高考物理滑块木板模型问题分析
高考重难点之滑块木板模型
高考重难点之滑块木板模型滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.1、如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2m/s2,a M=1m/s2B.a m=1m/s2,a M=2m/s2C.a m=2m/s2,a M=4m/s2D.a m=3m/s2,a M=5m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2m/s2,选项C正确,选项A、B、D错误.【答案】C2、一辆运送沙子的自卸卡车装满沙子,沙粒之间的动摩擦因数为μ1,沙子与车厢底部材料的动摩擦因数为μ2,车厢的倾角用θ表示(已知μ2>μ1),下列说法正确的是()A.要顺利地卸干净全部沙子,应满足tanθ>μ2B.要顺利地卸干净全部沙子,应满足sinθ>μ2C.只卸去部分沙子,车上还留有一部分沙子,应满足μ2>tanθ>μ1D.只卸去部分沙子,车上还留有一部分沙子,应满足μ2>μ1>tanθ【答案】AC3、如图甲所示,A、B两长方体叠放在一起放在光滑的水平面上,B物体从静止开始受到一个水平变力的作用,该力与时间的关系如图乙所示,运动过程中A、B始终保持相对静止。
(完整版)高中物理滑块-板块模型(解析版)
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
滑块木板模型(解析版)-高考物理5种类碰撞问题
滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
木板滑块模型中的临界值问题分析
木板滑块模型中的临界值问题分析在高中研究力与运动的关系时,经常遇到滑块与木板模型的问题,涉及到两物体的受力分析、物体相对运动的分析、能量转化等问题综合性较强.近年全国高考理综课标卷都对该问题进行了考查,通过高考试题分析和得分情况来看,学生对该问题的难点理解还是存在很大问题。
此类题是高中物理学习的重点和难点,很好地考查了考生对摩擦力知识、动力学知识的掌握情况以及图像的识读能力和分析能力,对物理教学提出了能力培养的要求。
其中的一个难点就是模型中的临界状态分析,笔者将通过以下情境来分析木板滑块模型中的临界值问题。
模型一:恒力作用木板,木板叠放在光滑水平面上情境1.已知木板的质量为mB ,物块的质量为mA,物块A和木板B之间的动摩擦因数为μ,物块和木板之间的最大静摩擦力近似等于滑动摩擦力,恒力作用于木板,木板放在光滑水平面上,试讨论恒力多大时物块和木板发生滑动及相对运动各自的加速度?分析:先确定临界值,即刚好使A、B发生相对滑动的F值。
可先分析木块A,对A:,由于B对A的摩擦力的最大值为最大静摩擦力,所以A向右运动存在最大加速度,若B也是以此最大加速度加速,这就是A、B即将发生相对滑动的临界状态。
临界状态:对A:,对A、B整体:联立可得临界值讨论:(1)若,A、B一起加速,(2)若F>F,A、B发生相对滑动,,模型二:恒力作用木块,木板叠放在光滑水平面上情境2.已知木板的质量为mB ,物块的质量为mA,物块A和木板B之间的动摩擦因数为μ,物块和木板之间的最大静摩擦力近似等于滑动摩擦力,恒力作用于物块,木板放在光滑水平面上,试讨论恒力多大时物块和木板发生滑动及相对运动各自的加速度?分析:先确定临界值,经例1分析可知,当A、B间恰好达到最大静摩擦力时,为临界状态。
临界状态:对B:,对A、B整体:联立可得临界值讨论:(1)若,A、B一起加速,(2)若F>F,A、B发生相对滑动,,例题1、如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。
滑块—木板模型解析
(1) A、B 分别受到大小为 μmg 的摩擦力作用,根据牛顿第二 定律 对 A 有 μmg=maA 则 aA=μ=4.0m/s2 方向水平向右 对 B 有 μmg=MaB 则 aB=μmg/M=1.0 m/s2 方向水平向左
(2)开始阶段 A 相对地面向左做 匀减速运动,设到速度为零时 所用时间为 t1,则 v0=aAt1,解 得 t1=v0/aA=0.50 s B 相对地面向右做匀减速运动 x=v0t1-12aBt1 2=0.875 m
(1)小物块和长木板间的动摩擦因数。
(2)若一开始力F就作用在长木板上,m 且F=1F2N, 则小物块经过多长时间从长木板上掉下? M
2.如图所示,一质量为M=4kg,长为L=2m的木板 放在水平地面上,已知木板与地面间的动摩擦因 数为0.1,在此木板的右端上还有一质量为 m=1kg的铁块,且视小铁块为质点,木板厚度不 计;今对木板突然施加一个水平向右的拉力。
图6 (1)小物块放后,小物块及小车的加速度各为多大? (2)小车至少要多长才能使小物块不会滑离小车? (3)若小物块不会滑离小车,从小物块放上小车开始,经过 t=1.5 s 小物块通过的位移大小为多少?
解析 (1)物块的加速度:am=Ff/m=μg=2 m/s2 小车的加速度:aM=F-Mμmg=0.5 m/s2
B 向右运动的位移 xB=v0+v2t1+t2 =2+1.2×20.5+0.3 m=1.28 m
B 板的长度 l=xA+xB=1.6 m
6.如图 11 所示,质量为 m1 的足够长木板静 止在光滑水平面上,其上放一质量为 m2 的木块.t=0 时刻起,给木块施加一水平 恒力 F.分别用 a1、a2 和 v1、v2 表示木板、 木块的加速度和速度大小,下列四个图中 可能符合运动情况的是 ( )
高考物理 滑块模型解析
高考物理滑块模型解析(04全国卷Ⅳ25)如图所示,在一光滑的水平面上有两块相同的木板B和C.重物A(视为质点)位于B的右端,A、B、CA和B以同一速度滑向静止的C,B与CB和C粘在一起运动,A 在C上滑行,A与CA滑到C的右端而未掉下.试问:B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍?答案倍解析设A、B、C的质量均为m.碰撞前,A与B的共同速度为v0,碰撞后B与C的共同速度为v1。
对B、C,由动量守恒定律得mv0=2mv1①设A滑至C的右端时,三者的共同速度为v2.对A、B、C,由动量守恒定律得2mv0=3mv1 ②设A与C的动摩擦因数为μ,从发生碰撞到A移至C的右端时C所走过的距离为S.对B、C 由功能关系μ(2m)gs=(2m)v22-(2m)v12③Μmg(s+l)=mv02-mv22④由以上各式解得=(04全国卷Ⅲ25)如图,长木板ab的b端固定一挡板,木板连同挡板的质量为M= kg,a、b间距离s= ma端有一小物块,其质量m=1.0 kg,小物块与木板间的动摩擦因数μv0=m/s沿木板向前滑动,直到和挡板相碰.碰撞后,小物块恰好回到a端而不脱离木板.求碰撞过程中损失的机械能.答案J解析设木板和物块最后共同速度为v,由动量守恒定律mv0=(m+M)v设全过程损失的机械能为EE=mv02-(m+M)v2用s1表示物块开始运动到碰撞前瞬间木板的位移,W1表示在这段时间内摩擦力对木板所做的功,用W 2s 2表示从碰撞后瞬间到物块回到a 端时木板的位移,W 3表示在这段时间内摩擦力对木板所做的功,用W 4W 表示在全过程中摩擦力做的总功,则 W 1=μmgs 1,W 2=-μmg (s 1+s ),W 3=-μmgs 2W 4=μmg (s 2-s ) W =W 1+W +W 3+W 4用E 1表示在碰撞过程中损失的机械能,则E 1=E -W由上列各式解得E 1=·v 02-2μmgs代入数据得E 1=2.4 J质量为2kg 的平板车B 上表面水平,原来静止在光滑水平面上,平板车一端静止着一块质量为2kg 的物体A ,一颗质量为的子弹以600m/s 的速度水平瞬间射穿A 后,速度变为100m/s ,如果A B 之间的动摩擦因数为0.05,求: ⑴ A 的最大速度⑵ 若A 不会滑离B ,则B 的最大速度。
高考物理滑块木板模型问题分析完整版.doc
滑块—木板模型的动力学分析在高三物理复习中,滑块—木板模型作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。
这类问题的分析有利于培养学生对物理情景的想象能力,为后面动量和能量知识的综合应用打下良好的基础。
滑块—木板模型的常见题型及分析方法如下:例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.∴A、B一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:设A、B一起加速运动时,拉力F的最大值为F m,则:解得:例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2此时小车的加速度为:当小车与物体达到共同速度时:v共=a1t1=v0+a2t1解得:t1=1s ,v共=2m/s以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
滑块与木板问题
方法指导
3、判断滑块与木板间是否存在相对运动。滑块与木板存在相对运动的临界条 件是什么? ⑴ 运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵ 动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用 隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力fm的关 系,若f > fm,则发生相对滑动;否则不会发生相对滑动。
fm F
m
小结:解此类题考察拉力作用 在哪个物体上,先隔离没有拉 力作用的另一物体,由临界条 件求岀临界的加速度,再对受 拉力作用的物体进行受力分析, 根据牛顿第二定律求岀结果
chenzhs
M
fm
同步练习
1.如图所示,长方体物块A叠放在长方体物块B上,B置于光滑水平面上.A 、B质量分别为mA=6kg,mB=2kg,A、B之间动摩擦因数μ=0.2,开始时 F=10N,此后逐渐增加,在增大到45N的过程中,则( )
对滑块有F0-μ mg=mam
所以 F0=μ mg+mam=2N
(2)将滑块从木板上拉出时,木板受滑动摩擦力f=μ mg,此时木板的加速度a2为
a2=f/M=μmg/M =1m/s2. 由匀变速直线运动的规律,有(m与M均为匀加速直线运动)木 板位移 x2= ½ a2t2 ① 滑块位移 x1= ½ a1t2 ③ ②
chenzhs
解析:(1)对木板M,水平方向受静摩擦力f向右,当f=fm=μ mg时,M有最大加速度, 此时对应的F0即为使m与M一起以共同速度滑动的最大值。 对M,最大加速度aM,由牛顿第二定律得:aM= fm/M=μmg/M =1m/s2 要使滑块与木板共同运动,m的最大加速度am=aM, f f 即力F0不能超过2N
m
高考物理一轮复习 第三章 微专题23 动力学中的滑块 木板模型问题
动力学中的滑块木板模型问题1.考点及要求:(1)滑动摩擦力和静摩擦力(Ⅱ);(2)匀变速直线运动的公式(Ⅱ);(3)牛顿运动定律(Ⅱ).2.方法与技巧:(1)分析滑块和木板的受力情况:整体法、隔离法仍是基本的研究方法,依据牛顿第二定律求解加速度;(2)分析滑块和木板的运动情况:找出滑块和木板之间的位移关系或速度关系.1. (滑块—木板模型问题的运动分析)如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( )图1A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐减小,直到做匀速运动C.木板向右运动,速度逐渐减小,直到做匀速运动D.木板和物块的速度都逐渐减小,直到为零2.(滑块—木板模型问题的综合分析)如图2所示,一质量为M=10 kg,长为L=2 m的薄木板放在水平地面上,已知木板与地面间的动摩擦因数为μ1=0.1,在此木板的右端还有一质量为m=4 kg的小物块,且视小物块为质点,木板厚度不计.今对木板突然施加一个F=54 N的水平向右的拉力,g=10 m/s2.图2(1)若木板上表面光滑,则小物块经多长时间将离开木板?(2)若小物块与木板间的动摩擦因数为μ,小物块与地面间的动摩擦因数为2μ,小物块相对木板滑动一段时间后离开木板继续在地面上滑行,且对地面的总位移x=3 m时停止滑行,求μ值.3.如图3所示,在光滑的水平面上有一个质量为M的木板B处于静止状态,现有一个质量为m的木块A在木板B的左端以初速度v0开始向右滑动,已知M>m,用①和②分别表示木块A和木板B的图像,在木块A从木板B的左端滑到右端的过程中,下面关于速度v随时间t、动能E k随位移x的变化图像,其中可能正确的是( )图34.如图4所示,质量均为m的木块A和木板B叠放在水平桌面上,A光滑且位于B的最右端,B与地面间的动摩擦因数为μ,水平力F=mg作用在B上,A、B以2 m/s的共同速度沿水平面向右匀速运动,0.2 s后F加倍(g=10 m/s2)图4(1)试求μ的值;(2)若B足够长,求0.4 s时A、B的速度,并在乙图中作出0.2~0.4 s A、B运动的v-t图像.答案解析1.C [由于物块运动过程中与木板存在相对滑动,且始终相对木板向左运动,因此木板对物块的摩擦力向右,所以物块相对地面向右运动,且速度不断增大,直至相对静止而做匀速直线运动,选项A 、B 错误;由牛顿第三定律可知,木板受到物块给它的向左的摩擦力作用,木板的速度不断减小,直到两者相对静止,而做匀速直线运动,选项C 正确;由于水平面光滑,所以木板和物块不会停止,选项D 错误.]2.(1)1 s (2)16解析 (1)对木板受力分析,由牛顿第二定律得:F -μ1(M +m )g =Ma ,由运动学公式得L =12at 2,代入数据解得: t =1 s.(2)对小物块:在木板上时μmg =ma 1,在地面上时2μmg =ma 2,设小物块从木板上滑下时的速度为v 1,小物块在木板上和地面上的位移分别为x 1、x 2,则:2a 1x 1=v 21,2a 2x 2=v 21,并且满足x =x 1+x 2=3 m ,解得x 1=2 m .设小物块在木板上滑行时间为t 1,则x 1=12a 1t 21,对木板:F -μmg -μ1(M +m )g =Ma 3,木板对地面的位移x ′=12a 3t 21,x ′=x 1+L ,解得μ=16. 3.D [木块滑上木板,A 做匀减速直线运动,B 做匀加速直线运动,根据牛顿第二定律得,a A =μmg m =μg ,a B =μmg M ,已知M >m ,则a A >a B .v -t 图像中①图线斜率的绝对值大于②图线斜率的绝对值,故A 、B 错误;根据动能定理得,对A 有:-μmgx =E k -E k0,则E k =E k0-μmgx .对B 有:μmgx =E k ,从动能定理的表达式可知,木块和木板E k 与x 图线斜率的绝对值应相等.故C 错误,D 正确.]4.(1)0.5 (2)2 m/s 4 m/s 见解析图解析(1)在0~0.2 s内A、B做匀速直线运动,分析B,根据平衡条件有:F=2μmg,又F=mg,代入数据解得μ=0.5.(2)0.2~0.4 s,A运动状态不变(v A=2 m/s),继续做匀速直线运动,B做匀加速运动,根据牛顿第二定律得,2F-2μmg=ma,代入数据解得a=10 m/s2.0.4 s时B的速度v=v0+at=2 m/s+10×0.2 m/s=4 m/s,A、B两物体的v-t图像如图所示.。
“滑块—木板”模型中的动力学问题(解析版)—2025年高考物理一轮复习
运动和力的关系“滑块—木板”模型中的动力学问题素养目标:1.掌握“滑块—木板”模型的运动及受力特点。
2.能正确运用动力学观点处理“滑块—木板”模型问题。
1.如图所示,质量为4kg 的薄木板静置于足够大的水平地面上,其左端有一质量为2kg 的物块,现对物块施加一大小为12N 、水平向右的恒定拉力F ,只要拉力F 作用的时间不超过1s ,物块就不能脱离木板。
已知物块与木板间的动摩擦因数为0.4,木板与地面间的动摩擦因数为0.1,物块可视为质点,取重力加速度大小210m/s g =。
则木板的长度为( )A .0.8mB .1.0mC .1.2mD .1.5m考点一 水平面上的板块问题1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动,滑块和木板具有不同的加速度。
2.模型构建(1)隔离法的应用:对滑块和木板分别进行受力分析和运动过程分析。
(2)对滑块和木板分别列动力学方程和运动学方程。
(3)明确滑块和木板间的位移关系如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。
3.解题关键(1)摩擦力的分析判断:由滑块与木板的相对运动来判断“板块”间的摩擦力方向。
(2)挖掘“v物=v板”临界条件的拓展含义摩擦力突变的临界条件:当v物=v板时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动)。
①滑块恰好不滑离木板的条件:滑块运动到木板的一端时,v物=v板;②木板最短的条件:当v物=v板时滑块恰好滑到木板的一端。
例题1.如图所示,质量为m的长木板A放在光滑的水平面上,物块B、C放在长木板上。
物块B的质量也为m,B、C与A间的动摩擦因数均为m,A、B、C均处于静止状态,最大静摩擦力等于滑动摩擦力,重力加速度为g 。
动力学中的“滑块—木板”模型-高考物理复习
图4
A的下面抽出,重力加速度为g。则拉力F应大于( C )
A.mgsin θ+μmgcos θ
B.mgsin θ+2μmgcos θ
C.4μmgcos θ
D.2mgsin θ
解析 设拉力为F0时,B刚要从A下面被抽出,对整体,根据牛顿第二定律有 F0-2mgsin θ-2μmgcos θ=2ma,对物块A,根据牛顿第二定律有μmgcos θ -mgsin θ=ma,联立可得F0=4μmgcos θ,故A、B、D错误,C正确。
01 02 03 04 05 06 07
目录
提升素养能力
3.(多选)如图3甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上。
已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t(N)的变力作用,
从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示。设最大
静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是
目录
提升素养能力
解析 要使木板沿斜面加速运动,对物块与木板整体有
F>(M+m)gsin α,解得 F>20 N,故 A 错误;对物块与 木板整体,由牛顿第二定律可得 F-(M+m)gsin α= (M+m)a,对物块有 f-mgsin α=ma,为使物块不滑 离木板,则 f≤μmgcos α,解得 F≤30 N,综上可得, 当 F≤30 N 时物块不滑离木板,当 F>30 N 时物块与木板发生相对滑动,故 B 错误,C 正确;若 F=37.5 N>30 N,物块能滑离木板,对木板有 F-Mgsin α-
( ACD )
A.滑块与木板间的动摩擦因数为0.4
B.木板与水平地面间的动摩擦因数为0.2
高考物理模型101专题讲练:第9讲 水平叠加的滑块——木板模型之动态分析与临界问题
第9讲水平叠加的滑块——木板模型之动态分析与临界问题一、知识总结(1).模型特点滑块放置于木板上,木板放置于水平桌面或地面上。
(2).题型特点:判定滑块与木板是否发生相对滑动,或摩擦力方向和大小的动态变化情况。
需分析处理临界或极值问题。
1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4.若题目要求“最终加速度”、“稳定速度”等,即是求收尾加速度或收尾速度。
(3).题型难点是对摩擦力的理解,相关必会知识如下:1.两种摩擦力的比较(1)定义:彼此接触的物体发生相对运动时,摩擦力和正压力的比值.公式μ=F f F N.(2)决定因素:接触面的材料和粗糙程度.3、注意易错点:(1)摩擦力的方向总是与物体间相对运动(或相对运动趋势)的方向相反,但不一定与物体的运动方向相反.(2)摩擦力总是阻碍物体间的相对运动(或相对运动趋势),但不一定阻碍物体的运动,即摩擦力可以是阻力,也可以是动力.(3)受静摩擦力作用的物体不一定静止,但一定与施力物体保持相对静止.4、判断摩擦力的方法(1)假设法(2)运动状态法此法关键是先确定物体的运动状态,再利用平衡条件或牛顿第二定律确定静摩擦力的有无及方向.(3)牛顿第三定律法“力是物体间的相互作用”,先确定受力较少的物体是否受到静摩擦力及方向,再根据牛顿第三定律确定另一物体是否受到静摩擦力及方向.二、例题精讲(多选)例l1.如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增大,在增大到45N 的过程中,则()A.当拉力F=12N时,两个物体保持相对静止,没有发生相对滑动B.当拉力超过12N时,两个物体开始相对滑动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动(多选)例2.如图所示,小物块m1=1kg,放在长木板m2上,m2=2kg,m1和m2之间的动摩擦因数μ1=0.2,m2与地面间的动摩擦动摩擦因数μ2=0.1,(设最大静摩擦力等于滑动摩擦力,取g=10m/s2)则下列说法正确的是()A.F=9N时m1加速度为2m/s2B.F=15N时,m2的加速度为5m/s2C.要使m1、m2发生相对滑动F至少为8ND.当F=12N时,m1加速度为3m/s2例3.如图所示,质量分别为10kg和5kg的长方形物体A和B静止叠放在水平桌面上.A与桌面以及A 、B 间动摩擦因数分别为μ1=0.1和μ2=0.6,设最大静摩擦力等于滑动摩擦力.现用一个水平作用力F 作用在B 上,能使AB 之间发生相对滑动的F 的最小值为 .三、举一反三,巩固训练(多选)4.如图所示,三个物体A 、B 和C 的质量分别为2m 、m 和m ,A 、B 叠放在水平桌面上,A 通过跨过光滑定滑轮的轻绳与C 相连,定滑轮左端的轻绳与桌面平行,A 、B 间的动摩擦因数为μ(μ<1),B 与桌面间的动摩擦因数为μ3,A 、B 、桌面之间的最大静摩擦力等于相对应的滑动摩擦力,重力加速度为g ,下列说法正确的是( )A .三个物体A 、B 、C 均保持静止B .轻绳对定滑轮的作用力大小为√2mgC .若A 、B 之间发生相对滑动,则需满足μ<0.2D .若A 、B 之间未发生相对滑动,则A 受到的摩擦力大小为1+3μ4mg(多选)5.如图所示,质量M =1kg 、长L =6m 的长木板静置于粗糙水平地面上,木板与地面间的动摩擦因数µ=0.1.可视为质点的A 、B 两物块静止置于木板上,物块A 、B 的质量分别为m 1=5kg 、m 2=1kg ,与木板间的动摩擦因数分别为µ1=0.4、µ2=0.5.现用一水平向左的恒力F 作用在物块A 上。
滑块—木板模型专题(附详细参考答案)
精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑块—木板模型的动力学分析
在高三物理复习中,滑块—木板模型作为力学的基本模型经常出现,是对一轮复习中直线运动和牛顿运动定律有关知识的巩固和应用。
这类问题的分析有利于培养学生对物理情景的想象能力,为后面动量和能量知识的综合应用打下良好的基础。
滑块—木板模型的常见题型及分析方法如下:
例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.
∴A、B一起加速运动时,拉力F的最大值为:
.
变式1例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:
.
变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:
设A、B一起加速运动时,拉力F的最大值为F m,则:
解得:
例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g取10m/s2)
解答:物体放上后先加速:a1=μg=2m/s2
此时小车的加速度为:
当小车与物体达到共同速度时:
v共=a1t1=v0+a2t1
解得:t1=1s ,v共=2m/s
以后物体与小车相对静止:(∵,物体不会落后于小车)
物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m
练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。
最大静摩擦力可以认为等于滑动摩擦力。
现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少?(已知重力加速度g=10m/s2)
解答:假设力F作用后A、C一起加速,则:
而A能获得的最大加速度为:
∵∴假设成立
在A、C滑行6m的过程中:∴v1=2m/s
A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ∴v2=1m/s
此后A、C相对滑动:,故C匀速运动;
,故AB 也匀速运动。
设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s
然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向左
,故t=10s时,v A=0.
C在B上继续滑动,且C匀速、B加速:a B=a0=1m/s2
设经时间t4,C.B速度相等:∴t4=1s
此过程中,C.B的相对位移为:,故C 没有从B的右端滑下。
然后C.B一起加速,加速度为a1,加速的时间为:
故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s.
练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数,取g=10m/s2,试求:
(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?
(2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后,请在图6中画出铁块受到木板的摩擦力f2随拉力F大小变化的图象。
(设木板足够长)
(解答略)答案如下:(1)t=1s
(2)①当F≤N时,A、B相对静止且对地静止,f2=F;
②当2N<F≤6N时,M、m相对静止,
③当F>6N时,A、B发生相对滑动,N.
画出f2随拉力F大小变化的图象如图7所示。
从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动;若两个物体的初速度相同(包括初速为0),则要先判定两个物体是否发生相对滑动,其方法是求出不受外力F作用的那个物体的最大临界加速度并用假设法求出在外力F作用下整体的加速度,比较二者的大小即可得出结论。