,E是AC的中点,连接AD,BE.下列说法:①四边形AEBD 是平行四边形;②AB=BC时,四边形AEBD是矩形;③当∠C=90°时,四边形DBCE是矩形.正确说法的个数是( )A.0个B.1个C.2个D.3个答案:D解题思路:①∵DB∥AC,且,E是AC的中点∴DB=AE=CE∴四边形AEBD和四边形DBCE是平行四边形,①正确②∵四边形DBCE是平行四边形∴BC=DE∴当AB=BC时,AB=DE∴平行四边形AEBD是矩形,②正确③由①知,四边形DBCE是平行四边形∴当∠C=90°时,四边形DBCE是矩形,③正确故正确说法的个数是3个试题难度:三颗星知识点:略。

九年级数学上册《1.2矩形的性质与判定》同步练习含答案解析

九年级数学上册《1.2矩形的性质与判定》同步练习含答案解析

《1.2 矩形的性质与判定》一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.44.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.125.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P 到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.810.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= .16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.《1.2 矩形的性质与判定》参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.【解答】解:∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.【点评】此题考查了矩形与菱形的性质.注意熟记定理是解此题的关键.2.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.3.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2 B.3 C.2 D.4【考点】矩形的性质.【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【解答】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=AC=2.故选A.【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长.【解答】解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形的性质;全等三角形的判定.【分析】先根据已知条件判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD ,可得BC=AD ,又∵BE=BC ﹣EC ,∴BE=AD ﹣DF ,故(D )正确;故选B .【点评】本题主要考查了矩形和全等三角形,解决问题的关键是掌握矩形的性质:矩形的四个角都是直角,矩形的对边相等.解题时注意:在直角三角形中,若有一个锐角等于30°,则这个锐角所对的直角边等于斜边的一半.6.如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【考点】矩形的性质.【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为3和4,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA •PE+OD •PF 求得答案.【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB •BC=48,OA=OC ,OB=OD ,AC=BD=10,∴OA=OD=5,∴S △ACD =S 矩形ABCD =24,∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA •PE+OD •PF=×5×PE+×5×PF=(PE+PF )=12,解得:PE+PF=4.8.故选:A.【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°【考点】矩形的性质;平行线的性质.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED 的面积()A.2 B.4 C.4 D.8【考点】矩形的性质;菱形的判定与性质.【专题】计算题;矩形菱形正方形.【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,=OE•DC=×2×2=2.则S菱形ODEC故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【考点】矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.【专题】几何图形问题.【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD 全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二、填空题11.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.【点评】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】矩形的性质.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.13.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC ,使四边形DBCE是矩形.【考点】矩形的判定;平行四边形的性质.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.【点评】本题考查了矩形的判定,平行四边形的判定与性质.解题时,也可以根据“有一内角为直角的平行四边形为矩形”填空.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.【考点】矩形的性质;等腰三角形的性质;勾股定理.【专题】分类讨论.【分析】要求直线AD上满足△PBC是等腰三角形的点P有且只有3个时的AB长,则需要分类讨论:①当AB=AD时;②当AB<AD时,③当AB>AD时.【解答】解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.15.已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD= 2 .【考点】矩形的性质.【分析】根据矩形的性质:矩形的对角线互相平分且相等,求解即可.【解答】解:在矩形ABCD中,∵角线AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.故答案为:2.【点评】本题考查了矩形的性质,解答本题的关键是掌握矩形的对角线互相平分且相等的性质.16.如图,矩形ABCD中,对角线AC=2,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .【考点】矩形的性质;翻折变换(折叠问题).【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°,∴∠EB′C=90°,∵BC=3BE,∴EC=2BE=2B′E,∴∠ACB=30°,在Rt△ABC中,AC=2AB,∴AB=AC=×2=,故答案为:.【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.17.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 15 度.【考点】矩形的性质.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为.【考点】矩形的判定与性质;垂线段最短.【分析】连接CM,先证明四边形CDME是矩形,得出DE=CM,再由三角形的面积关系求出CM的最小值,即可得出结果.【解答】解:连接CM,如图所示:∵MD⊥AC,ME⊥CB,∴∠MDC=∠MEC=90°,∵∠C=90°,∴四边形CDME是矩形,∴DE=CM,∵∠C=90°,BC=3,AC=4,∴AB===5,当CM⊥AB时,CM最短,此时△ABC的面积=AB•CM=BC•AC,∴CM的最小值==,∴线段DE的最小值为;故答案为:.【点评】本题考查了矩形的判定与性质、勾股定理、直角三角形面积的计算方法;熟练掌握矩形的判定与性质,并能进行推理论证与计算是解决问题的关键.三、解答题19.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【考点】矩形的判定;菱形的性质.【专题】证明题.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【考点】矩形的性质;作图—基本作图.【专题】矩形菱形正方形.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.21.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题;图形的全等;矩形菱形正方形.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.22.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【考点】矩形的性质.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.23.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.24.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.25.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q 两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.26.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【考点】矩形的判定与性质;平行四边形的判定;菱形的判定与性质.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∵GF∥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.。

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业

九年级数学 第一章 特殊平行四边形2 矩形的性质与判定第2课时 矩形的判定作业
( B)
A.4 B.4.8 C.5.2 D.6
第10题图
11.如图,在△ABC 中,AC 的垂直平分线分别交 AC,AB 于点 D, F,BE⊥DF 交 DF 的延长线于点 E,已知∠A=30°,BC=2,AF=BF, 则四边形 BCDE 的面积是_2___3____.
第11题图
12.如图,在矩形ABCD中,AE=AF,过点E作EH⊥EF交DC于点H,过F 作FG⊥EF交BC于点G,连接GH,当AD,AB满足______A__B_=__A(D关系)时, 四边形EFGH为矩形.
第12题图
13.如图,AB∥CD,PM,PN,QM,QN分别为∠APQ,∠BPQ,∠CQP, ∠DQP的平分线.求证:四边形PMQN是矩形.
证明:∵PM,PN,QM 分别平分∠APQ,∠BPQ,∠CQP,∴∠MPQ
=21 ∠APQ,∠NPQ=21 ∠BPQ,∠MQP=21 ∠CQP.∵∠APQ+∠BPQ =180°,∴∠MPQ+∠NPQ=90°,即∠MPN=90°.同理可证∠MQN =90°.∵AB∥CD,∴∠APQ+∠CQP=180°,∴∠MPQ+∠MQP=90 °,即∠PMQ=90°,∴四边形 PMQN 是矩形
9.如图,顺次连接四边形ABCD各边的中点,得到四边形EFGH,在下列
条件中,能使四边形EFGH为矩形的是( C)
A.AB=CD B.AC=BD C.AC⊥BD D.AD∥BC
第9题图
10.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且 点P不与点B,C重合),PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为
第5题图
6.(2019·江西)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC, BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.

2020北师大版九年级数学上《矩形的判定》常考题(含有详细的解析)

2020北师大版九年级数学上《矩形的判定》常考题(含有详细的解析)

【文库独家】矩形的判定常考题1一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形2、如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A、AB=CDB、AC=BDC、当AC⊥BD时,它是菱形D、当∠ABC=90°时,它是矩形3、如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A、四边形AEDF是平行四边形B、如果∠BAC=90°,那么四边形AEDF是矩形C、如果AD平分∠BAC,那么四边形AEDF是矩形D、如果AD⊥BC且AB=AC,那么四边形AEDF是菱形4、下列命题中,错误的是()A、矩形的对角线互相平分且相等B、对角线互相垂直的四边形是菱形C、等腰梯形的两条对角线相等D、等腰三角形底边上的中点到两腰的距离相等5、如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A、AB∥DCB、AC=BDC、AC⊥BDD、AB=DC6、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A、AB=CDB、AD=BCC、AB=BCD、AC=BD7、下列命题中错误的是()A、平行四边形的对边相等B、两组对边分别相等的四边形是平行四边形C、矩形的对角线相等D、对角线相等的四边形是矩形8、平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A、AB=BCB、AC=BDC、AC⊥BDD、AB⊥BD9、顺次连接菱形的各边中点所得到的四边形是()A、平行四边形B、菱形C、矩形D、正方形10、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角线是否都为直角D、测量其中三角形是否都为直角11、已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A、等腰梯形B、正方形C、菱形D、矩形12、下列命题中正确的是()A、对角线互相垂直的四边形是菱形B、对角线相等的四边形是矩形C、对角线相等且互相垂直的四边形是菱形D、对角线相等的平行四边形是矩形13、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是()A、甲量得窗框两组对边分别相等B、乙量得窗框的对角线相等C、丙量得窗框的一组邻边相等D、丁量得窗框的两组对边分别相等且两条对角线也相等二、填空题(共5小题)14、用两块完全重合的等腰三角形纸片能拼出什么图形_________.15、在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是_________.16、如图,四边形ABCD是平行四边形,使它为矩形的条件可以是_________.17、如图,从下列图中选择四个拼图板,可拼成一个矩形,正确的选择方案为_________.(只填写拼图板的代码)18、如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三、解答题(共12小题)19、如图,在△ABC中,∠ACB=90°,BC的垂直平分线交BC于D,交AB于点E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请证明你的结论;(3)四边形ACEF有可能是矩形吗?为什么?20、如图,在ABCD中,对角线AC,BD交于O点(BD>AC),E、F是BD上的两点.(1)当点E、F满足条件:_________时,四边形AECF是平行四边形(不必证明);(2)若四边形AECF是矩形,那么点E、F的位置应满足什么条件?并给出证明.21、如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.22、如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.23、如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.24、将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,另一直角边的长为.(1)四边形ABCD是平行四边形吗?说出你的结论和理由:_________.(2)如图2,将Rt△BCD沿射线BD方向平移到Rt△B1C1D1的位置,四边形ABC1D1是平行四边形吗?说出你的结论和理由:_________.(3)在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为_________时,四边形ABC1D1为矩形,其理由是_________;当点B的移动距离为_________时,四边形ABC1D1为菱形,其理由是_________.(图3、图4用于探究)25、直角三角形通过剪切可以拼成一个与该直角三角形面积相等的矩形.方法如下:请你用上面图示的方法,解答下列问题:(1)对任意三角形,设计一种方案,将它分成若干块,再拼成一个与原三角形面积相等的矩形;(2)对任意四边形,设计一种方案,将它分成若干块,再拼成一个与原四边形面积相等的矩形.26、如图,AB=CD=ED,AD=EB,BE⊥DE,垂足为E.(1)求证:△ABD≌△EDB;(2)只需添加一个条件,即_________等,可使四边形ABCD为矩形.请加以证明.27、已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.28、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.29、如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由.30、如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试说明四边形AECF是平行四边形;(2)若EF与AC垂直,试说明四边形AECF是菱形;(3)当EF与AC有怎样的数量和位置关系时,四边形AECF是矩形(不必证明).答案与评分标准一、选择题(共13小题)1、下列说法错误的是()A、Rt△ABC中AB=3,BC=4,则AC=5B、极差仅能反映数据的变化范围C、经过点A(2,3)的双曲线一定经过点B(﹣3,﹣2)D、连接菱形各边中点所得的四边形是矩形考点:勾股定理;反比例函数图象上点的坐标特征;矩形的判定;极差。

1.2 矩形的性质和判定 课时练习(含答案解析)

1.2 矩形的性质和判定 课时练习(含答案解析)

北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD 答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm 答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=12 AC,∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.602B.702 C.1202 D.1402答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案:①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案:∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AE AD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE 是矩形. 22.如图,在△ABC 中,AB =AC =5,BC =6,AD 为BC 边上的高,过点A 作AE ∥BC ,过点D 作DE ∥AC ,AE 与DE 交于点E ,AB 与DE 交于点F ,连结BE .求四边形AEBD 的面积答案: 解答:∵AE ∥BC ,BE ∥AC ,∴四边形AEDC 是平行四边形.∴AE =CD .在△ABC 中,AB =AC ,AD 为BC 边上的高,∴∠ADB =90°,BD =CD . ∴BD =AE .∴平行四边形AEBD 是矩形.在Rt △ADC 中,∠ADB =90°,AC =5,CD =12BC =3, ∴AD =2253 =4.∴四边形AEBD 的面积为:BD •AD =CD •AD =3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD 是矩形.在Rt △ADC 中,由勾股定理可以求得AD 的长度,由等腰三角形的性质求得CD (或BD )的长度,则矩形的面积=长×宽=AD •BD =AD •CD23.如图,在平行四边形ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.求证:四边形ABCD 是矩形答案:解答:证明:∵四边形ABCD 是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM 求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=12(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC 的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。

中考数学复习矩形【培优讲练】

中考数学复习矩形【培优讲练】

9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【例3】下列说法中能判定四边形是矩形的是()A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为( )A .100︒B .110︒C .120︒D .130︒【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O .若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45°【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF //BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.五、矩形有关的折叠问题【例1】如图,矩形ABCD 中,AB =4,AD =6,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,DF ,当线段DF 被CE 垂直平分时,AF 则线的长为_______.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.△,C D'与AB交于点E,若【例4】如图,将长方形纸片ABCD沿BD所在直线折叠,得到BC D'∠=︒,则2125∠的度数为_________.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;≠,将ABC沿AC翻折至AB C',连接B D'.【例4】在平行四边形ABCD中,AB BC'=;(1)求证:B E DE'∥;(2)求证:B D AC(3)在平行四边形ABCD中,已知:460,,将ABC沿AC翻折至AB C',连接B D'.若以BC B=∠=︒A、C、D、B'为顶点的四边形是矩形,求AC的长.BC=.对角线AC的垂直平分线分别交AB、CD于点【例5】已知:如图,在矩形ABCD中,4AB=,2E、F.求线段CF的长.【例6】如图①,四边形ABCD是一张矩形纸片,AD =1,AB =5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN相交于点K,得到△MNK,如图①.(1)当点M与点A重合(如图②),且∠BMN=15°时,求△MNK的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK的面积最大,最大值是多少【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C DE的长.1.如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于12EF的长为半径画弧,两弧在DAC∠内交于点H,画射线AH交DC于点M.若68ACB∠=︒,则DMA∠的大小为()A.34︒B.56︒C.66︒D.68︒2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .103.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒.7.如图,四边形ABCD 为矩形,则∠ABC =________;若OA =5,则BD =________.8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.9.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,6OA =,3OC =,45DOE ∠=︒,OD ,OE 分别交BC ,AB 于点D ,E ,且2CD =,则点E 坐标为______.9.4.1 矩形同步培优讲练综合知识点1:矩形的定义有一个角是直角的平行四边形叫做矩形.知识点2:矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点3:矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.一、矩形性质的认识【例1】下列性质中矩形不一定具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形【答案】B【解析】解:A、矩形的对角线互相平分,故此选项不符合题意;B、矩形的对角线不一定互相垂直,故此选项符合题意;C、矩形的对角线相等,故此选项不符合题意;D、矩形既是轴对称图形又是中心对称图形,故此选项不符合题意;故选:B.【例2】关于矩形,下列说法错误的是()A.四个角相等B.对角线相等C.四条边相等D.对角线互相平分【答案】C【解析】解:矩形的性质为四个角相等,对角线相等,对角线互相平分,故选:C .【例3】下列说法中能判定四边形是矩形的是( )A .有两个角为直角的四边形B .对角线互相平分的四边形C .对角线相等的四边形D .四个角都相等的四边形【答案】D【解析】解:A 、有3个角为直角的四边形是矩形,故错误;B 、对角线互相平分的四边形是平行四边形,故错误;C 、对角线相等的平行四边形,故错误;D 、四个角都相等的四边形是矩形,故正确;故选:D .二、利用矩形的性质求角度【例1】如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,若旋转角为20︒,则1∠为()A .100︒B .110︒C .120︒D .130︒【答案】B【解析】解:设C D ''与BC 交于点E ,如图所示.∵旋转角为20︒,∴20DAD '∠=︒,∴9070BAD DAD ''∠=︒-∠=︒.∵360BAD B BED D '''∠+∠+∠+∠=︒,∴360709090110BED '∠=︒-︒-︒-︒=︒,∴1110BED '∠=∠=︒.故选:B .【例2】如图,在矩形ABCD 中,对角线AC ,BD 交于点O.若60AOB ∠=︒,则OCB ∠的度数为( )A .30°B .35°C .40°D .45° 【答案】A【解析】解:∵四边形ABCD 是矩,∠AOB =60°,∴∠BCD =90°,∠COD =60°,OC =OD =1122AC BD =, ∴△COD 是等边三角形,∴∠OCD =60°,∴∠OCB =90°﹣∠OCD =30°,故选:A .【例3】如图,在矩形ABCD 中,AC ,BD 相交于点O ,AE 平分BAD ∠交BC 于E ,若30DAO ∠=︒,则BEO ∠的度数为( )A .45︒B .60︒C .65︒D .75︒【答案】D【解析】解:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=90°,OA=12AC ,OB=12BD ,AC=BD , ∴OA=OB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE=45°,∴△ABE 是等腰直角三角形,∴AB=BE ,∵∠DAO=30°,∴∠EAO=15°,∴∠BAO=45°+15°=60°,∴△AOB 是等边三角形,∴∠ABO=60°,OB=AB ,∴∠OBE=90°-60°=30°,OB=BE ,∴∠BEO=12×(180°-30°)=75°. 故选:D .三、利用矩形的性质求线段【例1】如图,在矩形COED 中,点D 的坐标是()3,4,则CE 的长是( ).A .3B .4C .5D .6【答案】C【解析】 解:四边形COED 是矩形, CE OD ∴=,点D 的坐标是()3,4,5OD ∴=,5CE ∴=,故选:C .【例2】如图,在矩形ABCD 中,2AB =,3BC =,点E 在BC 边上,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2C .1 D【答案】B【解析】解:如图,以EC 为边作等边三角形ECH ,过点H 作HN BC ⊥于N ,HM AB ⊥于M ,又∵90ABC ∠=︒,∴四边形MHNB 是矩形,∴MH BN =,∵1BE =,2AB =,3BC =,∴2EC =,∵EHC △是等边三角形,HN EC ⊥,∴2EC EH ==,1EN NC ==,60HEC ∠=︒,∴2BN MH ==,∵FGE △是等边三角形,∴FE FG =,60FEG HEC ∠=︒=∠,∴FEH GEC ∠=∠,在FEH △和GEC 中,FE GE FEH GEC HE EC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FEH GEC ≌,∴FH GC =,∴当FH AB ⊥时,FH 有最小值,即GC 有最小值,∴点F 与点M 重合时,2FH HM ==,故选B .【例3】如图,在ABC 中,3AB =,4AC =,5BC =,P 为边BC 上一动点,PE AB ⊥于E ,PF AC ⊥于F ,M 为EF 中点,则AM 的最小值为__.【答案】65【解析】解:如图,连接AP ,3AB =,4AC =,5BC =,90EAF ∴∠=︒,PE AB ⊥于E ,PF AC ⊥于F ,∴四边形AEPF 是矩形,EF ∴,AP 互相平分.且EF AP =,EF ∴,AP 的交点就是M 点.当AP 的值最小时,AM 的值就最小,∴当⊥AP BC 时,AP 的值最小,即AM 的值最小.1122AP BC AB AC ⋅=⋅, AP BC AB AC ∴⋅=⋅,3AB =,4AC =,5BC =,534AP ∴=⨯,125AP ∴=, 65AM ∴=; 故答案为:65.四、利用矩形的性质求面积【例1】如图,矩形ABCD 中,4=AD ,10AB =,点E 为直线AB 的一点,连EC ,平移EC 至DF ,连接DE 、CF ,则四边形DECF 的面积是( )A .15B .40C .20D .30【答案】B【解析】解:已知平移EC 至DF ,则EC DF ∥,EC DF =四边形CEDF 是平行四边形,则122410402CEDF CED S S CD DA CD DA ==⨯⨯⨯==⨯= 故选:B .【例2】如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF//BC ,分别交AB ,CD 于点E ,F ,连接PB ,.PD 若2AE =,8.PF =则图中阴影部分的面积为______.【答案】16【解析】解:作PM AD ⊥于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,ADC ABC SS ∴=,AMP AEP S S =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ADC AMP PFC ABC AEP PCN S S S S S S ∴--=--,即BEPN DFPM S S =矩形矩形, 12882DFP PBE S S ∴==⨯⨯=, 8816S ∴=+=阴影,故答案为:16【例3】如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则S △ECF 的值为____.【答案】10825【解析】如图,连接BF ,,∵BC=6,点E 为BC 的中点,∴BE=3, 又∵AB=4,∴,由折叠可知:BF ⊥AE (对应点的连线必垂直于对称轴),∴BH=431255 AB BEAE•⨯==,∴BF=245,∵EF=BE=CE,∴∠BFC=90°,根据勾股定理可得:185,S△ECF=12S△BCF=12×12×185×245=10825,故答案为:108 25.五、矩形有关的折叠问题【例1】如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,DF,当线段DF被CE垂直平分时,AF则线的长为_______.【答案】18 5【解析】解:连接AF交PE于O,连接DF,∵矩形ABCD,∴BC=AD=6,CD=AB=4,∵线段DF被CE垂直平分时,∴CF=CD=4,ED=EF,∵将△APE沿PE折叠得到△FPE,∴PE是线段AF的垂直平分线,∴AE=EF,AF=2OA,∴AE=ED=EF,∵AD=AE+ED=6,∴AE=ED=EF=3,设AP=x,则PF=AP=x,BP=4-x,PC=PF+FC=x+4,∵PC2=BP2+BC2,即(x+4)2=(4-x)2+62∴x=94,∵154 =,∴1122PE AO PA AE=,即115193 2424AO⨯=⨯⨯,解得:AO=95,∴AF=2AO=185.故答案为185.【例2】如图,有一张矩形纸条ABCD,AB=10cm,BC=3cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.1【解析】如图1中,当点M与A重合时,AE=EN,设AE=EN=xcm,在Rt△ADE中,则有x2=32+(9﹣x)2,解得x=5,∴DE=10﹣1-5=4(cm),如图2中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=10﹣1﹣3=6(cm),如图3中,当点M运动到点B′落在CD时,NB'=DB′(即DE″)=10﹣1=(9(cm),∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(91)(cm).1.【例3】如图,在长方形ABCD中,点M为CD中点,将△MBC沿BM翻折至△MBE,若∠AME=α,∠ABE=β,则α与β之间的数量关系为________.【答案】3290βα-=︒【解析】如图,延长BE 交AD 于点N ,设BN 交AM 于点O .∵四边形ABCD 是矩形,∴∠D=∠C=90°,AD=BC ,∵DM=MC ,∴△ADM ≌△BCM(SAS),∴∠DAM=∠CBM ,∵△BME 是由△MBC 翻折得到,∴∠CBM=∠EBM=12(90°−β),∵∠DAM=∠MBE ,∠AON=∠BOM ,∴∠OMB=∠ANB=90°−β,在△MBE 中,∵∠EMB+∠EBM=90°,∴α+(90°−β)+12(90°−β)=90°,整理得:3β−2α=90°故答案为:3β−2α=90°【例4】如图,将长方形纸片ABCD 沿BD 所在直线折叠,得到BC D '△,C D '与AB 交于点E ,若125∠=︒,则2∠的度数为_________.【答案】40︒【解析】解:在矩形ABCD 中,90C ∠=︒,AB CD ∥,∴190CBD ∠+∠=︒,1ABD ∠=∠,125∠=︒,∴65CBD ∠=︒,25ABD ∠=︒,由折叠可知:2ABD CBD ∠+∠=∠,∴2652540CBD ABD ∠=∠-∠=︒-︒=︒.故答案为:40︒.六、矩形的判定 解答题【例1】如图,ABC ∆中,AC BC =,CD AB ⊥于点D ,四边形DBCE 是平行四边形.求证:四边形ADCE 是矩形.【答案】见解析【解析】证明:AC BC =,CD AB ⊥,90ADC ∴∠=︒,AD BD =.在DBCE 中,//EC BD ,EC BD =,//EC AD ∴,EC AD =.∴四边形ADCE 是平行四边形.又90ADC ∠=︒,∴四边形ADCE 是矩形.【例2】如图,在ABC ∆中,//AE BC ,AB AC =,D 为BC 中点,AE BD =.(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若30ABE ∠=︒,2AE =,直接写出EC 的长.【答案】见解析【解析】(1)证明://AE BD ,AE BD =,∴四边形AEBD 是平行四边形,AB AC =,D 为BC 的中点,AD BC ∴⊥,90ADB ∴∠=︒,∴四边形AEBD 是矩形.(2)解:四边形AEBD 是矩形,90AEB DBE ∴∠=∠=︒,2BD AE ==,30ABE ∠=︒,BE ∴==24BC BD =,EC ∴=,【例3】问题情境:在综合实践课上,老师让同学们探究“平面直角坐标系中的旋转问题”,如图,在平面直角坐标系中,四边形AOBC 是矩形,()0,0O ,点()5,0A ,点()0,3B .操作发现:以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图,当点D 落在BC 边上时,求点D 的坐标;(2)继续探究:如图,当点D 落在线段BE 上时,AD 与BC 交于点H ,求证:ADB AOB ≌;【答案】(1)()1,3D (2)证明见解析【解析】(1)解:∵()5,0A ,()0,3B ,∴5OA =,3OB =,∵四边形AOBC 是矩形,∴3AC OB ==,5OA BC ==,90OBC C ∠=∠=︒,∵矩形ADEF 是由矩形AOBC 旋转得到,∴5AD AO ==,在Rt ADC 中,4CD =,∴1BD BC CD =-=,∴()1,3D .(2)证明:四边形ADEF 是矩形,90ADE ∴∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由旋转的性质得:AD AO =,在Rt ADB 和Rt AOB △中,AB AB AD AO =⎧⎨=⎩, ∴()Rt Rt HL ADB AOB ≅.【例4】在平行四边形ABCD 中,AB BC ≠,将ABC 沿AC 翻折至AB C ',连接B D '.(1)求证:B E DE '=;(2)求证:B D AC '∥;(3)在平行四边形ABCD 中,已知:460BC B =∠=︒,,将ABC 沿AC 翻折至AB C ',连接B D '.若以A 、C 、D 、B '为顶点的四边形是矩形,求AC 的长.【答案】(1)见解析(2)见解析(3)【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥,∴EAC ACB ∠=∠,由折叠的性质可知ACB ACB BC B C ''∠=∠=,,∴EAC ACB '∠=∠,BC AD '=,∴AE CE =,∴B C CE AD AE '-=-,即B E DE '=;(2)证明:∵B E DE '=, ∴()11802CB D B DA B ED '''∠=∠=︒-∠, 同理可得()11802EAC ECA AEC ∠=∠=︒-∠, ∵AEC B ED '∠=∠,∴ACB CB D ''∠=∠,∴B D AC '∥;(3)解:分两种情况:①如图1所示:∵四边形ACDB 是矩形,∴90CAB '∠=︒,∴90BAC ∠=︒,∵=60B ∠︒,∴30ACB ∠=︒, ∴122AB BC ==,∴AC②如图2所示:∵四边形ACB D '是矩形,∴90ACB '∠=︒,∴90ACB ∠=︒,∵460BC B =∠=︒,,∴30BAC ∠=︒,∴28AB AC ==,∴AC综上所述:AC 的长为【例5】已知:如图,在矩形ABCD 中,4AB =,2BC =.对角线AC 的垂直平分线分别交AB 、CD 于点E 、F .求线段CF 的长.【答案】52CF =【解析】解:连接AF ,如图所示:∵四边形ABCD 是矩形,∴42CD AB AD BC ====,,∵EF 是AC 的垂直平分线,∴AF CF =,设CF x =,则4DF CD CF x =-=- ,在Rt ADF 中,222AF DF DA +=,即22224x x =+-(),解得:x =52, ∴52CF =【例6】如图①,四边形ABCD 是一张矩形纸片,AD =1,AB =5.在矩形ABCD 的边AB 上取一点M ,在CD 上取一点N ,将纸片沿MN 折叠,使MB 与DN 相交于点K ,得到△MNK ,如图①.(1)当点M 与点A 重合(如图②),且∠BMN=15°时,求△MNK 的面积;(2)请你利用备用图探究怎样能够能够使折叠出△MNK 的面积最大,最大值是多少【答案】(1)△MNK 的面积为1 (2)△MNK 的面积最大值为1.3【解析】(1)解:∵四边形ABCD 是矩形,∴在图1、图2中,DNAB ,∴∠DNM=∠BMN ,又∵折叠,∴∠BMN =∠KMN ,∴∠KMN=∠KNM ,∴NK=MK ,∵△MNK 的面积S=12NK•AD=12NK ,∴S=12MK ,图2中,由折叠知,∠KAN=∠NAB=15°,∵DN AB ,∴∠KNA=∠NAB,∴∠KNA=∠KAN=15°,KA=KN,∴在Rt ADK中,∠DKA=30°,KA=2AD=2∴△MNK的面积S=12NK•AD=12NK,∴S=12AK=1;(2)有以下两种情况:情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.设MK=MB=x,则AM=5-x.由勾股定理得:12+ (5-x)2=x2,解得,x=2.6,即MD= ND= 2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3;情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.设MK=AX= CK=x,则DK=5-x,同理可得MK=NK=2.6,∴S△MNK= S△ACK=12×1×2.6 =1.3,∴△MNK的面积最大值为1.3.【例7】如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连接MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90° (2)MN BD ∥,理由见解析 (3)DE 的长为【解析】(1)解:如图1,∵DE =2,∴AE =AB =6,∵四边形ABCD 是矩形,∴∠A =90°,∴∠AEB =∠ABE =45°.由对称性知∠BEM =45°,∴∠AEM =90°.(2)解:如图2,∵AB =6,AD =8,∴BD =10,∵当N 落在BC 延长线上时,BN =BD =10,∴CN =2.设DE EN x ==,则6CE x =-,∵222CE CN EN +=,解得:103x =, ∴103DE EN ==. ∵BM =AB =CD ,MN =AD =BC ,∴Rt Rt (H )L BMN DCB ≌,∴∠DBC =∠BNM ,∴MN BD ∥;(3)分类讨论:①如图3,当E 在边AD 上时,∴∠BMC =90°,∴MC =.∵BM =AB =CD ,∠DEC =∠BCE ,∴△BCM ≌△CED(AAS),∴DE =MC =②如图4,当点E 在边CD 上时,∵BM =6,BC =8,∴MC =∴8CN MN MC =-=-设DE EN y ==,则6CE y =-,∴222(6)(8y y -=-+,解得:y =∴DE =综上所述,DE 的长为1.如图,在长方形ABCD 中,连接AC ,以A 为圆心,适当长为半径画弧,分别交AD ,AC 于点E ,F ,分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧在DAC ∠内交于点H ,画射线AH 交DC 于点M .若68ACB ∠=︒,则DMA ∠的大小为( )A .34︒B .56︒C .66︒D .68︒【答案】B【解析】 解:四边形ABCD 是长方形,90,D AD BC ∴∠=︒, 68DAC ACB ∴∠=∠=︒,由题意可知,AM 平分DAC ∠,1342DAM DAC ∴∠=∠=︒, 9056DMA DAM ∴∠=︒-∠=︒,故选:B .2.如图,矩形ABCD 中,3AB =,两条对角线,AC BD 所夹的钝角为120︒,则对角线BD 的长为( )A .3B .6C .D .10【答案】B【解析】解:在矩形ABCD 中,OA OB =,∵两条对角线,AC BD 所夹的钝角为120︒ 60AOB ∠∴=︒,AOB ∴是等边三角形,3OB AB ∴==,2236BD OB ∴==⨯=.故选:B .3.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE BD ⊥,垂足为点E ,若2EAC CAD ∠=∠,则BAE ∠的度数为( )A .20︒B .22.5︒C .30︒D .45︒【答案】B【解析】 解:四边形ABCD 是矩形,AC BD ∴=,OA OC =,OB OD =,OA OB OD ∴==,即AOB 、AOD △均为等腰三角形, OAD ODA ∠=∠∴,OAB OBA ∠=∠,AOE ∠是等腰AOD △的一个外角,2AOE OAD ODA OAD ∴∠=∠+∠=∠,2EAC CAD ∠=∠,EAO AOE ∠∠∴=,AE BD ⊥,90AEO ∴∠=︒,即AEO △是等腰直角三角形,45AOE ∴∠=︒,()()111801804567.522OAB OBA AOB ∴∠=∠=︒-∠=︒-︒=︒, 67.54522.5BAE OAB OAE ∴∠=∠-∠=︒-︒=︒,故选:B .4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE BD ⊥,交AD 于点E ,若20ACB ∠=︒,则AOE ∠的大小为__________.【答案】50︒【解析】∵四边形ABCD 是矩形,OA OB OC OD ∴===,20ACB ∠=︒,20OBC OCB ∴∠=∠=︒,40AOB OBC OCB ∴∠=∠+∠=︒,OE BD ⊥,904050AOE BOE AOB ∴∠=∠-∠=︒-︒=︒,故答案为:50︒.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于O ,DE AC ⊥于E ,:1:2EDC EDA ∠∠=,则ODE ∠的度数是___________.【答案】30︒【解析】【解答】解:∵:1:2EDC EDA ∠∠=,90EDC EDA ∠+∠=︒,∴30EDC ∠=︒,60EDA ∠=︒,∵DE OC ⊥,∴9060DCE EDC ∠︒=︒-∠=,∵四边形ABCD 是矩形,∴OA OD OC ==,∴ODC 是等边三角形,∵DE OC ⊥, ∴1302ODE CDE ODC ∠=∠=∠=︒, 故答案为:30︒.6.如图,将矩形ABCD 绕点A 顺时针旋转35︒,得到矩形AB C D ''',则α∠=______.︒【答案】125 【解析】解:将矩形ABCD 绕点A 顺时针旋转35︒得到矩形AB C D ''',∴903555BAD ∠=︒-︒='︒,∵360BAD ABC AD C α∠+∠+∠'+='∠'︒,∴360909055125α∠=︒-︒-︒-︒=︒,故答案为:125.7.如图,四边形ABCD 为矩形,则∠ABC=________;若OA=5,则BD=________.【答案】 90︒ 10【解析】∵四边形ABCD 是矩形,OA=5,∴ABC ∠=90︒,210BD AC OA ===,故答案为:9010︒,. 8.如图,延长矩形ABCD 边BC 至点E ,使CE BD =,连接AE ,如果40ADB ∠=︒,则E ∠=______.【答案】20°【解析】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=40°,即∠E=20°,故答案为:20°.9.如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,6OA=,3OC=,45DOE∠=︒,OD,OE分别交BC,AB于点D,E,且2CD=,则点E坐标为______.【答案】6,6 5⎛⎫ ⎪⎝⎭【解析】解:过点E作EF OD⊥,过点F作FN OC⊥,并延长NF交AB延长线于点M,如下图:则90EFO FNO ∠=∠=︒,∴90OFN EFM ∠+∠=︒,90OFN FON ∠+∠=︒ ∴FON EFM ∠=∠在矩形OABC 中,//AB OC ,63OA BC OC AB ====, ∴90M FNO ∠=∠=︒∴四边形BCNM 为矩形∴6MN BC ==,//CD MN ,BM CN = ∴AM ON =∵45DOE ∠=︒∴EFO △为等腰直角三角形,EF OF =∴FON EFM △≌△∴MF ON =,EM FN =设MF ON x ==,则6EM FN x ==-,(,6)F x x - 设直线OD 解析式为y kx =由题意可知(3,2)D ,代入y kx =得,32k =,解得23k =, 又∵点(,6)F x x -在直线OD 上,∴263x x -= 解得185x =,即181255AM ON FN EM ====, ∴65AE AM EM =-=∴点E 坐标为6,65⎛⎫ ⎪⎝⎭故答案为6,65⎛⎫ ⎪⎝⎭。

北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定 同步练习题

北师大版九年级数学上册第一章 1.2矩形的性质与判定同步练习题第1课时矩形的性质1.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DAE=(B)A.10° B.20° C.30° D.45°2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠COD=60°,AB=3,则AC的长是(A)A.6 B.8 C.10 D.123.如图,在矩形ABCD中,∠DAE=∠CBE=45°,AD=1,则△ABE的周长等于(C)A.4.83 B.4 2C.22+2 D.32+24.如图,在矩形ABCD中,O是两对角线的交点,AE⊥BD,垂足为E.若OD=2OE,AE=3,则DE的长为(B)A.2 3 B.3 C.4 D.3+15.如图,在矩形ABCD中,EG垂直平分BD于点G.若AB=4,BC=3,则线段EG的长度是(B)A.32B.158C.52D .3 6.如图,点O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若OM =3,BC =10,则OB7.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 至F ,使CF =12BC.若EF =13,则线段AB 的长为26.8.如图,在矩形ABCD 中,AB =3,BC =4,AC 为对角线,∠DAC 的平分线AE 交DC 于点E ,则CE 的长为53.9.如图,在矩形ABCD 中,AB =3,AD =4,P 为AD 上一动点,PE ⊥AC 于点E ,PF ⊥BD 于点F ,则PE +PF 的值为125.10.如图,在矩形ABCD 中,AB =4,BC =6,将△ABE 沿着AE 折叠至△AB′E.若BE =CE ,连接B′C,则B′C 的长为185.11.如图,在矩形ABCD 中,AD =AE ,DF ⊥AE 于点F.求证:AB =DF.证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B =90°. ∴∠AEB =∠DAF. ∵DF ⊥AE ,∴∠AFD =∠B=90°.在△ABE 和△DFA 中,⎩⎪⎨⎪⎧∠AEB=∠DAF,∠B =∠AFD,AE =DA ,∴△ABE ≌△DFA(AAS). ∴AB =DF.12.如图,BE ,CF 是锐角△ABC 的两条高,M ,N 分别是BC ,EF 的中点.若EF =6,BC =24.(1)求证:∠ABE=∠ACF;(2)判断EF 与MN 的位置关系,并证明你的结论; (3)求MN 的长.解:(1)证明:∵BE,CF 是△ABC 的两条高, ∴∠ABE +∠A=90°,∠ACF +∠A=90°. ∴∠ABE =∠ACF. (2)MN 垂直平分EF. 证明:连接EM ,FM ,∵BE ,CF 是△ABC 的两条高,M 是BC 的中点, ∴EM =FM =12BC.∵N 是EF 的中点,∴MN ⊥EF. ∴MN 垂直平分EF. (3)∵EF=6,BC =24,∴EM =12BC =12×24=12,EN =12EF =12×6=3.在Rt △EMN 中,MN =EM 2-EN 2=122-32=315.13.如图,在矩形ABCD 中,AB =3,BC =4.M ,N 在对角线AC 上,且AM =CN ,E ,F 分别是AD ,BC 的中点.(1)求证:△ABM≌△CDN;(2)若G 是对角线AC 上的点,∠EGF =90°,求AG 的长.解:(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,AB ∥CD. ∴∠MAB =∠NCD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,∠MAB =∠NCD,AM =CN ,∴△ABM ≌△CDN(SAS). (2)连接EF ,交AC 于点O.在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EOA=∠FOC,∠EAO =∠FCO,AE =CF ,∴△AEO ≌△CFO(AAS).∴EO =FO ,AO =CO.∴O 为EF ,AC 的中点. ∵∠EGF =90°,∴OG =12EF =12AB =32.在Rt △ABC 中,AC =AB 2+BC 2=5, ∴OA =52.∴AG =OA -OG =1或AG =OA +OG =4. ∴AG 的长为1或4.14.如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE.(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE .解:(1)∵四边形ABCD 是矩形, ∴AB ∥CD ,AO =CO =BO =DO.∴∠DCE =∠BEC.∵CE 平分∠BCD,∴∠BCE =∠DCE=45°. ∴∠BCE =∠BEC=45°.∴BE =BC.∵∠BAC =30°,AO =BO =CO ,∴∠OBA =30°. ∴∠BOC =60°. ∴△BOC 是等边三角形. ∴BC =BO =BE.∴∠BOE =180°-30°2=75°.(2)过点H 作HF⊥BC 于点F.∵△BOC 是等边三角形,∴∠FBH =60°. ∴BH =2BF ,FH =3BF.∵∠BCE =45°,∴CF =FH =3BF. ∴BC =3BF +BF =1.∴BF=3-12. ∴FH =3-32.∴S △BCH =12BC·FH=3-34.(3)过点C 作CN⊥BO 于点N , ∵BC =3BF +BF =BO =BE , ∴OH =OB -BH =3BF -BF. ∵∠CBN =60°,CN ⊥BO , ∴CN =32BC =3+32BF. ∵S △CHO ∶S △BHE =(12OH·CN)∶(12BE·BF),∴S △CHO ∶S △BHE =3-32.第2课时 矩形的判定1.已知▱ABCD ,下列条件中,不能判定这个平行四边形为矩形的是(B) A .∠A =∠B B .∠A =∠C C .AC =BD D .AB ⊥BC2.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是(D)A .四边形AEDF 是平行四边形B .若∠BAC=90°,则四边形AEDF 是矩形C .若AD =EF ,则四边形AEDF 是矩形 D .若AD 平分∠BAC,则四边形AEDF 是矩形3.如图,在▱ABCD 中,M ,N 是BD 上两点,BM =DN ,连接AM ,MC ,CN ,NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是(A)A .OM =12AC B .MB =MOC .BD ⊥AC D .∠AMB =∠CND4.如图,在▱ABCD 中,在不添加任何辅助线的情况下,请添加一个条件∠A =90°,使平行四边形ABCD 是矩形.5.如图,已知MN∥PQ,EF 与MN ,PQ 分别交于A ,C 两点,过A ,C 两点作两组内错角的平分线,交于点B,D,则四边形ABCD是矩形.6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么正确的条件是①③④(填序号).7.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.当△ABC满足AC=BC(答案不唯一)时(请添加一条件),四边形BDCF 为矩形.8.如图,在▱ABCD中,AB=6,BC=10,对角线AC⊥AB,点E,F分别是边BC,AD上的点,且BE=DF.当BE的长度为3.6时,四边形AECF是矩形.9.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B,C,D为顶点的四边形是矩形,则点D的坐标为(5,3)或(-3,2)或(3,1).410.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,∠BAC≠60°,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC时,四边形AEFD是菱形;④当∠BAC=90°时,四边形AEFD是矩形.其中正确的结论是①②③.(填序号)11.已知:如图,▱ABCD 的两条对角线相交于点O ,BE ⊥AC ,CF ⊥BD ,垂足分别为E ,F ,且BE =CF.求证:▱ABCD 是矩形.证明:∵BE⊥AC,CF ⊥BD , ∴∠OEB =∠OFC=90°. 在△BEO 和△CFO 中, ⎩⎪⎨⎪⎧∠OEB=∠OFC,∠BOE =∠COF,BE =CF ,∴△BEO ≌△CFO(AAS). ∴OB =OC.∵四边形ABCD 是平行四边形, ∴OB =12BD ,OC =12AC.∴BD =AC. ∴▱ABCD 是矩形.12.如图,已知AB∥DE,AB =DE ,AC =FD ,∠CEF =90°.求证: (1)△ABF≌△DEC; (2)四边形BCEF 是矩形.证明:(1)∵AB∥DE, ∴∠A =∠D. ∵AC =FD , ∴AC -CF =DF -CF , 即AF =CD.在△ABF 和△DEC 中, ⎩⎪⎨⎪⎧AF =DC ,∠A =∠D,AB =DE ,∴△ABF ≌△DEC(SAS). (2)∵△ABF≌△DEC, ∴EC =BF ,∠ECD =∠BFA. ∴∠ECF =∠BFC.∴EC∥BF. ∴四边形BCEF 是平行四边形. ∵∠CEF =90°, ∴四边形BCEF 是矩形.13.如图,在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,以BD 为边作等边△BDE.求证:AB =EF ,且四边形AEBF 是矩形.证明:∵在等边△ABC 中,点D 是AC 的中点,F 是BC 的中点,∴∠AFB =90°,AF =BD ,∠CBD =30°. ∵△BDE 是等边三角形, ∴BE =BD ,∠DBE =60°.∴AF =BD =BE ,∠EBF =∠AFB=90°. ∴AF ∥BE. 又∵AF=BE ,∴四边形AEBF 是平行四边形. 在△ABF 和△EFB 中, ⎩⎪⎨⎪⎧AF =EB ,∠AFB =∠EBF,BF =FB ,∴△ABF ≌△EFB(SAS). ∴AB =EF.∴四边形AEBF 是矩形.14.如图,在▱ABCD 中,BC =12 cm ,∠ABC =60°,AC ⊥AB ,O 是AC ,BD 的交点,点E ,F 分别从点O 同时出发,沿射线OA 和OC 方向移动,速度都是1 cm/s.(1)求证:在整个运动过程中,四边形BEDF 始终是平行四边形;(2)设点E 和点F 同时运动的时间为t s ,当t 为何值时,四边形BEDF 是矩形?解:(1)证明:∵四边形ABCD 是平行四边形, ∴OB =OD.由题意,得OE =OF ,∴四边形BEDF 始终是平行四边形.(2)在Rt △ABC 中,∵∠BAC =90°,∠ABC =60°,BC =12, ∴∠ACB =30°,AB =12BC =6,AC =3AB =6 3.∴OA =OC =3 3.∴BO =AB 2+AO 2=62+(33)2=37. ∵当EF =BD 时,四边形BEDF 是矩形, ∴OE =OB ,即t =37.∴当t =37时,四边形BEDF 是矩形.第3课时 矩形的性质与判定的运用1.下列关于矩形的说法,正确的是(C) A .对角线相等的四边形是矩形 B .对角线互相平分的四边形是矩形 C .矩形的对角线相等且互相平分 D .矩形的对角线互相垂直且平分2.如图,已知在四边形ABCD 中,AB =DC ,AD =BC ,连接AC ,BD 交于点O.若AO =BO ,AD =3,AB =2,则四边形ABCD 的面积为(C)A .4B .5C .6D .73.如图,在矩形COED 中,点D 的坐标是(1,3),则CE4.如图,在四边形ABCD中,已知对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.5.如图,在菱形ABCD中,AC,BD交于点O,AC=6,BD=8.若DE∥AC,CE∥BD,则OE 的长为5.6.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于点E,MF⊥AC于点F,点N为EF的中点,则MN的最小值为2.4.7.如图,在矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处.若A′恰好在矩形的对称轴上,则AE的长为1或38.如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P从点A出发,向点D以每秒1 cm 的速度运动,Q从点C出发,以每秒4 cm的速度在B,C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q也停止),这段时间内,当运动时间为2.4_s或4_s或7.2_s 时,P,Q,C,D四点组成矩形.9.如图,在▱ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.解:(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2.∴∠ABC=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC.∵CF∥AE,∴四边形AECF 是平行四边形. ∵AE ⊥BC ,∴四边形AECF 是矩形. (2)∵四边形ABCD 是菱形, ∴AD =AB =BC =CD =5. ∵AE =4,∠AEB =90°, ∴EB =AB 2-AE 2=3. ∴EC =EB +BC =8. ∴AC =AE 2+EC 2=4 5. ∵在Rt △AEC 中,AO =CO , ∴OE =12AC =2 5.11.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠A =∠ADC ,E ,F 分别为AD ,CD 的中点,连接BE ,BF ,延长BE 交CD 的延长线于点M.(1)求证:四边形ABCD 为矩形;(2)若MD =6,BC =12,求BF 的长度.(结果可保留根号)解:(1)证明:∵在四边形ABCD 中,AB ∥CD ,AB =CD , ∴四边形ABCD 是平行四边形. ∴∠A +∠ADC=180°. ∵∠A =∠ADC,∴∠A =90°. ∴四边形ABCD 是矩形. (2)∵AB∥CD,∴∠ABE =∠M. ∵E 为AD 的中点,∴AE =DE.在△ABE 和△DME 中, ⎩⎪⎨⎪⎧∠AEB=∠DEM ,∠ABE =∠M,AE =DE ,∴△ABE ≌△DME(AAS). ∴AB =DM =CD =6. ∵F 为CD 的中点, ∴CF =12CD =3.∵四边形ABCD 是矩形, ∴∠C =90°.在Rt △BCF 中,BF =BC 2+CF 2=122+32=317.12.如图,在▱ABCD 中,E 是AD 上一点,连接BE ,F 为BE 的中点,且AF =BF. (1)求证:四边形ABCD 为矩形;(2)过点F 作FG⊥BE,交BC 于点G.若BE =BC ,S △BFG =5,CD =4,求CG 的长度.解:(1)证明:∵F 为BE 的中点,AF =BF ,∴AF =BF =EF. ∴∠BAF =∠ABF,∠FAE =∠AEF.在△ABE 中,∠BAF +∠ABF+∠FAE+∠AEF=180°, ∴∠BAF +∠FAE=90°,即∠BAE =90°. 又∵四边形ABCD 为平行四边形, ∴四边形ABCD 为矩形.(2)连接EG ,过点E 作EH⊥BC,垂足为H ,∵F 为BE 的中点,FG ⊥BE ,∴BG =GE. ∵S △BFG =5,CD =EH =4, ∴S △BGE =12BG·EH=10.∴BG =GE =5.在Rt △EGH 中,GH =GE 2-EH 2=3. ∴BH =5+3=8.在Rt △BEH 中,BE =BH 2+EH 2=4 5. ∴CG =BC -BG =BE -BG =45-5.13.已知:如图,在▱ABCD 中,AB >AD ,∠ADC 的平分线交AB 于点E ,作AF⊥BC 于点F ,交DE 于点G ,延长BC 至H 使CH =BF ,连接DH.(1)补全图形,并证明四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB ,AG ,BF 之间的数量关系,并证明.解:(1)补全图形如图所示. 证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC.∵CH =BF ,∴FH =BC.∴AD=FH. ∴四边形AFHD 是平行四边形. ∵AF ⊥BC ,∴四边形AFHD 是矩形. (2)猜想:AB =BF +AG.证明:延长FH 至M ,使HM =AG ,连接DM.∵AB∥CD,∴∠AED=∠EDC.∵DE平分∠ADC,∴∠ADE=∠EDC.∴∠AED=∠ADE.∴AE=AD.∵AE=AF,∴AF=AD.∵AF=DH,∴AD=DH.又∵∠GAD=∠DHM=90°,∴△DAG≌△DHM(SAS).∴∠ADE=∠HDM,∠AGD=∠M.∴∠EDC=∠HDM.∴∠GDH=∠CDM.∵AF∥DH,∴∠AGD=∠GDH.∴∠CDM=∠M.∴CD=CM=CH+HM. ∵AB=CD,CH=BF,HM=AG,∴AB=BF+AG.。

北师大版九年级数学上同步练习:矩形的判定 (含答案)

北师大版九年级数学上同步练习:矩形的判定  (含答案)

矩形的判定一、填空:1.矩形ABCD的周长为52cm,对角线AC和BD相交于O,且△OCD和△OAD的周长差是10cm,则矩形的长边长________,短边长_________ 2.在矩形ABCD中,DE⊥AC于E,且CE:EA=1:3,若AB=5cm,则AC=_________3.在矩形ABCD中,AB=2BC,E是AB上一点,且CE=AB,连结DE,则∠ADE=_________4.矩形两条对角线的交点到小边的距离比到大边的距离多1cm,若矩形周长是26cm,则矩形各边长为__________5._________的四边形是矩形6._________的平行四边形是矩形二、判断:1.矩形是轴对称图形且有两条对称轴()2.矩形的对角线大于夹在两对边间的任意线段()3.两条对角线互相平分的四边形是矩形()4.有两个角是直角的四边形为矩形()三、解答:1.如图,已知,在△ABC中,∠A=90°,AB=AC,M是BC的中点,P为BC上任一点,PE⊥AB于E,PF⊥AC于F,求证:ME=MF2.如图,已知,△ABC中,CE⊥AD于E,BD⊥AD于D,BM=CM求证:ME=MD参考答案一、1.18cm 8cm2.10cm3.15°4.7.5cm 5.5cm 7.5cm 5.5cm5.有三个角是直角(或对角线互相平分且相等)6.对角线相等二、1.√2.√3.×4.×三、1.∵∠A=90°,PE ⊥AB 于E ,PF ⊥AC 于F∴四边形AEPF 为矩形,∴AF=EP∵AB=AC ,∠BAC=90° ∴∠B=45°∵PE ⊥AB 于E ,∠EPB=45°,∴∠B=∠EPB∴BE=EP ∴BE=AF∵直角△ABC 中,∠BAC=90°M 为BC 边中点 ∴BC AM 21即AM=BM∵AB=AC ,M 为BC 中点,∴AM 平分∠BAC∴∠MAF=45° ∴∠MAF=∠B在△AMF 与△BME 中,∵AF=BE ,∠MAF=∠B ,AM=BM ∴△AMF ≌△BME ∴ME=MF2.延长DM 与CE 交于N∵CE ⊥AD 于E ,BD ⊥AD 于D∴CE ∥BD ∠NCM=∠DBM在△CMN 与△BMD 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠BMD CMN BM CM DBM NCM ∴△CMN ≌△BMD ∴NM=DM即M 为ND 中点 ∵CE ⊥AD 于E ∴△NED 为Rt △ ∴ND ME 21=∴ME=MD。

北师大版2020九年级数学上册1.2矩形的性质与判定自主学习能力达标测试题2(附答案详解)

北师大版2020九年级数学上册1.2矩形的性质与判定自主学习能力达标测试题2(附答案详解)

北师大版2020九年级数学上册1.2矩形的性质与判定自主学习能力达标测试题2(附答案详解)1.下列说法中,错误的是( )A .一组邻边相等的平行四边形是菱形B .对角线互相垂直的平行四边形是菱形C .四条边相等的四边形是菱形D .对角线相等且互相平分的四边形是菱形2.如图所示,在完全重合放置的两张矩形纸片ABCD 中,AB 4=,BC 8=,将上面的矩形纸片折叠,使点C 与点A 重合,折痕为EF ,点D 的对应点为G ,连接DG ,则图中阴影部分的面积为( )A .43B .6C .185 D .3653.如图所示,矩形ABCD 的对角线交于O ,AE ⊥BD 于E ,∠1:∠2=2:1, 则∠1的度数为( ).A .22.5°B .45°C .30°D .60°4.如图,E 为矩形ABCD 的边AB 上一点,将矩形沿CE 折叠,使点B 恰好落在ED 上的点F 处,若BE=1,BC=3,则CD 的长为( )A .6B .5C .4D .35.一张矩形纸片 ABCD ,已知 AB =3,AD =2,小明按如图步骤折叠纸片,则线段 DG 长为()6.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.AC=DE B.AB=AC C.AD=EC D.OA=OE 7.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC8.如果□ABCD的对角线相交于点O,那么在下列条件中,能判断□ABCD为矩形的是( ) A.∠OAB=∠OBA B.∠OAB=∠OBCC.∠OAB=∠OCD D.∠OAB=∠OADAG DB 9.如图,已知在ABCD中,E,F分别是AB,CD的中点,BD是对角线,//交CB延长线于G.若四边形BEDF是菱形,则四边形AGBD是()A.平行四边形B.矩形C.菱形D.正方形10.在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是()A.斜边长为10cm B.周长为25cmC.面积为24cm2D.斜边上的中线长为5cm11.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为__________,面积为__________.12.平行四边形也是轴对称图形其对称轴也是对角线.()13.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.14.如图,把一个长方形纸条ABCD 沿AF 折叠,点B 落在点E 处.已知∠ADB =24°,AE ∥BD ,则∠AFE 的度数是__________15.如图,矩形ABCD 中,E 在AD 上,且EF EC ⊥,EF EC =,2DE =,矩形的周长为16,则AE 的长是______ .16.在ABC ∆中,∠C=090,AC=12,BC=5,则AB 边上的中线CD =_______.17.在Rt ABC △中,90C ∠=︒,斜边长为4,CD 为AB 边上中线,则222AC BC CD ++=__________.18.如图平行四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA OB =,65OAD ∠=.则ODC ∠=________.19.如图所示,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC 的长是_____.20.如图,在矩形ABCD 中,∠ABC 的平分线交AD 于点E ,连接CE .若BC =7,AE =4,则CE =_____.21.如图,∠ABC=∠ADC=90°,E 是AC 的中点,连结BD ,DE ,BE ,EF⊥BD 于点F. 求证:DF =FB .22.如图,Rt △ABC 中,∠ACB=90°,CO 是中线,延长CO 到D ,使DO=CO ,连接AD 、BD .(1)画出图形,判断四边形ACBD 的形状,并说明理由.(2)过点O 作EO ⊥AB ,交BD 于点E ,若AB=5,AC=4,求线段BE 的长.23.为了庆祝建校八十周年,某校各班都在开展丰富多彩的庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的第一、二个步骤是:①先裁下了一张长BC =20 cm ,宽AB =16 cm 的长方形纸片ABCD ;②将纸片沿着直线AE 折叠,使点D 恰好落在BC 边上的F 处……请你根据①②步骤解答下列问题.(1)找出图中的∠FEC 的余角;(2)计算EC 的长.24.如图,在等腰梯形ABCD 中,//AD BC ,AB CD =,点P 为BC 边上一动点,PE AB ⊥,PF CD ⊥,问PE PF +的值是否为一定值?若为一定值,求出这个定值;若不为定值,求出这个值的取值范围.25.矩形ABCD 中,DE 平分∠ADC 交BC 边于点E ,P 为DE 上的一点(PE <PD ),PM ⊥PD ,PM 交AD 边于点M .(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.求证:①PN=PF;②DF+DN=2DP;(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.26.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.27.如图,在△ABC中,O是AC上一动点(不与点A、C重合),过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)OE与OF相等吗?证明你的结论;(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.28.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=OC,则四边形ABCD是什么特殊四边形?请直接给出你的结论,不必证明.参考答案1.D【解析】【分析】根据菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”)进行分析即可.【详解】A、一组邻边相等的平行四边形是菱形,说法正确;B、对角线互相垂直的平行四边形是菱形,说法正确;C、四条边相等的四边形是菱形,说法正确;D、对角线相等且互相平分的四边形是矩形,故此选项错误.故选D.【点睛】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.2.C【解析】【分析】由于AF=CF,则在Rt△ABF中由勾股定理求得AF的值,证得△ABF≌△AGE,有AE=AF,即ED=AD-AE,再由直角三角形的面积公式求得Rt△AGE中边AE上的高的值,即可计算阴影部分的面积.【详解】由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8-AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,∵∠B=∠AGE=90°,AB=AG,∴△BAF≌△GAE,∴AE=AF=5,ED=GE=3,∵S△GAE=12AG•GE=12AE•AE边上的高,∴AE边上的高=125,∴S△GED=12ED•AE边上的高=12×3×125=185,故选C.【点睛】本题考查了矩形的性质、翻折的性质、勾股定理、全等三角形的判定和性质等,熟练掌握相关知识是解题的关键.3.B【解析】∵四边形ABCD为矩形,AE⊥BD,∴∠2+∠ABD=∠ADB+∠ABD =∠EAD+∠ADB=90°,∴∠ADB=∠2,∠1+∠OAD+∠ADB=90°,∵四边形ABCD是矩形,∴AO=OD,∴∠OAD=∠ADB=∠2,∴∠1+2∠2=90°,∵∠1:∠2=2:1,∴2∠2=∠1,∴2∠1=90°,∴∠1=45°,故选B.4.B【解析】【分析】先根据翻折变换的性质得出EF=BE=1,BC=CF=AD=3,可证得△AED≌△FDC 进而求得CD 的长.【详解】解:由题意得:E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,可得BE=EF=1,CF=BC=3,∠EFC=∠B=90oABCD为矩形,可得∠AED=∠CDF,在△AED与△FDC中有: AD=CF,∠A=∠DFC=90o,∠AED=∠CDF∴△AED≌△FDC,∴ED=CD,设CD 的长为x ,在Rt△EAD 中,有222ED AE AD =+,即:222(1)3x x =-+,解得;x=5,故答案为B.【点睛】本题主要考查矩形的性质和翻折变换后的性质,灵活证三角形全等是解题的关键.5.A【解析】解:∵AB =3,AD =2,∴DA ′=2,CA ′=1,∴DC ′=1.∵∠D =45°,∴DG .故选A .6.B【解析】A.连接AE ,CD ,则四边形ADCE 是平行四边形,因为∠ABC =∠BAC ,D 是AB 的中点,所以CD⊥AB,所以四边形ADCE 是矩形,所以AC=DE ,则A 成立;B.因为∠ABC =∠BAC ,D 是AB 的中点,所以CA=CB ,不能得到AB=AC ,则B 不一定成立;C.因为四边形ADCE 是矩形,所以AD=CE ,OA=OE ,则C ,D 成立,故选B.7.C【解析】矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A ,B ,D 正确,C 错误.故选C.8.D【解析】【分析】①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.【详解】对于选项A ,∵∠OAB=∠OBA,∴OA=OB,∴AC=BD.根据此条件,不能判断四边形ABCD是菱形,故A不符合题意.对于选项B,由∠OAB=∠OBC,不能判断四边形ABCD的邻边相等,故B不符合题意. 对于选项C,由∠OAB=∠OCD,可得AB∥CD,根据已知也可得此条件,故不符合题意. 对于选项D.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAB=∠ACD.∵∠OAB=∠OAD,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.故选D.【点睛】本题考查的是平行四边形,熟练掌握平行四边形的性质是解题的关键.9.B【解析】【分析】如图:先由菱形的性质得出AE=BE=DE,通过AD∥BC,AG∥BD,可证明四边形ADBG 是平行四边形,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.【详解】∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴四边形AGBD是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定.有一个角是直角的平行四边形是矩形.熟练掌握矩形的判定定理是解题关键.10.B【解析】试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,∴直角三角形的面积=12×6×8=24cm2,故选项C不符合题意;∴斜边226810cm,=+=故选项A不符合题意;∴斜边上的中线长为5cm,故选项D不符合题意;∵三边长分别为6cm,8cm,10cm,∴三角形的周长=24cm,故选项B符合题意,故选B.点睛:直角三角形斜边的中线等于斜边的一半. 11.12cm230cm【解析】∵直角三角形斜边中线是6cm,高是5cm,∴斜边是12cm,面积是:2112530cm 2⨯⨯=. 12.× 【解析】平行四边形不是但是特殊的平行四边形,如矩形、菱形、正方形等是轴对称图形,但一般的平行四边形不是轴对称图形,所以原语句是错误的.13.8【解析】【分析】如图作点D 关于BC 的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF ,又EF=EA=2是定值,即可推出当E 、F 、P 、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF .【详解】如图作点D 关于BC 的对称点D′,连接PD′,ED′,在Rt △EDD′中,∵DE=6,DD′=8,∴ED′=2268+=10,∵DP=PD′,∴PD+PF=PD′+PF ,∵EF=EA=2是定值,∴当E 、F 、P 、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,∴PF+PD 的最小值为8,故答案为8.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.14.33°【解析】【分析】设BD 交EF 于G .由折叠的性质可知,∠E=∠ABF=90°∠AFB=∠AFE ,由平行线的性质可知:∠BGF=∠E=90°,∠DBC=∠ADB=24°.在Rt △BGF 中,由2∠AFE+∠DBC=90°,即可得出结论.【详解】解:设BD 交EF 于G .由折叠的性质可知,∠E=∠ABF=90°∠AFB=∠AFE .∵AE ∥BD ,∴∠BGF=∠E=90°.∵AD ∥BC ,∴∠DBC=∠ADB=24°.在Rt △BGF 中,2∠AFE+∠DBC=90°,∴2∠AFE=90°-24°=66°,∴∠AFE=33°.故答案为33°.【点睛】本题考查了矩形的性质,折叠的性质以及平行线的性质和直角三角形的两锐角互余.解题的关键是得到△BGF 为直角三角形.15.3【解析】【分析】设CD x =,根据矩形的性质得出AB CD =,AD BC =,90A D ∠=∠=︒,求出AFE DEC ∠=∠,证AFE DCE ≅,推出AE DC x ==,求出2AD BC x ==+,得出方程()2216x x ++=,求出即可.【详解】设CD x =,四边形ABCD 是矩形,∴AB CD =,AD BC =,90A D ∠=∠=︒,EF EC ⊥,∴90FEC ∠=︒,∴90AFE AEF ∠+∠=︒,90AEF DEC ∠+∠=︒,∴AFE DEC ∠=∠,在AFE △和DCE 中,AFE DEC A D EF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AFE DCE ≅()AAS ,∴AE DC x ==,2DE =,∴2AD BC x ==+,矩形ABCD 的周长为16,∴()2216x x ++=,3x =,即3AE =.故答案为:3.【点睛】本题考查了三角形内角和定理,矩形性质,全等三角形的性质和判定的应用,关键是推出AE CD =.16.6.5【解析】【分析】先求斜边,再根据斜边上中线等于斜边一半可得.【详解】由勾股定理可得:13=,所以AB 上的中线长:13÷2=6.5故答案为:6.5【点睛】本题考核知识点:直角三角形斜边上的中线. 解题关键点:熟记性质即可.17.20 【解析】由∠C=90°,CD为斜边AB中线,则CD=12AB=2,由勾股定理,得AC2+BC2=AB2,则AC2+BC2+CD2=AB2+CD2=42+22=20.故答案为20.点睛:本题考查勾股定理及直角三角形斜边中线等于斜边一半的性质.18.25°【解析】【分析】由平行四边形ABCD中,对角线AC、BD相交于点O,且OA OB=,易证得四边形ABCD是矩形,继而可求得答案.【详解】四边形ABCD是平行四边形,∴OA OC=,OB OD=,OA OB=,∴OA OB OC OD===,∴四边形ABCD是矩形,∴90ADC∠=︒,65ODA OAD∠=∠=︒,∴25ODC ADC ODA∠=∠-∠=︒.故答案为:25︒.【点睛】此题考查了矩形的判定与性质,此题难度适中,注意掌握数形结合思想的应用.19.4【解析】【详解】解:∵四边形ABCD是矩形,22AC AO BD BO AC BD∴===,,,AO OB ∴=,60AOB ∠=︒,AOB ∴是等边三角形,2AB AO ∴==,即24AC AO ==,故答案为4.20.5【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,AB=CD ,∠D=90°.∴∠AEB=∠CBE.∵BE 平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB.∴CD=AE=4,DE=AD-AE=BC-AE=7-4=3.在Rt △CDE 中,根据勾股定理得5==.故答案为5.21.见解析【解析】【分析】根据直角三角形斜边的中线等于斜边的一半可得DE =12AC ,BE =12AC ,即可得DE=BE.再由等腰三角形三线合一的性质即可证得结论.【详解】∵∠ABC =∠ADC =90°,E 是AC 的中点,∴DE =12AC ,BE =12AC. ∴DE =BE.又∵EF ⊥BD ,∴DF =FB.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半及等腰三角形三线合一的性质,根据直角三角形斜边的中线等于斜边的一半证得DE=BE 是解决问题的关键.22.(1)结论:四边形ACBD 是矩形.理由见解析;(2)258. 【解析】 分析:(1)先证明四边形ACBD 是平行四边形,再证明是矩形.(2)利用BOE BDA ∽得BE BO AB BD=, 即可解决问题. 详解:(1)结论:四边形ACBD 是矩形,理由:∵OB =OA ,OC =OD ,∴四边形ACBD 是平行四边形,∵90ACB ∠=,∴四边形ACBD 是矩形。

数学九年级上学期《矩形的性质与判定》同步练习

数学九年级上学期《矩形的性质与判定》同步练习

北师大新版数学九年级上学期《1.2矩形的性质与判定》同步练习一.选择题(共10小题)1.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.矩形具有而一般的平行四边形不一定具有的特征()A.对角相等B.对角线相等C.对角线互相平分D.对边相等3.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.4.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D.不确定5.如图,在矩形ABCD中,AD=30,AB=20,若点E、F三等分对角线AC,则△ABE的面积为()A.60 B.100 C.150D.2006.如图,利用四边形的不稳定性改变矩形ABCD的形状,得到▱A1BCD1,若▱A1BCD1的面积是矩形ABCD面积的一半,则∠ABA1的度数是()A.15°B.30°C.45°D.60°7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=4cm,则矩形ABCD的面积为()A.12cm2B.4cm2C.8cm2D.6cm28.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=2,则AC的长是()A.4 B.6 C.8D.109.如图,矩形ABCD中,AB=4,BC=2,O为对角线AC的中点,点P、Q分别从A和B两点同时出发,在边AB和BC上匀速运动,并且同时到达终点B、C,连接PO、QO并延长分别与CD、DA交于点M、N.在整个运动过程中,图中阴影部分面积的大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小10.如图,矩形ABCD由3×4个小正方形组成,此图中不是正方形的矩形有()A.34个B.36个C.38个D.40个二.填空题(共6小题)11.如果▱ABCD成为一个矩形,需要添加一个条件,那么你添加的条件是.12.如图,在平行四边形中,∠B=60°,AB=4,AD=6,动点F从D出发,以1个单位每秒的速度从D向A运动,同时动点E以相同速度从点C出发,沿BC方向在BC的延长线上运动,设运动时间为t,连接DE、CF.探究:①当t=s,四边形DECF是菱形;②当t=s,四边形DECF是矩形.13.的平行四边形是矩形(填一个合适的条件).14.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为BC的中点,P为BC上一点,PF⊥AB于F,PE⊥AC于E,则DF与DE的关系为.15.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.16.如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM 的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则(1)PQ=;(2)第n个矩形的边长分别是.三.解答题(共5小题)17.如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.18.如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.(1)当∠BEF=50°(图1),试求∠H的度数.(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.19.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.20.已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB.21.如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F(1)求证:CE=EF;(2)若EF=2,CD=4,求矩形ABCD的面积.参考答案与试题解析一.选择题1.A分析:依据矩形的性质以及三角形内角和定理,可得∠ABC=θ2+80°﹣θ1,∠BCD=θ3+130°﹣θ4,再根据矩形ABCD中,∠ABC+∠BCD=180°,即可得到(θ1+θ4)﹣(θ2+θ3)=30°.2.B分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.3.C分析:过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.4.C分析:首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,=S△AOP+S△DOP=OA•PE+OD•PF求得答案.△AOD的面积,然后由S△AOD5.B分析:先求出矩形的面积,根据矩形得到△ABC≌△CDA,即可求出△ABC的面积,根据等底等高的三角形的面积相等即可求出答案.6.D分析:过A1作A1H⊥BC于H,根据▱A1BCD1的面积是矩形ABCD面积的一半,求出A1H=A1B,根据含30度角的直角三角形性质求出∠A1BH=30°即可.7.B分析:根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB,进而利用勾股定理得出BC,利用矩形的面积公式解答即可.8.A分析:由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,在直角三角形ABC中,根据直角三角形的两个锐角互余可得∠ACB为30°,根据30°角所对的直角边等于斜边的半径,由AB的长可得出AC的长.9.C分析:根据矩形对角线将矩形分成了面积相等的四部分,找到三个分界处P与Q 点的位置及面积的变化,作对比,进行比较可得结论.10.D分析:解答此题要从矩形的两边长进行分类分析,在由3×4个小正方形组成矩形ABCD中,不是正方形的矩形的两边长存在以下几种情况:2、1;3、1;4、1;3、2;3、4;4、2.二.填空题11.∠A=90°分析:根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.12.①4;②2.分析:根据平行四边形的性质可得出DF∥CE,由点D、C的运动速度可得出DF=CE,从而得出四边形DECF为平行四边形.①利用菱形的判定定理可得出:当DF=CF时,平行四边形DECF为菱形.由CF=DF 结合∠ADC=60°可得出△CDF为等边三角形,进而可得出DF=4,此题得解;②利用矩形的判定定理可得出:当∠CFD=90°时,平行四边形DECF为矩形.通过解直角三角形可得出DF=2,此题得解.13.有一个角是直角(答案不唯一)分析:根据矩形的判定添上即可,答案不唯一:如①有一个角是直角,②对角线相等等.14.DF=DE且DF⊥DE分析:如图,连接AD.欲证明DF=DE,只要证明△ADF≌△CDE即可.15.≤AM<2分析:首先连接AP,由在Rt△ABC中,∠BAC=90°,PE⊥AB于E,PF⊥AC于F,可证得四边形AEPF是矩形,即可得AP=EF,即AP=2AM,然后由当AP⊥BC时,AP最小,可求得AM的最小值,又由AP<AC,即可求得AM的取值范围.16.10×,5×分析:(1)AM⊥MB,且M为CD的中点,AM=MB,可得∠DAM=∠DMA,可得AD=DM=CD,再根据矩形ABCD的周长为30,可求的CD的长,进而得出PQ.(2)由第一问求得:第一个矩形的长为:10,宽为5,根据三角形中位线定理,PQ=5,则宽为,由此以此类推可得第n个矩形的边长.三.解答题17.分析:由矩形的性质,可得AC=BD,欲求AC=CE,证BD=CE即可.可通过证四边形BDEC是平行四边形,从而得出BD=CE的结论.解答: 解:在矩形ABCD中,AC=BD,AD∥BC.又∵CE∥DB,∴四边形BDEC是平行四边形.∴BD=EC,∴AC=CE.18.分析:(1)根据三角形的内角和是180°,可求∠EFB=40°,所以∠EFH=20°,又由平角定义,可求∠AEF=130°,所以∠GEF=65°,又根据三角形的外角等于与它不相邻的两内角之和,可得∠H=45度.(2)运用(1)中的计算方法即可得到,∠H的大小不发生变化.解答: 解:(1)∵∠B=90°,∠BEF=50°,∴∠EFB=40°.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=65°,∠EFH=20°.∵∠GEF=∠H+∠EFH,∴∠H=65°﹣20°=45°.(2)不变化.∵∠B=90°,∴∠EFB=90°﹣∠BEF.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).∵∠GEF=∠H+∠EFH,∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.19.分析:(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBG和AECG,推出EH∥FG,EF∥HG,推出平行四边形EFGH,根据矩形的判定推出即可.解答:解:(1)△BEC是直角三角形:理由如下:∵四边形ABCD是矩形,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)四边形EFGH为矩形,理由如下:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵DE=BG,∴四边形DEBG是平行四边形,∴BE∥DG,∵AD=BC,AD∥BC,DE=BG,∴AE=CG,∴四边形AECG是平行四边形,∴AG∥CE,∴四边形EFGH是平行四边形,∵∠BEC=90°,∴平行四边形EFGH是矩形.20.分析:根据矩形性质得出∠B=∠DFA=90°,AD∥BC,求出∠DAF=∠AEB,△AFD≌△EBA,根据全等得出即可.解答:证明:∵四边形ABCD是矩形,DF⊥AE,∴∠B=∠DFA=90°,AD∥BC,∴∠DAF=∠AEB,在△AFD和△EBA中,∴△AFD≌△EBA(AAS),∴DF=AB.21.分析:(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE≌Rt△DCE,则可证得结论;(2)设BE=x,则AF=x,AE=x+2,在Rt△ABE中,利用勾股定理,可求得AE,则可求得BC的长,可求得矩形ABCD的面积.解答:证明:(1)如图,连接DE,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°.又∵AD=AE,∴Rt△ABE≌Rt△DFA.∴AB=CD=DF.又∵∠DFE=∠C=90°,DE=DE,∴Rt△DFE≌Rt△DCE.∴EC=EF;(2)∵EF=EC=2,CD=AB=4,∴设BE=x,则AF=x,AE=x+2.在Rt△ABE中,∵BE2+AB2=AE2,∴42+x2=(x+2)2.解这个方程得:x=3,∴BC=5.∴矩形ABCD的面积=5×4=20.北师大新版数学九年级上学期《1.3正方形的性质与判定》同步练习一.选择题(共10小题)1.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④S △CEF =2S △ABE ,其中正确的结论有( )A .1个B .2个C .3个D .4个2.正方形ABCD 中,点P ,Q 分别是边AB ,AD 上的点,连接PQ 、PC 、QC ,下列说法:①若∠PCQ=45°,则PB +QD=PQ ;②若AP=AQ=,∠PCQ=36°,则;③若△PQC 是正三角形,若PB=1,则AP=.其中正确的说法有( ) A .3个 B .2个 C .1个 D .0个3.如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( )A .10°B .12.5°C .15°D .20°4.下列说法错误的是( )A .平行四边形的内角和与外角和相等B .一组邻边相等的平行四边形是菱形C .对角线互相平分且相等的四边形是矩形D .四条边都相等的四边形是正方形5.在3×4的方格网的每个小方格中心都放有一枚围棋子,至少要去掉( )枚围棋子,才能使得剩下的棋子中任意四枚都不够成正方形的四个顶点.A .2B .3C .4D .5 6.下列命题正确的是( )A .一组对边相等,另一组对边平行的四边形一定是平行四边形B .对角线相等的四边形一定是矩形C .两条对角线互相垂直的四边形一定是菱形D .两条对角线相等且互相垂直平分的四边形一定是正方形7.直角梯形ABCD 中,∠A=∠D=90°,DC <AB ,AB=AD=12,E 是边AD 上的一点,恰好使CE=10,并且∠CBE=45°,则AE的长是()A.2或8 B.4或6 C.5 D.3或78.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等9.如图,点D、E、F分别是△ABC三边的中点,则下列判断错误的是()A.四边形AEDF一定是平行四边形B.若AD平分∠A,则四边形AEDF是正方形C.若AD⊥BC,则四边形AEDF是菱形D.若∠A=90°,则四边形AEDF是矩形10.在△ABC中,AC=AB,D,E,F分别是AC,BC,AB的中点,则下列结论中一定正确的是()A.四边形DEBF是矩形B.四边形DCEF是正方形C.四边形ADEF是菱形D.△DEF是等边三角形二.填空题(共6小题)11.如图,以正方形ABCD的边AD为一边作等边三角形ADE,F是DE的中点,BE、AF相交于点G,连接DG,若正方形ABCD的面积为36,则BG=.12.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°,那么四边形AEDF是形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是形;(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是形.13.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.14.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为.15.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.16.如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为.三.解答题(共4小题)17.在正方形ABCD中,CE⊥DF.(1)如图1,证明:BE=CF.(2)如图2,设正方形对角线交点为O,连接EO,FO猜想:OE与OF之间的关系.并说明理由.(3)在(2)中,若OE=,FC=1,求正方形的边长.18.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.19.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,垂足为O,连接DE、DF.(1)判断四边形AEDF的形状,并证明;(2)直接写出△ABC满足什么条件时,四边形AEDF是正方形?20.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.D.2.A.3.C.4.D.5.C.6.D.7.B.8.D.9.B.10.C.二.填空题11.3.12.矩形;菱形;正方形.13.914.10.15.2.16..三.解答题17.(1)证明:在正方形ABCD中,BC=CD,∠B=∠BCD=90°,∵CE⊥DF,∴∠CDF+∠DCE=90°,又∵∠BCE+∠DCE=90°,∴∠BCE=∠CDF,在△BCE和△CDF中,∴△BCE≌△CDF(ASA),∴BE=CF;(2)OE=OF;理由:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OEB和△OCF中,∴△OEB≌△OCF(SAS),∴OE=OF;(3)解:如图,连接EF,∵△OEB≌△OCF,∴∠EOB=∠FOC,OE=OF=∴∠EOF=∠EOB+∠BOF=∠COF+∠BOF=90°,∴EF==,又∵BE=CF=1∴BF==3∴BC=BF+FC=3+1=4;即正方形的边长是4.18.解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=,在Rt△ACD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,∴△DGE∽△BFE,解得:DG=3﹣4.19.解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠BAD=∠CAD,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)当△ABC中∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).20.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.数学九年级上册同步练习1.3 正方形的性质与判定学校:___________姓名:___________班级:___________一.选择题(共12小题)1.下列哪种四边形的两条对角线互相垂直平分且相等()A.矩形B.菱形C.平行四边形D.正方形2.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角形互相垂直平分3.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A.B.C.1 D.1﹣4.如图,四边形ABCD是边长为6的正方形,点E为边BC上的点,以DE为边向外作矩形DEFG,使EF过点A,若DE=9,那么DG的长为()A.3 B.3 C.4 D.45.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在菱形ABCD中,对角线AC、BD交于点O,添加下列一个条件,能使菱形ABCD成为正方形的是()A.BD=AB B.AC=AD C.∠ABC=90°D.OD=AC9.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且平分的四边形是菱形D.邻边相等的矩形是正方形10.如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是( )A .矩形B .菱形C .正方形D .无法判断11.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,得到下面四个结论:①OA=OD ;②AD ⊥EF ;③当∠BAC=90°时,四边形AEDF 是正方形;④AE 2+DF 2=AF 2+DE 2.其中正确的是( )A .②③B .②④C .②③④D .①③④12.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD 的对角线相交于点O ,过点O 作EF 垂直于BD 交AB ,CD 分别于点F ,E ,连接DF ,BE .请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF ;小何:四边形DFBE 是正方形;小夏:S 四边形AFED =S 四边形FBCE ;小雨:∠ACE=∠CAF .这四位同学写出的结论中不正确的是( )A .小青B .小何C .小夏D .小雨二.填空题(共6小题)13.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .14.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是度.15.如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为.16.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).17.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是.18.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在FA上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.三.解答题(共5小题)19.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF,求证:△ABE≌△BCF.20.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.21.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.22.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.23.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.参考答案一.选择题(共12小题)1.D.2.B.3.A.4.C.5.D.6.B.7.C.8.C.9.B.10.B.11.C.12.B.二.填空题(共6小题)13.(﹣1,5).14.67.5.15..16.①②.17.3.18.9三.解答题(共5小题)19.证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF.20.解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.21.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.22.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.23.(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中.AC=AB=2,∵EC=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.(3)①当DE与AD的夹角为30°时,∠EFC=120°,②当DE与DC的夹角为30°时,∠EFC=30°综上所述,∠EFC=120°或30°.。

2021-2022学年九年级数学北师大版上册《矩形的性质与判定》训练含答案

2021-2022学年九年级数学北师大版上册《矩形的性质与判定》训练含答案

2021年北师大版九年级数学上册《1.2矩形的性质与判定》训练一.矩形的性质1.菱形和矩形都具有的性质是()A.对角线互相垂直B.对角线长度相等C.对角线平分一组对角D.对角线互相平分2.矩形具有而一般平行四边形不一定具有的性质是()A.对角线互相平分B.邻角互补C.对边相等D.对角线相等3.在▱ABCD中,O为AC的中点,点E,M为AD边上任意两个不重合的动点(不与端点重合),EO的延长线与BC交于点F,MO的延长线与BC交于点N.下面四个推断:①EF=MN;②EN∥MF;③若▱ABCD是菱形,则至少存在一个四边形ENFM是菱形;④对于任意的▱ABCD,存在无数个四边形ENFM是矩形.其中,所有正确的有()A.①③B.②③C.①④D.②④4.已知矩形的对角线为1,面积为m,则矩形的周长为()A.B.C.2D.25.如图、在平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别是(4,﹣2),(1,2),点B在x轴上,则点B的横坐标是()A.4B.2C.5D.46.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA =1:2,且AC=8,则EC的长度为()A.2B.2C.4D.7.如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,作矩形DEBF,则其对角线EF的长为()A.8B.9C.10D.118.如图,在矩形ABCD中,AD>AB,AB=5cm,AC,BD交于点O,∠AOD=2∠AOB=120°,则BC=()A.5cm B.5cm C.5cm D.5cm9.如图,在矩形ABCD中,AB=4,AD=6,点P在AD上,点Q在BC上,且AP=CQ,连接CP,QD,则PC+QD的最小值为()A.8B.10C.12D.2010.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小11.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC,垂足为点E,过点A作AF⊥OB,垂足为点F.若BC=2AF,OD=6,则BE的长为.12.如图,矩形ABCD中,AB=3,AD=2,点E是BC的中点,点F在AB上,FB=1,P是矩形上一动点.若点P从点F出发,沿F→A→D→C的路线运动,当∠FPE=30°时,FP的长为.13.如图,矩形ABCD中,AB=6,AD=8,E是AD边上的中点,P是AB边上的一动点,M、N分别是PE、PC的中点,则线段MN的长为.二.矩形的判定14.如图,已知平行四边形ABCD的对角线AC,BD相交于点O,下列选项能使平行四边形ABCD成为矩形的条件是()A.AB=AD B.∠AOB=60°C.AC⊥BD D.∠OBC=∠OCB三.矩形的判定与性质15.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.矩形的对角线相等D.平行四边形是轴对称图形16.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP 的最小值是()A.1.2B.1.5C.2.4D.2.517.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B 重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.18.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F,则线段EF的最小值为.19.如图,在△ABC中,AB=AC,D是BC中点,过点A作AE∥BC,使AE=BD.(1)求证:四边形AEBD是矩形;(2)取AB中点F,作GF⊥AB,交EB于点G,若AD=8,BD=4,求EG的长.20.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求AB的长.21.如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:四边形OBEC为矩形;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.22.如图,菱形ABCD的对角线AC、BD相交于点O,E是AD的中点,点F、G在CD边上,EF⊥CD,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若FG=5,EF=4,求CG的长.23.如图,已知在△OAB中AO=BO,分别延长AO,BO到点C、D,使得OC=AO,OD =BO,连接AD,DC,CB.(1)求证:四边形ABCD是矩形;(2)以AO,BO为一组邻边作平行四边形AOBE,连接CE.若CE⊥AE,求∠AOB的度数.24.如图,已知平行四边形ABCD中,M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)若∠BAD=135°,CD=2,AB⊥AC,求对角线MN的长.25.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.26.如图1,已知AD∥BC,AB∥CD,∠B=∠C.(1)求证:四边形ABCD为矩形;(2)如图2,M为AD的中点,N为AB中点,∠BNC=2∠DCM,BN=2,求CN的长参考答案一.矩形的性质1.解:∵矩形的对角线相等且互相平分,菱形的对角线垂直且互相平分,∴菱形和矩形都具有的性质为对角线互相平分,故选:D.2.解:A、平行四边形与矩形都具有两条对角线互相平分的性质,故A不符合题意;B、平行四边形与矩形都不具有邻角互补的性质,故B不符合题意;C、平行四边形与矩形都具有两组对边分别相等的性质,故C不符合题意;D、平行四边形的两条对角线不相等,矩形具有两条对角线相等的性质,故D符合题意.故选:D.3.解:如图,连接EN,MF,∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠EAC=∠FCA,在△EAO和△FCO中,,∴△EAO≌△FCO(ASA),∴EO=FO,同理可得OM=ON,∴四边形EMFN是平行四边形,∴EN∥MF,EF与MN不一定相等,故①错误,②正确,若四边形ABCD是菱形,∴AC⊥BD,∵点E,M为AD边上任意两个不重合的动点(不与端点重合),∴∠EOM<∠AOD=90°,∴不存在四边形ENFM是菱形,故③错误,当EO=OM时,则EF=MN,又∵四边形ENFM是平行四边形,∴四边形ENFM是矩形,故④正确,故选:D.4.解:设矩形的长、宽分别为a、b,∵矩形的对角线为1,面积为m,∴a²+b²=1,ab=m,∴a+b===,∴矩形的周长为2(a+b)=2,故选:C.5.解:连接AC,∵点A(4,﹣2),点C(1,2),∴AC==5,∵四边形ABCO是矩形,∴OB=AC=5,∴点B的横坐标为5,故选:C.6.解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=8,OA=OC=AC=4,OB=OD=BD=4,∴OC=OD,∴∠ODC=∠OCD,∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90°,∴∠EDC=30°,∠EDA=60°,∵DE⊥AC,∴∠DEC=90°,∴∠DAC=30°,∴DC=AC=4,∴EC=DC=2,故选:B.7.解:∵BD⊥AD,AB=10,AD=6,∴DB=8,∵矩形DEBF,∴EF=DB=8,故选:A.8.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=2∠AOB=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5cm,∴AC=2OA=10(cm),∴BC===5(cm),故选:C.9.解:如图,连接BP,在矩形ABCD中,AD∥BC,AD=BC=6,∵AP=CQ,∴AD﹣AP=BC﹣CQ,∴DP=QB,DP∥BQ,∴四边形DPBQ是平行四边形,∴PB∥DQ,PB=DQ,则PC+QD=PC+PB,则PC+QD的最小值转化为PC+PB的最小值,在BA的延长线上截取AE=AB=4,连接PE,CE,则BE=2AB=8,∵P A⊥BE,∴P A是BE的垂直平分线,∴PB=PE,∴PC+PB=PC+PE,连接CE,则PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,∴CE===10,∴PC+PB的最小值为10,即PC+QD的最小值为10,故选:B.10.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△GFC,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,故选:C.11.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵OE⊥BC,∴BE=CE,∠BOE=∠COE,又∵BC=2AF,∵AF=BE,在Rt△AFO和Rt△BEO中,,∴Rt△AFO≌Rt△BEO(HL),∴∠AOF=∠BOE,∴∠AOF=∠BOE=∠COE,又∵∠AOF+∠BOE+∠COE=180°,∴∠BOE=60°,∵OB=OD=6,∴BE=OB•sin60°=6×=3,故答案为:3.12.解:如图,连接DF,AE,DE,取DF的中点O,连接OA、OE.以O为圆心OE的长度为半径,画⊙O交CD于P3.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵AB=3,AD=2,点E是BC的中点,FB=1,∴BE=,AF=2,∴tan∠FEB=tan∠ADF=,∴∠ADF=∠FEB=30°,∵EF===2,DF===4,∴OE=OF=EF=2,∴△OEF是等边三角形,∴∠EP1F=∠FP2F=∠FP3E=30°,∴FP1=2,FP2=4,FP3=2,故答案为2或4或2.13.解:连接CE,如图所示:∵四边形ABCD是矩形,∴CD=AB=6,∠D=90°,∵E是AD边上的中点,∴DE=AD=4,∴CE===2,∵M,N分别是PE、PC的中点,∴MN是△PCE的中位线,∴MN=CE=,故答案为:.二.矩形的判定14.解:A、∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形,故选项A不符合题意;B、由四边形ABCD是平行四边形,∠AOB=60°,不能判定平行四边形ABCD为矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形,故选项D符合题意;故选:D.三.矩形的判定与性质15.解:A、∵对角线互相垂直的平行四边形是菱形,∴选项A不符合题意;B、∵对角线相等的平行四边形是矩形,∴选项B不符合题意;C、∵矩形的对角线相等,∴选项C符合题意;D、∵平行四边形是中心对称图形,不是轴对称图形,∴选项D不符合题意;故选:C.16.解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.17.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S△ABO=OA•OB=AB•OP,∴OP==,∴EF的最小值为,故答案为:.18.解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得:CD⊥AB时,线段CD的长最小,在Rt△ABC中,AC=3,BC=4,∴AB===5,当CD⊥AB时,∵△ABC的面积=AB×CD=AC×BC,∴CD===,∴EF的最小值为,故答案为:.19.(1)证明:AE∥BC,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADB=90,∴四边形AEBD是矩形;(2)解:连接AG,∵F是AB的中点,GF⊥AB,∴GA=GB,∵四边形AEBD是矩形,AD=8,BD=4,∴EB=AD=8,EA=BD=4,设EG=x,则GB=GA=8﹣x,∵四边形AEBD是矩形,∴∠E=90°,在Rt△AEG中,∵EA2+EG2=AG2,∴42+x2=(8﹣x)2,∴x=3,即EG=3.20.证明(1)∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DC∥AB,∴四边形DFBE是平行四边形,又∵DE⊥AB,∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB,∴AE=,DE=AE=,∵四边形DFBE是矩形,∴BF=DE=,∵AF平分∠DAB,∴∠F AB=∠DAB=30°,且BF⊥AB,∴AB=BF=.21.(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形;(2)解:由(1)得:四边形OBEC为矩形,∴OE=CB,设OC=x,则OB=2x,∴BC===x,∵BC=OE=2,∴x=2,∴OC=2,OB=4,∴AC=2OC=4,BD=2OB=8,∴S菱形ABCD=AC•BD=×4×8=16.22.(1)证明:∵四边形ABCD是菱形,∴OA=OC,∵E是AD的中点,∴OE是△ACD的中位线,∴OE∥CD,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥CD,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)解:由(1)得:四边形OEFG是矩形,∴OE=FG=5,∵四边形ABCD是菱形,∴AD=CD,AC⊥BD,∴∠AOD=90°,∵E是AD的中点,∴OE=AD=DE=5,CD=AD=2OE=10,在Rt△DEF中,DF===3,∴CG=CD﹣FG﹣DF=10﹣5﹣3=2.23.证明:(1)∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)连接OE交AB于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.24.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴平行四边形AMCN是矩形;(2)解:由(1)得:MN=AC,∵四边形ABCD是平行四边形,∴AB=CD=2,AD∥BC,∴∠ABC+∠BAD=180°,∴∠ABC=45°,∵AB⊥AC,∴∠BAC=90°,∴△ABC是等腰直角三角形,∴AC=AB=2,∴MN=2.25.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=4,∴AO=AC=2,AB=4,BO=2,∴矩形AEFD的面积=菱形ABCD的面积=×4×4=8.26.证明:(1)∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠C,∴∠B=∠C=90°,∴四边形ABCD为矩形;(2)如图2,延长BA,CM交于点E,∵M为AD的中点,N为AB中点,∴AN=BN=2,AM=MD,∴AB=CD=4,∵AE∥DC,∴∠E=∠MCD,在△AEM和△DCM中,,∴△AME≌△DMC(AAS),∴AE=CD=4,∵∠BNC=2∠DCM=∠NCD,∴∠NCE=∠ECD=∠E,∴CN=EN=AE+AN=4+2=6.。

北师大版数学九年级上册矩形的性质与判定 同步练习题 含答案

北师大版数学九年级上册矩形的性质与判定 同步练习题 含答案

第一章特殊平行四边形 1.2 矩形的性质与判定1. 如图,在△ABC中,BD,CE是高,点G,F分别是BC,DE的中点,则下列结论中错误的是( )A.∠DGE=60° B.GF⊥DE C.GF平分∠DGE D.GE=GD2. 如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD 的中点,若AB=6 cm,BC=8 cm,则△AEF的周长等于( )A. 7cmB. 8cmC. 9cmD. 10cm3. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 13B. 14 C, 15 D. 164. 如图,在△ABC中,点D,E,F分别为边BC,AC,AB的中点,AH⊥BC于点H,若FD=8 cm,则HE等于( )A. 11cmB. 10cmC. 9cmD. 8cm5. 矩形具有而一般平行四边形不具有的性质是( )A .对边相等B .对角线相等C .对角相等D .对角线互相平分 6. 下列四边形不是矩形的是( ) A .有三个角都是直角的四边形 B .四个角都相等的四边形 C .对角线相等且互相平分的四边形 D . 一组对边平行,且对角相等的四边形7. 如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A .AC⊥BDB .AC =BD C .AB∥DC D .AB =DC8. 在数学活动课上, 老师和同学们判断一个四边形门框是否为矩形, 下面是某合作学习小组的4位同学拟订的方案, 其中正确的是( ) A .测量两组对边是否分别相等 B .测量对角线是否相互平分 C .测量其内角是否都为直角 D . 测量对角线是否垂直9. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .BE =AD -DFB .AF =12ADC .AB =AFD .△AFD ≌△DCE10. 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8 B.5 C.6 D.7.211. 如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2=12. 如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,则矩形ABCD的面积=13. 如图,四边形ABCD的对角线AC,BD相交于点O,已知条件:①AB∥CD;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD,则下列条件的组合不能使四边形ABCD成为矩形的选项是 (填序号)14. 在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,2),要使四边形OBCA为矩形,则C点的坐标为________.15. 已知一直角三角形的周长是4+26,斜边的中线长是2,则这个三角形的面积是件,使四边形ABCD为矩形.17. 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为18. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为19. 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为20. 如图,在矩形ABCD中,AB=1,点E,F分别为AD,CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.21. 如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC 的交点为点O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22. 如图,在▱ABCD中,E是BC的中点,且EA=ED.(1)求证:四边形ABCD是矩形;(2)若BC=6 cm,AE=5 cm,求S▱ABCD.23. 如图,在矩形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且EF =ED ,EF⊥ED.求证:AE 平分∠BAD.24. 如图,四边形ABCD 的对角线AC ,BD 相交于点O ,已知O 是AC 的中点,AE =CF ,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.25. 如图,△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.答案:1---10 ACBDB DADBA 11. 60° 12. 4 3 13. ② ⑤ ⑥ 14. (3,2) 15. 5216. ∠B=90°或∠BAC+∠BCA=90° 17. 8 18. 60° 19. (3,43)20. 221. 解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,由折叠知BC =CE =AD ,AB =AE =CD ,又∵DE =ED ,∴△ADE ≌△CED(SSS ).(2)∵△ADE ≌△CED ,∴∠EDC =∠DEA ,由折叠知∠OAC =∠CAB ,又∵∠OCA =∠CAB ,∴∠OAC =∠OCA ,∵∠EOC =∠EAB ,∴2∠OAC =2∠DEA ,∴∠OAC =∠DEA ,∴DE ∥AC.22. (1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,又∵EA=ED , BE =EC ,∴△ABE≌△DCE,∴∠B=∠C,∵AB∥CD,∴∠B+∠C=180°,∴∠B=12×180°=90°,∴▱ABCD 是矩形(2)在Rt△ABE 中,BE =12BC =3(cm),∴AB=AE 2-BE 2=4(cm),∴S ▱ABCD =AB·BC=4×6=24(cm 2).23. 证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠BAD=90°,AB =CD , ∴∠BEF+∠BFE=90°,∵EF⊥ED,∴∠BEF+∠CED=90°, ∴∠BFE=∠CED,同理∠BEF=∠EDC.在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE=∠CED,EF =ED ,∠BEF=∠EDC,∴△EBF≌△DCE(ASA ).∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°. ∴∠BAE=∠EAD,即AE 平分∠BAD.24. (1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵OA=OC , AE =CF ,∴OE=OF ,∴△BOE≌△DOF(AAS ).(2)若OD =12AC ,则四边形ABCD 是矩形.证明如下:∵△BOE≌△DOF,∴OB=OD ,又∵OD=12AC ,OA =OC ,∴OA=OB =OC =OD ,∴BD=AC ,∴四边形ABCD 为矩形. 25. (1)证明:如图所示,∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,∠4=∠6,∵MN ∥BC ,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO =CO ,FO =CO ,∴OE =OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF =6,∴EF=82+62=10,∴OC=12EF =5.(3)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.1、最困难的事就是认识自己。

2022年北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题

2022年北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题

2022年春北师大版九年级数学中考复习《特殊平行四边形》考点分类练习题(附答案)一.矩形的性质1.如图,已知点P是矩形ABCD内一点(不含边界),设∠P AD=θ1,∠PBA=θ2,∠PCB =θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°2.如图,点E,点F分别在矩形ABCD的边AB,AD上,连接AC,CE,CF,若CE是△ABC的角平分线,CF是△ACD的中线,且∠BCE=∠FCD,则=.3.如图,在矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC交AB于点E,连接OE,若AD=6,AB=8,则OE=.4.如图,矩形ABCD的对角线AC,BD相交于点O,作DE∥AC,CE∥BD,DE,CE相交于点E.(1)求证:四边形OCED是菱形.(2)若矩形ABCD的面积为50,sin∠EDC=,求点E到直线AB的距离.二.矩形的判定5.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.6.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.三.菱形的性质7.如图,菱形ABCD中,∠A=60°,点E为边AD上一点,连接BE,CE,CE交对角线BD于点F.若AB=2,AE=DF,则AE=.8.如图,在菱形ABCD中,点G在边CD上,∠DAG=∠DBC,且DG:CG=2:3,则sin ∠ABC=.9.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=6,sin∠DBC=.(1)求对角线BD的长;(2)若E是BC的中点,连接AE,交BD于点F,求△BEF的面积.10.如图,在菱形ABCD中,BE⊥CD于点E,DF⊥BC于点F.(1)求证:BE=DF;(2)若∠A=45°,求的值.四.菱形的判定11.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.12.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.五.正方形的性质13.如图,在正方形ABCD中,点E,F分别在边AD,CD上,且AE=DF,连接并延长AF,分别交BE于点G,BC延长线于点H.(1)请判断BE与AF的位置关系,并说明理由.(2)连接EH,若EB=EH,求证BG=2GE.14.如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形边长为2,AE=1,求菱形BEDF的面积.15.如图,在正方形ABCD中,AB=12,G是BC延长线上一点,AG交BD于点M,交CD 于点H,OG交CD于点N.(1)若BC=CG,①证明:△ADH≌△GCH;②求tan∠MAO;(2)若MN∥AC,求ON的长.16.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD 绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.(1)求证:∠ADP=∠EPB;(2)求∠CBE的度数;(3)当的值等于多少时,△PFD∽△BFP?并说明理由.17.如图,在正方形ABCD中,点E为对角线AC,BD交点,AF平分∠DAC交BD于点G,交DC于点F.(1)求证:△AEG∽△ADF.(2)判断△DGF的形状.(3)若AG=1,求GF的长.18.如图,正方形ABCD中,点E是边AB上一动点,点F在边AD的延长线上,且BE=DF.连接CE,CF,EF,AC,EF与AC交于点M.(1)求证:CE=CF.(2)若AM=AC,试求∠BCE的度数.(3)设EF的中点为P,连接DP.在点E的运动过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请求出它的取值范围.19.如图,正方形ABCD中,点E在边AB上运动(不与点A,B重合),连结EC,过点E 作EF⊥EC,EF=EC,过点F作FP⊥直线AB,P为垂足,连结CF,与AD相交于点G.(1)求证:PF=BE;(2)当E是AB的中点时,求的值;(3)设x=,y=,求y关于x的函数关系式.六.正方形的判定20.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形21.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4七.折叠专题22.如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE 沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.23.如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.24.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.25.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.26.如图,在矩形ABCD中,AB=2,点E在边CD上,把△ADE沿直线AE翻折,使点D 落在对角线AC上的点F处,联结BF.如果点E、F、B在同一条直线上,那么DE的长是.八.综合27.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.28.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.29.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.参考答案一.矩形的性质1.解:∵矩形ABCD,∴∠BAD=∠BCD=90°,∴∠BAP=90°﹣θ1,∠DCP=90°﹣θ3,∴△ABP中,90°﹣θ1+θ2+80°=180°,即θ2﹣θ1=10°,①△DCP中,90°﹣θ3+θ4+50°=180°,即θ4﹣θ3=40°,②由②﹣①,可得(θ4﹣θ3)﹣(θ2﹣θ1)=30°,即(θ1+θ4)﹣(θ2+θ3)=30°,故选:A.2.解:法一、如图,过点E作EG⊥AC于点G,设DF=a,DC=b,∵CF是△ACD的中线,∴AD=2DF=2a,∴BC=2a,∵∠BCE=∠FCD,∠B=∠D=90°,∴△BCE∽△DCF,∴,即,∴BE=,∵CE是△ABC的角平分线,∠B=90°,EG⊥AC∴EG=BE=,CG=BC=2a,∵AB∥CD,∴∠BAC=∠ACD,∵∠EGA=∠D=90°,∴△EAG∽△ACD,∴,即,解得AG=a,∴AC=AG+CG=3a,在Rt△ACD中,(3a)2=(2a)2+b2,解得,b=a,∴==.故答案为:.法二、如图,延长AD至点M,使DM=FD,设AF=FD=DM=a,MC=b,可得,∠MCD=∠FCD=∠ACE=∠BCE,∠MAC=∠ACB=∠MCF=2∠FCD,∴△MAC∽△MCF,∴,即,∴b=a,∴AB=CD==a,∴=.故答案为:.3.解:过点O作OM⊥AB于点M,∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,OA=OB=OC=OD,又∵DE平分∠ADC,∴∠ADE=45°,∴△DAE为等腰直角三角形,∴AE=DA,∵AD=6,AB=8,∴AE=6,BE=2,在Rt△DAB中,AC===10,∴OA=OB=5,∵OM⊥AB,∴AM=MB=4,∴OM===3,又∵ME=MB﹣EB=4﹣2=2,在Rt△OME中,OE===,故答案为:.4.解:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD为矩形,∴AC=BD,OB=OD,AO=CO,∴OC=OD,∴四边形OCED是菱形.(2)连接EO并延长交CD于G交AB于F,∵四边形OCED是菱形,∴EO⊥CD,且EO=2EG,∠EDC=∠BDC,∵四边形ABCD为矩形,∴EF⊥AB,设EG=m,∵sin∠EDC=,∴DE=3EG=3m,DG=,∴CD=2DG=4m,∵EG=GO=OF,∴GF=2EG=2m,∴矩形ABCD的面积为CD•GF,即2m•4m=50,解得m=或m=﹣(舍).∴点E到AB的距离为3m=.解法二:依据菱形的性质得出sin∠EDC=sin角BDC=BC比BD,从而得出BC长度,再根据中位线定理得出OG,从而得出EF.二.矩形的判定5.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.6.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.三.菱形的性质7.解:∵四边形ABCD是菱形,∠A=60°∴AB=AD=CD=BC,∠A=∠BCD=60°,AD∥BC,∴△ABD和△CBD是等边三角形,∴AD=BD=AB=2,∵AD∥BC,∴△DEF∽△BCF,∴,∴,∴AE=3±,∵2﹣AE>0,∴AE=3﹣,故答案为:3﹣.8.解:设AG与BD交于点E,过G点作GF⊥AD交AD于点F,∵四边形ABCD为菱形,∴∠ABC=∠ADG,∴AB=AD=CD=BC,AB∥CD,AD∥BC,∴△ABE∽△GDE,∵,设DG=2x,∵DG:CG=2:3,∴CG=3x,∴AB=AD=CD=BC=5x,设AE=y,∵AD∥BC,∴∠ADB=∠DBC,∵∠DAG=∠DBC,∴∠ADB=∠DAG,∴AE=DE,∴DE=AE=y,∴,∴BE=y,GE=y,∴AG=y,∵四边形ABCD为菱形,∴BD平分∠ADG,∴∠ADG=2∠ADB,∵∠DEG=∠ADB+∠DAG=2∠ADB,∴∠ADG=∠DEG,∵∠AGD=∠DGE,∴△ADG∽△DEG,∴,∴,∴y,设AF=t,则DF=5x﹣t,∵FG2=AG2﹣AF2=DG2﹣DF2,∴(y)2﹣t2=(2x)2﹣(5x﹣t)2,∴t=,∴DF=5x﹣x=,∴FG==x,∴sin∠ABC=.解法二:过点A作AF⊥BC于F,设AG交BD于E,连接AC交BD于O.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠ADB=∠BDC=∠ABD=∠CBD,∵∠DAG=∠CBD,∴∠DAE=∠ADE,∴AE=ED,设AE=ED=x.菱形的边长为a,∵AB∥DG,DG:GC=2:3,CD=AB,∴==,∴BE=x,BD=x,∵∠EAD=∠EDA=∠CBD=∠CDB,∴△AED∽△BCD,∴=,∴=,∴a=x,∵OB=OD=x,∴OE=OD﹣DE=x,∴OA===x,∴AC=2AO=x,∵•AC•BO=•BC•AF,∴AF==x,∴sin∠ABC===.故答案为:.9.解:(1)∵四边形ABCD是菱形,AB=6,∴BC=AB=6,AC⊥BD,BO=DO,∵sin∠DBC==,∴CO=2,由勾股定理得:BO===4,∴BD=2BO=8;(2)过E作EM⊥BD于M,∵AC⊥BD,∴∠EMB=90°,EM∥AC,∵E为BC的中点,∴M为OB的中点,∴BM=OM=OB==2,ME=OC==1,∵ME∥AC,∴△EMF∽△AOF,∴=,∵AO=OC=2,∴=,解得:MF=,即BF=BM+MF=2+=,∴△BEF的面积是=×1=.10.证明:(1)∵四边形ABCD是菱形,∴BC=CD,在△BCE和△DCF中,,∴△BCE≌△DCF(AAS),∴BE=DF;(2)∵∠A=45°=∠C,BE⊥CD,∴∠C=∠EBC=45°,∴BE=EC,∴BC=EC=DC,∴DE=EC﹣EC,∴=﹣1.四.菱形的判定11.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;12.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.五.正方形的性质13.解:(1)AF⊥BE,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴∠DAF=∠ABE,∵∠AEB+∠ABE=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF;(2)如图,过点E作EM⊥BC于M,∵EB=EH,EM⊥BC,∴BM=MH=BH,∵EM⊥BC,∠ABC=∠BAD=90°,∴四边形ABME是矩形,∴AE=BM,∴BH=2AE,∵AD∥BC,∴△AEG∽△HBG,∴,∴BG=2GE.14.(1)证明:连接BD,交AC于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,又∵AE=CF,∴AO﹣AE=CO﹣CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形,∵AC⊥BD,∴四边形BEDF是菱形;(2)解∵四边形ABCD是正方形,∴∠ABC=90°,AB=AC=2,∴AC=BD===4,∵AE=1,∴CF=AE=1,∴EF=AC﹣AE﹣CF=4﹣1﹣1=2,∴菱形BEDF的面积=×EF×BD=×2×4=4.15.解:(1)①∵AD=BC=CG,∠ADH=∠HCG=90°,∠AHD=∠CHG,∴△ADH≌△GCH;②∵AD∥BC,∴△AMD∽△GMB,∴==,设OM=x,∵AB=12,∴BO=OD==6,DM=6﹣x,BM=6+x,∴=,12﹣2x=6+x,得x=2,∵AO⊥OM,∴tan∠MAO===,故tan∠MAO=;(2)∵MN∥AC,∴∠OMN=∠AOM=90°,∵∠BDC=45°,∴DM=MN=DN,设OM=y,∴DM=6﹣y=MN,∴DN=(6﹣y)=12﹣y,∴CN=12﹣(12﹣y)=y,设CG=Z,作OP⊥BC于P,∴△OPG∽△NCG,∴=,∴=,3Z=y(6+Z),y=,∴AMD∽△GMB,∴=,=,整理得y=,∴=,Z+24=2(Z+6),得Z=12,∴CG=BC,∴OM=2,MN=DM=4,∴ON==2.16.(1)证明:∵四边形ABCD是正方形.∴∠A=∠PBC=90°,AB=AD,∴∠ADP+∠APD=90°,∵∠DPE=90°,∴∠APD+∠EPB=90°,∴∠ADP=∠EPB;(2)解:过点E作EQ⊥AB交AB的延长线于点Q,则∠EQP=∠A=90°,又∵∠ADP=∠EPB,PD=PE,∴△P AD≌△EQP,∴EQ=AP,AD=AB=PQ,∴AP=EQ=BQ,∴∠CBE=∠EBQ=45°;(3)解:=.理由:∵△PFD∽△BFP,∴=∵∠ADP=∠EPB,∠CBP=∠A∴△DAP∽△PBF∴=∴P A=PB∴当=时,△PFD∽△BFP.17.(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,∠ADF=90°,∴∠AEG=∠ADF=90°,∵AF平分∠DAC,∴∠DAF=∠EAG,∴△AEG∽△ADF.(2)解:结论:△DFG是等腰三角形.理由:∵四边形ABCD是正方形,∴∠ADB=∠DAE=45°,∠ADF=90°,∵AF平分∠DAC,∴∠DAG=∠DAC=22.5°,∴∠DGF=∠ADG+∠DAG=67.5°,∠DFG=90°﹣22.5°=67.5°,∴∠DGF=∠DFG,∴DG=DF.∴△DFG是等腰三角形.(3)解:∵四边形ABCD是正方形,∴AC⊥BD,EA=ED,∴△AED是等腰直角三角形,∴AD=AE,∵△AEG∽△ADF,∴==,∵AG=1,∴AF=,∴GF=AF﹣AG=﹣1.18.(1)证明:∵四边形ABCD是正方形,∴∠CBE=∠CDF=90°,BC=DC,∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF.(2)解:设EF交CD于T,设AE=a,BE=DF=b,则AD=AB=CD=a+b,∵AE∥CT,∴==,∴CT=2a,DT=a+b﹣2a=b﹣a,∵DT∥AE,∴=,∴=,整理得,2b2﹣2ba﹣a2=0,∴b=a(舍弃)或b=a,∴=,∴tan∠BCE===,∴∠BCE=30°.解法二:设AB=3a,AC=3根号2a,可以证明△CAE相似与△CEM,得出EC的长度,再利用角BCE余弦值得出∠BCE=30°.(3)解:结论:=.理由:连接PC,过点P作PH⊥AD于H.∵△CBE≌△CDF,∴∠BCE=∠DCF,∵CE=CF,PE=PF,∴PC⊥EF,∠CFE=45°,∴∠CPT=∠FDT=90°,∵∠CTP=∠DTF,∴△CPT∽△FDT,∴=,∴=,∵∠PTD=∠CTF,∴△PTD∽△CTF,∴∠PDT∠CFT=45°,∵∠ADC=90°,∴∠PDH=90°,∵PH⊥DH,∴PD=PH,∵PE=PF,AE∥PH,∴AH=HF,∴PH=AE,∴PD=×AE,∴=.解法二:连接P A,由P A=PC,DA=DC,推出DP垂直平分线段AC,推出∠ADP=∠CDP=45°,可得结论.19.解:(1)∵正方形ABCD,∴∠B=90°,∴∠BEC+∠BCE=90°,∵EF⊥EC,∴∠PEF=∠BCE,∵FP⊥AB,∴∠EPF=90°,∴∠EPF=∠B,∵EF=EC,∴△PEF≌△BCE(AAS),∴PF=BE;(2)如图1,过点F作FH⊥AD于H,设正方形ABCD的边长为a,∵E是AB的中点,∴AE=BE=AB=a,由(1)知△PEF≌△BCE,∴PF=BE=AB=a,PE=BC=a,∴P A=PE﹣AE=a﹣a=a,∵∠P AD=∠APF=∠AHF=90°,P A=PF,∴四边形APFH是正方形,∴AH=PF=a,FH=P A=a,∴DH=a,∵∠FHG=∠D=90°,∠FGH=∠CGD,∴△FGH∽△CGD,∴===,∴=,∴GD=DH=×a=a,∴AG=AD﹣DG=a,∴==2;(3)设BE=b,则AE=bx,AB=b+bx,∴PE=BC=CD=AB=b+bx,AP=BE=PF=AH=FH=b,∴DH=AE=bx,∵△FGH∽△CGD,∴===1+x,∴DG=(1+x)GH,∵GH+DG=DH,∴GH+(1+x)GH=bx,∴GH=,∴AG=AH+GH=b+=,DG=(1+x)GH=,∴y===,∴y关于x的函数关系式为y=.六.正方形的判定20.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.21.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.七.折叠专题22.解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠F AD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠F AD+∠ADM,∴∠DMC=2∠F AD.设∠F AD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.23.解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴=,∴EF=﹣1(负值舍去),∴BE=EF=﹣1,方法二:∵AB∥CD,∴S△ACD=S△DCE,∴S△ACD﹣S△DCF=S△DCE﹣S△DCF,∴S△ADF=S△ECF,由题意知,BC=CF,S△ACD=S△ABC,S△ECF=S△BCE,∴S△ACD﹣S△ADF=S△ABC﹣S△CEF=S△ABC﹣S△BCE,∴S△DCF=S△ACE,∴×DF•CF=AE•BC,∵CF=BC,∴DF=AE=2,设BE=x,∵AE∥CD,∴△AEF∽△CDF,∴=,∴=,解得:x=﹣1(负值舍去),∴BE=﹣1.故答案为:2,﹣1.24.解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:P A′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,又∵△A′EP∽△D′PH,∴A′P:D′H=2,∵P A′=x,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+625.解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,当AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为:3+2.26.解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD=2,∠D=90°,∴∠DEA=∠EAB,设DE=a,则CE=2﹣a,∵把△ADE沿直线AE翻折,使点D落在对角线AC上的点F处,∴DE=EF=a,∠DEA=∠FEA,∵∠EAB=∠FEA,∴AB=BE=2,∴BF=BE﹣EF=2﹣a,∵AB∥CD,∴△CEF∽△ABF,∴,∴,∴a=3+(舍去),a=3﹣,∴DE=3﹣,故答案为:3﹣八.综合27.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.28.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.29.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.。

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学-1.2-矩形的性质和判定课堂讲义及练习(含答案)

北师大版九年级上册数学矩形的性质和判定课堂讲义及练习(含答案)【矩形的性质】1.矩形的定义有一个角是直角的平行四边形叫做矩形.温馨提示①对于矩形的定义要注意两点a.是平行四边形.b.有一个角是直角;②定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形;③矩形的定义既是矩形的性质,也提供了矩形的种判定方法。

2. 矩形的性质(1)矩形具有平行四边形的所有性质 .(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴. 矩形又是中心对称图形,对角线的交点为对称中心,过中心的任意直线可将矩形分成完全全等的两部分..矩形中相等的线段:AC=BD, OA = OC=OB = OD.矩形中相等的角:∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°.矩形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关矩形问题可转化为直角三角形或等腰三角形的问题来解决 (转化思想).温馨提示:①矩形具有平行四边形的一切性质;②利用矩形的性质可以推出直角三角形斜边中线的性质,即:在直角三角形中,斜边上的中线等于斜边的一半;③“矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;④矩形的两条对角线分矩形为面积相等的四个等腰三角形。

【练习】1.如图,在矩形ABCD中,E是BC边的中点,且AE平分∠BAD,CE=2,则CD的长是( )A.2 B.3 C.4 D.52.如图,在矩形ABCD中,AB=2BC,在CD上取一点E,使AE=AB,则∠EBC的度数是( )A.30° B.° C.15° D.10°3第4题第5题第6题第7题4.在矩形ABCD中,对角线AC,BD相交于点O,E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF =________cm.5.△ABC中,∠ACB=90°,∠B=55°,D是斜边AB的中点,那么∠ACD的度数为( )A.15° B.25° C.35° D.45°6.已知矩形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为( ) A.3 B.4 C.5 D.67.在矩形ABCD中,E,F分别是AB,CD的中点,连接DE,BF,分别取DE,BF的中点M,N,连接AM,CN,MN,若AB=5,BC=8,则图中阴影部分的面积为( )A.5 B.8 C.13 D.208.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点.求证:CE=DE.9.如图,在矩形ABCD中,连接对角线AC,BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【矩形的判定】1.矩形的判定定理(1)有三个角是直角的四边形是矩形.(2)对角线相等的平行四边形是矩形。

1.2 矩形的性质与判定 北师大版九年级数学上册解答专项练习(含解析)

1.2 矩形的性质与判定 北师大版九年级数学上册解答专项练习(含解析)

2022-2023学年北师大版九年级数学上册《1.2矩形的性质与判定》解答专项练习题(附答案)1.如图,点E为矩形ABCD内一点,且EA=EB.求证:∠ECD=∠EDC.2.如图,在矩形ABCD中,点M在CD上,AM=AB,BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=3,MN=1,求AB的长.3.如图,在矩形ABCD中,O是对角线AC的中点,过点O作EF⊥AC分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)若AB=8,BC=16,求CF的长.4.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF、BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=3,DF=5,求BF的长.5.如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得EF=DA,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=3,CF=4,DF=5,求EF的长.6.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.7.已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.8.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.9.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.10.如图,在矩形ABCD中,E为DC边的中点,连接AB,AE的延长线和BC的延长线相交于点F.(1)求证:△ADE≌△FCE;(2)连接AC,与BE相交于点G,若△GEC的面积为2,求矩形ABCD的面积.11.如图,在矩形ABCD中,O为对角线BD的中点,过点O作直线分别与矩形的边AB,CD交于E,F两点,连接BF,DE.(1)求证:四边形BEDF为平行四边形;(2)若AD=1,AB=3,且EF⊥BD,求AE的长.12.已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)当△ABC的边AC、BC满足什么数量关系时,四边形AMCN是矩形,请说明理由.13.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:OC=BC.(2)四边形ABCD是矩形.14.已知,在四边形ABCD中,AD∥BC,点E为BC的中点,连接AC,DE交于点F,AB =AC,AF=CF.(1)如图1,求证:四边形AECD是矩形;(2)如图2,连接BF,在不添加任何辅助线的情况下,请直接写出图2中与△BEF面积相等的三角形.15.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC 交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.16.如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1(1)判断△BEC的形状,并说明理由;(2)求证:四边形EFPH是矩形.17.如图△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=4,CF=3,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.18.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.19.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.如图,在长方形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD、BC、CB、DA方向在长方形的边上同时运动,当有一个点先到达所在运动边的另一个端点时即停止,已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点的运动停止?(2)点P与点N可能相遇吗?点Q与点M呢?请通过计算说明理由.(3)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?22.如图,AC为矩形ABCD的对角线,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF.(2)求证:四边形BFDE是平行四边形.23.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线D→C→B→A→D方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?24.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D回到点A,设点P运动的时间为t秒.(1)当t=3秒时,求△ABP的面积;(2)当t为何值时,点P与点A的距离为5cm?(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边.参考答案1.证明:∵EA=EB,∴∠EAB=∠EBA,在矩形ABCD中,∠DAB=∠CBA=90°,AD=BC,∴∠DAB﹣∠EAB=∠CBA﹣∠EBA,即∠EAD=∠EBC,在△ADE和△BCE中,AD=BC∠DAE=∠CBE,EA=EB∴△ADE≌△BCE(SAS).∴ED=EC,∴∠ECD=∠EDC.2.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD,∵BN⊥AM,∴∠BNA=90°,在△ABN和△MAD中,∠BAN=∠AMD∠BNA=∠D=90°,AB=AM∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD,∴BN=AD=3,∵AB2=AN2+BN2,∴AB2=(AB﹣1)2+9,∴AB=5,3.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠BCA,∵点O是AC的中点,∴AO=CO,在△AEO和△CFO中,∠DAC=∠ACBAO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA);(2)解:如图,连接AF,∵AO=CO,EF⊥AC,∴AF=FC,∵AF2=AB2+BF2,∴CF2=(16﹣CF)2+64,∴CF=10.4.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵FC=AE,∴CD﹣FC=AB﹣AE,即DF=BE,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB,∴∠DAF=∠BAF,∵DC∥AB,∴∠DFA=∠BAF,∴∠DFA=∠DAF,∴AD=DF=5,在Rt△AED中,由勾股定理得:DE=AD2―AE2=52―32=4,由(1)得:四边形DEBF是矩形,∴BF=DE=4.5.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵EF=DA,∴EF=BC,EF∥BC,∴四边形BCEF是平行四边形,又∵CE⊥AD,∴∠CEF=90°,∴平行四边形BCEF是矩形;(2)解:∵四边形ABCD是平行四边形,∴CD=AB=3,∵CF=4,DF=5,∴CD2+CF2=DF2,∴△CDF是直角三角形,∠DCF=90°,∴△CDF的面积=12DF×CE=12CF×CD,∴CE=CF×CDDF=4×35=125,由(1)得:EF=BC,四边形BCEF是矩形,∴∠FBC=90°,BF=CE=12 5,∴BC=CF2―BF2=42―(125)2=165,∴EF=16 5.6.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF=FD+EF,即AF=DE,在△ABF和△DCE中,AB=CDBF=CE,AF=DE∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD为矩形.7.(1)证明:∵四边形ABCD是平行四边形,∴AE∥BC,∵CE∥BD,∴四边形BCED是平行四边形,∴CE=BD.∵CE=AC,∴AC=BD.∴▱ABCD是矩形;(2)解:∵AB=4,AD=3,∠DAB=90°,∴BD=AB2+AD2=42+32=5.∵四边形BCED是平行四边形,∴四边形BCED的周长为2(BC+BD)=2×(3+5)=16.8.(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,∴∠DOC=∠OCD=60°,∴∠OCB=90°﹣∠DCO=30°,∵CO=CE,∴∠COE=(180°﹣30°)÷2=75°,∴∠DOE=∠DOC+∠COE=60°+75°=135°;(3)解:作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵∠OCB=30°,AB=2,∴BC=23,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△BOE的面积=12•EB•OF=12×(23―2)×1=3―1.9.证明:(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形;(2)如图,连接OP,∵AD=12,AB=5,∴BD=AB2+AD2=144+25=13,∴BO=OD=AO=CO=13 2,∵S△AOD=14S矩形ABCD=14×12×5=15,∴S△AOP+S△POD=15,∴12×132×FP+12×132×EP=15,∴PE+PF=60 13.10.(1)证明:∵四边形ABCD是矩形,∴AD∥CB,AD=BC,∴∠D=∠FCE;∵E为DC中点,∴ED=EC,在△ADE与△FCE中,∠D=∠FCEDE=CE∠AED=∠FEC,∴△ADE≌△FCE(ASA);(2)解:∵四边形ABCD是矩形,∴AB∥CD,AB=DC,∴ABEC=BGEG,S△ABGS△CEG=(ABEC)2,∵DE=CE,∴AB=2CE,∴BGEG=2,S△ABGS△CEG=(ABEC)2=4,∵△GEC的面积为2,∴S△BGC=2S△CEG=4,S△ABG=4S△CEG=8,∴S△ABC=S△BGC+S△ABG=4+8=12,∴矩形ABCD的面积=2S△ABC=24.11.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OBE=∠ODF,∵O为对角线BD的中点,∴OB=OD,在△OBE和△ODF中,∠OBE=∠ODFOB=OD∠BOE=∠DOF,∴△OBE≌△ODF(ASA),∴BE=DF,又∵BE∥DF,∴四边形BEDF为平行四边形;(2)解:∵四边形ABCD是矩形,∴∠A=90°,由(1)得:四边形BEDF为平行四边形,∵EF⊥BD,∴平行四边形BEDF为菱形,∴BE=DE,设AE=x,则DE=BE=3﹣x,在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2,即12+x 2=(3﹣x )2,解得:x =43,即AE 的长为43.12.(1)证明∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵M ,N 分别为AB 和CD 的中点,∴AM =12AB ,CN =12CD ,∴AM =CN ,∵AB ∥CD ,∴四边形AMCN 是平行四边形;(2)解:AC =BC 时,四边形AMCN 是矩形,证明∵AC =BC ,且M 是BC 的中点,∴CM ⊥AB ,即∠AMC =90°,∴四边形AMCN 是矩形.13.证明:(1)∵CE 平分∠ACB ,∴∠OCE =∠BCE ,∵BO ⊥CE ,∴∠CFO =∠CFB =90°,在△OCF 与△BCF 中,∠OCE =∠BCE CF =CF ∠CFO =∠CFB,△OCF ≌△BCF (ASA ),∴OC =BC ;(2)∵点O 是AC 的中点,∴OA =OC ,∵AD ∥BC ,∴∠DAO =∠BCO ,∠ADO =∠CBO ,在△OAD与△OCB中,∠DAO=∠BCOOA=OC,∠ADO=∠CBO∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,CE=CE∠OCE=∠BEC,OC=BC∴△OCE≌△BCE(SAS),∴∠EBC=∠EOC=90°,∴四边形ABCD是矩形.14.(1)证明:∵AD∥BC,∴∠FAD=∠FCE,∠FDA=∠FEC,在△ADF和△CEF中,∠FAD=∠FCE∠FDA=∠FEC,AF=CF∴△ADF≌△CEF(AAS),∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形,∵AB=AC,点E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECD为矩形;(2)解:图2中与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.理由如下:∵点E为BC的中点,∴S△CEF=S△BEF,∵AF=CF,∴S△AEF=S△CEF,S△ADF=S△CDF,由(1)可知,四边形AECD是矩形,∴EF=DF,∴S△AEF=S△ADF,∴S△CEF=S△BEF=S△AEF=S△ADF=S△CDF,即与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.15.(1)证明:∵四边形ABDE是平行四边形,∴AB∥DE,AB=ED,∵DC=ED,∴DC=AB,DC∥AB,∴四边形ABCD是平行四边形,∵DE⊥AD,∴∠ADC=90°,∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F,∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO,∴OD=OC,∵OF⊥CD,∴DF=CF=12CD=12×2=1,∴OF=12BC=12×4=2,EF=DE+DF=2+1=3,∴OE=EF2+OF2=32+22=13.16.解:(1)△BEC是直角三角形:理由是:∵矩形ABCD,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE=CD2+DE2=22+12=5,同理BE=25,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)∵矩形ABCD,∴AD=BC,AD∥BC,∵DE=BP,∴四边形DEBP是平行四边形,∴BE∥DP,∵AD=BC,AD∥BC,DE=BP,∴AE=CP,∴四边形AECP是平行四边形,∴AP∥CE,∴四边形EFPH是平行四边形,∵∠BEC=90°,∴平行四边形EFPH是矩形.17.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=4,CF=3,∴EF=42+32=5,∴OC=12EF=52;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.18.解:(1)当E与F不重合时,四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向点O运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)四边形DEBF能是矩形.理由:∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm,由于动点的速度都是1cm/s,所以t=2(s)故当运动时间t=2s时,以D、E、B、F为顶点的四边形是矩形.19.解:(1)∵△CDQ≌△CPQ,∴DQ=PQ,PC=DC,∵AB=DC=5,AD=BC=3,∴PC=5,在Rt△PBC中,PB=PC2―BC2=4,∴PA=AB﹣PB=5﹣4=1,设AQ=x,则DQ=PQ=3﹣x,在Rt△PAQ中,(3﹣x)2=x2+12,解得x=4 3,∴AQ=4 3.(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB,∵MD⊥MP,∴∠PMD=90°,∴∠PME+∠DMF=90°,∵∠FDM+∠DMF=90°,∴∠MDF=∠PME,∵M是QC的中点,∴DM=12QC,PM=12QC,∴DM=PM,在△MDF和△PME中,∠MDF=∠PME∠DFM=∠MEPDM=PM,∴△MDF≌△PME(AAS),∴ME=DF,PE=MF,∵EF⊥CD,AD⊥CD,∴EF∥AD,∵QM=MC,∴DF=CF=12DC=52,∴ME=5 2,∵ME是梯形ABCQ的中位线,∴2ME=AQ+BC,即5=AQ+3,∴AQ=2.方法2、∵点M是Rt△CDQ的斜边CQ中点,∴DM=CM,∴∠DMQ=2∠DCQ,∵点M是Rt△CPQ的斜边的中点,∴MP=CM,∴∠PMQ=2∠PCQ,∵∠DMP=90°,∴2∠DCQ+2∠PCQ=90°,∴∠PCD=45°,°∠BCP=90°﹣45°=45°,∴∠BPC=45°=∠BCP,∴BP=BC=3,∵∠CPQ=90°,∴∠APQ=180°﹣90°﹣45°=45°,∴∠AQP=90°﹣45°=45°=∠APQ,∴AQ=AP=2.20.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=12OB,DF=12OD,∴BE=DF,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.21.解:(1)由题意得x2=20,∴x=25,∴当x为25时,点的运动停止;(2)当点P与点N相遇时,2x+x2=20,解得x=221―1或﹣1﹣221(舍去),当点Q与点M相遇时,x+3x=20,解得x=5,当x=5时,x2=25>20,∴点Q与点M不能相遇;(3)∵当点N到达A点时,x2=20,∴x=25,∴BQ=25cm,CM=65cm,∵BQ+CM=85<20,∴此时M点与Q点还未相遇,∴点Q只能在点M的左侧,①如图,当点P在点N的左侧时,20﹣(x+3x)=20﹣(2x+x2),解得x=0(舍去)或x=2,∴当x=2时,以P、Q、M、N为顶点的四边形是平行四边形;②如图,当点P在点N的右侧时,20﹣(x+3x)=(2x+x2)﹣20,解得x=4或﹣10(舍去),∴当x=4时,以P、Q、M、N为顶点的四边形是平行四边形,综上,当x=2或4时,以P、Q、M、N为顶点的四边形是平行四边形.22.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,又∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,∠AEB=∠CFD∠BAE=∠DCF,AB=CD∴△ABE≌△CDF(AAS);(2)由(1)得:△ABE≌△CDF,∴BE=DF,又∵BE⊥AC,DF⊥AC,∴BE∥DF,∴四边形BFDE是平行四边形.23.解:(1)设t秒时两点相遇,根据题意得,t+2t=2(4+8),解得t=8,答:经过8秒两点相遇;(2)观察图象可知,点M不可能在AB或DC上.①如图1,点M在E点右侧时,当AN=ME时,四边形AEMN为平行四边形,得:8﹣t=9﹣2t,解得t =1,∵t =1时,点M 还在DC 上,∴t =1舍去;②如图2,点M 在E 点左侧时,当AN =ME 时,四边形AEMN 为平行四边形,得:8﹣t =2t ﹣9,解得t =173.所以,经过173秒钟,点A 、E 、M 、N 组成平行四边形.24.解:(1)当t =3时,点P 的路程为2×3=6cm ,∵AB =4cm ,BC =6cm∴点P 在BC 上,∴S △ABP =12AB ⋅BP =4(cm 2).(2)(Ⅰ)若点P 在BC 上,∵在Rt △ABP 中,AP =5,AB =4∴BP =2t ﹣4=3,∴t =72;(Ⅱ)若点P 在DC 上,则在Rt △ADP 中,AP 是斜边,∵AD =6,∴AP >6,∴AP ≠5;(Ⅲ)若点P 在AD 上,AP =5,则点P的路程为20﹣5=15,∴t=15 2,综上,当t=72秒或t=152时,AP=5cm.(3)当2<t<5时,点P在BC边上,∵BP=2t﹣4,CP=10﹣2t,∴AP2=AB2+BP2=42+(2t﹣4)2由题意,有AD2+CP2=AP2∴62+(10﹣2t)2=42+(2t﹣4)2∴t=133<5,即t=13 3.。

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-单选题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-单选题专训及答案矩形的判定单选题专训1、(2019巴彦淖尔.中考真卷) 下列说法正确的是()A . 立方根等于它本身的数一定是和B . 顺次连接菱形四边中点得到的四边形是矩形C . 在函数中,的值随着值的增大而增大D . 如果两个圆周角相等,那么它们所对的弧长一定相等2、(2017河北.中考模拟) 下列判断错误的是()A . 两组对边分别相等的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 四条边都相等的四边形是菱形D . 两条对角线垂直且平分的四边形是正方形3、(2017徐汇.中考模拟) 如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,延长DE到F,使得EF=DE,那么四边形ADCF是()A . 等腰梯形B . 直角梯形C . 矩形D . 菱形4、(2017莒.中考模拟) 下列命题中,真命题是().A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线互相垂直平分的四边形是正方形5、(2017城.中考模拟) 已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A . 两人都对B . 两人都不对C . 甲对,乙不对D . 甲不对,乙对6、(2017临沂.中考真卷) 在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A . 若AD⊥BC,则四边形AEDF是矩形B . 若AD垂直平分BC,则四边形AEDF 是矩形C . 若BD=CD,则四边形AEDF是菱形D . 若AD平分∠BAC,则四边形AEDF是菱形7、(2019永州.中考真卷) 下列说法正确的是()A . 有两边和一角分别相等的两个三角形全等B . 有一组对边平行,且对角线相等的四边形是矩形C . 如果一个角的补角等于它本身,那么这个角等于45°D . 点到直线的距离就是该点到该直线的垂线段的长度8、(2017株洲.中考真卷) 如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A . 一定不是平行四边形B . 一定不是中心对称图形C . 可能是轴对称图形D . 当AC=BD时它是矩形9、(2016益阳.中考真卷) 下列判断错误的是()A . 两组对边分别相等的四边形是平行四边形B . 四个内角都相等的四边形是矩形C . 四条边都相等的四边形是菱形D . 两条对角线垂直且平分的四边形是正方形10、(2019福田.中考模拟) 下列命题中真命题是()A . 有一组对边平行的四边形是平行四边形B . 有一个角为90°的四边形为矩形C . (3,﹣2)关于原点的对称点为(﹣3,2)D . 有两边和一角相等的两个三角形全等11、(2020宜兴.中考模拟) 下列叙述,错误的是( )A . 对角线互相垂直且相等的平行四边形是正方形B . 对角线互相垂直平分的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线相等的四边形是矩形12、(2016深圳.中考模拟) 下列命题中错误的是()A . 平行四边形的对边相等B . 两组对边分别相等的四边形是平行四边形C . 矩形的对角线相等D . 对角线相等的四边形是矩形13、(2019北流.中考模拟) 下列命题是真命题的是( )A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相垂直平分的四边形是正方形D . 对角线互相平分的四边形是平行四边形14、(2012百色.中考真卷) 如图,四边形ABCD是平行四边形,下列说法不正确的是()A . 当AC=BD时,四边形ABCD是矩形B . 当AB=BC时,四边形ABCD是菱形C . 当AC⊥BD时,四边形ABCD是菱形D . 当∠DAB=90°时,四边形ABCD是正方形15、(2014河池.中考真卷) 平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A . AB=BCB . AC=BDC . AC⊥BD D . AB⊥BD16、(2018青羊.中考模拟) 下列说法正确的是()A . 对角线相等的四边形是矩形B . 有两边及一角对应相等的两个三角形全等C . 对角线互相垂直的矩形是正方形D . 平分弦的直径垂直于弦17、(2013绵阳.中考真卷) 下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 对角线互相垂直的梯形是等腰梯形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形18、(2016内江.中考真卷) 下列命题中,真命题是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角C线互相垂直平分的四边形是正方形19、(2017兰州.中考模拟) 在△ABC中,点D,E,F分别在BC,AB,CA上,且DE∥CA,DF∥BA,连接EF,则下列三种说法:①如果EF=AD,那么四边形AEDF是矩形②如果EF⊥AD,那么四边形AEDF是菱形③如果AD⊥BC且AB=AC,那么四边形AEDF是正方形其中正确的有()A . 3个B . 2个C . 1个D . 0个20、(2017兰州.中考模拟) 下列说法中,正确的是()A . 两条对角线相等的四边形是平行四边形B . 两条对角线相等且互相垂直的四边形是矩形C . 两条对角线互相垂直平分的四边形是菱形D . 两条对角线互相垂直平分且相等的四边形是菱形21、(2020遵化.中考模拟) 在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A . 测量对角线是否相互平分B . 测量两组对边是否分别相等C . 测量一组对角线是否垂直D . 测量其内角是否有三个直角22、(2021滨湖.中考模拟) 下列说法中,正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 对角线相等的四边形是矩形C . 有一组邻边相等的矩形是正方形D . 对角线互相垂直的四边形是菱形23、(2020安庆.中考模拟) 如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A . BD⊥ACB . MB=MOC . OM= ACD . ∠AMB=∠CND24、(2020无锡.中考模拟) 下列命题中错误的是()A . 两组对边分别相等的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一组邻边相等的平行四边形是菱形D . 对角线垂直相等的四边形是正方形25、(2020德州.中考真卷) 下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A . 1B . 2C . 3D . 426、(2020南山.中考模拟) 下列命题正确是( )A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 有两条边对应相等的两个直角三角形全等C . 垂直于圆的半径的直线是切线D . 对角线相等的平行四边形是矩形27、(2021南通.中考模拟) 下列说法错误的是()A . 两组对边分别相等的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 一个角是直角的平行四边形是正方形D . 对角线互相平分且垂直的四边形是菱形28、(2021攸.中考模拟) 对角线互相垂直平分但不相等的四边形是()A . 正方形B . 菱形C . 矩形D . 平行四边形29、(2021老河口.中考模拟) 如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A . 四边形AEDF是平行四边形B . 若∠BAC=90°,则四边形AEDF是矩形C . 若AD平分∠BAC,则四边形AEDF是矩形D . 若AD⊥BC且AB=AC,则四边形AEDF 是菱形30、(2021玉林.中考模拟) 下列命题中是真命题的是()A . 对角线互相垂直且相等的四边形是正方形B . 有两边和一角对应相等的两个三角形全等C . 两条对角线相等的平行四边形是矩形D . 两边相等的平行四边形是菱形矩形的判定单选题答案1.答案:B2.答案:D3.答案:C4.答案:C5.答案:A6.答案:D7.答案:D8.答案:C9.答案:D10.答案:C11.答案:D12.答案:D13.答案:D14.答案:D15.答案:B16.答案:C17.答案:D18.答案:C19.答案:B20.答案:C21.答案:D22.答案:C23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

九年级数学上2矩形的性质与判定第2课时矩形的判定习题北师大

九年级数学上2矩形的性质与判定第2课时矩形的判定习题北师大
【答案】A
4.【2019·重庆】下列命题正确的是( A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
5.【2018·上海】已知平行四边形ABCD,下列条件中,
不能判定这个ቤተ መጻሕፍቲ ባይዱ行四边形为矩形的是( B )
A.∠A=∠B
*9.【2019·安顺】如图,在Rt△ABC中,∠BAC=90°, 且BA=3,AC=4,点D是斜边BC上的一个动点,过 点 D分别作 DM⊥AB于点 M,DN⊥AC于点 N,连接 MN,则线段MN的最
小值为________.
【点拨】连接 AD.∵∠BAC=90°,BA=3,AC=4, ∴BC= BA2+AC2=5.∵DM⊥AB,DN⊥AC, ∴∠DMA=∠DNA=∠BAC=90°.∴四边形 AMDN 是矩形. ∴MN=AD.当 AD⊥BC 时,AD 的值最小. 此时,△ ABC 的面积=12AB·AC=12BC·AD, ∴AD=ABB·CAC=152.∴MN 的最小值为152. 【答案】152
(2)若∠AOB:∠ODC=4:3,求∠ADO的度数. 解:∵四边形 ABCD 是矩形,∴AB∥CD,∠BAO=∠ABO. ∴∠ABO=∠CDO.∵∠AOB:∠ODC=4:3, ∴∠BAO:∠AOB:∠ABO=3:4:3. ∴∠ABO=3+34+3×180°=54°,∵∠BAD=90°, ∴∠ADO=90°-54°=36°.
13.【2019·新疆】如图,在菱形ABCD中,对角线AC, BD相 交 于 点 O, E是 CD的 中 点 , 连 接 OE.过 点 C 作 CF∥BD交OE的延长线于点F,连接DF.求证:
(1)△ODE≌△FCE;
证明:∵CF∥BD, ∴∠ODE=∠FCE.∵E 是 CD 的中点,∴DE=CE. 在△ ODE 和△ FCE 中,∠DEO=DCEE=,∠FCE,

北师大版九年级数学上册矩形的判定测试题 (3)

北师大版九年级数学上册矩形的判定测试题 (3)

第2课时矩形的判定1、下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形 B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形 D.对角线互相平分且相等的四边形是矩形2、四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是() A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°3、如左下图,矩形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH 是矩形吗?4、已知:如右上图,□ ABCD各角的角平分线分别相交于点E,F,G,H. 求证:•四边形EFGH是矩形.5、如右图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN. 求证:四边形NDMB 是矩形.6、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()A. 一般平行四边形B. 菱形C. 矩形D. 正方形7、在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?8、如左下图,在四边形ABCD中,AD∥BC,点E、F为AB上的两点,且△DAF≌△CBE.求证:四边形ABCD是矩形.9、如右上图,在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点. 求证:四边形AECF是矩形.D A CF P E B 10、如图所示,△ABC 中,AB=AC ,AD 是BC 边上的高,AE•是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE ∥BA ,四边形ADCE是矩形吗?为什么?11、【提高题】如图,在△ABC 中,AB =AC ,CD ⊥AB 于D ,P•为BC 上的任意一点,过P 点分别作PE ⊥AB ,PF ⊥CA ,垂足分别为E ,F ,则有PE +PF =CD ,你能说明为什么吗?矩形的判定 答案1、【答案】 C2、【答案】 C3、【答案】 是矩形,【提示】 OE=OF=OG=OH4、【答案】用判定定理“三个角都是直角的四边形是矩形”来证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M Q P C
B A 矩形的判定练习题
1.判定一个四边形是矩形,可以先判定它是__________,再判定这个四边形有一个__________或再判定这个四边形的两条对角线__________.
2.下列说法错误的是( )
A.有一个内角是直角的平行四边形是矩形
B.矩形的四个角都是直角,并且对角线相等
C.对角线相等的平行四边形是矩形
D.有两个角是直角的四边形是矩形
3.如图,过矩形ABCD 的顶点A 作对角线BD 的平行线交CD 的延长线于E ,则△AEC 是( )
A.等边三角形
B.等腰三角形
C.不等边三角形
D.等腰直角三角形
4.如图,把两个大小完全相同的矩形拼成“L ”型图案,则∠FAC= ,∠FCA= 。

5.如图,矩形ABCD 中,AC 、BD 交于点0,点M 、N 、P 、Q 分别为OA 、OB 、OC 、OD 的中点,试判断四边形MNPQ 的形状,并证明。

6.如图,平行四边形ABCD 中,点M 为AD 的中点,BM=CM
求证:四边形ABCD 是矩形.
7.如图,平行四边形ABCD 中,AD=2AB ,点M 、N 分别为AD 、BC 的中点,连接BM 、AN 交于点P ,
连接CM 、DN 交于点Q 。

求证:四边形PNQM 是矩形.
8.如图,△ABC 中,D 为AB 上一点,且AD=BD=CD ,DE 、DF 分别平分∠ADC 、∠BDC 求证:四边形DECF 是矩形.
E B C D A G
F 4题图
3题图
9.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.
求证:四边形ABCD是矩形.
10.如图,四边形ABCD中,BE=DF,AC、EF互相平分于点O,∠B=90°
求证:四边形ABCD是矩形.
11.如图,P为平行四边形ABCD外一点,且PA=PB,PC=PD
求证:四边形ABCD是矩形.
12.已知点E为平行四边形ABCD的边AB的中点,且ED=EC,
求证:四边形ABCD为矩形。

13.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
(2)摆放成如图②的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,•当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.。

相关文档
最新文档