高中物理传送带模型滑块木板模型
2024版新教材高考物理全程一轮总复习第三章牛顿运动定律专题强化五传送带模型和“滑块_木板”模型学生
专题强化五传送带模型和“滑块—木板”模型【素养目标】 1.会对传送带上的物体进行受力分析,能正确解答传送带上物体的动力学问题.2.能正确运用动力学观点处理“滑块—木板模型”.题型一传送带模型1.模型特点传送带问题一般分为水平传送带、倾斜传送带两种类型,其实质是物体与传送带间的相对运动问题.2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口.3.“传送带”问题解题思路考向1 动力学中水平传送带问题例 1 如图1所示为地铁的包裹安检装置,其传送包裹部分可简化为如图2所示的传送带示意图.若安检时某乘客将可视为质点的包裹静止放在传送装置的最左端,传送装置始终以v0=0.5 m/s的速度顺时针匀速运动,包裹与传送装置间的动摩擦因数为μ=0.05,传送装置全长l=2 m,包裹传送到最右端时乘客才能将其拿走,重力加速度g=10 m/s2.(1)求当包裹与传送装置相对静止时,包裹相对于传送装置运动的距离;(2)若乘客将包裹放在传送装置上后,立即以v=1 m/s的速度匀速从传送装置最左端走到传送装置的最右端,求乘客要想拿到包裹,需要在传送装置最右端等待的时间.考向2 动力学中的倾斜传送带问题例 2[2023·江苏常州月考]图甲为某口罩生产车间实景图,图乙为车间中两段传送带简化图,1为长度L1=2 m的水平传送带,2为长度L2=1 m、倾角θ=37°的倾斜传送带.现将质量m=0.2 kg的口罩盒(包括口罩)从静止开始轻轻地放在传送带1的右端点a处,口罩盒(包括口罩)到达传送带1左端点b处刚好与传送带1的速度相等.口罩盒(包括口罩)与传送带1、2之间的动摩擦因数分别为μ1=0.4、μ2=0.5.口罩盒(包括口罩)在连接点b处滑上传送带2时速度大小不变,两传送带均逆时针转动,已知sin 37°=0.6,cos 37°=0.8,重力加速度取g=10 m/s2.求:(1)传送带1的速度大小v1;(2)要使口罩盒(包括口罩)能够运送至c点(传送带2的最上端),则传送带2的最小速度大小;(3)增大传送带1、2的速度,则口罩盒(包括口罩)从a到达c的最短时间.针对训练1.(多选)如图甲所示,倾斜的传送带以恒定速率v1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v2从传送带的底部冲上传送带并沿传送带向上运动,其运动的v-t图像如图乙所示,物块到达一定高度时速度为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则( )A.传送带的速度为4 m/sB.物块上升的竖直高度为0.96 mC.物块与传送带间的动摩擦因数为0.5D.物块所受摩擦力方向一直与物块运动方向相反题型二“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.两种常见类型类型图示3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).例 3[2023·广东珠海模拟](多选)如图甲所示,上表面粗糙的平板小车静止于光滑水平面上.t=0时,小车以速度v0向右运动,将小滑块无初速度地放置于小车的右端,最终小滑块恰好没有滑出小车,如图乙所示为小滑块与小车运动的v-t图像,图中t1、v0、v1均为已知量,重力加速度大小为g.由此可求得( )A.小车的长度B.小滑块的质量C.小车在匀减速运动过程中的加速度D.小滑块与小车之间的动摩擦因数针对训练2.[2023·吉林一中期中]如图所示,质量为m=2 kg的物体A与质量为M=1 kg的物体B叠放在光滑水平面上,两物体间动摩擦因数为μ=0.2,一水平向右的力F作用在A物体上(设最大静摩擦力等于滑动摩擦力,g取10 m/s2),则( )A.当F=4 N时,两物体即将发生相对运动B.当F=5 N时,两物体一定发生相对运动C.当F=8 N时,B物体的加速度为4 m/s2D.当F=12 N时,A物体的加速度为4 m/s23.[2023·人大附中月考](多选)如图所示,质量为M=1 kg的长木板放在光滑的水平面上,质量为m=2 kg的滑块(可视为质点)放在长木板的左端,两者之间的动摩擦因数为μ=0.2.某时刻用F=9 N的水平恒力作用在长木板上,经t=1 s后撤去力F,最终滑块恰好没有滑离长木板.若重力加速度g取10 m/s2,则下列说法正确的是( )A.撤去力F时长木板的速度为3 m/sB.撤去力F时滑块的速度为2 m/sC.滑块最终的速度为3 m/sD.长木板的长度为1.5 m专题强化五传送带模型和“滑块—木板”模型题型一例1 解析:(1)设包裹的质量为m,包裹加速阶段的加速度大小为a,则由牛顿第二定律可得μmg=ma解得a=0.5 m/s2包裹加速到v0所用的时间为t1=v0a解得t1=1 sat12t1时间内包裹的位移大小为x1=12解得x1=0.25 mt1时间内传送装置的位移大小为x2=v0t1解得x2=0.5 m故包裹相对于传送装置运动的距离为Δx=x2-x1=0.25 m.(2)包裹在传送装置上匀速运动的时间为t2=l−x1v0解得t2=3.5 s乘客从传送装置的最左端走到最右端所用的时间为t3=lv解得t3=2 s故乘客需要在传送装置最右端等待的时间为Δt=t1+t2-t3=2.5 s.答案:(1)0.25 m (2)2.5 s例2 解析:(1)分析知,口罩盒(包括口罩)放上传送带1后一直做匀加速直线运动,根据牛顿第二定律,有μ1mg=ma,解得a=4 m/s2根据运动学公式有v12=2aL1,解得v1=4 m/s.(2)若传送带2不转动,则口罩盒(包括口罩)向上运动的加速度一直保持不变,大小为a 1=μ2mg cos θ+mg sin θm=g (μ2cos θ+sin θ)=10 m/s 2口罩盒(包括口罩)在传送带2上向上运动的最远距离为s max =v 122a1=0.8 m<L 2所以口罩盒(包括口罩)无法运动到c 点若传送带2的速度大于4 m/s ,则口罩盒(包括口罩)向上运动的加速度一直保持不变,大小为a 2=mg sin θ−μ2mg cos θm=g (sin θ-μ2cos θ)=2 m/s 2口罩盒(包括口罩)在传送带2上向上运动的最远距离为s ′max =v 122a2=4 m>L 2所以口罩盒(包括口罩)运动到c 点时速度不为零 设传送带2的速度大小为v 时,恰好能将口罩盒(包括口罩)运送至c 点.据以上信息可知,v 一定满足0<v <4 m/s ,则口罩盒(包括口罩)在传送带2上先做加速度大小为a 1=10 m/s 2的匀减速直线运动,当口罩盒(包括口罩)与传送带的速度相等时,开始做加速度大小为a 2=2 m/s 2的匀减速直线运动,到达c 点时速度恰好为零.由逆向思维法,有s 1=v −12v22a1,s 2=v 22a 2,s 1+s 2=L 2,解得v =1 m/s.(3)口罩盒(包括口罩)在传送带1上运动的时间不随传送带1、2的速度增大而变化,则有L 1=12at 12,解得t 1=1 s当传送带2的速度足够大时,口罩盒(包括口罩)在传送带2上一直做加速度大小为2 m/s 2的匀减速直线运动,则有L 2=v 1t 2−12a 2t 22解得t 2=(2-√3)s 或t ′2=(2+√3)s 舍去则口罩盒(包括口罩)从a 到达c 的最短时间为t =t 1+t 2=(3-√3)s. 答案:(1)4 m/s (2)1 m/s (3)(3-√3)s1.解析:如果v 2小于v 1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v 2一定大于v 1,结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动.由此可以判断传送带的速度为2 m/s ,A 错误;物块的位移等于v t 图线与横轴所围的面积,即L =12×(4+2)×0.2 m+12×1×2 m=1.6 m ,则上升的竖直高度为h =L sin θ=0.96 m ,B 正确;0~0.2 s 内,加速度a 1=Δv Δt =2.0−4.00.2m/s 2=-10 m/s 2,加速度大小为10 m/s 2,根据牛顿第二定律得a 1=mg sin θ+μmg cos θm=10 m/s 2,解得μ=0.5,C 正确;在0~0.2 s 内,摩擦力方向与物块的运动方向相反,0.2~1.2 s 内,摩擦力方向与物块的运动方向相同,D 错误.答案:BC题型二例3 解析:最终小滑块恰好没有滑出小车,由图像可求出小车的长度L =v 1+v 02t 1-v12t 1=v02t 1,故A 正确;根据图像可以求出小车做匀减速直线运动的加速度以及小滑块做匀加速直线运动的加速度,但无法求出小滑块的质量,故B 错误;根据v t 图像可知小车做匀减速直线运动的加速度大小,即a =v 0−v 1t 1,故C 正确;对小滑块,由v t 图像可知小滑块做匀加速直线运动的加速度大小,即a =v1t 1,再由牛顿第二定律得a =Ff m =μmg m=μg ,联立解得小滑块与小车之间的动摩擦因数μ=v1gt 1,故D 正确.答案:ACD2.解析:当A 、B 刚要滑动时,静摩擦力达到最大值,设此时它们的加速度为a 0,根据牛顿第二定律,对B 有a 0=μmg M=4 m/s 2,对A 、B 整体有F =(m +M )a 0=3×4 N=12 N ,所以当F ≤12 N 时,A 、B 相对静止,一起向右做匀加速运动,A 、B 、C 错误;当F =12 N 时,A 物体的加速度为a =F−μmg m=12−42m/s 2=4 m/s 2,D 正确.答案:D3.解析:力F 作用在长木板上后,由牛顿第二定律可得μmg =ma 1,F -μmg =Ma 2,解得滑块和长木板的加速度分别为a 1=2 m/s 2,a 2=5 m/s 2,撤去力F 时滑块和长木板的速度分别为v 1=a 1t =2 m/s ,v 2=a 2t =5 m/s ,故A 错误,B 正确;撤去力F 后,由动量守恒定律可得mv 1+Mv 2=(m +M )v ,解得滑块最终的速度为v =3 m/s ,故C 正确;撤去力F 前,滑块在长木板上移动的距离为Δx 1=12a 2t 2-12a 1t 2=1.5 m ,撤去力F 后,由能量守恒定律可得μmg ·Δx 2=12mv +1212Mv 22-12(m +M )v 2,解得Δx 2=0.75 m ,则长木板的长度为L =Δx 1+Δx 2=2.25 m ,故D 错误.答案:BC。
热点专题系列3 动力学中三种典型物理模型
2.如图甲,若 0≤v0<v 且 μ<tanθ:物块以向下的加速度 a=gsinθ- μgcosθ 运动。
3.如图甲,若 v0>v 且 μ>tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动再以速 度 v 向上匀速运动。 4.如图甲,若 v0>v 且 μ<tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动,再以 a=gsinθ-μgcosθ 向上匀减速运动,最后以 a=gsinθ-μgcosθ 向下匀加速 运动。
4.如图乙,若 v0>v 且 μ<tanθ:物块一直以 a=gsinθ-μgcosθ 向下匀 加速运动。
总结:物块在倾斜传送带上的运动情形还有很多,但分析思路大体相 同:
(1)判断物块相对于传送带的运动方向,从而判断滑动摩擦力方向。 (2)列牛顿第二定律方程,判断 a 的方向和大小。 (3)根据临界条件 v 物=v 带确定临界状态的情况,根据 μ 与 tanθ 的关系 判断之后的运动情形。
C.0~t2时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
答案
[解析] 小物块对地速度为零时,即t1时刻,向左离开A处最远;t2时 刻,小物块刚好与传送带共速,此后不再相对传送带滑动,所以t2时刻, 它相对传送带滑动的距离达到最大,A错误,B正确。0~t2时间内,小物块 受到的摩擦力为滑动摩擦力,方向始终向右,大小不变;t2时刻以后小物 块相对传送带静止,与传送带一起以速度v1匀速运动,不再受摩擦力作 用,C、D错误。
高考物理总复习 专题强化三 动力学中的“传送带”和“滑块—滑板”模型
【关键能力·分层突破】 模型一 “传送带”模型 1.模型特点 传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因, 例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力 等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该 模型还涉及物体在传送带上运动时的能量转化等. 2.“传送带”问题解题思路
【跟进训练】 3.光滑水平面上停放着质量M=2 kg的平板小车,一个质量为m=1 kg的小滑块(视为质点)以v0=3 m/s的初速度从A端滑上小车,如图所 示.小车长l=1 m,小滑块与小车间的动摩擦因数为μ=0.4,取g=10 m/s2,从小滑块滑上小车开始计时,1 s末小滑块与小车B端的距离为 ()
香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与 传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以 对香皂盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设 最大静摩擦力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 m/s2 ,试求:
A.滑块A与木板B之间的动摩擦因数为0.1 B.当F=10 N时木板B的加速度为4 m/s2 C.木板B的质量为3 kg D.滑2·山西临汾联考]某生产车间对香皂包 装进行检验,为检验香皂盒里是否有香皂,让
香皂盒在传送带上随传送带传输时(可视为匀 速),经过一段风洞区域,使空皂盒被吹离传 送带,装有香皂的盒子继续随传送带一起运动
,如图所示.已知传送带的宽度d=0.96 m,香 皂盒到达风洞区域前都位于传送带的中央.空
答案:BCD
命题分析
试题情境
属于综合性题目,以板块模型为素材创设学习探索问 题情境
2025届高中物理专题36传送带模型和滑块—木板模型中的能量问题
专题36传送带模型和滑块木板模型中的能量问题授课提示:对应学生用书55页1.(多选)如图所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离为L ,子弹进入木块的深度为s ,若木块对子弹的阻力F 视为恒定,则下列关系中正确的是()A .FL =12 M v 2B .Fs =12m v 2C .Fs =12 m v 20-12 (M +m )v 2 D .F (L +s )=12 m v 20 -12 m v 2 答案:ACD解析:以木块为研究对象,根据动能定理得,子弹对木块做功等于木块动能的增加,即FL =12M v 2①,以子弹为研究对象,由动能定理得, F (L +s )=12 m v 20-12 m v 2②,联立①②得, Fs =12 m v 20 -12 (M +m )v 2,故A 、C 、D 正确.2.如图所示,一足够长的木板在光滑的水平面上以速度v 向右匀速运动,现将质量为m 的物体轻轻地放置在木板上的右端,已知物体m 和木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体m 放到木板上到它相对木板静止的过程中,须对木板施一水平向右的作用力F ,那么力F 对木板做功的数值为()A .m v 24B .m v 22C .m v 2D .2m v 2 答案:C解析:由能量转化和守恒定律可知,拉力F 对木板所做的功W 一部分转化为物体m 的动能,一部分转化为系统内能,故W =12 m v 2+μmg ·s 相,s 相=v t -v 2 t ,v =μgt ,解得W =m v 2,C 正确.3.(多选)如图所示是某地铁站的安检设施,该设施中的水平传送带以恒定速率v 运动,乘客将质量为m 的物品放在传送带上,物品由静止开始加速至速率为v 后匀速通过安检设施,下列说法正确的是()A .物品先受滑动摩擦力作用,后受静摩擦力作用B .物品所受摩擦力的方向与其运动方向相同C .物品与传送带间动摩擦因数越大,产生热量越多D.物品与传送带间动摩擦因数越大,物品与传送带相对位移越小 答案:BD解析:物品加速时受滑动摩擦力作用,匀速时不受摩擦力,A 错误;物品所受摩擦力的方向与运动方向相同,B 正确;传送带的位移大小x 1=v t ,物品从加速到与其共速,位移大小x 2=v 2 t ,物品与传送带间产生热量Q =f Δx =f (x 1-x 2)=12 m v 2,与动摩擦因数无关,C 错误;物品与传送带间动摩擦因数越大,滑动摩擦力f 越大,相对位移Δx 越小,D 正确.4.[2024·辽宁省高考模拟](多选)如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率v 1=2m/s 匀速向右运动,一质量为m =1kg 的滑块从传送带右端以水平向左的速率v 2=3m/s 滑上传送带,最后滑块返回传送带的右端.关于这一过程,下列判断正确的有()A .滑块返回传送带右端的速率为2m/sB .此过程中传送带对滑块做功为2.5JC .此过程中滑块与传送带间摩擦产生的热量为12.5JD .此过程中电动机对传送带多做功为10J 答案:ACD解析:由于传送带足够长,滑块匀减速向左滑行,直到速度减为零,然后滑块在滑动摩擦力的作用下向右匀加速,v 1=2m/s<v 2=3m/s ,当滑块速度增大到等于传送带速度时,物体还在传送带上,之后不受摩擦力,物体与传送带一起向右匀速运动,所以滑块返回传送带右端时的速率等于2m/s ,A 正确;此过程中只有传送带对滑块做功,根据动能定理得,传送带对滑块做功为W =12 m v 21 -12 m v 22 =-2.5J ,B 错误;设滑块向左运动的时间为t 1,位移为x 1,则x 1=v 22 t 1,该过程中传送带的位移为x 2=v 1t 1,t 1=v 2μg ,摩擦生热为Q 1=μmg (x 1+x 2)=10.5J ,返回过程,当物块与传送带共速时v 1=μgt 2,物块与传送带摩擦生热为Q 2=μmg (v 1t 2-v 12 t 2)=2J ,则此过程中滑块与传送带间摩擦产生的热量为Q =Q 1+Q 2=12.5J ,C正确;此过程中电动机对传送带多做功为ΔW =W +Q =10J ,D 正确.5.[2024·河北省石家庄市教学质检](多选)如图所示,倾斜传送带以恒定速率v 顺时针转动,现将一小物块由静止放于传送带底端,经过一段时间,小物块运动到传送带的顶端且速率恰好达到v ,在整个过程中小物块与传送带之间的摩擦生热为Q ,小物块获得的动能为E k 、重力势能的增加量为E p ,下列说法正确的是()A .Q =E kB .Q >E kC .Q =E k +E pD .Q <E k +E p 答案:BC解析:设传送带长度为L ,倾角为θ,质量为m ,运动时间为t ,物块受到的摩擦力为f ,根据题意,有x 物=L =v2 t ,x 传=v t ,则有x 传-x 物=L ,解得x 传=2L ,对物块,根据动能定理fL -mg sin θ·L =E k -0,产生的热量为Q =f ΔL =f (2L -L )=fL ,其中mg sin θ·L =E p ,联立解得Q =E k +E p ,则有Q >E k ,B 、C 正确.6.如图甲,长木板A 质量为2kg 放在光滑的水平面上,质量为m =2kg 的另一物体B (可看作质点)以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面.由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,则下列说法正确的是(g 取10m/s 2)()A .木板获得的动能为2JB .系统损失的机械能为4JC .木板A 的最小长度为2mD .A 、B 间的动摩擦因数为0.1 答案:D解析:由题中图像可知,A 、B 的加速度大小都为1m/s 2,根据牛顿第二定律知,木板获得的动能为1J ,A 错误;系统损失的机械能ΔE =12 m v 20-12 ·2m ·v 2=2J ,B 错误;由v t 图像可求出二者相对位移为1m ,C 错误;以B 为研究对象,根据牛顿第二定律,求出μ=0.1,D 正确.7.(多选)如图所示,光滑水平面上放着足够长的木板B ,木板B 上放着木块A ,A 、B 间的接触面粗糙,现用一水平拉力F 作用在A 上,使其由静止开始在木板B 上运动,则下列说法正确的是()A .拉力F 做的功等于A 、B 系统动能的增加量 B .拉力F 做的功大于A 、B 系统动能的增加量C .拉力F 和B 对A 做的功之和小于A 的动能的增加量D .A 对B 做的功等于B 的动能的增加量 答案:BD8.[2024·山东省潍坊市期中考试]如图所示,与水平面夹角为θ=37°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离L =10m ,传送带以v =2m/s 的恒定的速率向上传动,现将一质量m =4kg 的小物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=0.8,重力加速度大小取g =10m/s 2,求物块从A 运动到B 的过程:(1)所用时间t ;(2)摩擦力对物块做的功W . 答案:(1)7.5s(2)248J解析:(1)物体刚放上传送带时受到沿斜面向上的滑动摩擦力,由牛顿第二定律得 μmg cos θ-mg sin θ=ma 1设物体经时间t 1加速到与传送带同速,则有 v =a 1t 1,x 1=12 a 1t 2解得t 1=5s ,x 1=5m设物体经过时间t 2到达B 端,因μmg cos θ>mg sin θ故当物体与传送带同速后,物体将做匀速运动,则有L -x 1=v t 2 解得t 2=2.5s故物体由A 端运动到B 端的时间t =t 1+t 2=7.5s (2)相对滑动过程,摩擦力做功W 1=μmg cos θ·x 1匀速运动过程,摩擦力做功W 2=mg sin θ(L -x 1),W =W 1+W 2 解得W =248J9.如图所示,一倾角θ=30°的光滑斜面(足够长)固定在水平面上,斜面下端有一与斜面垂直的固定挡板,用手将一质量m =1kg 的木板放置在斜面上,木板的上端有一质量也为m 的小物块(视为质点),物块和木板间的动摩擦因数μ=235 ,初始时木板下端与挡板的距离L =0.9m .现将手拿开,同时由静止释放物块和木板,物块和木板一起沿斜面下滑.木板与挡板碰撞的时间极短,且碰撞后木板的速度大小不变,方向与碰撞前的速度方向相反,最终物块恰好未滑离木板.取重力加速度大小g =10m/s 2,认为最大静摩擦力等于滑动摩擦力.求:(1)木板第一次与挡板碰撞前瞬间,物块的速度大小v 0;(2)从拿开手到木板第二次与挡板碰撞前瞬间,物块相对木板的位移大小x ;(3)木板的长度s 以及从拿开手到木板和物块都静止的过程中,物块与木板间因摩擦产生的热量Q .答案:(1)3m/s(2)1.5m(3)54J解析:(1)从拿开手到木板第一次与挡板碰撞前,对物块与木板整体,根据动能定理有2mgL sin θ=12×2m v 20 解得v 0=3m/s.(2)木板第一次与挡板碰撞后,木板的加速度方向沿斜面向下,设加速度大小为a 1,根据牛顿第二定律有mg sin θ+μmg cos θ=ma 1 解得a 1=11m/s 2木板第一次与挡板碰撞后,物块的加速度方向沿斜面向上,设加速度大小为a 2,根据牛顿第二定律有μmg cos θ-mg sin θ=ma 2 解得a 2=1m/s 2以沿斜面向下为正方向,设从木板第一次与挡板碰撞后,经时间t 木板和物块达到共同速度v ,对木板和物块,根据匀变速直线运动的规律分别有v =-v 0+a 1t ,v =v 0-a 2t解得v =2.5m/s ,v 为正值,表示v 的方向沿斜面向下设从木板第一次与挡板碰撞后到物块与木板达到共同速度v 的过程中,木板沿斜面向上运动的位移大小为x 1,根据匀变速直线运动的规律有v 20 -v 2=2a 1x 1解得x 1=0.125m设该过程中物块沿斜面向下运动的位移大小为x 2,根据匀变速直线运动的规律有v 20 -v 2=2a 2x 2解得x2=1.375m又x=x1+x2解得x=1.5m.(3)经分析可知,当木板和物块都静止时,木板的下端以及物块均与挡板接触,从拿开手到木板和物块都静止的过程中,根据能量转化与守恒定律有Q=mgL sinθ+mg(L+s)sinθ又Q=μmgs cosθ解得s=9m Q=54J。
传送带模型和“滑块—木板”模型-高考物理复习
对长木板,根据牛顿第二定律可得 a=F-Mμmg,解得 a=3 m/s2
(2)刚撤去F时,小物块离长木板右端多远?
答案 0.5 m
撤去F之前,小物块只受摩擦力的作用 故am=μg=2 m/s2 Δx1=12at2-12amt2=0.5 m
传送带模型和“滑块—木板”模型
目标 1.会对传送带上的物体进行受力分析,能正确解答传送带上物体的动力学问题.2.能正确运用动力学观点处理 要求 “滑块—木板模型”.
内容索引
题型一 传送带模型 题型二 “滑块—木板”模型
传送带模型
1.水平传送带 情景
滑块的运动情况
传送带不足够长(未达到和 传送带相对静止)
√
√
设传送带倾角为θ,滑块与传送带间的动摩擦因数为 μ,滑块质量为m,若mgsin θ>μmgcos θ,则滑块所受 合力沿传送带向下,小滑块向下做匀加速运动;若 mgsin θ=μmgcos θ,则小滑块沿传送带方向所受合力为零,小滑块 匀速下滑;若mgsin θ<μmgcos θ,则小滑块所受合力沿传送带向上, 小滑块先做匀减速运动,当速度减为零时,开始反向加速,当加速 到与传送带速度相同时,因为最大静摩擦力大于小滑块重力沿传送 带向下的分力,故小滑块随传送带做匀速运动,A、D错误,B、C 正确.
例7 (多选)(2023·内蒙古高三检测)如图甲所示,粗糙的水平地面上有一块长 木板P,小滑块Q放置于长木板上的最右端.现将一个水平向右的力F作用在长 木板的右端,让长木板从静止开始运动,一段时间后撤去力F.滑块、长木板 的速度时间图像如图乙所示,已知滑块与长木板的质量相等,滑块Q始终没有 从长木板P上滑下.重力加速度取g=10 m/s2.则下列说法正确的是
传送带模型和滑块——木板模型
传送带模型和滑块——木板模型一、水平传送带问题的变化类型例1.如图,水平传送带两个转动轴轴心相距20m ,正在以v =4.0m/s 的速度匀速传动,某物块儿(可视为质点)与传送带之间的动摩擦因数为0.1,将该物块儿从传送带左端无初速地轻放在传送带上,则经过多长时间物块儿将到达传送带的右端(g =10m/s 2) ?例2.(1)题中,若水平传送带两个转动轴心相距为2.0m ,其它条件不变,则将该物体从传送带左端无初速地轻放在传送带上,则经过多长时间物体将到达传送带的右端(g =10m/s 2)例3.(1)题中,若提高传送带的速度,可以使物体从传送带的一端传到另一端所用的时间缩短。
为使物体传到另一端所用的时间最短,传送带的最小速度是多少?变式训练:如图,一物块沿斜面由H 高处由静止滑下,斜面与水平传送带相连处为光滑圆弧,物体滑离传送带后做平抛运动,当传送带静止时,物体恰落在水平地面上的A 点,则下列说法正确的是( )。
A .当传送带逆时针转动时,物体落点一定在A 点的左侧 B .当传送带逆时针转动时,物体落点一定落在A 点 C .当传送带顺时针转动时,物体落点可能落在A 点 D .当传送带顺时针转动时,物体落点一定在A 点的右侧 二.倾斜传送带问题的变化类型例1:如图所示,倾斜传送带与水平方向的夹角为θ=37°,将一小物块轻轻放在正在以速度v =10m/s 匀速逆时针传动的传送带的上端,物块和传送带之间的动摩擦因数为µ=0.5(设最大静摩擦力等于滑动摩擦力的大小),传送带两皮带轮轴心间的距离为L =29m ,求将物块从顶部传到传送带底部所需的时间为多少(g =10m/s2) ?HA.v例2:上题中若8.0=μ,物块下滑时间为多少?变式训练:(如图所示)传送带与水平方向夹角为θ,当传送带静止时,在传送带上端轻放一小物块A ,物块下滑到底端时间为T ,则下列说法正确的是( )。
A .当传送带逆时针转动时,物块下滑的时间一定大于t B .当传送带逆时针转动时,物块下滑的时间一定等于t C .当传送带顺时针转动时,物块下滑的时间可能等于t D .当传送带顺时针转动时,物块下滑的时间一定小于t三、滑块——木板模型1、如图9所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板 ,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( )A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐增大,直到做匀速运动C .木板向右运动,速度逐渐变小,直到做匀速运动D .木板和物块的速度都逐渐变小,直到为零2、如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。
高考物理中的传送带模型和滑块-木板模型汇编
传送带模型1.模型特征 (1)水平传送带模型(2)2.分析传送带问题的关键是判断摩擦力的方向。
要注意抓住两个关键时刻:一是初始时刻,根据物体速度v 物和传送带速度v 传的关系确定摩擦力的方向,二是当v 物=v 传时,判断物体能否与传送带保持相对静止。
1.(多选)如图,一质量为m的小物体以一定的速率v0滑到水平传送带上左端的A点,当传送带始终静止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是().A.若传送带逆时针方向运行且保持速率不变,则物体也能滑过B点,且用时为t0B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t02.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行。
初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。
若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示。
已知v2>v1,则()A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用3.如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带。
不计定滑轮质量和摩擦,绳足够长。
正确描述小物体P速度随时间变化的图象可能是()4.物块m在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图中箭头所示。
高考物理总复习 第三单元 牛顿运动定律 微专题3 滑块木板模型、传送带模型(含解析)
微专题3 滑块木板模型、传送带模型一传送带模型传送带问题为高中动力学问题中的难点,需要考生对传送带问题准确地做出动力学过程分析。
1.抓住一个关键:在确定研究对象并进行受力分析之后,首先判定摩擦力的突变(含大小和方向)点,给运动分段。
传送带传送的物体所受摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻,v物与v传相同的时刻是运动分段的关键点。
判定运动中的速度变化(相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,二者的大小和方向决定了此后的运动过程和状态。
2.注意三个状态的分析——初态、共速、末态3.传送带思维模板模型1水平传送带模型水平传送带又分为三种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向。
情景图示滑块可能的运动情况情景1 (1)可能一直加速(2)可能先加速后匀速情景2 (1)v0=v时,一直匀速(2)v0>v时,可能一直减速,也可能先减速再匀速(3)v0<v时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
当v0>v时,返回时速度为v,当v0<v时,返回时速度为v0例1如图甲所示,水平方向的传送带顺时针转动,传送带速度大小v=2 m/s 不变,两端A、B间距离为 3 m。
一物块从B端以v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g=10 m/s2。
物块从滑上传送带至离开传送带的过程中,速度随时间变化的图象是图乙中的( )。
甲乙解析物块B刚滑上传送带时,速度向左,由于物块与传送带间的摩擦作用,使得它做匀减速运动,加速度大小a=μg=4 m/s2,当物块的速度减小到零时,物块前进的距离s=m=2 m,其值小于AB的长3 m,故物块减速到零后仍在传送带上,所以它会随传送带向右运动,其加速度的大小与减速时是相等的,当其速度与传送带的速度相等时物块向右滑行的距离s'= m=0.5 m,其值小于物块向左前进的距离,说明物块仍在传送带上,以后物块相对于传送带静止,其速度等于传送带的速度,所以B项正确。
专题三滑块——木板模型和传送带模型-高一物理精品课件(人教版必修第一册)
(1)加速度关系:如果滑块与木板之间没有发生相对运动,可以用“整体
法”求出它们一起运动的加速度;如果滑块与木板之间发生相对运动,
应采用“隔离法”求出滑块与木板运动的加速度。应注意找出滑块与木
板是否发生相对运动等隐含条件。
(2)速度关系:滑块与木板之间发生相对运动时,明确滑块与木板的速
水平恒定推力F=8 N,当长木板向右运动的速度达到1.5 m/s 时,在长木板前端轻轻地
放上一个大小不计、质量为m=2 kg的小物块,物块与长木板间的动摩擦因数μ=0.2,
长木板足够长。(g取10 m/s2)
(1)小物块放在长木板上后,小物块及长木板的加速度各为多大?
(2)经多长时间两者达到相同的速度?
由图(b)可知,木板与墙壁碰前瞬间的速度v1=4 m/s,由运动学公式得
v1=v0+a1t1 ②
s0=v0t1+ a1t 2 ③
式中t1=1 s,s0=4.5 m是木板与墙壁碰前瞬间的位移,v0是小物块和木板开始运动时的速度.联立
①②③式并结合题给条件得μ1=0.1.④
在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速
牛顿第二定律及运动学公式得
μ2mg+μ1(M+m)g=Ma3 ⑧
v3=-v1+a3Δt
⑨
v3=v1+a2Δt ⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板的位移为
-+
+
s1 =
Δt
⑪小物块的位移为s2=
Δt
⑫
小物块相对木板的位移为Δs=s2-s1
⑬
联立⑥⑧~⑬式,并代入数据得Δs=6.0 m.
高三物理第7节:滑块与木板模型和传送带模型
第7节:滑块—木板模型和传送带模型【教学目标】1.能正确运用牛顿运动定律处理滑块—木板模型.2.会对传送带上的物体进行受力分析,正确判断物体的运动情况.【教学重、难点】滑块受到摩擦的临界问题【教学方法】讲授法【教学过程】一、滑块—木板模型1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.解题方法此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.例1 如图1所示,厚度不计的薄板A 长l =5 m ,质量M =5 kg ,放在水平地面上.在A 上距右端x =3 m 处放一物体B (大小不计),其质量m =2 kg ,已知A 、B 间的动摩擦因数 μ1=0.1,A 与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平力F =26 N ,持续作用在A 上,将A 从B 下抽出.g =10 m/s 2,求:(1)A 从B 下抽出前A 、B 的加速度各是多大;(2)B 运动多长时间离开A .解析:对于B :μ1mg =ma B解得a B =1 m/s 2对于A :F -μ1mg -μ2(m +M )g =Ma A解得a A =2 m/s 2(2)设经时间t 抽出,则x A =12a A t 2 x B =12a B t 2Δx =x A -x B =l -x解得t =2 s.小结:求解“滑块—木板”类问题的方法技巧1.搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.2.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.解析 若木板光滑,木板停止运动后,A 、B 均以速度v 做匀速运动,间距不变,故A 错误,C 正确; 若木板粗糙,同种材料制成的物体与木板间动摩擦因数相同,根据牛顿第二定律得到:μmg =ma ,a =μg ,则可见A 、B 匀减速运动的加速度相同,间距不变.故B 错误,D 正确.二、传送带类问题1.特点:传送带运输是利用货物和传送带之间的摩擦力将货物运送到别的地方去.它涉及摩擦力的判断、运动状态的分析和运动学知识的运用.2.解题思路:(1)判断摩擦力突变点(含大小和方向),给运动分段;(2)物体运动速度与传送带运行速度相同,是解题的突破口;(3)考虑物体与传送带共速之前是否滑出.例2 如图3所示,水平传送带正在以v =4 m/s 的速度匀速顺时针转动,质量为m =1 kg 的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g 取10 m/s 2).(1)如果传送带长度L =4.5 m ,求经过多长时间物块将到达传送带的右端;(2)如果传送带长度L =20 m ,求经过多长时间物块将到达传送带的右端.解析 物块放到传送带上后,在滑动摩擦力的作用下先向右做匀加速运动.由μmg =ma 得a =μg , 若传送带足够长,匀加速运动到与传送带同速后再与传送带一同向右做匀速运动.物块匀加速运动的时间t 1=v a =v μg=4 s物块匀加速运动的位移x 1=12at 12=12μgt 12=8 m 因为4.5 m<8 m ,所以物块一直加速,由L =12at 2得t =3 s。
高考物理中的传送带模型和滑块-木板模型
传送带模型1.模型特征(1)水平传送带模型(2)2.分析传送带问题的关键是判断摩擦力的方向。
要注意抓住两个关键时刻:一是初始时刻,根据物体速度v 物和传送带速度v 传的关系确定摩擦力的方向,二是当v 物=v 传时,判断物体能否与传送带保持相对静止。
1.(多选)如图,一质量为m 的小物体以一定的速率v 0滑到水平传送带上左端的A 点,当传送带始终静止时,已知物体能滑过右端的B 点,经过的时间为t 0,则下列判断正确的是( ). A .若传送带逆时针方向运行且保持速率不变,则物体也能滑过B点,且用时为t0B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t02.运动的v知v2>v1A.t2B.t2大C.0~t2D.0~t33.t=04.物块AC5.夹角为θ,常工作时工人在A点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力) ().A.粮袋到达B点的速度与v比较,可能大,也可能相等或小B.粮袋开始运动的加速度为g(sinθ-μcosθ),若L足够大,则以后将一定以速度v做匀速运动C.若μ≥tanθ,则粮袋从A到B一定一直是做加速运动D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>g sinθ6.如图为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上。
设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g。
关于粮袋从A到B的运动,说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sinθ-μcosθ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tanθ,则粮袋从A端到B端一定是一直做加速运动D.不论a≥g sinθ7.长0.6,(1)物块(2)物块8.v、方向A.W=0C.W=,9.F所做的功为W1、功率为P1,这一过程物体和传送带之间因摩擦而产生的热量为Q1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传送带模型1.水平传送带模型12①水平传送带问题:求解的关键在于正确分析出物体所受摩擦力.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.②倾斜传送带问题:求解的关键在于正确分析物体与传送带的相对运动情况,从而判断其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.小结:分析处理传送带问题时需要特别注意两点:一是对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向的分析;二是对物体与传送带共速时摩擦力的有无及方向的分析.对于传送带问题,一定要全面掌握上面提到的几类传送带模型,尤其注意要根据具体情况适时进行讨论,看一看受力与速度有没有转折点、突变点,做好运动过程的划分及相应动力学分析.3.传送带问题的解题思路模板[分析物体运动过程]例1:(多选)如图所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因素为μ,小木块速度随时间变化关系如图所示,v 0、t 0已知,则( )A .传送带一定逆时针转动B .00tan cos v gt μθθ=+C .传送带的速度大于v 0D .t 0后滑块的加速度为002sin v g t θ-[求相互运动时间,相互运动的位移] 例2:如图所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B端时的速度为v B 。
(取g =10 m/s 2)(1)若传送带静止不动,求v B ;(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,求到达B 点的速度v B ;(3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
例3:某煤矿运输部有一新采购的水平浅色足够长传送带以4.0 m /s 的恒定速度运动,若使该传送带改做加速度大小为3.0 m/s 2的匀减速运动,并且在传送带开始做匀减速运动的同时,将一煤块(可视为质点)无初速度放在传送带上.已知煤块与传送带间的动摩擦因数为0.10,重力加速度取10 m/s 2,求煤块在浅色传送带上能留下的痕迹长度和相对于传送带运动的位移大小?(计算结果保留两位有效数字)例4:将一个粉笔头(可看做质点)轻放在以2 m/s 的恒定速度运动的足够长的水平传送带上后,传送带上留下一条长度为4 m 的画线。
若使该传送带仍以2 m/s 的初速度改做匀减速运动,加速度大小恒为1.5 m/s 2,且在传送带开始做匀减速运动的同时,将另一个粉笔头(与传送带的动摩擦因数和第一个相同,也可看做质点)轻放在传送带上,该粉笔头在传送带上能留下一条多长的画线?(传送带无限长,取g =10m/s 2)随堂练习:1(多选)如图所示,水平传送带A 、B 两端点相距x =4 m ,以v 0=2 m/s 的速度(始终保持不变)顺时针运转。
今将一小煤块(可视为质点)无初速度地轻放至A 点处,已知小煤块与传送带间的动摩擦因数为0.4, g 取10 m/s 2。
由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕。
则小煤块从A 运动到B 的过程中( )A .小煤块从A 运动到B 的时间是 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m随堂练习:2如图所示,有一条沿顺时针方向匀速传送的传送带,恒定速度v =4 m/s ,传送带与水平面的夹角θ=37°,现将质量m =1 kg 的小物块轻放在其底端(小物块可视作质点),与此同时,给小物块沿传送带方向向上的恒力F =8 N ,经过一段时间,小物块上到了离地面高为h =2.4 m 的平台上。
已知物块与传送带之间的动摩擦因数μ=0.5,(g 取10 m/s 2,sin37°=0.6,cos37°=0.8)。
问:(1)物块从传送带底端运动到平台上所用的时间?(2)若在物块与传送带达到相同速度时,立即撤去恒力F ,计算小物块还需经过多少时间离开传送带以及离开时的速度?答案(1)1.33 s(2)0.85 s 2.3 m/s木块滑板模型上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
两个物体分别在各自所受力的作用下完成各自的运动,且两者之间还有相对运动。
1. 模型特点(1)上下叠放的两个物体,在摩擦力的相互作用下发生相对滑动。
(2)是否存在速度相等的“临界点”,来判定临界速度之后物体的运动形式。
(3)位移关系,滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长。
2. 木块滑板模型模型解题基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.分析滑块—木板模型问题时应掌握的技巧(1)分析题中滑块、木板的受力情况,求出各自的加速度。
(2)画好运动草图,找出位移、速度、时间等物理量间的关系。
(3)明白每一过程的末速度是下一过程的初速度。
(4)两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力。
(2)二者加速度不相等。
4. 易错点①不清楚滑块、滑板的受力情况,求不出各自的加速度.②不清楚物体间发生相对滑动的条件.例1:如图所示,物块A和长木板B的质量均为1 kg,A与B之间、B与地面之间的动摩擦因数分别为0.5和0.2,开始时A静止在B的左端,B停在水平地面上。
某时刻起给A施加一大小为10 N,方向与水平成θ=37°斜向上的拉力F,0.5 s后撤去F,最终A恰好停在B的右端。
(sin37°=0.6,cos37°=0.8,g取10 m/s2)(1)0.5 s末物块A的速度;(2)木板B的长度。
[答案](1)3 m/s(2)1.5 m例2:一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图象如图所示。
已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦。
物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
取g=10 m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小。
[答案](1)0.200.30(2)1.125 m例3:一长轻质薄硬纸片置于光滑水平地面上,木板上放质量均为1kg的A、B两物块,A、B与薄硬纸片之间的动摩擦因数分别为μ1=0.3,μ2=0.2,水平恒力F作用在A 物块上,如图所示,已知最大静摩擦力等于滑动摩擦力,g=10m/s 2。
则: ( )A .若F =1N ,则物块、薄硬纸片都静止不动B .若F =1.5N ,则A 物块所受摩擦力大小为1.5NC .若F =8N ,则B 物块的加速度为4.0m/s 2D .无论力F 多大,A 与薄硬纸片都不会发生相对滑动随堂练习:1质量为2kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表面水平冲上木板,如图甲所示。
A 和B 经过1s 达到同一速度,之后共同减速直至静止,A 和B 的v -t 图像如图乙所示,重力加速度g =10m/s 2,求:(1)A 与B 之间的动摩擦因数μ1和B 与水平面间的动摩擦因数μ2;(2)A 的质量。
例4:一平板车,质量M =100kg ,停在水平路面上,车身的平板离地面的高度h =1.25m ,一质量m =50kg 的小物块置于车的平板上,它到车尾的距离b =1m ,与车板间的动摩擦因数2.0=μ,如图所示,今对平板车施一水平方向的恒力,使车向前行驶,结果物块从车板上滑落,物块刚离开车板的时刻,车向前行驶距离m s 0.20=,求物块落地时,地点到车尾的水平距离s (不计路面摩擦,g =10m/s 2).课后作业1. 如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,在传送带顶端A 处无初速度的释放一个质量为m =0.5 kg 的物体,已知物体与传送带间的动摩擦因数μ=0.5,g 取10 m/s 2。
求:(sin37°=0.6,cos37°=0.8)(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间。
2.(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为3μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。
现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( )A .a=μgB .23a g μ=C .13a g μ=D .123F a g m μ=- 3.如图,质量M=8kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8N ,当小车速度达到1.5m/s 时,在小车的右端、由静止轻放一大小不计、质量m=2kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,物体从放上小车开始经t=1.5s 的时间,则物体相对地面的位移为多少(g 取10m/s 2)。