九年级数学练习题及答案
初三数学基础练习及答案
初三数学基础练习及答案1、如果-□×(-2)=6,则“□”内应填的实数是(3)。
2、下列各式计算不正确的是(B)。
3、视力表对我们来说并不陌生。
如图是视力表的一部分,其中开口向上的两个“E”之间的变化是(C)对称。
4、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(B)55°。
5、某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数:7 8 9 10人数:3 1 1 5这组同学引体向上个数的众数与中位数依次是(D)10和9.5.6、方程(x-3)(x+1)=x-3的解是(C)x=3或x=-1.7、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是(D)75πcm2.8、如图所示,给出下列条件:ACABA①∠B=∠ACD;②∠ADC=∠ACB;③△ABC∽△ACD;④AC2=AD·AB.其中单独能够判定△ABC∽△ACD的个数为(B)2.9、某校生物老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数(2n+1)粒。
10、如图,直线l和双曲线y =(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有(A)S1<S2<S3.11、计算:$|-3|-2=1$。
12、在函数$y=x+3$中,自变量$x$的取值范围是$(-\infty,+\infty)$。
13、截止2010年1月7日,京沪高铁累计完成投资1224亿元,为总投资的56.2%。
$1224\times10^8$元用科学记数法表示为$12.24$亿元。
九年级数学解一元二次方程专项练习题(带答案)【40道】
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
九年级数学三角形练习题及答案
九年级数学三角形练习题及答案题目一:判断正误1. 一个等边三角形的三个角都是60度。
()2. 一个等腰直角三角形的两个锐角相等。
()3. 一个钝角三角形的两个锐角相等。
()4. 一个直角三角形的两个锐角之和是90度。
()5. 一个等腰三角形的底边与两腰的夹角相等。
()答案一:1. 正确2. 正确3. 错误4. 正确5. 正确题目二:计算未知角度1. 在直角三角形ABC中,∠C=90度,∠A=35度,求∠B。
2. 在锐角三角形DEF中,∠D=45度,∠E=60度,求∠F。
3. 在钝角三角形GHI中,∠G=100度,∠I=30度,求∠H。
答案二:1. ∠B=90度-35度=55度2. ∠F=180度-45度-60度=75度3. ∠H=180度-100度-30度=50度题目三:计算三角形边长1. 在锐角三角形ABC中,∠A=30度,∠B=60度,已知AC=5cm,求BC的长度。
2. 在钝角三角形DEF中,∠D=100度,∠E=35度,已知DF=8cm,求EF的长度。
3. 在等边三角形GHI中,已知GH=6cm,求HI的长度。
答案三:1. 根据正弦定理和∠A=30度,∠B=60度,可以得到BC=AC*sin60度/sin30度=5cm*√3/0.5=10√3cm。
2. 根据正弦定理和∠D=100度,∠E=35度,可以得到EF=DF*sin35度/sin100度=8cm*sin35度/sin80度≈7.82cm。
3. 由于等边三角形的三边长度相等,所以HI=GH=6cm。
题目四:计算三角形面积1. 在直角三角形ABC中,AC=8cm,BC=15cm,求三角形ABC的面积。
2. 在锐角三角形DEF中,DE=5cm,EF=7cm,∠E=45度,求三角形DEF的面积。
3. 在钝角三角形GHI中,GH=12cm,HI=10cm,∠H=120度,求三角形GHI的面积。
答案四:1. 三角形ABC的面积=AC*BC/2=8cm*15cm/2=60cm²。
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。
九年级数学上册《圆》练习题及答案解析
九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。
九年级上册数学习题带答案
九年级上册数学习题带答案九年级上册数学习题带答案数学作为一门学科,对于学生来说可能是喜欢的,也可能是让人头疼的。
不管是哪种情况,掌握数学的基础知识和解题技巧都是至关重要的。
在九年级上册的数学课程中,有许多重要的知识点和习题需要我们掌握和练习。
下面我将为大家整理一些九年级上册数学习题,并附上答案,希望能够帮助大家更好地学习和理解数学。
第一章:代数基础1. 计算下列各式的值:(1) 3x + 4y,当x = 2,y = 5时;(2) 5a - 2b,当a = 3,b = 7时。
答案:(1) 3x + 4y = 3*2 + 4*5 = 6 + 20 = 26;(2) 5a - 2b = 5*3 - 2*7 = 15 - 14 = 1。
2. 求下列各式的值:(1) 2x^2 + 3x - 4,当x = 1时;(2) 3a^2 - 4ab + b^2,当a = 2,b = 3时。
答案:(1) 2x^2 + 3x - 4 = 2*1^2 + 3*1 - 4 = 2 + 3 - 4 = 1;(2) 3a^2 - 4ab + b^2 = 3*2^2 - 4*2*3 + 3^2 = 12 - 24 + 9 = -3。
第二章:平面直角坐标系1. 在平面直角坐标系中,已知点A(2, 3),B(-1, 4),求线段AB的长度。
答案:设AB的长度为d,根据两点间距离公式可得:d = √[(x2 - x1)^2 + (y2 - y1)^2]= √[(-1 - 2)^2 + (4 - 3)^2]= √[(-3)^2 + (1)^2]= √[9 + 1]= √10。
2. 在平面直角坐标系中,已知点A(-2, 5),B(3, -1),求线段AB的斜率。
答案:设AB的斜率为k,根据斜率公式可得:k = (y2 - y1) / (x2 - x1)= (-1 - 5) / (3 - (-2))= (-6) / (3 + 2)= -6 / 5。
九年级数学直线与圆的位置关系练习题及答案
九年级数学直线与圆的位置关系练习题及答案一、单选题1. 给定直线l :3x-4y=12,圆C:(x-1)^2+(y+3)^2=25,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点2. 若直线l的方程为x-2y+1=0,圆C的方程为(x-3)^2+(y+4)^2=16,则l与C的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点3. 在直角坐标系中,直线l:y=2x+1与圆C:(x-4)^2+(y+2)^2=36的位置关系是:A. 相切B. 相离C. 相交于两点D. 相交于一个点二、填空题1. 直线y=3x+2与圆(x-1)^2+(y-3)^2=16的位置关系可以用___________表示。
2. 若直线l :2x+3y=6与圆C:(x-2)^2+(y-3)^2=9相交于点A(1,2),则点A到直线l的距离为_________。
三、解答题1. 已知直线l的方程为y=2x-1,圆C的方程为(x-2)^2+(y-1)^2=r^2,求当r=3时,l与C的位置关系。
2. 某圆C的圆心坐标为(3,-2),半径为4,直线l的方程为2x-y=5,则求l与C的位置关系并证明。
答案:一、单选题1. C2. A3. D二、填空题1. 相交于两点2. 3三、解答题1. 当r=3时,圆C的方程为(x-2)^2+(y-1)^2=9。
将直线l的方程代入圆C的方程,得到4x^2-4x+1+4x-4+y^2-2y+1=9,简化后为4x^2+y^2-2y-3=0。
该方程与圆C相交于两个点,故位置关系为相交于两点。
2. 圆C的圆心坐标为(3,-2),半径为4。
直线l的斜率为2,l的方程可以改写为y=2x-5,将直线l的方程代入圆C的方程,得到(x-3)^2+(2x-5+2)^2=16。
化简后得到5x^2-35x+60=0,解得x=2和x=6。
将x的值代入直线l的方程,得到相应的y值,分别为y=-1和y=7。
中考数学九年级上册专题训练50题含答案
中考数学九年级上册专题训练50题含答案一、单选题1.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣62.用配方法解方程2430x x --=,下列配方正确的是( )A .()227x -=B .()227x +=C .()223x -=D .()221x -= 3.分式()()2234x x x ++-的值为0,则( )A .x =-3B .x =-2C .x =-3或x =-2D .x =±24.如图,四边形ABCD 内接于O ,DA DC =,若55CBE ∠=︒,则DAC ∠的度数为( )A .70︒B .67.5︒C .62.5︒D .65︒ 5.方程()()()1222x x x -+=+的根是( )A .1,﹣2B .3,﹣2C .0,﹣2D .1 6.下列一元二次方程中有两个不相等的实数根的是( )A .240x +=B .2690x x -+=C .23450x x --=D .2340x x -+= 7.下面关于两个图形相似的判断:①两个等腰三角形相似;①两个等边三角形相似;①两个等腰直角三角形相似;①两个正方形相似;①两个等腰梯形相似.其中正确的个数是( )A .1B .2C .3D .4 8.如图,线段AB 的两个端点坐标分别为A (2,2)、B (4,2),以原点O 为位似中心, 将线段AB 缩小后得到线段DE , 若1DE =,则端点E 的坐标为( )A .(1,1)B .(1,2)C .(2,1)D .(2,2) 9.一元二次方程22560x x -+=的根的情况为( )A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定10.如果,正方形ABCD 的边长为2cm ,E 为CD 边上一点,①DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q ,若PQ=AE ,则PD 等于( )A .23 cm B cm C .43cm D .23cm 或43cm 11.一元二次方程﹣x 2+2x =﹣1的两个实数根为α,β,则α+β+α•β的值为( ) A .1 B .﹣3 C .3 D .﹣112.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .1或-4B .-1或-4C .-1或4D .1或413.下列关于x 的方程中,一定是一元二次方程的为( )A .20ax bx c ++=B .222(3)x x -=+C .()210k x -=D .210x -= 14.某一商人进货价便宜8%,而售价不变,那么他的利润率(按进货价而定)可由目前x 增加到(x +10%),则x 是( )A .12%B .15%C .30%D .50%15.已知关于x 的一元二次方程()244610ax a x a -+++=有实数根,则实数a 的取值范围是( )A .94a ≥B .98a ≥-且0a ≠C .94a ≤且0a ≠D .98a ≤且0a ≠ 16.我国古代数学著作《九章算术》有题如下:“今有邑方二百步,各中开门.出东门一十五步有木.问出南门几何步而见木?”大意是,今有正方形小城ABCD 的边长BC 为200步,如图,各边中点分别开一城门,走出东门E 15步处有树Q .问出南门F 多少步能见到树Q (即求从点F 到点P 的距离)?(注:步是古代的计量单位)( )A .23663步 B .24663步 C .25663 D .26663步 17.以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;①两边及其第三边上的中线对应相等的两个三角形全等;①长度等于半径的弦所对的圆周角为30°①反比例函数y=﹣2x ,当>0时y 随x 的增大而增大, 正确的有( )A .①①B .①①C .①①D .①① 18.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;①2BG AG =;①EBF DEG ∆∆;①23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A.1B.2C.3D.419.如图,①ABD内接于圆O,①BAD=60°,AC为圆O的直径.AC交BD于P点且PB=2,PD=4,则AD的长为()A.B.C.D.420.如图,四边形ABCD是边长为1的菱形,①ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A.4303πB.3103πC.2103πD.1053π二、填空题21.计算:tan245°-1=_______.22.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的100元降至81元,那么平均每次降价的百分率是________.23.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为_______.24.已知一个扇形的面积为9π,其圆心角为90°,则扇形的弧长为_____. 25.在平行四边形ABCD 中,E 为靠近点D 的AD 的三等分点,连结BE ,交AC 于点F ,AC =12,则AF 为_____.26.6cm 长的弦将圆分成1:2的两条弧,则圆的直径为___________.27.已知一元二次方程260x x c -+=的一个根为12x =,另一根2x =________,c =________.28.如图,A 是半径为1的O 外一点,2OA =,AB 是O 的切线,B 是切点,弦BC 平行于OA ,联结AC ,则阴影部分面积为________.29.关于x 的一元二次方程(a -2)x 2+5x +a 2-2a =0的一个根是0,则a =____. 30.如图,一次函数y =﹣12x +a (a >0)的图像与坐标轴交于A ,B 两点,以坐标原点O 为圆心,半径为2的①O 与直线AB 相离,则a 的取值范围是______.31.如图,梯形ABCD 中,AD BC ∥,对角线AC BD 、相交于点O ,如果BCD △的面积是ABD △面积的2倍,那么BOC 与BDC 的面积之比是 __.32.如图,AB 与①O 相切于B 点,AC 经过圆心O ,①A =30°,AB =3,则劣弧BC 的长为_____.33.如图,矩形ABCD 中,AB =1,AD A 为圆心,AD 的长为半径作弧交BC 边于点E ,则图中DE 的弧长是_______.34.如图,直线l 1①l 2①l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DE EF的值为________35.如图,已知ABC 和ADE 均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果AB 9=,BD 3=,那么CF 的长度为________.36.一个扇形的圆心角为120︒,面积为23cm π,则此扇形的半径是__________.37.在正方形ABCD 中,AB =E 为BC 中点,连接AE ,点F 为AE 上一点,2,FE FG AE =⊥交DC 于G ,将GF 绕着G 点逆时针旋转使得F 点正好落在AD 上的点H 处,过点H 作HN HG ⊥交AB 于N 点,交AE 于M 点,则MNF S ∆=________.38.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①a +c =0,方程ax 2+bx +c =0,有两个不相等的实数;①若方程ax 2+bx +c =0有两个不相等的实根.则方程cx 2+bx +a =0也一定有两个不相等的实根;①若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;①若m 是方程ax 2+bx +c =0的一个根,则一定有b 2-4ac =(2am +b )2成立,其中正确的结论是_____.(把你认为正确结论的序号都填上)39.将一个较短直角边1AB =的直角三角形纸片沿斜边上的高线AD 分割成两个小的直角三角形(如图1),将得到的两个直角三角形按图2叠放(A D ''在DC 边上),当A '与点D 重合时,图3中两个阴影部分的面积相等.(1)图3中有_____个等腰三角形.(2)记两个直角三角形重叠部分的面积为S ,则S 的取值范围是_____.40.如图,定直线l 经过圆心O ,P 是半径OA 上一动点,AC l ⊥于点C ,当半径OA 绕着点O 旋转时,总有OP OC =,若OA 绕点O 旋转60︒时,P 、A 两点的运动路径长的比值是__.三、解答题41.宝鸡国金中心是宝鸡的地标建筑.如图,某数学兴趣小组用无人机测量宝鸡国金中心AB的高度,在飞行高度为300米的无人机上的点P处测得大楼顶部B处的俯角为33°,大楼底部A处的俯角为63.3°,求宝鸡国金中心AB的高.(参考数据:︒≈,tan63.3 2.00tan330.65︒≈)42.用适当的方法解下列方程.(1)(2x﹣1)2=9(2)x2-4x-5=0(配方法)43.如图,点P是①O内的一点,请用尺规作图法,在①O内作一条弦MN,使得点P 为弦MN的中点.(不写作法,保留作图痕迹)44.如图,已知在①ABC中,AD是①BAC平分线,点E在AC边上,且①AED=①ADB.求证:(1)①ABD①①ADE;(2)AD2=AB·AE.︒+︒-45.计算:2cos30tan4546.已知一元二次方程220x bx +-=.(1)当b =1时,求方程的根.(2)若b 为任意实数,请判断方程根的情况,并说明理由.47.已知在Rt ABC 中,90ABC ∠=,30A ∠=,点P 在BC 上,且90MPN ∠=.()1当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1).过点P 作PE AB ⊥于点E ,请探索PN 与PM 之间的数量关系,并说明理由;()2当PC =,①点M 、N 分别在线段 AB 、BC 上,如图2时,请写出线段PN 、PM 之间的数量关系,并给予证明.①当点M 、K 分别在线段AB 、BC 的延长线上,如图3时,请判断①中线段PN 、PM 之间的数量关系是否还存在.(直接写出答案,不用证明)48.(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =. ①如图2,当点D 在线段BC 上时,求AE AF的值;①如图3,当点D落在线段CB的延长线上时,求BDE∆与CFD∆的周长之比.49.如图,现有一张宽为12 cm的练习纸,相邻两条格线间的距离均为0.6 cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=3 5 .(1)求一个矩形卡通图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?50.如图,△ABC内接于①O,点D在①O外,①ADC=90°,BD交①O于点E,交AC 于点F,①EAC=①DCE,①CEB=①DCA,CD=6,AD=8.(1)求证:AB①CD;(2)求证:CD是①O的切线;(3)求tan①ACB的值.参考答案:1.D【分析】根据已知方程的解得出x +3=1,x +3=﹣3,求出两个方程的解即可.【详解】解:①方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,①方程(x +3)2+2(x +3)﹣3=0中x +3=1或﹣3,解得:x =﹣2或﹣6,即x 1=﹣2,x 2=﹣6,故选:D .【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x +3=1,x +3=﹣3,是解此题的关键.2.A【分析】方程移项后,两边同时加上4,变形即可得到结果.【详解】方程移项得 243x x -=方程两边同时加上4,得 24434x x -+=+即2(2)7x -=故选:A .【点睛】本题考查了配方法解一元二次方程,熟练掌握完全平方公式是解题的关键. 3.A【分析】分式的值为0时,需满足分子等于0,且分母不等于0,即可求解.【详解】解:①分式()()2234x x x ++-的值为0,①()()230x x ++=且240x -≠,解得3x =-,故选:A .【点睛】本题考查分式值为0的条件,需满足分子等于0,且分母不等于0.4.C【分析】根据圆内接四边形的任意一个外角等于它的内对角可求得①D=①CBE=55°,再根据等腰三角形的性质求解即可.【详解】解:①四边形ABCD 内接于O ,55CBE ∠=︒,①①D =①CBE=55°,①DA DC =,①①DAC =1805562.52︒-︒=︒, 故选:C .【点睛】本题考查圆内接四边形的性质、等腰三角形的性质,熟练掌握圆内接四边形的任意一个外角等于它的内对角这一性质是解答的关键.5.B【分析】先移项,然后提取公因式计算求解即可.【详解】解:()()()1222x x x -+=+移项得:()()()12220x x x -+-+=()()230+-=x x解得12x =-,23x =故选B .【点睛】本题考查了因式分解法解一元二次方程.解题的关键在于对提公因式法的熟练掌握.6.C【分析】根据一元二次方程根的判别式即可进行解答.【详解】解:A 、240414160b ac -=-⨯⨯=-<,原方程无实数根;不符合题意; B 、24364190b ac -=-⨯⨯=,原方程有两个相等的实数根;不符合题意;C 、24=164?3?(5)=76>0b ac ---,原方程有两个不相等的实数根;符合题意;D 、24941470b ac -=-⨯⨯=-<,原方程无实数根;不符合题意;故选:C .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是掌握240b ac ->时,方程有两个不相等的实数根;240b ac 时,方程有两个相等的实数根;240b ac -<时,方程无实数根.7.C【分析】根据相似图形的定义,结合图形,对选项一一分析,利用排除法求解.【详解】解:①两个等腰三角形顶角不一定相等,故不一定相似;①两个等边三角形,角都是60°,故相似;①两个等腰直角三角形,都有一个直角和45°的锐角,故相似.①两个正方形,对应角相等,对应边成比例,故相似;①两个等腰梯形不一定对应角相等,对应边成比例,故不相似.①所以共有3个一定相似,故选:C .【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相等.正确理解相似形的概念是解题的关键.8.C【详解】将线段AB 缩小后得到线段DE , 若1DE ,说明DE 是原来的12,位似比是12,①D (1,1),①E 的坐标是(2,1),故本题选C .9.A【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:①Δ=(−5)2−4×2×6=-23<0,①方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10.D【详解】根据题意画出图形,过P 作PN①BC ,交BC 于点N ,①四边形ABCD 为正方形,①AD=DC=PN ,在Rt①ADE 中,①DAE=30°,AD=2cm ,①tan30°=DE AD ,即,根据勾股定理得:,①M 为AE 的中点,①AM=12, 在Rt①ADE 和Rt①PNQ 中,AD PN AE PQ =⎧⎨=⎩, ①Rt①ADE①Rt①PNQ (HL ),①DE=NQ ,①DAE=①NPQ=30°,①PN①DC ,①①PFA=①DEA=60°,①①PMF=90°,即PM①AF ,在Rt①AMP 中,①MAP=30°, ①AP=4cos303AM =︒cm , 所以PD=2﹣43=43或23. 故选D .11.A【分析】先把一元二次方程化成一般形式,再根据根与系数的关系求得α+β=2,α•β=﹣1,将其代入代数式即可求值.【详解】解:整理得,﹣x 2+2x +1=0,x 2﹣2x ﹣1=0,①此一元二次方程的两个实数根为α,β,①α+β=2、αβ=﹣1,①α+β+α•β=2﹣1=1.故选A .【点睛】本题考查了一元二次方程根与系数的关系.将一元二次方程化成一般形式并牢记一元二次方程根与系数的关系式是解题的关键.12.A【详解】解:①x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ①(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得 a 1=-4,a 2=1.即a 的值是1或-4.故选:A .【点睛】一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.D【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、方程二次项系数可能为0,故错误;B 、化简后方程不含二次项,故错误;C 、方程二次项系数可能为0,故错误;D 、符合一元二次方程的定义,正确,故选D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2. 14.B【详解】解:设进价是1,则,x +10%=()()11%118%18%x ⨯+-⨯--.解得x =15%,故选B.15.B【详解】①一元二次方程()244610ax a x a -+++=有实数根,①①=[﹣(4a +6)]2-4a ×4(a +1)≥0,且a ≠0, 解得:98a ≥-且0a ≠. 故选B.【点睛】本题主要考查根的判别式,解此题的关键在于利用根的判别式得到关于a 的不等式,然后解不等式即可得到答案.16.D【分析】证明①CPF ①①QCE ,利用相似三角形的性质得10010015PF =,然后利用比例性质可求出CK 的长.【详解】解:CE =100,CF =100,EQ =15,①QE ①CF ,①①PCF =①Q ,而①PFC =①QEC ,①①PCF ①①CQE , ①PF CF CE QE=, 即10010015PF =, ①PF =26663(步); 答:出南门F 26663步能见到树Q , 故选:D .【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求得结论.17.C【详解】试题分析:分别利用勾股定理、全等三角形的判定、圆周角定理及反比例函数的性质判断:①若直角三角形的两边长为3与4,则第三次边长是5,故错误;①两边及其第三边上的中线对应相等的两个三角形全等,正确;①长度等于半径的弦所对的圆周角为30°或150°,故错误;①反比例函数y=﹣2x,当>0时y 随x 的增大而增大,正确, 故选C . 考点:1、反比例函数的性质;2、全等三角形的判定;3、勾股定理;4、圆周角定理 18.B【分析】根据正方形的性质和折叠的性质可得AD =DF ,①A =①GFD =90°,于是根据“HL”判定Rt △ADG①Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故①正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故①错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故①错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,①DFE =①C =90°, ①①DFG =①A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG⎧⎨⎩==, ①Rt △ADG①Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,①BE =EC ,①EF =CE =BE =12a①GE=12a+x由勾股定理得:EG 2=BE 2+BG 2,即:(12a+x)2=(12a)2+(a-x)2解得:x =13 ①BG =2AG ,故①正确;①BE=EF,①①BEF是等腰三角形,易知△GED不是等腰三角形,①①EBF与△DEG不相似,故①错误;连接CF,①BE=CE,BC,①BE=12①S△BFC=2S△BEF.故①错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.19.B【分析】连接DO并延长交①O于E,连接BE,由DE是①O的直径,可得①EBD=90°,由圆周角定理可得①BED=①BAD=60°,继而得①BDE=30°,可求得BD、DE长,进而可得△OPD①△BED,从而可得①POD=①EBD=90°,再根据勾股定理即可求得结论.【详解】连接DO并延长交①O于E,连接BE,①DE是①O的直径,①①EBD=90°,①①BED=①BAD=60°,①①EDB=30°,①DE=2BE,①PB=2,PD=6,①BD=6,①BD2+BE2=DE2,①OD BD ==PD DE = ①OD PD BD DE =, 又①①ODP=①BDE ,①①ODP①△BDE ,①①POD=①EBD=90°,=故选B.【点睛】本题考查了圆周角定理、相似三角形的判定与性质、勾股定理等,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.20.B【分析】利用弧长公式计算即可解决问题.【详解】由题意:点P 所运动的路程 =1201602180180ππ⋅⋅++1203180π⋅+ 604180π⋅+ 1205180π⋅+…+6020180π⋅ =120180π(1+3+5+…+19)+60180π(2+4+…+2+20) =23π•1192+×10+3π•2202+×10 =2003π+ 1103π =3103π, 故选:B .【点睛】本题考查菱形的性质,弧长公式等知识,理解题意,灵活运用所学知识是解题的关键.21.0【分析】根据特殊角的锐角三角函数值即可求得结果.【详解】解:tan245°-1=12-1=0.故答案为:0【点睛】本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.22.10%【分析】降低后的价格=降低前的价格×(1-降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是100(1-x),那么第二次后的价格是100(1-x)2,即可列出方程求解.【详解】解:设平均每次降价的百分率为x,依题意列方程:100(1-x)2=81,解方程得x1=0.1=10%,x2=1.9(舍去).故平均每次降价的百分率为10%.故答案为10%【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.10【分析】连接AO,BO,根据圆周角定理得到①AOB=36°,根据中心角的定义即可求解.【详解】如图,连接AO,BO,①①AOB=2①ADB=36°①这个正多边形的边数为36036=10故答案为:10.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.24.3π【分析】设扇形的半径为r,利用扇形的面积公式求出r=6,然后根据弧长公式计算扇形的弧长.【详解】解:设扇形的半径为r , 根据题意得2909360r ,解得r =6, 所以扇形的弧长=9063180ππ⨯=. 故答案为3π. 【点睛】本题考查了扇形面积及弧长的计算,熟练掌握扇形面积公式和弧长公式是解题关键.25.245【分析】由题意易得AD =BC ,AD ①BC ,则有AE =23AD =23BC ,进而可得AEF CBF ∽△△,然后可得23AF AE FC BC ==,则问题可求解. 【详解】解:在ABCD 中,AD =BC ,AD ①BC ,①E 为AD 的三等分点,①AE =23AD =23BC ,①AD ①BC ,①AEF CBF ∽△△, ①23AF AE FC BC ==, ①AC =12,①AF =2241255⨯=; 故答案为:245. 【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26.【分析】如图,过圆心O 作OA①BC 于点E ,连接OB ,OC ,根据垂径定理可得BE=CE=3cm ,再根据题意可得①BOA=60°,即①OBE=30°,再利用勾股定理求得OE 的长,即可得到圆的直径长.【详解】如图,过圆心O 作OA①BC 于点E ,连接OB ,OC ,①BC=6cm,①BE=CE=3cm,①弦将圆分成1:2的两条弧,①①BOC=120°,即①BOA=60°,在Rt①BOE中,①OBE=30°,①OE=12 OB,①OB2﹣OE2=BE2,①3OE=9,解得,即,则圆的直径为故答案为【点睛】本题主要考查垂径定理,勾股定理等,解此题的关键在于熟练掌握其知识点. 27.48【分析】把x=2代入方程260x x c-+=,即可求得实数c的值,再根据根与系数的关系即可求出2x【详解】把x=2代入方程260x x c-+=,得22-6×2+c=0解得c=8①a=1,b=-6,12x=①x1+x2=−ba=6①2x=4故答案是:4,8【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握公式是解题的关键 28.6π 【分析】连接O B 、OC ,过O 作OD ①BC 于点D ,则可知S △BOC =S △ABC ,可知阴影部分面积=扇形OBC 的面积,再计算扇形OBC 的面积即可.【详解】解:连接O B 、OC ,过O 作OD ①BC 于点D ,①BC ①OA ,①点A 到BC 的距离等于点O 到BC 的距离,①S △BOC =S △ABC ,①阴影部分面积=扇形OBC 的面积,①AB 是①O 的切线,①OB ①AB ,①OA =2,OB =OC =1,①①OAB =30°,①①AOB =60°,又BC ①OA ,①①OBC =①AOB =60°,①①BOC 为等边三角形,①BC =OA ,①扇形OBC 的面积=26013606ππ⨯=, ①阴影部分面积为6π, 故答案为:6π.【点睛】本题考查扇形面积的计算,把所求面积化为扇形面积是解题的关键.29.0【分析】把x =0代入方程计算,检验即可求出a 的值.【详解】解:把x =0代入方程得:()2205020a a a -⨯+⨯+-=,解得:a =0或a =2,20,a -≠ 则2,a ≠0.a ∴=故答案为:0【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.30.a 【分析】先求出一次函数与坐标轴的交点A ,B 的坐标,再利用勾股定理计算出AB =,接着利用面积法计算出OH =,然后根据直线与圆的位置关系得到OH >22>,于是解不等式即可得到a 的范围. 【详解】解:当y =0时,﹣12x +a =0,解得x =2a ,则A (2a ,0),当x =0时,y =−12x +a =a ,则B (0,a ),在Rt △ABO 中,AB ,过O 点作OH ①AB 于H ,如图,①12⋅OH ⋅AB =12⋅OB ⋅OA ,①OH, ①半径为2的O 与直线AB 相离,所以OH >2>2,所以a故答案为a【点睛】本题考查了判断直线和圆的位置关系:设①O 的半径为r ,圆心O 到直线l 的距离为d ,若直线l 和①O 相交⇔d <r ;直线l 和①O 相切⇔d =r ;直线l 和①O 相离⇔d >r .也考查了一次函数与系数的关系.31.2:3【分析】过点D 作DM BC ⊥,垂足为M ,过点B 作BN AD ⊥,交DA 的延长线于点N ,根据已知易得=DM BN ,再根据=2BCD ABD S S ,从而可得2BC AD =,然后再证明8字模型相似三角形AOD COB ∽,利用相似三角形的性质可得1==2AD DO BC BO ,从而可得2=3BO BD ,最后根据BOC 与BDC 的高相等,即可解答. 【详解】解:过点D 作DM BC ⊥,垂足为M ,过点B 作BN AD ⊥,交DA 的延长线于点N ,①AD BC ∥,①BN DM =,①=2BCD ABD S S , ①11·=?22BC DM AD BN , ①2BC AD =,①AD BC ∥,①==ADB DBC DAC ACB ∠∠∠∠,,①AOD COB ∽, ①1==2AD DO BC BO , ①2=3BO BD , ①BOC 与BDC 的高相等,①2==3BOCBDC S BO S BD , 故答案为:2:3.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32 【分析】连接OB ,根据切线的性质得到①ABO =90°,求出①BOC ,根据正切的定义求出OB ,根据弧长公式计算,得到答案.【详解】解:连接OB ,①AB 是①O 的切线,①①ABO =90°,①①AOB =90°﹣①A =60°,①①BOC =120°,在Rt①ABO 中,OB =AB•tanA①劣弧BCπ,【点睛】此题考查了圆的切线的性质定理,锐角三角函数,弧长的计算公式,正确理解弧长公式中各字母的意义,分别求出其值进行计算是解题的关键.33π 【分析】根据题意可得sin①AEB ,可以判断出①AEB=45°,进一步求解①DAE=①AEB=45°,代入弧长计算公式可得出弧DE 的长度.【详解】解:①以AD 为半径画弧交BC 边于点E ,又①AB=1,①sinAB AEB AE ∠==①①AEB=45°,①四边形ABCD 是矩形①AD①BC①①DAE=①AEB=45°,故可得弧DC 的长度为452180π⋅⋅=,. 【点睛】此题考查了弧长的计算公式,解答本题的关键是求出①DAE 的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.34.35【详解】试题解析:①AH=2,HB=1,①AB=AH+BH=3,①l 1①l 2①l 3,①3 5DE AB EF BC == 考点:平行线分线段成比例.35.2【分析】利用两对相似三角形,线段成比例:AB :BD=AE :EF ,CD :CF=AE :EF ,可得CF=2.【详解】如图,①①ABC 和①ADE 均为等边三角形,①①B=①BAC=60°,①E=①EAD=60°,①①B=①E ,①BAD=①EAF ,①①ABD①①AEF ,①AB:BD=AE:EF.同理:①CDF①①EAF ,①CD:CF=AE:EF ,①AB:BD=CD:CF ,即9:3=(9−3):CF ,①CF=2.故答案为2.【点睛】本题考查了相似三角形的判定与性质和等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质和等边三角形的性质.36.3cm【分析】已知扇形面积求扇形的半径,使用扇形的面积公式即可.【详解】解:①S=3π,n=120°,①根据扇形面积公式可得21203360r ππ⨯=, 解得扇形半径r=3cm ,故答案为:3cm .【点睛】本题主要考查扇形面积公式的使用.37【分析】过B 作BP AE ⊥于P ,根据勾股定理得出12BE BC ==AE=10,进一步得出,,B F G 共线,然后通过作辅助线构造直角三角形,利用三角函数求出FQ =BQ =,然后进一步分别计算利用面积差求解即可. 【详解】如图,过B 作BP AE ⊥于P ,①正方形ABCD 中,AB =E 为BC 中点,①12BE BC ==①10AE ==,①4AB BE BP AE ⋅===,①2PE =,①EF EP =,①F 与P 重合,①,,B F G 共线,过F 作OS DC ⊥,交AB 于,O DC 于S ,则OS AB ⊥,过F 作FQ BC ⊥于Q , ①sin EF FQ FBE BE BF∠==,4FQ =①FQ =①BQ =, 易得矩形OFQB ,①FO BQ ==①FS ==AO AB OB =-== ①GF AE ⊥,①90AFG ∠=︒,①GFS AFH AFH FAH ∠+∠=∠+∠,①GFS FAB ∠=∠, ①tan tan BE GS FAB GFS AB FS∠=∠==,=①GS =①DG DS GS AO GS =-=-== ①GH GF =,①2222DH DG GS FS +=+,①2222DH +=+⎝⎭⎝⎭, ①4DH =,①4AH =,①tan tan ,AH DG ANH DHG AN DH∠=∠==,,①AN = 过M 作MR AB ⊥于R ,设MR x =,则2,tan tan DG MR AR x ANH DHG DH RN =∠=∠==,x RN=, ①RN =,由AR RN AN +=得:2x =6x =-①6MR =- ①()111222MNF ANF AMN S S S AN FO AN MR AN FO MR ∆∆∆=-=⋅-⋅=-162=+=⎝.【点睛】本题主要考查了直角三角形与三角函数的综合运用,熟练掌握相关概念是解题关键.38.①①【分析】①根据根的判别式即可作出判断;①方程有两个不相等的实数根,则2b 4ac 0∆=->,当c =0时,cx 2+bx +a =0为一元一次方程;①若c 是ax 2+bx +c =0的一个根,则代入即可作出判断;①若m 是方程ax 2+bx +c =0的一个根,则方程有实根,判别式0∆>,结合m 是方程的根,代入一定成立,即可作出判断.【详解】①根据公式法解一元二次方程可知2b 4ac ∆=-,若a +c =0,且a ≠0,①a ,c 异号,①0∆>,故此时有两个不相等的实数根,故选项①正确;①若c =0,b ≠0,则2b 4ac 0->,①方程ax 2+bx +c =0有两个不相等的实数根,方程cx 2+bx +a =0仅有一个解,故选项①错误;①将x =c 代入方程ax 2+bx +c =0,可得2ac bc c 0++=,即()c ac bc 10++=,解得c =0或ac +b +1=0,因此ac +b +c =0不一定成立,故选项①错误;①①m 是方程ax 2+bx +c =0的一个根,①am 2+bm +c =0,此时()()()222222222am b 4a m b 4abm 4a am bm b 4a c b b 4ac +=++=++=-+=-,故选项①正确 故答案为①①.【点睛】本题主要考查一元二次方程根与判别式的关系.39. 3 112S ≤≤【分析】(1)由题意易得,B DAC C BAD ∠=∠∠=∠,则有BA D C ''∠=∠,//AD BD ',然后根据角的等量关系及等腰三角形的判定可进行求解;(2)由(1)可得:,B DAC C BAD ∠=∠∠=∠,则有BAD ACD ∽△△,设AD =h ,则有tan h BD B=∠,tan tan CD h DAC h B =⋅∠=⋅∠,由题意可得当A '与点D 重合时,重合面积最大,当点D 与C 重合时,重合面积最小,进而分类求解即可得出答案.【详解】解:(1)当A '与点D 重合时,设AC 与BD 、BD '分别相交于点O 、F ,如图所示:①AD BC ⊥,①90B BAD ∠+∠=︒,①90BAC ∠=︒,①90B C ∠+∠=︒,①C BAD ∠=∠,同理可得B DAC ∠=∠,①BA D BAD ''∠=∠,①BA D C ''∠=∠,①COD △是等腰三角形,①90ADC BD D '∠=∠=︒,①//AD BD ',①A BFA B ADO ∠=∠=∠=∠,①AOD △和BOF 都为等腰三角形,①图3中有3个等腰三角形;故答案为3;(2)由(1)可得:∠B =∠DAC,∠C =∠BA′D′,①''BA D ACD ∽,设AD =h ,则有tan h BD B=∠, ①tan tan CD h DAC h B =⋅∠=⋅∠,①当A '与点D 重合时,作OE CD ⊥,如图所示:①OD =OC ,①DE =CE ,AD ①OE , ①122h OE AD ==, ①阴影部分的面积相等,①BOF D FC DD FO DD FO SS S S '''+=+四边形四边形, ①BD D DOC SS '=, ①11222h A D BD CD '''⋅=⋅, ①,tan h A D AD h BD BD B '''====∠, ①221tan tan 2h h B B =∠∠,①tan B ∠①AB =1,则有在Rt ①ABD 中,221h +=,①h =BD =①))11CD CD A D h '''=-==,①)1tan tan CD CD FD CFD B '''==='∠∠,①)1111223A D B CFD S S S A D BD CD FD ''''''''=-=⋅-⋅=, ①当点D 与C 重合时,作OM ①BC 于点M ,如图所示:①B OCB ∠=∠,①1122BM CM BD '====①tan OM BM B =⋅∠=①1122A D B BOC S S S A D BD BD OM ''''''=-=⋅-⋅=,由上可知S 的取值范围为112S ≤≤故答案为112S ≤ 【点睛】本题主要考查相似三角形的性质与判定及解直角三角形,熟练掌握相似三角形的性质与判定及解直角三角形是解题的关键.40.1.【分析】设①O 的半径为R ,l 与①O 交于点B ,由直角三角形的性质得出1122OC OA OB ==,由已知得出12OP OA =,证明①AOB 是等边三角形,得出BP OA ⊥,①OPB=90°,得出点P 在以OB 为直径的圆上运动,圆心为C ,由圆周角定理得出。
九年级数学练习题及答案
九年级数学练习题及答案【篇一:初中数学中考模拟题及答案(一)】>一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.下面几个数中,属于正数的是() a.3b.?12c. d.0a. b. c. d.(第2题)a.平均数b.众数c.中位数d.方差鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()4.已知方程|x|?2,那么方程的解是() a.x?2b.x??2c.x1?2,x2??2d.x?45、如图(3),已知ab是半圆o的直径,∠bac=32o,d是弧ac 的中点,那么∠dac的度数是()6.下列函数中,自变量x的取值范围是x?2的函数是() a.y? b.y?c.y? d.y??7.在平行四边形abcd中,?b?60,那么下列各式中,不能成立的是()..a.?d?60?b.?a?120?c.?c??d?180 d.?c??a?180??8.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过() a.66厘米b.76厘米c.86厘米d.96厘米二、填空题(每小题3分,共24分)9.2008年北京奥运圣火在厦门的传递路线长是17400米, 10.一组数据:3,5,9,12,6的极差是 11??2x??412.不等式组?的解集是.x?3?0?13.如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r米,圆心角均为90?,则铺上的草地共有平方米.14.若?o的半径为5厘米,圆心o到弦ab的距离为3厘米,则弦长ab为厘米.15.如图,在四边形abcd中,p是对角线bd的中点,e,f分别是ab,cd的中点,ad?bc,?pef?18,则?pfe的度数是.?(第14题)bbe e(第16题)(第17题)16.如图,点g是△abc的重心,cg的延长线交ab于d,ga?5cm,gc?4cm,gb?3cm,将△adg绕点d旋转180?得到△bde,则de?cm,△abc的面积?cm2.三、解答题(每题8分,共16分) 17.已知a?18.先化简,再求值四、解答题(每题10分,共20分)19.四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取得的两张卡片上的数字之积为奇数的概率.xx?1213?1,b?13?1,求ab???ab?b??的值。
初三计算题大全及答案
初三计算题大全及答案以下是一些初三计算题的大全及答案,供同学们练习:一、四则运算1. 12 ÷ 3 × 4 + 6 = 222. (8 + 3)×(15 - 7) ÷ 4 = 333. 102 - 64 ÷ 8 + 2 × 3 = 834. 5 ÷(10 - 8) + 1= 25. 88 - 76 × 2 ÷ 4 + 10 = 346. (18+20)÷2×3-16+8 = 227. 12 ÷ (5 +1) × 8 - 4 = 128. (13 - 5)×2 ÷ 3 + 1 = 39. 24 ÷(2+4)×6-10= 2210. (4 + 5)×6 + 9 ÷ 3 = 51二、百分数1. 20% ÷ 0.2 = 1002. 90% × 0.6 = 543. 500 ÷ 80% = 6254. 3 ÷ 0.15 = 205. 40 × 125% = 506. 24 ÷ 80% = 307. 0.8 × 25% = 0.28. 1200 ÷ 75% = 16009. 150% × 0.75 = 112.510. 56.25 ÷ 75% = 75三、长度、面积和体积1. 长方形的长是15cm,宽是9cm,它的面积是多少?答案:135cm²2. 一个正方形的边长是7cm,它的周长是多少?答案:28cm3. 一个立方体的边长是3cm,它的表面积是多少?答案:54cm²4. 一个正方体的表面积是96cm²,它的边长是多少?答案:4cm5. 一个圆的直径是12cm,它的周长是多少?(π≈3.14)答案:37.68cm6. 一个正立方体的体积是64cm³,它的边长是多少?答案:4cm7. 一个长方体的长是5cm,宽是3cm,高是4cm,它的体积是多少?答案:60cm³8. 一个圆的半径是6cm,它的面积是多少?答案:113.04cm²9. 一个正六面体的表面积是150cm²,它的体积是多少?答案:125cm³10. 一个长方形的长是24cm,宽是18cm,如果它的周长增加了8cm,它的面积会变成多少?答案:720cm²以上就是初三计算题的大全及答案,同学们可以利用这些题目来提高自己的计算能力。
九年级数学 直线与圆的位置关系 专题练习(含解析)
九年级数学直线与圆的位置关系专题练习一、选择题1.设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d 应满足的条件是()A.d=3 B.d≤3 C.d<3 D.d>3答案:B解析:解答:因为直线l与⊙O至少有一个公共点,所以包括直线与圆有一个公共点和两个公共点两种情况,因此d≤r,即d≤3,故选B.分析:当d=r时,直线与圆相切,直线l与圆有一个公共点;当d<r时,直线与圆相交,直线l与圆有两个公共点;当d>r时,直线与圆相离,直线L与圆没有公共点.2.在△ABC中,∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,则BC与⊙O的位置关系是()A.相交B.相离C.相切D.不能确定答案:A解析:解答:做AD⊥BC,∵∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,∴BC=5,∴AD×BC=AC×AB,解得:AD=2.4,2.4<3,∴BC与⊙O的位置关系是:相交.故选A.分析:首先求出点A与直线BC的距离,根据直线与圆的位置关系得出BC与⊙O的位置关系.3.在Rt△ABC中,∠C=90°,AC=6cm,则以A为圆心6cm为半径的圆与直线BC的位置关系是()A.相离B.相切C.相交D.外离解析:解答:根据题意得:点A到直线BC的距离=AC,∵AC=6cm,圆的半径=6cm,∴以A为圆心6cm为半径的圆与直线BC相切.故选B.分析:点A到直线BC的距离为线段AC的长度,正好等于圆的半径,则直线BC与圆相切.4.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.不能确定答案:B解析:解答:∵⊙O的半径为8,圆心O到直线l的距离为4,∵8>4,即:d<r,∴直线l与⊙O的位置关系是相交.故选:B.分析:根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.5.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A.B.C.D.答案:B解析:解答:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.6.已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A.相离B.相切C.相交D.相交或相离解析:解答:根据圆心到直线的距离10等于圆的半径10,则直线和圆相切.故选B.分析:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.7.圆O与直线L在同一平面上.若圆O半径为3公分,且其圆心到直线L的距离为2公分,则圆O和直线L的位置关系为()A.不相交B.相交于一点C.相交于两点D.无法判别答案:C解析:解答:∵圆心到直线的距离是2小于圆的半径3,∴直线和圆相交,∴直线和圆有2个公共点.故选C.分析:根据圆心到直线的距离是2小于圆的半径3,则直线和圆相交,此时直线和圆有2个公共点.8.已知⊙O的半径r,圆心O到直线l的距离为d,当d=r时,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对答案:B解析:解答:根据直线和圆的位置关系与数量之间的联系:当d=r时,则直线和圆相切.故选B.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.9.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.5答案:B解析:解答:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.10.⊙O的直径为10,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定答案:C解析:解答:∵⊙O的直径为10∴r=5,∵d=6∴d>r∴直线l与⊙O的位置关系是相离故选C分析:因为⊙O的直径为10,所以圆的半径是5,圆心O到直线l的距离为6即d=6,所以d>r,所以直线l与⊙O的位置关系是相离.11.已知:⊙O的半径为2cm,圆心到直线l的距离为1cm,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是()A.1cm B.2cm C.3cm D.1cm或3cm答案:D解析:解答:如图,当l经过点B时,OB=1cm,则AB=1cm;当l移动到l″时,则BC=3cm;故选D.分析:根据直线和圆相切的数量关系,可得点O到l的距离为1cm,可向上或向下平移,使l与⊙O相切,即可得出答案.12.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30°B.45°C.60°D.90°答案:A解析:解答:如图:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.分析:根据题意找出当OP⊥AP时,∠OAP取得最大值.所以在Rt△AOP中,利用直角三角形中锐角三角函数的定义可以求得此时∠OAP的值.13.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是()A.相切B.相离C.相离或相切D.相切或相交答案:D解析:解答:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故选D.分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交⇔d <r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论.14.如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周答案:C解析:解答:圆在三边运动自转周数:6π÷2π =3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选:C.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.15.同学们玩过滚铁环吗?当铁环的半径是30cm,手柄长40cm.当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm时,铁环所在的圆与手柄所在的直线的位置关系为()A.相离B.相交C.相切D.不能确定答案:C解析:解答:根据题意画出图形,如图所示:由已知得:BC=30cm,AC=40cm,AB=50cm,∵2222502500AB==,+=+=+=,22BC AC304090016002500∴222+=BC AC AB∴∠ACB=90°,即AC⊥BC,∴AC为圆B的切线,则此时铁环所在的圆与手柄所在的直线的位置关系为相切.故选C.分析:根据题意画出相应的图形,由三角形ABC的三边,利用勾股定理的逆定理得出∠ACB=90°,根据垂直定义得到AC与BC垂直,再利用切线的定义:过半径外端点且与半径垂直的直线为圆的切线,得到AC为圆B的切线,可得出此时铁环所在的圆与手柄所在的直线的位置关系为相切.二、填空题16.在△ABC中,∠C=90°,AC=6,BC=8,以C为圆心r为半径画⊙C,使⊙C与线段AB 有且只有两个公共点,则r的取值范围是.答案:245<r≤6解析:解答:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=10.圆与AB相切时,即r=CD=6×8÷5=24 5;∵⊙C与线段AB有且只有两个公共点,∴245<r≤6.分析:根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.17.⊙O的直径为12,圆心O到直线l的距离为12,则直线l与⊙O的位置关系是. 答案:相离解析:解答:∵⊙O的直径为12∴r=6,∵d=12∴d>r∴直线l与⊙O的位置关系是相离.分析:因为⊙O的直径为12,所以圆的半径是6,圆心O到直线l的距离为12即d=12,所以d>r,所以直线l与⊙O的位置关系是相离.18.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移cm时与⊙O相切.答案:2解析:解答:∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2 =4,OA=5,∴OH=3.∴需要平移5-3=2cm.故答案为:2.分析:根据直线和圆相切,则只需满足OH=5.又由垂径定理构造直角三角形可求出此时OH的长,从而计算出平移的距离.19.⊙O的半径为R,点O到直线l的距离为d,R,d是方程2x-4x+m=0的两根,当直线l 与⊙O相切时,m的值为.答案:4解析:解答:∵d、R是方程-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,解得,m=4,故答案为:4.分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.20.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是(写出符合的一种情况即可).答案:2解析:解答:∵2223425,525+==∴三角形为直角三角形,设内切圆半径为r,则1 2(3+4+5)r=12×3×4,解得r=1,所以应分为五种情况:当一条边与圆相离时,有0个交点,当一条边与圆相切时,有1个交点,当一条边与圆相交时,有2个交点,当圆与三角形内切时,有3个交点,当两条边与圆同时相交时,有4个交点,故公共点个数可能为0、1、2、3、4个.故答案为2.分析:根据勾股定理可得三角形为直角三角形,求出三角形内切圆的半径为1,圆在不同的位置和直线的交点从没有到最多4个.三、解答题21.已知⊙O的周长为6π,若某直线l上有一点到圆心O的距离为3,试判断直线l与⊙O的位置关系.答案:相切或相交解答:∵⊙O的周长为6π,∴⊙O的半径为3,∵直线l上有一点到圆心O的距离为3,∴圆心到直线的距离小于或等于3,∴直线l与⊙O的位置关系是相交或相切.解析:分析:首先根据圆的周长求得圆的半径,然后根据圆心到直线的距离与圆的半径的大小关系得到两圆的位置关系即可.22.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,试判断半径为3的圆与OA 的位置关系.答案:相切解答:过点C作CD⊥AO于点D,∵∠O=30°,OC=6,∴DC=3,∴以点C为圆心,半径为3的圆与OA的位置关系是:相切.解析:分析:利用直线l和⊙O相切⇔d=r,进而判断得出即可.23.已知圆的直径为13cm,如果直线和圆心的距离为4.5cm,那么直线和圆有几个公共点.答案:2解析:解答:已知圆的直径为13cm,则半径为6.5cm,又∵圆心距为4.5cm,小于半径,∴直线与圆相交,有两个交点.答:直线和圆有2个公共点.分析:欲求圆与直线的交点个数,即确定直线与圆的位置关系,关键是把直线和圆心的距离4.5cm与半径6.5cm进行比较.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d >r,则直线与圆相离.(d为直线和圆心的距离,r为圆的半径)24.圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程2x-6x+m=0的两个根,且直线L与⊙O相切,求m的值.答案:9解答:∵d、r是方程x2-6x+m=0的两个根,且直线L与⊙O相切,∴d=r,∴方程有两个相等的实根,∴△=36-4m=0,解得,m=9.解析:分析:先根据切线的性质得出方程有且只有一个根,再根据△=0即可求出m的值.25.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.试判断直线CD与⊙O的位置关系,并说明理由.答案:相切解答:如图:∵△ACD是等腰三角形,∠D=30°,∴∠CAD=∠CDA=30°.连接OC,∵AO=CO,∴△AOC是等腰三角形,∴∠CAO=∠ACO=30°,∴∠COD=60°,在△COD中,又∵∠CDO=30°,∴∠DCO=90°∴CD是⊙O的切线,即直线CD与⊙O相切.解析:分析:已知点C在⊙O上,先连接OC,由已知CA=CD,∠CDA=30°,得∠CAO=30°,∠ACO=30°所以得到∠COD=60,根据三角形内角和定理得∠DCO=90°即能判断直线CD与⊙O的位置关系.。
九年级数学上册《二次函数实际问题》练习题带答案(人教版)
九年级数学上册《二次函数实际问题》练习题带答案(人教版)一、选择题1.华润万家超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x元,根据题意列方程得( )A.(40﹣x)(20+2x)=1200B.(40﹣x)(20+x)=1200C.(50﹣x)(20+2x)=1200D.(90﹣x)(20+2x)=12002.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y元与销售单价x元满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为( )A.30元B.35元C.40元D.45元3.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为( )A.150B.160C.170D.1804.某商店销售某件商品所获得的利润y(元)与所卖的件数x之间的关系满足y=﹣x2+1000x﹣200000,则当0<x≤450时的最大利润为( )A.2500元B.47500元C.50000元D.250000元5.运动员推出铅球后铅球在空中的飞行路线可以看作是抛物线的一部分,铅球在空中飞行的竖直高度y(单位:m)与水平距离x(单位:m)近似地满足函数关系y=ax2+bx+c(a≠0).下图记录了铅球飞行中的x与y的三组数据,根据上述函数模型和数据,可推断出该铅球飞行到最高点时,水平距离最接近的是( )A.2.6 mB.3 mC.3.5 mD.4.8 m6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t/s 0 1 2 3 4 5 6 7 …h/m 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=9 2;③足球被踢出9 s时落地;④足球被踢出1.5 s时,距离地面的高度是11 m.其中正确结论的个数是()A.1B.2C.3D.4二、填空题7.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________(不要求写自变量的取值范围),所以每件降价________元时,每日获得的最大利润为________元.8.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系式为y=﹣116x2,当水面离桥拱顶的高度OC是4m时,水面的宽度AB为______m.9.公路上行驶的汽车急刹车时,刹车距离s(m)与时间t(s)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行米才能停下来. 10.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=﹣29x2+89x+109,则羽毛球飞出的水平距离为米.11.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向点B以2 cm/s 的速度运动,点Q从点B开始沿BC向点C以1 cm/s的速度运动,如果点P,Q分别从点A,B 同时出发,当△PBQ的面积最大时,运动时间为________s.12.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s的速度沿各边向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________s时,四边形EFGH的面积最小,其最小值是________ cm2.三、解答题13.某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式;(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?14.某宾馆重新装修后,有50间房可供游客居住,经市场调查发现,每间房每天的定价为140元,房间会全部住满,当每间房每天的定价每增加10元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出40元的各项费用.设每间房每天的定价增加x元,宾馆获利为y元.(1)求y与x的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的2倍,此时每间房价为多少元时宾馆可获利8000元?15.如图,在足够大的空地上有一段长为a m的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN.已知矩形菜园的一边靠墙,另三边一共用了100 m木栏.(1)若a=20,所围成的矩形菜园的面积为450 m2,求所用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.16.如图,在Rt△ABC中,∠B=90°,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2 cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.(1)设运动开始后第t s时,四边形APQC的面积是S cm2,写出S与t之间的函数关系式,并指出自变量t的取值范围.(2)t为何值时,S最小?最小值是多少?17.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?18.有一座抛物线形状的拱桥,正常水位时桥下水面宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h m时,桥下水面的宽度为d m,求出用h表示d的函数解析式;(3)设正常水位时桥下的水深为2 m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18 m,求水深超过多少时就会影响过往船只在桥下顺利航行.19.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形(厚度不计).(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求出当长方体底面面积为12 dm2时,裁掉的正方形的边长.(2)若要求制作的长方体的底面长不大于底面宽的5倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元.当裁掉的正方形的边长多大时,总费用最低?最低为多少?20.某游乐园有一个直径为16 m的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线形,在距水池中心3 m处达到最高,高度为5 m,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(1) (2)(1)求水柱所在抛物线(第一象限部分)的函数解析式.(2)王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8 m的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32 m,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合.请探究扩建改造后水柱的最大高度.参考答案1.A2.B3.A.4.B.5.C.6.B.7.答案为:(30﹣x) (20+x) ﹣x2+10x+600 5 6258.答案为:16.9.答案为:20.10.答案为:5;11.答案为:2.12.答案为:3,18.13.解:(1)设y与x的函数关系式为:y=kx+b(k≠0)由题意得: ,解得:k=﹣2,b=160所以y 与x 之间的函数关系式是y=﹣2x +160(40≤x ≤80);(2)由题意得,w 与x 的函数关系式为:w=(x ﹣40)(﹣2x +160)=﹣2x 2+240x ﹣6400=﹣2(x ﹣60)2+800当x=60元时,w 最大利润是800元所以当销售单价x 为60元时,日销售利润w 最大,最大日销售利润是800元.14.解:(1)由题意得(14040)(50)10x y x =+--2140500010x x =-++ 答:y 与x 的函数关系式为 2140500010y x x =-++; (2)由(1)可得:2211405000(200)90001010y x x x =-++=--+ 令8000y =,即218000(200)900010x =--+,解得:300x =或100x = 1401402x +⨯,解得:140x ,100x ∴=此时每间房价为:140100240+=(元)答:每间房价为240元时,宾馆可获利8000元.15.解:(1)设AD =x m ,则AB =100-x 2 m. 依题意,得100-x 2·x =450. 解得x 1=10,x 2=90. ∵a =20且x ≤a∴x 2=90不合题意,应舍去.故所利用旧墙AD 的长为10 m.(2)设AD =x m ,矩形ABCD 的面积为S m 2则0<x ≤a ,S =100-x 2·x =﹣12()x 2-100x =﹣12()x -502+1 250. ①若50≤a ,则当x =50时,S 最大值=1 250;②若0<a<50,则当0<x ≤a 时,S 随x 的增大而增大故当x =a 时,S 最大值=50a ﹣12a 2. 综上:当a ≥50时,矩形菜园ABCD 的面积最大为1 250 m 2;当0<a<50时,矩形菜园ABCD 的面积最大为(50a ﹣12a 2)m 2. 16.解:(1)∵AB =6,BC =12,∠B =90°∴BP =6﹣t ,BQ =2t∴S 四边形APQC =S △ABC ﹣S △PBQ =12×6×12﹣12×(6﹣t)×2t 即S =t 2﹣6t +36(0<t<6).(2)∵S =t 2﹣6t +36=(t ﹣3)2+27∴当t =3时,S 最小,最小值是27.17.解:(1)根据题意,得S =x(24﹣3x),即所求的函数解析式为:S =﹣3x 2+24x 又∵0<24﹣3x ≤10∴143≤x<8;(2)根据题意,设花圃宽AB 为xm ,则长为(24﹣3x)∴﹣3x 2+24x =45.整理得x 2﹣8x +15=0,解得x =3或5当x =3时,长=24﹣9=15>10不成立当x =5时,长=24﹣15=9<10成立∴AB 长为5m ;(3)S =24x ﹣3x 2=﹣3(x ﹣4)2+48∵墙的最大可用长度为10m ,0≤24﹣3x ≤10∴143≤x<8∵对称轴x =4,开口向下∴当x =143m ,有最大面积的花圃.18.解:(1)设抛物线的解析式为y =ax 2.∵在正常水位时,点B 的坐标为(10,﹣4)∴﹣4=a ×102,∴a =﹣125. ∴(2)当水位上升h m 时,点D 的纵坐标为﹣(4﹣h).设点D的横坐标为x(x>0),则有﹣(4﹣h)=﹣1 25x2∴x1=54-h,x2=﹣54-h(舍去)∴d=2x=104-h.该抛物线的解析式为y=﹣125x2.(3)当桥下水面宽为18 m时,18=104-h∴h=0.76.又∵2+0.76=2.76(m)∴桥下水深超过2.76 m时就会影响过往船只在桥下顺利航行.19.解:(1)如图所示:设裁掉的正方形的边长为x cm,由题意可得(10﹣2x)(6﹣2x)=12即x2﹣8x+12=0,解得x1=2,x2=6(舍去).所以裁掉的正方形的边长为2 dm.(2)因为长不大于宽的5倍所以10﹣2x≤5(6﹣2x)所以0<x≤2.5.设总费用为w元,由题意可知:w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24. 因为抛物线的对称轴为直线x=6,且开口向上所以当0<x≤2.5时,w随x的增大而减小所以当x=2.5时,w最小值=25.所以当裁掉的正方形的边长为2.5 dm时,总费用最低,最低为25元. 20.解:(1)∵抛物线的顶点坐标为(3,5)∴设其函数解析式为y=a(x﹣3)2+5.将(8,0)代入解析式,解得a=﹣1 5 .∴抛物线的函数解析式为y=﹣15(x﹣3)2+5第 11 页 共 11 页 即y =﹣15x 2+65x +165(0<x<8). (2)当y =1.8时,1.8=﹣15x 2+65x +165,解得x 1=7,x 2=﹣1(舍去). 答:王师傅必须站在离水池中心7 m 以内.(3)由y =﹣15x 2+65x +165可得原抛物线与y 轴的交点为(0,165). ∵装饰物的高度不变∴新抛物线也经过点(0,165). ∵喷水柱的形状不变,∴a =﹣15. ∵直径扩大到32 m∴新抛物线也过点(16,0).设新抛物线为y 新=﹣15x 2+bx +c(0<x<16). 将点(0,165)和(16,0)代入,解得b =3,c =165. ∴y 新=﹣15x 2+3x +165.∴y 新=﹣15(x ﹣ 152)2+28920,当x =152时,y 新=28920. 答:扩建改造后水柱的最大高度为28920 m.。
苏科版九年级上册数学练习题含答案 .
苏科版九年级上册数学练习题(3)一、选择题(在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.下列各式中,与2是同类二次根式的是 ( )A . 3B . 6C .8D .272.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是 ( )A .k >-1B .k ≥-1C .k <-1D .k ≤-13.若二次函数y =(a -1)x 2+3x +a 2-3a +2的图象经过原点,则a 的值必为 ( )A .1或2B .0C .1D .24.如图,CD 是⊙O 的直径,弦DE ∥OA ,若∠D 的度数是50°,则∠A 的度数是 ( )A .25°B .30°C .40°D .50°5.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( ) A .平均数是80 B .极差是15 C .中位数是80 D .标准差是256.给出下列四个结论,其中正确的结论为 ( ) A .菱形的四个顶点在同一个圆上; B .正多边形都是中心对称图形; C .三角形的外心到三个顶点的距离相等;D .若圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.7.两圆的圆心距为5,它们的半径分别是一元二次方程x 2-5x +4=0的两根,则两圆( ) A .外切 B .相交 C .内切 D .外离8.若把抛物线y =x 2-2x +1先向右平移2个单位,再向下平移3个单位,所得到的抛物线的函数关系式为y =ax 2+bx +c ,则b 、c 的值为 ( ) A .b =2,c =-2 B .b =-6,c =6 C .b =-8,c =14 D .b =-8,c =189.已知抛物线y =ax 2+bx +c 如图所示,则下列结论中,正确的是(A .a >0B .a -b +c >0C .b 2-4ac <0D .2a +b =010.如图,在△ABC 中,AB =5,AC =4,BC =3,经过点C 且与边AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 长度的最小值是 ( ) A .2.4 B .2 C .2.5D .2 2二、填空题(请把结果直接填在题中的横线上.)11.在函数y =x -3中,自变量x 的取值范围是_____________.12.已知关于x 的一元二次方程x 2+3x -a =0的一个根是2,则字母a 的值为_____________. 13.抛物线y =x 2-2x +3的顶点坐标是_____________.14.如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,若OE =3,则菱形ABCD 的周长是_____________.15.若某一圆锥的侧面展开图是一个半径为8cm 的半圆,则这个圆锥的底面半径是_____________cm. 16.抛物线y =2x 2+8x +m 与x 轴只有一个公共点,则m 的值为 .17.如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图象相交于A (-2,4)、B (8,2)两点,则能使关于x 的不等式ax 2+(b -k )x +c -m >0成立的x 的取值范围是_____________. 18.如图,O 1O 2=7,⊙O 1和⊙O 2的半径分别为2和3,O 1O 2交⊙O 2于点P .若将⊙O 1以每秒30°的速度绕点P 顺时针方向旋转一周,则⊙O 1与⊙O 2最后一次....相切时的旋转时间为_____________秒.三、解答题(解答需写出必要的文字说明,演算步骤或证明过程.)19.计算(1)2-12+8+48; (2)10×8÷52.20.解方程OE DCBA (第14题)(1)x 2+6=5x ; (2)9(x -1)2-(x +2)2=0.21.某中学为了解该校学生阅读课外书籍的情况, 学校决定围绕“在艺术类、科技类、动漫类、小说类、其他类课外书籍中,你最喜欢的课外书 籍种类是什么?(只写一类)”的问题,在全校范围 内随机抽取部分同学进行问卷调查,并将调查问 卷适当整理后绘制成如图所示的条形统计图. 请结合统计图回答下列问题:(1)在本次抽样调查中,最喜欢哪类课外书籍的人数 最多,有多少人?(2)求出该校一共抽取了多少名同学进行问卷调查?(3)若该校有800人,请你估计这800人中最喜欢动漫类课外书籍的约有多少人?22.已知:如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线AF 与BE的延长线交于点F ,且AF =DC ,连结CF . (1)试说明点D 是BC 的中点;(2)如果AB =AC ,试判断四边形ADCF 的形状,并证明你的结论.23.如图,在Rt △ABC 中,∠C=90°,AB =25cm ,AC=20cm ,点P 从点A 出发,沿AB 的方向匀速运动,BAFCED 第22题图速度为5 cm/s ;同时点M 由点C 出发,沿CA 的方向匀速运动,速度为4 cm/s ,过点M 作MN ∥AB 交BC 于点N .设运动时间为t s(0<t <5). (1)用含t 的代数式表示线段MN 的长;(2)连接PN , 是否存在某一时刻t ,使S 四边形AMNP =48?若存在,求出t 的值;若不存在,请说明理由; (3)连接PM 、PN ,是否存在某一时刻t ,使点P 在线段MN 的垂直平分线上?若存在,求出此时 t 的值;若不存在,请说明理由.24.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元;市场调查发现,若每箱以45元的价格销售,平均每天销售105箱;每箱以50元的价格销售,平均每天销售90箱.假定每天销售量y (箱)与销售价x (元/箱)之间满足一次函数关系式. (1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?25.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C .(备用图1)(备用图2)(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为_______(结果保留根号);ABC的长为_________(结果保留π);②⌒③试判断直线CD与⊙O的位置关系,并说明理由.26.在△ABC中,P是BC边上的一个动点,以AP为直径的⊙O分别交AB、AC于点E和点F.(1)若∠BAC=45 ,EF=4,则AP的长为多少?(2)在(1)条件下,求阴影部分面积.(3)试探究:当点P在何处时,EF最短?请直接写出你所发现的结论,不必证明.27.如图,已知抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,8),若抛物线的对称轴为直线x=-1,且△ABC的面积为40.(1)求这条抛物线的函数关系式;(2)在直线BC上,是否存在这样的点Q,使得点Q到直线AC的距离为5?若存在,请求出符合条件的点Q的坐标;若不存在,请说明理由.28.如图1,在矩形ABCD中,已知AB=4,BC=8,现将此矩形折叠,使得A与C重合,然后沿折痕EF 裁开,得到两个直角梯形,将它们拼在一起,放置于平面直角坐标系内,如图2所示.(1)求图2中梯形EFNM各顶点的坐标.(2)动点P从点M出发,以每秒1个单位的速度,向点E运动;动点Q从点F出发,以每秒a个单位的速度,向点N出发.若点P、Q同时出发,当其中有一点到达终点时,另一点也随之停止运动.设运动时间为t(s).①若a=2,问:是否存在这样的t,使得直线PQ将梯形EFNM的面积分成1∶2两部分?若存在,请求出所有可能的t的值;若不存在,请说明理由.②是否存在这样的a,使得运动过程中,存在这样的t,使得以P、E、Q、O为顶点的四边形为菱形?若存在,请求出所有符合条件的a的值;若不存在,请说明理由.(图1)九年级数学练习(3)参考答案∴ x 1=2,x 2=321.(1)最喜欢小说类课外书籍的人数最多,有20人 (2)50 (3) 192 22.证明:(1)证得△AFE ≌△DBE ∴AF =DB .又∵AF =DC ,∴DC =BD . ∴点D 是BC 的中点. (2)四边形ADCF 是矩形.理由如下:∵AF ∥DC ,AF =DC . ∴四边形ADCF 是平行四边形. ∵AB =AC ,D 为BC 中点,∴AD ⊥BC .∴平行四边形ADCF 是矩形.23.(1)MN=5t (2)存在∵MN ∥AP MN=AP=5t ∴四边形AMNP 是平行四边形∴PN ∥AC ∴ PN ⊥BC ∴S 四边形AMNP =483)420(=∙-=∙t t CN PN 解得t=1或4 (3)存在连接PN 、PM ∵ P 在线段MN 的垂直平分线上 ∴PN=PM 又PN=AM ∴ PM=AM 过M 作MD ⊥AB 于D 则AD=DP=t 25由AMD ∆∽ABC ∆得AB AM AC AD =, 254202025tt-=解得t=57160 24.解:(1)设y =kx +b , 把已知条件代入得,k =-3,b =240.∴y =-3x +240.(2)W =(x -40)(-3x +240)=-3 x 2+360x -9600. (3)W =-3x 2+360x -9600 = -3(x -60)2+1200 ∵a =-3<0,∴抛物线开口向下.又∵对称轴为x =60,∴ 当x <60,W 随x 的增大而增大,由于50≤x ≤55, ∴当x =55时,P 的最大值为1125元. ∴当每箱柑橘的销售价为55元时,可以获得最大利润,为1125元25. (1)图略 (2)①25;′ ②5π; ③直线DC 与⊙O 相切理由:∵在△DCO 中,CD =5,CO =25,DO =5 ∴CD 2+CO 2=25=DO 2.∴∠DCO =90°,即OC ⊥CD . ∴DC 与⊙O 相切.26.(1)连结OE 、OF ,∵∠EOF =2∠EAF ,∠EAF =45°,∴∠EOF =90°.∴ △EOF 是等腰直角三角形, ∴OE =22EF =22. ∴直径AP =2OE =42. (2) S 阴影=S 扇形EOF -S △EOF =90π·(22)2360-12×22×22=2π-4.(3)当AP ⊥BC 时,EF 最短.27.(1)∵S △ABC =12AB ·OC =12AB ×8=40,∴AB =10∵对称轴为直线x =-1,∴A (-6,0),B (4,0).∴设y =a (x +6)(x -4),由抛物线过点C (0,8)得a =-13.∴y =-13x 2-23x +8.(2)存在这样的点Q . 可求得直线BC :y =-2x +8 利用面积法或相似的方法可求得符合条件的点Q 有两个, 分别为Q 1 (- 52,3),……7′ Q 2 (- 52,13) .28.(1)设DE =x ,则CE =AE =8-x ,利用勾股定理可求得x =3,∴E (-3,4),M (3,4),F (-5,0),N (5,0).(2)①当a =2时,MP =t ,QN =10-2t ,S 梯形EFNM =S 矩形ABCD =32, 若S 四边形EFQP ∶S 四边形PQNM =1∶2,可得t =-23(舍去)若S 四边形EFQP ∶S 四边形PQNM =2∶1,可得t =143∴若a =2,则当t =143时,直线PQ 将梯形EFNM 的面积分成1∶2两部分.②第一种情形:不难求得EO =5,由于ON =5,∴若Q 运动到N ,则OQ =5.又∵EP ∥OQ ,只要满足EP =5,则可证四边形EPQO 为菱形. 由EP =6-t =5,可得t =1,此时,可求得a =10第二种情形:若EQOP 为菱形,则DP =3-t ,OP =EP =6-t . 在Rt △OPD 中,由勾股定理得t =116。
初三数学期末考试练习试题及答案
初三数学期末考试练习试题及答案初三数学期末考试练习试题及答案初三数学期末考试练习试题一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×1062.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.54.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.55.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>47.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是 .12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .13.分解因式:3ax2﹣3ay2= .14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .三、解答题(共60分)20.(﹣1)0+()﹣2﹣.21.先化简,再求值:,其中.22.解不等式组:,并把解集在数轴上表示出来.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.参考答案与试题解析一、选择题(每题3分、共30分)1.四会市现在总人口43万多,数据43万用科学记数法表示为( )A.43×104B.4.3×105C.4.3×106D.0.43×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于43万有6位,所以可以确定n=6﹣1=5.解答:解:43万=430000=4.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n 值是关键.2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )A.①②B.②③C.②④D.①④考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称与中心对称的性质解答.解答:解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC 等于( )A.20B.15C.10D.5考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.点评:本题考查了菱形的性质和等边三角形的判定.4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )A.2B.3C.4D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.在平面中,下列命题为真命题的是( )A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )A.m<﹣4b.m>﹣4C.m<4d.m>4考点:根的判别式.专题:计算题.分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.解答:解:∵△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故选D点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1考点:解一元二次方程-配方法.分析:移项后配方,再根据完全平方公式求出即可.解答:解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.点评:本题考查了解一元二次方程的应用,关键是能正确配方.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选:C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:数形结合.分析:根据二次函数的性质首先排除B选项,再根据a、b的值的正负,结合二次函数和一次函数的性质逐个检验即可得出答案.解答:解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=﹣>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选A.点评:本题主要考查了二次函数的性质和一次函数的性质,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:首先根据抛物线y=x2与直线y=x交于A点,即可得出A 点坐标,然后根据抛物线平移的性质:左加右减,上加下减可得解析式.解答:解:∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x﹣1)2+1,故选:C.点评:此题主要考查了二次函数图象的几何变换,关键是求出A 点坐标,掌握抛物线平移的性质:左加右减,上加下减.二、填空题(每题3分、共30分)11.若在实数范围内有意义,则x的取值范围是x≥2 .考点:二次根式有意义的条件.专题:计算题.分析:让二次根式的被开方数为非负数列式求解即可.解答:解:由题意得:3x﹣6≥0,解得x≥2,故答案为:x≥2.点评:考查二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 k<0 .考点:一次函数图象与系数的关系.分析:根据一次函数经过的象限确定其图象的增减性,然后确定k 的取值范围即可.解答:解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故答案为:k<0.点评:本题考查了一次函数的图象与系数的关系,解题的关键是根据图象的位置确定其增减性.13.分解因式:3ax2﹣3ay2= 3a(x+y)(x﹣y) .考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.解答:解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .考点:概率公式.分析:由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.解答:解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .考点:根与系数的关系;一元二次方程的解.分析:根据题意可知,x1+x2=,然后根据方程解的定义得到3x12=x1+1,然后整体代入3x12﹣2x1﹣x2计算即可.解答:解:∵x1,x2是方程3x2﹣x﹣1=0的两个实数根,∴x1+x2=,∵x1是方程x2﹣5x﹣1=0的实数根,∴3x12﹣x1﹣1=0,∴x12=x1+1,∴3x12﹣2x1+x2=x1+1﹣2x1﹣x2=1﹣(x1+x2)=1﹣=.故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系x1+x2=﹣,x1x2=,以及一元二次方程的解.16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程289×(1﹣x)2=256 .考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=256,把相应数值代入即可求解.解答:解:第一次降价后的价格为289×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为289×(1﹣x)×(1﹣x),则列出的方程是289×(1﹣x)2=256.点评:考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣3=0,a﹣b=0,解得a=b=3,所以,ab=33=27,所以,ab的倒数是.故答案为:.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 4+2 .考点:解一元二次方程-因式分解法;平行四边形的性质.专题:计算题.分析:先解方程求得a,再根据勾股定理求得AB,从而计算出?ABCD的周长即可.解答:解:∵a是一元二次方程x2+2x﹣3=0的根,∴(x﹣1)(x+3)=0,即x=1或﹣3,∵AE=EB=EC=a,∴a=1,在Rt△ABE中,AB==a=,∴?ABCD的周长=4a+2a=4+2.故答案为:4+2.点评:本题考查了用因式分解法解一元二次方程,以及平行四边形的性质,是基础知识要熟练掌握.19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 y=﹣ .考点:待定系数法求反比例函数解析式;平行四边形的性质.专题:待定系数法.分析:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).根据平行四边形的性质求出点C的坐标(﹣1,3).然后利用待定系数法求反比例函数的解析式.解答:解:设经过C点的反比例函数的解析式是y=(k≠0),设C(x,y).∵四边形OABC是平行四边形,∴BC∥OA,BC=OA;∵A(4,0),B(3,3),∴点C的纵坐标是y=3,|3﹣x|=4(x<0),∴x=﹣1,∴C(﹣1,3).∵点C在反比例函数y=(k≠0)的图象上,∴3=,解得,k=﹣3,∴经过C点的反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:本题主要考查了平行四边形的性质(对边平行且相等)、利用待定系数法求反比例函数的解析式.解答反比例函数的解析式时,还借用了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.三、解答题(共60分)20.(﹣1)0+()﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,即可得到结果.解答:解:原式=1+4﹣=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.先化简,再求值:,其中.考点:分式的化简求值;约分;分式的乘除法;分式的加减法.专题:计算题.分析:先算括号里面的减法,再把除法变成乘法,进行约分即可.解答:解:原式=&pide;()=×=,当x=﹣3时,原式==.点评:本题主要考查对分式的加减、乘除,约分等知识点的理解和掌握,能熟练地运用法则进行化简是解此题的关键.22.解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:分别解两个不等式得到x≥﹣2和x<1,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.解答:解:,由①得:x≥﹣2,由②得:x<1,∴不等式组的解集为:﹣2≤x<1,如图,在数轴上表示为:.点评:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.捐款人数0~20元21~40元41~60元61~80元681元以上4(1)全班有多少人捐款?(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?考点:扇形统计图;统计表.分析:(1)根据扇形统计图中的捐款81元以上的认识和其所占的百分比确定全班人数即可;(2)分别确定每个小组的人数,最后确定捐款数在21﹣40元的人数即可.解答:解:(1)4&pide;8%=50答:全班有50人捐款.(2)∵捐款0~20元的人数在扇形统计图中所占的圆心角为72°∴捐款0~20元的人数为50×=10∴50﹣10﹣50×32%﹣6﹣4=14答:捐款21~40元的有14人.点评:本题考查了扇形统计图及统计表的知识,解题的关键是确定总人数.24.四张扑克牌的'点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.考点:列表法与树状图法;概率公式.分析:(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)利用树状图列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.解答:解:(1)根据数字2,3,4,8中一共有3个偶数,故从中随机抽取一张牌,这张牌的点数偶数的概率为:;(2)根据从中随机抽取一张牌,接着再抽取一张,列树状图如下:根据树状图可知,一共有12种情况,两张牌的点数都是偶数的有6种,故连续抽取两张牌的点数都是偶数的概率是:=.点评:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).(1)求直线与双曲线的解析式;(2)求不等式ax+b>的解集(直接写出答案)考点:反比例函数与一次函数的交点问题.分析:(1)先把先把(1,2)代入双曲线中,可求k,从而可得双曲线的解析式,再把y=﹣4代入双曲线的解析式中,可求m,最后把(1,2)、(﹣,﹣4)代入一次函数,可得关于a、b的二元一次方程组,解可求a、b的值,进而可求出一次函数解析式;(2)根据图象观察可得x>1或﹣<x<0.主要是观察交点的左右即可.<>解答:解:(1)先把(1,2)代入双曲线中,得k=2,∴双曲线的解析式是y=,当y=﹣4时,m=﹣,把(1,2)、(﹣,﹣4)代入一次函数,可得,解得,∴一次函数的解析式是y=4x﹣2;(2)根据图象可知,若ax+b>,那么x>1或﹣<x<0.<>点评:本题考查了一次函数与反比例函数交点问题,解题的关键是掌握待定系数法求函数解析式,并会根据图象求出不等式的解集.26.(10分)(2013南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?考点:二次函数的应用.分析:(1)把两组数据代入二次函数解析式,然后利用待定系数法求解即可;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,根据总利润等于两种产品的利润的和列式整理得到W与m的函数关系式,再根据二次函数的最值问题解答.解答:解:(1)∵当x=1时,y=1.4;当x=3时,y=3.6,∴,解得,所以,二次函数解析式为y=﹣0.1x2+1.5x;(2)设购进A产品m吨,购进B产品(10﹣m)吨,销售A、B两种产品获得的利润之和为W元,则W=﹣0.1m2+1.5m+0.3(10﹣m)=﹣0.1m2+1.2m+3=﹣0.1(m﹣6)2+6.6,∵﹣0.1<0,∴当m=6时,W有最大值6.6,∴购进A产品6吨,购进B产品4吨,销售A、B两种产品获得的利润之和最大,最大利润是6.6万元.点评:本题考查了二次函数的应用,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,比较简单,(2)整理得到所获利润与购进A产品的吨数的关系式是解题的关键.27.(12分)(2008包头)阅读并解答:①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;(2)利用你的猜想结论,解决下面的问题:已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.考点:根与系数的关系;解一元二次方程-公式法;解一元二次方程-因式分解法;根的判别式.专题:压轴题;阅读型.分析:(1)由①②③中两根之和与两根之积的结果可以看出,两根之和正好等于一次项系数与二次项系数之比的相反数,两根之积正好等于常数项与二次项系数之比.(2)欲求k的值,先把代数式x12+x22变形为两根之积或两根之和的形式,然后与两根之和公式、两根之积公式联立组成方程组,解方程组即可求k值.解答:解:(1)猜想为:设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.理由:设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么由求根公式可知,,.于是有,,综上得,设ax2+bx+c=0(a≠0)的两根为x1、x2,则有,.(2)x1、x2是方程x2+(2k+1)x+k2﹣2=0的两个实数根∴x1+x2=﹣(2k+1),x1x2=k2﹣2,又∵x12+x22=x12+x22+2x1x2﹣2x1x2=(x1+x2)2﹣2x1x2∴[﹣(2k+1)]2﹣2×(k2﹣2)=11整理得k2+2k﹣3=0,解得k=1或﹣3,又∵△=[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣,∴k=1.点评:本题考查了学生的总结和分析能力,善于总结,善于发现,学会分析是学好数学必备的能力.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
九年级数学练习册答案
九年级数学练习册答案第一章:整数1. 计算下列各题1.(-4) + (-3) = -72.(-5) - (-9) = 43.(-6) × 5 = -304.(-24) ÷ (-4) = 6第二章:分数1. 计算下列各题1.3/5 + 2/5 = 5/5 = 12.4/7 - 1/7 = 3/73.2/3 × 5/6 = 10/18 = 5/94.3/4 ÷ 2/5 = (3/4) × (5/2) = 15/8第三章:代数式1. 计算下列各题1.3x + 4y, 当x=2, y=-1时,代入得:3(2) + 4(-1) = 6 - 4 = 22.2(x-3) + 4y, 当x=5, y=2时,代入得:2(5-3) + 4(2) = 4 + 8 = 123.3x - 5y, 当x=-2, y=3时,代入得:3(-2) - 5(3) = -6 - 15 = -214.4(x+2y), 当x=1, y=0时,代入得:4(1+2(0)) =4(1+0) = 4(1) = 4第四章:平方根1. 计算下列各题1.√16 = 42.√25 = 53.√36 = 64.√64 = 81. 计算下列各题1.长方形的周长:周长 = 2(长 + 宽)若长 = 5cm,宽 = 3cm,则周长 = 2(5 + 3) = 2(8) = 16cm2.三角形的面积:面积 = 底边长 × 高 ÷ 2若底边长 = 6cm,高 = 4cm,则面积 = 6 × 4 ÷ 2 = 24 ÷ 2 = 12cm^23.圆的面积:面积= π × 半径^2若半径 = 3cm,则面积= π × 3^2 = π × 9cm^24.正方体的体积:体积 = 边长^3若边长 = 4cm,则体积 = 4^3 = 64cm^31. 计算下列各题1.投掷一枚骰子,点数为6的概率为:1/62.抽一张扑克牌,为红桃的概率为:1/43.从一副扑克牌中随机抽取一张牌,为A的概率为:4/52 = 1/134.一次摸到有红外线的扑克牌的概率为:0(假设红外线的扑克牌不存在)以上是九年级数学练习册部分题目的答案。
人教版九年级数学上册《配方法的应用》专项练习题-附带答案
人教版九年级数学上册《配方法的应用》专项练习题-附带答案类型一 配方法求字母的值1.如果221016890x y x y +--+= 求x y的值. 【答案】58 【解析】【分析】先将89拆成64+25 然后配成两个完全平方式相加 再根据非负数的性质“两个非负数相加和为0 这两个非负数的值都为0” 解出x 、y 的值即可求解.【详解】解:由已知221016890x y x y +--+=得()()22580x y -+-=()()225=080x y ∴--=, 5,8x y ∴==58x y ∴=. 【点睛】本题考查了配方法的应用和非负数的性质 解题关键是掌握两个非负数相加和为0 这两个非负数的值都为0.2.阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式 例如:把x 2 + 6x ﹣16分解因式 我们可以这样进行:x 2 + 6x ﹣16=x 2 +2·x ·3+32-32﹣16(加上32 再减去32)=(x +3)2-52(运用完全平方公式)=(x +3+5)(x +3﹣5) (运用平方差公式)=(x +8)(x ﹣2)(化简)运用此方法解决下列问题:(1)把x 2﹣8x ﹣9分解因式.(2)已知:a 2+b 2﹣6a +10b +34=0 求多项式4a 2 +12ab +9b 2的值.【答案】(1)()()19x x +-;(2)81【解析】【分析】(1)按照阅读材料的方法进行因式分解即可;(2)利用配方法把原式变形得()()22350a b -++= 从而可得3a =5b =- 再由()222412923a ab b a b ++=+ 进行求解即可. 【详解】解:(1)289x x --22224449x x =-⋅⋅+--()2245x =--()()4545x x =-+--()()19x x =+-;(2)∵22610340a b a b +-++=∵226910250a a b b -++++=∵()()22350a b -++=∵3a = 5b =-∵()()222241292361581a ab b a b ++=+=-=.【点睛】本题考查的是配方法的应用 掌握完全平方公式和平方差公式、偶次方的非负性是解题的关键.3.已知a -b =2 ab +2b -c 2+2c =0 当b ≥0 -2≤c <1时 整数a 的值是_____.【答案】2或3【解析】【分析】由a −b =2 得出a =b +2 进一步代入2220ab b c c +-+= 利用完全平方公式得到()()222130b c +---= 再根据已知条件求出b 的值 进一步求得a 的值即可. 【详解】解:∵a −b =2∵a =b +2∵222ab b c c +-+()2222b b b c c =++-+()2242b b c c =+--()()22213b c =+---=0∵()()22213b c +=-+∵b ≥0 −2≤c <1∵310c -≤-<∵()2019c <-≤∵()231312c <-+≤∵3<()22b +≤12∵a 是整数∵b 是整数∵b =0或1∵a =2或3故答案为:2或3.【点睛】此题考查配方法的运用 掌握完全平方公式是解决问题的关键.4.若a =x +19 b =x +20 c =x +21 则a 2+b 2+c 2-ab -bc -ac =___________.【答案】3【解析】【分析】先利用已知条件求解,,,a b b c a c 再把原式化为()()()22212a b b c a c ⎡⎤-+-+-⎣⎦ 再整体代入求值即可. 【详解】 解: a =x +19 b =x +20 c =x +211,1,2,a b b c a c∴ a 2+b 2+c 2-ab -bc -ac =()22222221222a b c ab bc ac ++--- 22222212222a ab b b bc c a ac c 22212a b b c a c 222111126322故答案为:3【点睛】本题考查的是利用完全平方式的特点求解代数式的值 因式分解的应用 掌握“完全平方式的特点”是解题的关键.5.阅读材料:若m 2+2mn +2n 2﹣6n +9=0 求m 和n 的值.解:∵m 2+2mn +2n 2﹣6n +9=0∵m 2+2mn +n 2+n 2﹣6n +9=0∵(m +n )2+(n ﹣3)2=0∵m +n =0且n ﹣3=0∵m =﹣3 n =3根据你的观察 探究下面的问题:(1)若x 2+2xy +2y 2﹣2y +1=0 求x 、y 的值;(2)已知a b c 是∵ABC 的三边长 满足a 2+b 2=10a +12b ﹣61 且∵ABC 是等腰三角形 求c 的值.【答案】(1)x =-1 y =1;(2)5或6【解析】【分析】(1)仿照材料的过程进行凑成两个非负数的和为0 即可求得结果;(2)仿照材料的过程进行凑成两个非负数的和为0 即可分别求得a和b的值再根据等腰三角形的性质可求得c的值.【详解】(1)∵x2+2xy+2y2﹣2y+1=0∵x2+2xy+y2+y2﹣2y+1=0∵(x+y)2+(y﹣1)2=0∵x+y=0且y﹣1=0∵x=﹣1 y=1(2)∵a2+b2=10a+12b﹣61∵a2+b2-10a-12b+61=0∵(a-5)2+(b﹣6)2=0∵a-5=0且b﹣6=0∵a=5 b=6∵∵ABC是等腰三角形∵c=a=5或c=b=6即c的值为5或6.【点睛】本题是材料问题考查了配方法的应用平方非负性的性质等腰三角形的性质等知识关键是读懂材料中提供的解题过程和方法.6.在平面直角坐标系xOy中满足不等式x2+y2≤2x+2y的整数点坐标(x y)的个数为_____.【答案】9【解析】【分析】由已知不等式变形后利用完全平方公式化简根据x与y均为整数确定出x与y的值即可得到结果.【详解】解:由题设x2+y2≤2x+2y得0≤(x﹣1)2+(y﹣1)2≤2因为x y 均为整数 所以有或22(1)0(1)1x y ⎧-=⎨-=⎩或22(1)1(1)1x y ⎧-=⎨-=⎩或22(1)1(1)0x y ⎧-=⎨-=⎩ 解得:11x y =⎧⎨=⎩ 或12x y =⎧⎨=⎩或10x y =⎧⎨=⎩或01x y =⎧⎨=⎩或00x y =⎧⎨=⎩或02x y =⎧⎨=⎩或21x y =⎧⎨=⎩或20x y =⎧⎨=⎩或22x y =⎧⎨=⎩ 以上共计9对(x y ).故答案为:9.【点睛】本题考查坐标与图形的性质、配方法的应用、非负数的性质等知识 是重要考点 掌握相关知识是解题关键.7.阅读下面的材料:若22228160m mn n n -+-+= 求m n 的值.解:22228160m mn n n -+-+=.()()22228160m mn n n n ∴-++-+=.22()(4)0m n n ∴-+-=. 2()0m n ∴-= 2(4)0n -=.4n ∴= 4m =.根据你的观察 探究下列问题:(1)已知等腰三角形ABC 的两边长a b 都是正整数 且满足221012610a b a b +--+= 求ABC 的周长;(2)已知6a b -= 216730ab c c +-+= 求a b c ++的值.【答案】(1)ABC 的周长为16或17;(2)8a b c ++=【解析】【分析】(1)根据题中所给方法把221012610a b a b +--+=进行配方求解a 、b 的值 然后根据等腰三角形的定义及三角形三边关系进行分类求解即可;(2)由6a b -=可知6b a =- 然后代入等式可得()2616730a a c c -+-+= 进而根据配方即可求解.【详解】解:(1)∵221012610a b a b +--+=∵22102512360a a b b -++-+=∵()()22560a b -+-=∵50,60a b -=-=∵5,6a b ==∵等腰三角形ABC 的两边长a b 都是正整数∵当5a =为腰 则6b =为底 满足三角形三边关系 故ABC 的周长为5+5+6=16;当6b =为腰 则5a =为底 满足三角形三边关系 故ABC 的周长为5+6+6=17;(2)∵6a b -=∵6b a =-∵()221673616730ab c c a a c c +-+=-+-+=226916640a a c c -++-+=()()22380a c -+-=∵30,80a c -=-=∵3,8a c ==∵363b =-=-∵8a b c ++=.【点睛】本题主要考查配方法的应用 熟练掌握完全平方公式是解题的关键.类型二 配方法求最值8.已知y =x y 均为实数) 则y 的最大值是______.【答案】【解析】【分析】将根据题意0y ≥ 14x ≤≤ 原式y = 可得248y ≤≤故2y ≤≤进而即可求得最大值.【详解】解:0y ≥ 15x ≤≤ 244y =+=+248y ∴≤≤.0y ≥2y ∴≤≤∴y的最大值为故答案为:【点睛】本题考查了二次根式的求值问题 配方法的应用 解本题的关键是通过y 2为媒介求得y 的取值范围从而找出最大最小值.9.已知实数m n 满足21m n -= 则代数式22242m n m ++-的最小值等于___________.【答案】3【解析】【分析】由21m n -=可得21,n m 再代入22242m n m ++- 再利用配方法配方 从而可得答案.【详解】 解: 21m n -=21,n m ()222242=2142m n m m m m ∴++-+-+-264m m()23133,m =+-≥ 所以22242m n m ++-的最小值是3故答案为:3【点睛】本题考查的是代数式的最值 配方法的应用 熟练的运用配方法求解代数式的最值是解本题的关键. 10.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式 此公式与古希腊几何学家海伦提出的公式如出一辙 即三角形的三边长分别为a b c 记2a b c p ++= 则其面积S =这个公式也被称为海伦—秦九韶公式.若3p = 2c = 则此三角形面积的最大值是_________.【解析】【分析】根据公式算出a +b 的值 代入公式 根据完全平方公式的变形即可求出解.【详解】解:∵2a b c p ++=p =3 c =2 ∵232a b ++= ∵a +b =4∵a =4−b∵S∵当b =2时 S【点睛】本题考查了二次根式与完全平方公式的应用 解答本题的关键是明确题意 表示出相应的三角形的面积.二、解答题(共0分)11.【阅读材料】把代数式通过配凑等手段 得到局部完全平方式 再进行有关运算和解题 这种解题方法叫做配方法.如:对于268a a ++.(1)用配方法因式分解:223x x +-;(2)对于代数式2128x x - 有最大值还是最小值?并求出2128x x-的最大值或最小值.【答案】(1)()()31x x +-(2)代数式2128x x -有最大值 最大值为18- 【解析】【分析】(1)先用配方法 再用平方差公式分解即可;(2)先利用配方法变形 根据偶次方的非负性可知最小值 继而即可求得2128x x-的最大值. (1)223x x +-2214x x =++- ()214x =+- ()()1212x x =+++-()()31x x =+-;(2)∵228x x -()224x x =-()22444x x =-+-()2224x ⎡⎤=--⎣⎦()2228x =--∵当2x =时 ()2228x --即228x x -有最小值-8∵代数式2128x x -有最大值 最大值为18-. 【点睛】本题考查配方法在因式分解中的应用及代数式求值 解题的关键是熟练掌握配方法. 12.阅读下面的解答过程 求y 2+4y +5的最小值.解:y 2+4y +5=y 2+4y +4+1=(y +2)2+1∵(y +2)2≥0 即(y +2)2的最小值为0∵y2+4y+5=(y+2)2+1≥1∵y2+4y+5的最小值为1仿照上面的解答过程求:(1)m2﹣2m+2的最小值;(2)3﹣x2+2x的最大值.【答案】(1)1;(2)4【解析】【分析】(1)利用完全平方公式把原式变形根据偶次方的非负性解答即可.(2)利用完全平方公式把原式变形根据偶次方的非负性解答即可.【详解】解:(1)m2﹣2m+2=m2-2m+1+1=(m-1)2+1∵(m-1)2≥0∵(m-1)2+1≥1 即m2﹣2m+2的最小值为1;(2)3-x2+2x=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4∵(x-1)2≥0∵-(x-1)2≤0∵-(x-1)2+4≤4 即3-x2+2x的最大值为4.【点睛】本题考查的是配方法的应用掌握完全平方公式、偶次方的非负性是解题的关键.13.配方法可以用来解一元二次方程还可以用它来解决很多问题.例如:求﹣3(a+1)2+6的最值.解:∵﹣3(a+1)2≤0 ∵﹣3(a+1)2+6≤6 ∵﹣3(a+1)2+6有最大值6 此时a=﹣1.(1)当x=时代数式2(x﹣1)2+3有最(填写大或小)值为.(2)当x=时代数式﹣x2+4x+3有最(填写大或小)值为.(3)如图矩形花园的一面靠墙另外三面的栅栏所围成的总长度是16m 当垂直于墙的一边长为多少时花园的面积最大?最大面积是多少?【答案】(1)1 小3(2)2 大7(3)当垂直于墙的一边长为4米时花园有最大面积为32【解析】【分析】(1)先根据平方的性质求出代数式的取值范围再进行分析计算即可;(2)先配方把多项式变成完全平方形式再进行分析计算;(3)根据总长为16m 构造方程求解即可.(1)解:∵2(x﹣1)2≥0∵2(x﹣1)2+3≥3∵当x=1时代数式有最小值为3.故答案为:1 小3.(2)解:﹣x2+4x+3=﹣(x2﹣4x)+3=﹣(x2﹣4x+4﹣4)+3=﹣(x﹣2)2+7∵﹣(x﹣2)2≤0∵﹣(x﹣2)2+7≤7∵当x=2时代数式有最大值为7.故答案为:2 大7.(3)解:设垂直于墙的一边长为x m 则平行于墙的一边长为(16﹣2x)m花园的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x2﹣8x)=﹣2(x2﹣8x+16﹣16)=﹣2(x﹣4)2+32∵﹣2(x﹣4)2≤0∵﹣2(x﹣4)2+32≤32∵当x=4时代数式有最大值为32即当垂直于墙的一边长为4米时花园有最大面积为32.【点睛】本题主要考查配方法的实际运用解题的关键在于通过配方法把代数式化成完全平方式再进行分析.类型三配方法在几何图形中的应用14.如图∵ABC=90° AC=6 以AB为边长向外作等边∵ABM连CM则CM的最大值为________________.【答案】3##3+【解析】【分析】过点M作MD∵BC交BC的延长线于点D设AB=x利用勾股定理表示出BC利用解直角三角形表示出MD BD再利用勾股定理求得CM的长根据配方法利用非负数的性质即可得到CM的最大值.【详解】如图 过点M 作MD ∵BC 交BC 的延长线于点D设AB =x 则BC∵∵ABM 是等边三角形∵BM =AB =x ∵ABM =60°∵∵ABC =90°∵∵MBD =30°∵MD ∵BC1122MD BM x ∴==BD x ==在Rt∵MDC 中CM =∵当x 2=18时 CM369723+∵CM 的最大值为:3.故答案为:3.【点睛】本题考查勾股定理以及配方法 掌握配方法求出最值是解题的关键.15.已知点P 的坐标为(2 3) A 、B 分别是x 轴、y 轴上的动点 且90APB ∠=︒C 为AB 的中点 当OC 最小时则点B 的坐标为____.【答案】(0,3)【解析】【分析】利用中点坐标公式将C 点坐标表示出来后 运用勾股定理222AP PB AB +=得到y 与x 的关系式再将OC 的长度用含有y 的式子表示出来 利用配方法即可求出当OC 最小时点B 的坐标.【详解】解:设A 点坐标为(,0)x B 点坐标为(0,)y 则中点C 点坐标为(,)22x y;∵90APB ∠=︒∵222AP PB AB +=∵2222(2)94(3)x y x y -+++-=+化简得:2313x y +=1332yx -=∵12OC ==将1332yx -=代入上式得:12OC =变形得:OC∵当3y =时 OC 最小 此时B 点坐标为(0,3).故答案为(0,3).【点睛】本题主要考查运用配方法求解动点问题 正确理解题意、熟练掌握相关知识、灵活应用数形结合思想是解题的关键 属于综合类问题.16.已知:如图 在Rt ABC 中 90B ∠=︒ 8cm AB BC ==.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动 同时点Q 从点B 开始沿BC 边向点C 以1cm/s 的速度移动.(1)求几秒后 PBQ △的面积等于26cm(2)求几秒后 PQ 的长度等于?(3)求几秒后 PQ 的长度能取得最小值 其最小值为多少cm ?【答案】(1)2秒或6秒;(2)1秒或7秒;(3)4 【解析】【分析】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据三角形面积公式列出方程即可;(2)设运动时间为y 秒 则8PB y =- PQ y = 根据勾股定理列出方程即可;(3)设运动时间为t 秒 则8PB t =- PQ t = 根据勾股定理列出2PQ 的式子 根据配方法即可求得最小值;【详解】(1)设运动时间为x 秒 则8PB x =- PQ x = 根据题意得:()1862x x -= 解得122,6x x ==答:2秒或6秒后 PBQ △的面积等于26cm(2)设运动时间为y 秒 则8PB y =- PQ y =90B ∠=︒在Rt PQC 中222PQ PB BQ =+(()2228y y =-+ 解得121,7y y ==答:1秒或7秒后 PQ 的长度等于(3)设运动时间为t 秒 则8PB t =- PQ t =90B ∠=︒在Rt PQC 中222PQ PB BQ =+22(8)t t =-+221664t t =-+22(816)32t t =-++22(4)32t =-+32≥∴当4t =时 取得最小值为PQ ==即4秒后 PQ 取得最小值 最小值为【点睛】本题考查了一元二次方程的应用 配方法的应用 根据题意列出方程是解题的关键.17.配方法在初中数学中运用非常广泛 可以求值 因式分解 求最值等.如:求代数式的最值:2222(1)1x x x 在1x =-时 取最小值1(1)求代数式24x x -的最小值.(2)2245x x --+有最大还最小值 求出其最值.(3)求221x x +的最小值.(4)22614a b ab b ++-+的最小值.(5)三角ABE 和三角形DEC 的面积分别为4和9 求四边形ABCD 的面积最小值.【答案】(1)-4;(2)有最大值 且为7;(3)2;(4)2;(5)25【解析】【分析】(1)(2)(3)(4)利用配方法变形 可得最值;(5)设S △BEC =x 由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED从而可得S △AED =36x再将四边形ABCD 的面积变形得到21312++ 可得结果.【详解】解:(1)()222444424x x x x x -=-+-=--∵在x =2时 有最小值-4;(2)2245x x --+=()2225x x -++=()222115x x -++-+=()2217x -++∵当x =-1时 有最大值 且为7;(3)221x x +=2221x x ⎛⎫⎪⎭+-≥⎝∵当x =1时 221x x +的最小值为2;(4)22614a b ab b ++-+ =22213612244a ab b b b +++-++ =()22134224a b b ⎛⎫++-+ ⎪⎝⎭当a =-2 b =4时 代数式有最小值2;(5)设S △BEC =x 已知S △AEB =4 S △CED =9则由等高三角形可知:S △BEC :S △CED =S △AEB :S △AED∵x :9=4:S △AED∵S△AED=36 x∵四边形ABCD面积=4+9+x+36x=21312++∵当x=36时四边形ABCD面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的需要正确变形才可以应用本题中等难度略大.。
2024年中考九年级数学复习练习题:一元二次方程含参考答案
2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。
九年级中考数学复习《平面直角坐标系》专项练习题-附带答案
九年级中考数学复习《平面直角坐标系》专项练习题-附带答案一、单选题1.在平面直角坐标系中,点P(3,﹣2)在第()象限A.一B.二C.三D.四2.在平面直角坐标系中,已知线段PQ=4,且PQ⊥x轴,若点P的坐标为(5,−2),则点Q的坐标为()A.(5,2)B.(9,−2)C.(5,2)或(5,−6)D.(9,−2)或(1,−2)3.在平面直角坐标系中,点P(m﹣2,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5 B.6 C.7 D.84.在平面直角坐标系中,点A,B,C,D,E,F的位置如图所示,如果点E的坐标是(﹣3,0),点F的坐标是(3,0),则在第三象限上的点是()A.点A B.点B C.点C D.点D5.图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,−4),A(−1,2),则点B的坐标为()A.(−2,−3)B.(−4,−1)C.(−4,−2)D.(−2,−2)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)7.如图,在平面直角坐标系xOy中,四边形ABCO是正方形,已知点A的坐标为(2,1),则点C的坐标为()A.(−1,2)B.(1,−2)C.(−1,√5)D.(−2,1)8.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4)B..(1,3)C..(2,4)D..(2,3)二、填空题9.点A,点B同在平行于x轴的直线上,则点A与点B的坐标相等.10.已知点P(x﹣3,2x﹣4)在纵轴上,则x的值是.11.如果将点A(-3,-1)向右平移2个单位长度,再向下平移3个单位得到点B,那么点B的坐标是.12.将点A(3,-4)沿X轴负方向平移3个单位长度,得到A′点的坐标为,再将A′沿Y轴正方向平移4个单位长度,得到A″点的坐标为13.北京中轴线南起永定门,北至钟鼓楼,全长7.8千米.如图是利用平面直角坐标系画出的中轴线及其沿线部分地点分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示天安门的点的坐标为(0,−1),表示王府井的点的坐标为(1,−1),则表示永定门的点的坐标为.三、解答题14.在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我两架飞机在A(-1,2)与B(3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.15.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?16.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.17.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.18.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,);(2)点A4n﹣1的坐标(n是正整数)为(3)指出蚂蚁从点A2013到点A2014的移动方向.参考答案1.D2.C3.D4.C5.C6.D7.A8.A9.纵10.311.(-1,-4)12.(0,-4);(0,0)13.(0,−7)14.解:能.如下图,先把AB四等分,然后过靠近A点的分点M作AB的垂线即为y轴,以AM为单位长度沿y轴向下2个单位即为O点,过点O作x轴垂直于y轴,然后描出敌机位置为点N.15.解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).16.(1)解:∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)∴平移规律为:向右平移6个单位,向上平移4个单.如图所示:(2)解:A′(2,3),B′(1,0),C′(5,1).17.(1)解:由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)解: 根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)解: 根据平面直角坐标系,P(-1,-3)的位置如下图18.【解答】解:(1)由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A4(2,0),A8(4,0);故答案为:2,0;4,0;(2)根据(1)OA4n=4n÷2=2n,∴点A4n﹣1的坐标(2n﹣1,0);(3)∵2013÷4=503…1,∴从点A2013到点A2014的移动方向与从点A1到A2的方向一致,为→。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学练习题及答案【篇一:初中数学中考模拟题及答案(一)】>一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.下面几个数中,属于正数的是() a.3b.?12c. d.0a. b. c. d.(第2题)a.平均数b.众数c.中位数d.方差鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()4.已知方程|x|?2,那么方程的解是() a.x?2b.x??2c.x1?2,x2??2d.x?45、如图(3),已知ab是半圆o的直径,∠bac=32o,d是弧ac 的中点,那么∠dac的度数是()6.下列函数中,自变量x的取值范围是x?2的函数是() a.y? b.y?c.y? d.y??7.在平行四边形abcd中,?b?60,那么下列各式中,不能成立的是()..a.?d?60?b.?a?120?c.?c??d?180 d.?c??a?180??8.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过() a.66厘米b.76厘米c.86厘米d.96厘米二、填空题(每小题3分,共24分)9.2008年北京奥运圣火在厦门的传递路线长是17400米, 10.一组数据:3,5,9,12,6的极差是 11??2x??412.不等式组?的解集是.x?3?0?13.如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r米,圆心角均为90?,则铺上的草地共有平方米.14.若?o的半径为5厘米,圆心o到弦ab的距离为3厘米,则弦长ab为厘米.15.如图,在四边形abcd中,p是对角线bd的中点,e,f分别是ab,cd的中点,ad?bc,?pef?18,则?pfe的度数是.?(第14题)bbe e(第16题)(第17题)16.如图,点g是△abc的重心,cg的延长线交ab于d,ga?5cm,gc?4cm,gb?3cm,将△adg绕点d旋转180?得到△bde,则de?cm,△abc的面积?cm2.三、解答题(每题8分,共16分) 17.已知a?18.先化简,再求值四、解答题(每题10分,共20分)19.四张大小、质地均相同的卡片上分别标有1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取得的两张卡片上的数字之积为奇数的概率.xx?1213?1,b?13?1,求ab???ab?b??的值。
a??x?xx22,其中x?2.20.如图,为了测量电线杆的高度ab,在离电线杆25米的d处,用高1.20米的测角仪cd测得电线杆顶端a的仰角??22?,求电线杆ab的高.(精确到0.1米)参考数据:sin22??0.3746,cos22??0.9272,tan22??0.4040,cot22??2.4751.五、解答题(每题10分,共20分)ae b(第20题)21.某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p?100?2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?22.(本题满分10分)已知一次函数与反比例函数的图象交于点p(?2,1)和q(1,m).(1)求反比例函数的关系式;(2)求q点的坐标;(3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当x为何值时,一次函数的值大于反比例函数的值?六、解答题(每题10分,共20分)24.已知:抛物线y?x2?(b?1)x?c经过点p(?1,?2b).(1)求b?c的值;(2)若b?3,求这条抛物线的顶点坐标;(3)若b?3,过点p作直线pa?y轴,交y轴于点a,交抛物线于另一点b,且bp?2pa,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)、七、解答题(本题12分)25已知:如图所示的一张矩形纸片abcd(ad?ab),将纸片折叠一次,使点a与c重合,再展开,折痕ef交ad边于e,交bc边于f,分别连结af和ce.(1)求证:四边形afce是菱形;2(2)若ae?10cm,△abf的面积为24cm,求△abf的周长;(3)在线段ac上是否存在一点p,使得2ae?ac?ap?若存在,请说明点p的位置,并予以证明;若不存在,请说明理由.ad2八、解答题(本题14分)26、如下图:某公司专销产品a,第一批产品a上市40天内全部售完.该公司对第一批产品a上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品a的销售利润与上市时间的关系.(1)试写出第一批产品a的市场日销售量y与上市时间t的关系式;(2)第一批产品a上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?中考数学模拟题数学试题参考答案及评分标准【篇二:初三中考数学试题(附答案)】-- --- - -- - -- - -- - -号---考---准---- - -- - -- - -- - -- - --) - --题 - --答 --名-准- -姓-不---内 - --线 - --封 - --密 - --( - -- - -- - -- - -- - -级---班-------------------------------------------------初三数学试题2007.5注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.?13的相反数是,16的算术平方根是2. 分解因式:x2?93. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为亿元. 4.如果x=1是方程3x?4?a?2x的解,那么a = . 5. 函数y?1x?1中,自变量x的取值范围是 . 6. 不等式组??3x?1?5的解集是.?x?3?07. 如图,两条直线ab、cd相交于点o,若∠1=35?8. 如图,d、e分别是△abc的边ac、ab上的点,请你添加一个条件: , 使△ade与△abc相似.9. 如图,在⊙o中,弦ab=1.8cm,圆周角∠acb=30?,则⊙o的直径为__________cm.a e adbc(第7题) (第8题) (第9题) 10. 若两圆的半径是方程x2?7x?8?0的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是.数学第1页(共8页)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm,母线长为16cm,那么围成这个纸帽的面积(不计接缝)是_________cm(结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则第3个第1个第2个(1)第5个图案中有白色纸片张;(2)第n个图案中有白色纸片张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是() a.a?a?2ab.a?a?ac.a?a?ad.ab22242362632??2?a2b416.下列运算正确的是()A.yy???x?yx?yB.2x?y2?3x?y3y?x1??x2?y2x?yx2?y2C.?x?yx?yD.17.某物体的三视图如下,那么该物体形状可能是()正俯左视视视图图图a.长方体b. 圆锥体c.立方体d. 圆柱体 18.下列事件中,属于随机事件的是() a.掷一枚普通正六面体骰子所得点数不超过6 b.买一张体育彩票中奖c.太阳从西边落下d.口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31的斜坡向上滚动了5米,此时钢球距地面的高度是()米A.5sin31数学第2页(共8页)??B.5cos31?C.5tan31?D.(第19题)------------------------------- - -- - -- - -- - -- - -号---考---准---- - -- - -- - -- - -- - --) - --题 - --答 - -名-准- -姓-不---内 - --线 - --封 - --密 - --( - -- - -- - -- - -- - -级---班-------------------------------------------------20.二次函数y?ax2?bx?c的图象如图所示,则下列各式:①abc?0;②a?b?c?0;③a?c?b;④a?c?b2中成立的个数是( ) a. 1个 b. 2个 c. 3个 d. 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)?2(1)计算:??1??2??-2sin45?+12?1; (2)解方程:2x?2?2x?1?1求证:ae=bd adbce数学第3页(共8页)石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?数学第4页(共8页)x----------------------------- -- - -- - -- - -- - -- - -号---考---准---- - -- - -- - -- - -- - --) - --题 - --答 - -名-准- -姓-不---内 - --线 - --封 - --密 - --( - -- - -- - -- - -- - -级---班-------------------------------------------------25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.别图1图226. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y(米)与开挖时间t(天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?甲乙数学第5页(共8页)【篇三:九年级数学试题及答案】class=txt>(总分:150分完成时间:120分钟)一、填空题(每题3分,共30分)y21?02x??12222x?5xy?y?07x?1?023x【】1、方程:①②③④中2一元二次方程是a. ①和②b. ②和③c. ③和④d. ①和③【】2、若x?y?1?(y?3)2?0,则x?y的值为a.1b.-1c.7d.-7【】3、下列各式计算正确的是a?.2??c.?.?2【】4、已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是a.1b.2c.-2d.-1【】5?1?2a,则()a.a<b. a≤ c. a>d. a≥【】6、下列一元二次方程中两根之和为2的是a.x2+2x=3 b.x2+2x=-3 c.2x2-2x+3 =0 d.x2-2x-3 =0【】7、某超市一月份的营业额为200万元,一月份、二月份、三月份的营业额共1000万元,如果平均每月的增长率为x,则由题意列方程为A、200?1?x??1000B、200?200?2x?1000212121212C、200?200?3x?1000 D、2001??1?x???1?x??10002??【】8、已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是 a.a2 b,a2c.a2且a≠1 d.a-2【】9、下列图形中,既是轴对称图形又是中心对称图形的是22 m-n 22【】10、设m>n>0,m+n=4mn,则mn=a.6 b.3 c. 23d.3 二、填空题(每题3分,共24分) 11、计算:8-2=.12、若2x?1有意义,则x的取值范围是13、在下列二次根式45a,2x3,b,x2?y2,4y2?4y?4,.5x中,最简二次根式的个数有个14、方程x2?2x?0的解为 .15、有一人患了流感,经过两轮传染后共有121人患了流感,则经过三轮传染后共有19、计算:(每题6分,共12分)(1)11a1b2123ab1?2?1;(2)?(?2). 3352bab20、(6分)计算21?23???2??1??242????21、(6分)解方程:x2-4x+1=0(配方法) 22、(6分)解方程:(x-5)2=2(x-5)23、(8分) 观察下列各式:?你将猜想:111111?2;2??3;3??4……,请334455??(2) 计算(请写出计算过程(3) 请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来: 24、(10分)关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。