midas连续梁分析报告实例

合集下载

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计
4-6
钢束 名称 1t1-1
1t1-3
2t1-2
3t1-1
3t1-3 23t1-1
X 0 7.6 23.85 31.45 0 5.9 25.55 31.45 32.55 40.15 55.85 63.45 64.55 72.15 88.4 96 64.55 72.15 88.4 96 56 72
坐标 (m)
为了说明采用梁格法分析一般梁桥结构的分析步骤,本例题采用了一个比较简单的分 析模型——一座由五片预应力T梁组成的3×32m桥梁结构,每片梁宽2.5m。桥梁的基本数 据取自实际结构但和实际结构有所不同。
本例题的基本数据如下:
桥梁形式:三跨连续梁桥 桥梁等级:I级 桥梁全长:3@32=96m 桥梁宽度:12.5m 设计车道:3车道
12t1-2
0
40 0.62 1.825
负弯矩
56
钢束10 23t1-2 72
0.62 1.825 0.62 1.825
钢束 类型 R 0 40 正弯矩 40 钢束8 0 0 40 正弯矩 40 钢束7 0 0 40 正弯矩 40 钢束9 0 0 40 正弯矩 40 钢束8 0 负弯矩 钢束10
负弯矩 钢束10
图4. 单位体系设定 4-10
定义材料和截面特性
同时定义多种材料
特性时,使用 键可以连续输入。
定义结构所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50
名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S) 数据库> Strand1860
图2. T型梁跨中截面图

迈达斯Midas_civil_梁格法建模实例

迈达斯Midas_civil_梁格法建模实例
徐变系数: 程序计算
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:

Midas预应力混凝土连续箱梁分析算例课件

Midas预应力混凝土连续箱梁分析算例课件

MIDAS软件是一款功能强大的有限元 分析软件,可以对预应力混凝土连续 箱梁进行精确的建模和分析,为桥梁 设计提供可靠的技术支持。
预应力混凝土连续箱梁的设计和施工 需要综合考虑多种因素,包括结构形 式、材料特性、施工方法等,以确保 桥梁的安全性和经济性。
展望
随着科技的不断进步和工程实 践的积累,预应力混凝土连续 箱梁的设计和施工将不断得到
预应力体系
通过在混凝土浇筑前施加 预压应力,改善了结构的 受力性能,提高了梁的承 载能力和稳定性。
横向联系
连续箱梁采用横隔板和横 梁等横向联系构件,确保 了结构的整体稳定性。
预应力混凝土连续箱梁的设计原理
力学分析
根据结构力学原理,对连 续箱梁进行受力分析,确 定各截面的弯矩、剪力和 扭矩等。
预应力设计
特殊情况处理
针对模型中可能出现的特殊情况, 如施工阶段、预应力张拉等,说明 处理方法。
计算结果分析
01
02
03
04
变形分析
分析模型在受力后的变形情况 ,包括挠度、转角等。
应力分析
分析模型中的应力分布和大小 ,包括正应力和剪应力。
预应力张拉分析
针对预应力张拉的情况,分析 张拉后的应力分布和损失。
结果对比
优化和完善。
未来可以进一步研究新型材料 和结构形式在预应力混凝土连 续箱梁中的应用,以提高桥梁
的性能和耐久性。
有限元分析软件的功能和精度 将不断提升,为预应力混凝土 连续箱梁的分析和设计提供更 加可靠的技术支持。
未来可以通过加强科研合作和 技术交流,推动预应力混凝土 连续箱梁领域的创新和发展, 为我国桥梁事业的发展做出更 大的贡献。
05 参考文献
CHAPTER

MIDAS连续梁有限元分析案例(二)

MIDAS连续梁有限元分析案例(二)

目录第一部分逐跨施工模型 (1)1.1预应力钢束布置 (1)1.2施工阶段定义 (3)1.3调整模型 (4)第二部分应力分析 (5)2.1施工阶段的应力 (5)2.2成桥阶段应力(恒+活+支座沉降) (6)2.3移动荷载 (6)第三部分PSC验算结果 (7)3.1施工阶段的法向压应力验算 (7)3.2受拉区钢筋的拉应力验算 (11)3.3使用阶段正截面压应力验算 (12)3.4使用阶段斜截面主压应力验算 (13)3.5结论 (14)第一部分逐跨施工模型1.1预应力钢束布置图1-1 第一跨钢筋布置图1-2 第二跨钢筋布置图1-3 第三跨钢筋布置图1-4 第四跨钢筋布置本次桥梁的总体布置,四跨连续梁桥,跨度分别是29.95m+30m+30m +29.95m图如下所示:图1-5-8 桥梁整体布置图汇总的预应力张拉表格,张拉控制应力为0.75的高强钢绞线,控制应力为1395MPa,具体的表格如下所示:1.2施工阶段定义逐跨施工,我们采用满堂支架的方法,依次从梁一施工到四号梁,中间存在从简支梁到连续梁的体系转换,为本次设计修改的难点。

我们的施工过程定义为三个步骤满堂支架的施工和主梁施工、预应力张拉、拆除满堂支架,最后完成全线的浇筑。

从midas中提取的施工阶段细节具体如下:NAME=主梁1-浇筑, 20, YES, NOAELEM=主梁1, 7, 节点1, 7ABNDR=满堂1, DEFORMED, 支座1, DEFORMED, 支座2,DEFORMEDALOAD=自重, FIRSTNAME=主梁1-张拉, 1, YES, NOALOAD=预应力1, FIRSTNAME=主梁1-拆除支架, 2, YES, NODELEM=节点1, 100DBNDR=满堂1NAME=主梁2-浇筑, 20, YES, NOAELEM=主梁2, 7, 节点2, 7ABNDR=支座3, DEFORMED, 满堂2, DEFORMEDNAME=主梁2-张拉, 1, YES, NODELEM=节点2, 100ALOAD=预应力2, FIRSTNAME=主梁2-拆除支架, 2, YES, NODELEM=节点2, 100DBNDR=满堂2NAME=主梁3-浇筑, 20, YES, NOAELEM=主梁3, 7, 节点3, 7ABNDR=满堂3, DEFORMED, 支座4, DEFORMEDNAME=主梁3-张拉, 1, YES, NOALOAD=预应力3, FIRSTNAME=主梁3-拆除支架, 2, YES, NODELEM=节点3, 100DBNDR=满堂3NAME=主梁4-浇筑, 20, YES, NOAELEM=主梁4, 7, 节点4, 7ABNDR=支座5, DEFORMED, 满堂4, DEFORMEDNAME=主梁4-张拉, 5, YES, NOALOAD=预应力4, FIRSTNAME=拆除满堂支架, 10, YES, NODELEM=节点4, 100DBNDR=满堂4NAME=二期恒载, 10, YES, NOALOAD=二期, FIRSTNAME=工后100, 100, YES, NONAME=工后3600, 3600, YES, NO1.3调整模型通过调整预应力的束数,来调整结构在施工中出现的简支梁体系(跨中弯矩增大的影响),以及在体系转换中连续梁顶的拉力。

midas例题演示(预应力砼连续梁)

midas例题演示(预应力砼连续梁)
③ 分析选项>考虑时间依存效 果 (开)
完成建模和定义施工阶段后,在施工阶段分析选项中选择是否考虑材料的时
间依存特性和弹性收缩引起的钢束应力损失,并指定分析徐变时的收敛
条件和迭代次数。
2
④ 时间依存效果 ⑤ 徐变 和收缩 (开) ; 类型
>徐变和收缩⑥ 源自变分析时得收敛把握 ⑦ 迭代次数 ( 5 ) ; 收敛误
4
)
5
② 模型 /边界条件 / 一般支

③ 单项选择(节点 : 1)
2
④ 边界组名称>B-G1
⑤ 选择>添加
⑥ 支撑条件类型> Dy, Dz,
6
Rx (开)
⑦ 同上操作
⑧ 单项选择 (节点 : 16) ⑨ 边界组名称>B-G1 ⑩ 选择>添加 ⑪ 支撑条件类型>Dx, Dy,
Dz, Rx (开) ⑫ 单项选择 (节点 : 31) ⑬ 边界组名称>B-G2 ⑭ 选择>添加 ⑮ 支撑条件类型> Dy, Dz,
5 6
7 8
9
步骤 3.1 定义构造组
操作步骤 ① 模型>组>定义构造租 ② 定义构造组>名称( S-G )
; 后缀 ( 1to2 ) ③ 定义构造组>名称 ( All ) ④ 单元号显示 (on) ⑤ 窗口选择 (单元 : 1 to
18)
3
⑥ 组>构造组>S_G1 (拖& 放)
⑦ 同上操作 ⑧ 窗口选择 (单元 : 19 to
(N, R)
⑦ 开头收缩时的混凝土材龄
(3)
23 45 67
步骤 2.3 定义材料的时间依存性并连接
操作步骤 ① 模型 / 材料和截面特性 /

MIDAS例题—4X30连续梁

MIDAS例题—4X30连续梁

4×30m连续梁结构分析对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。

建立斜连续梁结构模型的详细步骤如下。

1. 设定建模环境2. 设置结构类型3. 定义材料和截面特性值4. 建立结构梁单元模型5. 定义结构组6. 定义边界组7.定义荷载组8.定义移动荷载9. 定义施工阶段10. 运行结构分析11. 查看结果12.psc设计13. 取一个单元做横向分析页脚内容1概要:在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。

同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。

本文中的例子采用一座4×30m的连续梁结构(如图1所示)。

1、桥梁基本数据桥梁跨径布置:4×30m=120;桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m;主梁高度:1.6m;支座处实体段为1.8m;行车道数:双向四车道+2人行道桥梁横坡:机动车道向外1.5%,人行道向内1.5%;施工方法:满堂支架施工;页脚内容2图1 1/2全桥立面图和1.6m标准断面页脚内容32、主要材料及其参数2.1 混凝土各项力学指标见表1表12.2低松弛钢绞线(主要用于钢筋混凝土预应力构件)直径:15.24mm弹性模量:195000 MPa标准强度:1860 MPa抗拉强度设计值:1260 MPa抗压强度设计值: 390 MPa张拉控制应力:1395 MPa热膨胀系数:0.000012页脚内容42.3普通钢筋采用R235、HRB335钢筋,直径:8~32mm弹性模量:R235 210000 MPa / HRB335 200000 MPa标准强度:R235 235 MPa / HRB335 335 MPa热膨胀系数:0.0000123、设计荷载取值:3.1恒载:一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。

Midas预应力混凝土连续箱梁分析算例课件

Midas预应力混凝土连续箱梁分析算例课件
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
结构建模助手截和钢筋表单数据的保存和打开 41
将定义好的表单数据 予以保存,点击
另存为…按钮 以便后用
将原先保存的数据 重新打开,以借鉴 已有的经验,减少 重复工作
结构建模助手的文件 后缀为wzd
Fluid Mechanics and Machinery
跨度信息
确定桥梁的跨度信息:端部支点、 22 内部支承的数量及位置、跨经等
分配单元>经由选择的:在模型窗口 中选择单元;号:直接输入单元号
模型窗口选择单元或直接输入单元 号以后,点击 添加/替换按钮,梁 单元的单元号、单元长度、支承位 置信息将会以表格的形式列出。
如果被选单元的i端有一般支承 条件,支承一栏会显示I。被选 单元不是一般支承条件而是其 它的边界条件时,就需用户在 相应位置(I/J)中选择一项来 补充支承一栏的信息
为边界条件建立三个边界节点
19
选择节点31,这是跨中节点
将节点31复制到z=-7.13m处,生成节点62
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
为边界条件建立三个边界节点
20
选择节点1,61; 这是两端节点
将所选节点复制到z=-2.7m处, 生成节点63,64
这里介绍纵向钢筋表单
定义钢筋纵向布置的起始和终 止位置,定义钢筋横向布置的 数量、直径和间距
Fluid Mechanics and Machinery 流 体 力 学 与 流 体 机 械
纵向钢筋布置的控制参数
39
梁名称:选择在跨度信息里定义好的梁。 如果先前没有定义好梁,点击右侧[…]按钮来定义新的梁

桥梁施工经济性分析案例(midas)

桥梁施工经济性分析案例(midas)

中铁九局集团有限公司
北京迈达斯技术有限公司
内部技术资料
忠县长江大桥主桥
悬空支架在高墩横梁施工中的应用 - 悬空支架方案既能保证结构受力合理明确, 安 全可靠, 又能保证施工质量, 降低工程成本, 加快工程进度, 极大地减少工作量和减轻工人 的劳动强度 鱼洞长江大桥二期工程连续刚构桥0#段托架设计 与施工技术 - 在二期工程0#块施工计算阶段, 考虑了已成型 砼槽型梁自身的承载作用, 二期项目承担的两 个0#块施工, 同比一期0#块托架节约资金60余 万
北京迈达斯技术有限公司
内部技术资料
工箱梁自重大、工期紧等特点, 提出军用梁+ 支架法悬臂浇筑施工方案, 介绍了采用的施工 设备和具体实施方案。与常用的挂篮悬臂浇筑 方案对比, 此方法具有用钢量少、 通用程度高、 技术难度小、节约工期等优点, 客运专线双线32m整孔箱梁移动模架造桥技术 - 经过多种施工技术方案的比较, 采用自行研制 的MZ900SB型上行式移动模架造桥机原位整孔 浇筑箱梁, 并通过建模仿真分析, 提出了上行 式移动模架的提前过孔工艺。 兰州中山桥5跨简支钢桁梁整体提升关键技术 - 采用计算机同步控制提升技术及合点提升技术 对钢桁梁进行整体提升。 利用千斤顶进行预压方案的设计与施工 - 利用油压千斤顶对支架的反压来替代传统方式 的堆沙袋的预压 千斤顶贝雷反力梁在牵索挂篮预压中的应用 - 砂袋堆载法相比,千斤顶贝雷反力梁预压新方 法操作工序少,施工简单,操作方便,加载、 卸载速度快,大大节约了工期,而且预压结果 可靠,具有良好的经济效益和社会效益。 浅水中V型箱梁0#块索栓支架技术 - 在浅水中, 通过计算分析, 直接设置钢平台, 避免了在墩身或承台中预埋钢构件, 经济方 便。 轻型三角形挂篮在大跨度悬臂施工中的技术经济 性分析 - 总结了降低挂篮制作安装成本的措施, 证明该

(完整版)Midas计算实例

(完整版)Midas计算实例

中南大学2010年1月1。

概要 (1)2. 设置操作环境 (2)3. 定义材料和截面 (3)4. 建立结构模型 (7)5。

非预应力钢筋输入 (10)6。

输入荷载 (30)7. 定义施工阶段 (42)8。

输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)1. 概要本桥为80+2*112+2*81+41六跨混凝土预应力连续梁桥。

图1。

分析模型桥梁概况及一般截面桥梁形式:六跨混凝土悬臂梁桥梁长度:L = 80+112+112+80+80+41m施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑1000天收缩徐变.预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1。

5e—006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH=70构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数:程序计算混凝土收缩变形率: 程序计算2。

MIDAS连续梁有限元分析案例(一)

MIDAS连续梁有限元分析案例(一)

连续梁有限元分析案例学号:姓名:班级:联系方式:目录目录 (1)1 工程概况 (2)1.1 桥梁基本概况 (2)1.2 主要材料及参数 (2)1.3 设计荷载取值 (2)2 建模内容 (4)2.1 组的定义 (4)2.2 施工阶段的定义 (4)2.3 预应力布置 (5)3 结果分析 (14)3.1 成桥阶段的结果 (14)3.1.1 成桥阶段的支座反力 (14)3.1.2成桥后结构的竖向位移 (14)3.1.3 成桥阶段结构的弯矩 (15)3.1.4 成桥阶段的应力 (15)3.2 PSC设计结果 (15)3.2.1 施工阶段法向压应力验算 (15)3.2.2使用阶段正截面压应力验算 (16)3.2.3 使用阶段正截面抗弯验算 (17)第一章工程概况1.1 桥梁基本概况(1)桥梁跨径布置:4×30m=120m;(2)桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25m(栏杆)=20.5m;(3)主梁高度:1.6m,支座处实体段为1.8m;(4)行车道数:双向四车道+2人行道;(5)桥梁横坡:机动车道向外1.5%,人行道向内1.5%;(6)施工方法:逐跨现浇法。

1.2 主要材料及参数(1)混凝土选用C50混凝土,其力学指标见表1-1。

(2)预应力筋选用直径为15.24mm的低松弛钢绞线,其力学指标见表1-2。

1.3 设计荷载取值(1)恒载m;二期恒载(人行道、护栏、主要包括材料重量,混凝土容重:25KN/3桥面铺装等)合计:85KN/m;(2)活载:车辆荷载:公路I级人群荷载:3KN/m2;(3)温度力系统升温25℃,系统降温-15℃第二章 MIDAS建模2.1 组的定义见图2.1所示。

结构组8个,跨1包含单元1-24,跨2包含单元25-43,垮3包含单元44-62,跨4包含单元63-78;支架1包含节点80-104,支架2包含单元104-123,支架3包含单元123-142,支架4包含单元142-158。

midas-预应力连续梁的施工阶段分析

midas-预应力连续梁的施工阶段分析
基本阶段是对单元进行添加或删除、定义材料、截面、荷载和边界条件的阶段,可以说与实际施工阶段分析无关,且上述工作只能在基本阶段进行。
施工阶段是进行实际施工阶段分析的阶段,在这里可以更改荷载状况和边界条件。
最后阶段是对除施工阶段荷载以外的其他荷载进行分析的阶段,在该阶段可以将一般荷载的分析结果和施工阶段分析的结果进行组合。最后阶段可以被定义为施工阶段中的任一阶段。
类型(施工阶段荷载)
图14.输入静力荷载工况的对话框
输入恒荷载
使用自重功能输入恒荷载。
荷载/自重
荷载工况名称>恒荷载
荷载组名称>自重
自重系数> Z (-1)
图15.输入恒荷载
输入钢束特性值
荷载/预应力荷载/预应力钢束的特性值
预应力钢束的名称(钢束);预应力钢束的类型>内部
材料>2:钢束
预应力钢束总面积(0.0042997)
激活>支撑条件/弹性支撑位置>变形后;
荷载
组列表>钢束2
激活>激活时间>开始;
图24.定义施工阶段2(CS2)
下面定义施工阶段3(CS3)。在施工阶段3中结构体系、边界条件、荷载没有变化,只是进行持续时间为10,000天的时间依存性分析。
容许应力:
容许应力
预应力作用后(瞬间)
预应力损失发生后(最终)
抗 拉
抗 压
预应力钢束(KSD 7002 SWPC 7B-Φ15.2mm (0.6˝strand)
屈服强度: →
抗拉强度: →
截面面积:
弹性模量:
张 拉 力:fpi=0.7fpu=133kgf/mm2
锚固装置滑动:
磨擦系数:
容许应力

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

图4. 单位体系设定 4-10
定义材料和截面特性
同时定义多种材料
特性时,使用 键可以连续输入。
定义结构所使用的混凝土和钢束的材料特性。
模型 / 材料和截面特性 / 材料 类型>混凝土 ; 规范> JTG04(RC) 数据库> C50
名称(Strand1860 ) ; 类型>钢材 ; 规范> JTG04(S) 数据库> Strand1860
40.15 0
0.12
40
钢束8
2t1-3 55.85
0
0.12
0
63.45 0
0.96
0
64.55 0
1.36
40 正弯矩
72.15 0
0.17
40
钢束7 3t1-2 88.4
0
0.17
0
96
0
1.36
0
24 -0.62 1.825
12t1-1
40 正弯矩
40 -0.62 1.825
40 钢束9
24 0.62 1.825
12t1-2
0
40 0.62 1.825
负弯矩
56
钢束10 23t1-2 72
0.62 1.825 0.62 1.825
钢束 类型 R 0 40 正弯矩 40 钢束8 0 0 40 正弯矩 40 钢束7 0 0 40 正弯矩 40 钢束9 0 0 40 正弯矩 40 钢束8 0 负弯矩 钢束10
负弯矩 钢束10
为了说明采用梁格法分析一般梁桥结构的分析步骤,本例题采用了一个比较简单的分 析模型——一座由五片预应力T梁组成的3×32m桥梁结构,每片梁宽2.5m。桥梁的基本数 据取自实际结构但和实际结构有所不同。

最好的midas连续梁分析

最好的midas连续梁分析

1. 连续梁分析概述比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)时的反力、位移、内力。

3跨连续两次超静定3跨静定3跨连续1次超静定图 1.1 分析模型1材料钢材: Grade3截面数值 : 箱形截面 400×200×12 mm荷载1. 均布荷载 : 1.0 tonf/m2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差)设定基本环境打开新文件,以‘连续梁分析.mgb’为名存档。

单位体系设定为‘m’和‘tonf’。

文件/ 新文件文件/ 存档(连续梁分析 )工具 / 单位体系长度> m ; 力 > tonf图 1.2 设定单位体系23设定结构类型为 X-Z 平面。

模型 / 结构类型结构类型> X-Z 平面 ↵设定材料以及截面材料选择钢材GB (S )(中国标准规格),定义截面。

模型 / 材料和截面特性 /材料名称( Grade3) 设计类型 > 钢材规范> GB(S) ; 数据库> Grade3 ↵模型 / 材料和截面特性 / 截面截面数据截面号 ( 1 ) ; 截面形状 > 箱形截面 ; 用户:如图输入 ; 名称> 400×200×12 ↵图 1.3 定义材料 图 1.4 定义截面建立节点和单元选择“数据库”中的任意材料,材料的基本特性值(弹性模量、泊松比、线膨胀系数、容重)将自动4为了生成连续梁单元,首先输入节点。

正面,捕捉点 (关),捕捉轴线 (关)捕捉节点 (开),捕捉单元 (开),自动对齐模型 / 节点 / 建立节点坐标 ( x, y, z ) ( 0, 0, 0 )图 1.5 建立节点参照用户手册的“输入单元时主要考虑事项”用扩展单元功能来建立连续梁。

模型 / 单元/ 扩展单元全选扩展类型 > 节点 线单元单元属性> 单元类型 > 梁单元材料 > 1:Grade3 ; 截面> 1: 400*200*12 ; Beta 角( 0 )生成形式> 复制和移动 ; 复制和移动 > 任意间距方向> x ; 间距( 3@5/3, 8@10/8, 3@5/3 )图 1.6 建立单元X Z输入梁单元.关于梁单元的详细事项参照在线帮助的“单元类型”的“梁单元”部分56输入边界条件3维空间的节点有6个自由度 (Dx, Dy, Dz, Rx, Ry, Rz)。

MIDAS连续梁有限元分析案例(三)

MIDAS连续梁有限元分析案例(三)

连续梁逐跨现浇法有限元分析目录第一章工程概况 (2)1.1 桥梁基本概况 (2)1.2 主要材料及参数 (2)1.3 设计荷载取值 (2)第二章 MIDAS建模 (4)2.1 组的定义 (4)2.2 施工阶段的定义 (5)2.3 预应力布置 (6)第三章结果分析 (10)3.1 施工阶段结果分析 (10)3.1.1 施工阶段法向压应力验算 (10)3.1.2使用阶段正截面压应力验算 (11)3.1.3 使用阶段正截面抗弯验算 (11)3.2 成桥阶段结果分析 (11)3.2.1成桥阶段的支座反力 (11)3.2.2成桥后结构的竖向位移 (12)3.2.3 成桥阶段结构的弯矩 (12)3.2.4 成桥阶段的应力 (13)第一章工程概况1.1 桥梁基本概况(1)桥梁跨径布置:4×30m=120m;(2)桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25m(栏杆)=20.5m;(3)主梁高度:1.6m,支座处实体段为1.8m;(4)行车道数:双向四车道+2人行道;(5)桥梁横坡:机动车道向外1.5%,人行道向内1.5%;(6)施工方法:逐跨现浇法。

1.2 主要材料及参数(1)混凝土选用C50混凝土,其力学指标见表1-1。

(2)预应力筋选用直径为15.24mm的低松弛钢绞线,其力学指标见表1-2。

1.3 设计荷载取值(1)恒载m;二期恒载(人行道、护栏、主要包括材料重量,混凝土容重:25KN/3桥面铺装等)合计:85KN/m;(2)活载:车辆荷载:公路I级人群荷载:3KN/m2;(3)温度力:系统升温25℃,系统降温-15℃第二章 MIDAS建模2.1 组的定义本模型分组见图2-1所示。

共包含结构组12个,边界组11个,荷载组9个。

结构组:jg1~jg4代表“结构1~结构4”,为分段浇筑的四段主梁,其中jg1包含的单元为1to25号单元,jg2包含的单元为26to44号单元,jg3包含的单元为45to63号单元,jg4包含的单元为64to78号单元。

MIDAS例题---连续梁

MIDAS例题---连续梁

4×30m连续梁结构分析对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。

建立斜连续梁结构模型的详细步骤如下。

1. 设定建模环境2. 设置结构类型3. 定义材料和截面特性值4. 建立结构梁单元模型5. 定义结构组6. 定义边界组7.定义荷载组8.定义移动荷载9. 定义施工阶段10. 运行结构分析11. 查看结果12.psc设计13. 取一个单元做横向分析概要:在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。

同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。

本文中的例子采用一座4×30m的连续梁结构(如图1所示)。

1、桥梁基本数据桥梁跨径布置:4×30m=120;桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m;主梁高度:1.6m;支座处实体段为1.8m;行车道数:双向四车道+2人行道桥梁横坡:机动车道向外1.5%,人行道向内1.5%;施工方法:满堂支架施工;图1 1/2全桥立面图和1.6m标准断面2、主要材料及其参数2.1 混凝土各项力学指标见表1表12.2低松弛钢绞线(主要用于钢筋混凝土预应力构件)直径:15.24mm弹性模量:195000 MPa标准强度:1860 MPa抗拉强度设计值:1260 MPa抗压强度设计值: 390 MPa张拉控制应力:1395 MPa热膨胀系数:0.0000122.3普通钢筋采用R235、HRB335钢筋,直径:8~32mm弹性模量:R235 210000 MPa / HRB335 200000 MPa标准强度:R235 235 MPa / HRB335 335 MPa热膨胀系数:0.0000123、设计荷载取值:3.1恒载:一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。

midas连续梁分析实例

midas连续梁分析实例

1. 连续梁分析概述比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、力。

3跨连续两次超静定3跨静定3跨连续1次超静定图 1.1 分析模型➢材料钢材: Grade3➢截面数值 : 箱形截面 400×200×12 mm➢荷载1. 均布荷载 : 1.0 tonf/m2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差)设定基本环境打开新文件,以‘连续梁分析.mgb’为名存档。

单位体系设定为‘m’和‘tonf’。

文件/ 新文件文件/ 存档(连续梁分析 )工具 / 单位体系长度> m ; 力 > tonf图 1.2 设定单位体系设定结构类型为 X-Z 平面。

模型 / 结构类型结构类型> X-Z 平面↵设定材料以及截面材料选择钢材GB(S)(中国标准规格),定义截面。

模型 / 材料和截面特性 / 材料名称( Grade3)设计类型 > 钢材规> GB(S) ; 数据库> Grade3 ↵模型 / 材料和截面特性 / 截面截面数据截面号( 1 ) ; 截面形状 > 箱形截面;用户:如图输入 ; 名称> 400×200×12 ↵选择“数据库”中的任意材料,材料的基本特性值(弹性模量、泊松比、线膨胀系数、容重)将自动输出。

图 1.3 定义材料图 1.4 定义截面建立节点和单元为了生成连续梁单元,首先输入节点。

正面,捕捉点 (关), 捕捉轴线 (关)捕捉节点 (开), 捕捉单元 (开), 自动对齐模型 / 节点 / 建立节点坐标 ( x, y, z ) ( 0, 0, 0 )图 1.5 建立节点参照用户手册的“输入单元时主要考虑事项”用扩展单元功能来建立连续梁。

模型 / 单元/ 扩展单元全选扩展类型 > 节点 线单元单元属性> 单元类型 > 梁单元材料 > 1:Grade3 ; 截面> 1: 400*200*12 ; Beta 角( 0 )生成形式> 复制和移动 ; 复制和移动 > 任意间距方向> x ; 间距( 35/3, 810/8, 35/3 )图 1.6 建立单元X Z输入梁单元. 关于梁单元的详细事项参照在线帮助的“单元类型”的“梁单元”部分输入边界条件3维空间的节点有6个自由度 (Dx, Dy, Dz, Rx, Ry, Rz)。

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应力混凝土连续T梁桥的分析与设计

Midas例题(梁格法):预应⼒混凝⼟连续T梁桥的分析与设计北京迈达斯技术有限公司⽬录概要 (3)设置操作环境 (10)定义材料和截⾯特性 (11)建⽴结构模型 (21)PSC截⾯钢筋输⼊ (42)输⼊荷载 (44)定义施⼯阶段 (63)输⼊移动荷载数据 (73)运⾏结构分析 (80)查看分析结果 (81)概要梁格法是⽬前桥梁结构分析中应⽤的⽐较多的在本例题中将介绍采⽤梁格法建⽴⼀般梁桥结构的分析模型的⽅法、施⼯阶段分析的步骤、横向刚度的设定以及查看结果的⽅法和PSC设计的⽅法。

本例题中的桥梁模型如图1所⽰为⼀三跨的连续梁桥,每跨均为32m。

图1. 简⽀变连续分析模型桥梁的基本数据为了说明采⽤梁格法分析⼀般梁桥结构的分析步骤,本例题采⽤了⼀个⽐较简单的分析模型——⼀座由五⽚预应⼒T梁组成的3×32m桥梁结构,每⽚梁宽2.5m。

桥梁的基本数据取⾃实际结构但和实际结构有所不同。

本例题的基本数据如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:3@32=96m桥梁宽度:12.5m设计车道:3车道图2. T型梁跨中截⾯图图3. T梁端部截⾯图使⽤材料以及容许应⼒> 混凝⼟采⽤JTG04(RC)规范的C50混凝⼟>普通钢筋普通钢筋采⽤HRB335(预应⼒混凝⼟结构⽤普通钢筋中箍筋、主筋和辅筋均采⽤带肋钢筋既HRB系列) >预应⼒钢束采⽤JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应⼒钢筋抗拉强度标准值(fpk):1860N/mm^2预应⼒钢筋与管道壁的摩擦系数:0.3管道每⽶局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉⼒:抗拉强度标准值的75%>徐变和收缩条件⽔泥种类系数(Bsc): 5 (5代表普通硅酸盐⽔泥)28天龄期混凝⼟⽴⽅体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作⽤时混凝⼟的材龄:=t5天o混凝⼟与⼤⽓接触时的材龄:=t3天s相对湿度: %RH=70⼤⽓或养护温度: CT=°20构件理论厚度:程序计算适⽤规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝⼟收缩变形率: 程序计算荷载静⼒荷载>⾃重由程序内部⾃动计算>⼆期恒载桥⾯铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥⾯铺装层:厚度80mm的钢筋混凝⼟和60mm的沥青混凝⼟,钢筋混凝⼟的重⼒密度为25kN/m3, 沥青混凝⼟的重⼒密度为23kN/m3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 连续梁分析概述
比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、
内力。

3跨连续两次超静定
3跨静定
3跨连续1次超静定
图 1.1 分析模型
➢材料
钢材: Grade3
➢截面
数值 : 箱形截面 400×200×12 mm
➢荷载
1. 均布荷载 : 1.0 tonf/m
2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差)
设定基本环境
打开新文件,以‘连续梁分析.mgb’为名存档。

单位体系设定为‘m’和‘tonf’。

文件/ 新文件
文件/ 存档(连续梁分析 )
工具 / 单位体系
长度> m ; 力 > tonf
图 1.2 设定单位体系
设定结构类型为 X-Z 平面。

模型 / 结构类型
结构类型> X-Z 平面↵
设定材料以及截面
材料选择钢材GB(S)(中国标准规格),定义截面。

模型 / 材料和截面特性 / 材料
名称( Grade3)
设计类型 > 钢材
规范> GB(S) ; 数据库> Grade3 ↵
模型 / 材料和截面特性 / 截面
截面数据
截面号( 1 ) ; 截面形状 > 箱形截面;
用户:如图输入 ; 名称> 400×200×12 ↵
选择“数据库”中的任
意材料,材料的基本特
性值(弹性模量、泊松
比、线膨胀系数、容
重)将自动输出。

图 1.3 定义材料图 1.4 定义截面建立节点和单元
为了生成连续梁单元,首先输入节点。

正面,
捕捉点 (关), 捕捉轴线 (关)
捕捉节点 (开),
捕捉单元 (开), 自动对齐
模型 / 节点 / 建立节点
坐标 ( x, y, z ) ( 0, 0, 0 )
图 1.5 建立节点
参照用户手册的“输
入单元时主要考虑事项”
用扩展单元功能来建立连续梁。

模型 / 单元/ 扩展单元
全选
扩展类型 > 节点 线单元
单元属性> 单元类型 > 梁单元
材料 > 1:Grade3 ; 截面> 1: 400*200*12 ; Beta 角( 0 )生成形式> 复制和移动 ; 复制和移动 > 任意间距
方向> x ; 间距( 3@5/3, 8@10/8, 3@5/3 )
图 1.6 建立单元
X Z
输入梁单元. 关于梁单元的详细事项参照
在线帮助的“单元类
型”的“梁单元”部分
输入边界条件
3维空间的节点有6个自由度 (Dx, Dy, Dz, Rx, Ry, Rz)。

但结构类型已设定为X-Z平
面(程序将自动约束Y方向的位移Dy和绕X轴和Z轴的转动Rx,Rz),所以只剩下3个自由
度 (Dx, Dz, Ry)。

铰支座约束自由度Dx, Dz, 滚动支座约束自由度 Dz。

模型 /边界条件 / 一般支承
节点号 (开)
单选(节点 : 4 )
选择>添加 ; 支承条件类型 > Dx, Dz (开) ↵
单选(节点: 1, 12, 15 ) ;支承条件类型 > Dz (开) ↵
图图1.7 输入边界条件
输入荷载
定义荷载工况
为输入均布荷载和温度荷载,首先定义荷载工况
荷载 / 静力荷载工况
名称 (均布荷载) ; 类型 > 用户定义的荷载(USER)
名称 (温度荷载) ; 类型 > 用户定义的荷载(USER)
图1.8 输入荷载条件
输入均布荷载
给连续梁施加均布荷载 1 tonf/m 。

荷载 / 梁单元荷载(单元)
节点号 (关) 全选
荷载工况名称> 均布荷载 ; 选择 > 添加
荷载类型>均布荷载 ; 方向>整体坐标系 Z ; 投影>否 数值 >相对值 ; x1 ( 0 ) ; x2 ( 1 ) ; W ( -1 )
图 1.9 输入均布荷载
荷载方向与整体坐
标系Z 轴方向相反,输入荷载为“-1”。

输入温度荷载
输入连续梁的上下面温度差(ΔT = 5℃)。

输入温度差后,根据材料的热膨胀系数、温差引起的梁截面产生的应力考虑为荷载。

显示梁单元荷载(关)
荷载 / 温度梯度荷载
全选
荷载工况名称> 温度荷载 ; 选择 > 添加 ; 单元类型> 梁
温度梯度 > T2z-T1z ( 5 )
图 1.10 输入温度荷载
复制单元
复制连续梁(模型 1)来建立多跨静定梁(模型 2,模型 3)。

为了同时复制连续梁(模型1)均布荷载、温度荷载、边界条件,使用复制节点属性和复制单元属性功能。

显示
边界条件>一般支承 (开)
模型 / 单元 / 单元的复制和移动
全选
形式 > 复制 ; 移动和复制 > 等间距
dx, dy, dz ( 0, 0, -5 ) ; 复制次数( 2 )
复制节点属性 (开),复制单元属性 (开)
模型1
模型2
模型3
图 1.11 复制单元
输入铰接条件
在复制的连续梁输入内部铰支座来建立多跨静定梁。

在梁单元的端部使用释放梁端约束功能来生成铰接条件。

模型 / 边界条件/释放梁端约束 单元号(开)
单选 ( 单元 : 19, 23, 33 )
选择 > 添加/替换
选择释放和约束比率 > j-节点 > My (开), Mz (开)
(或
)
图 1.12 输入铰支支座
运行结构分析
对连续梁和多跨静定梁运行结构分析。

分析 / 运行分析
模型 1 模型 2 模型 3 关于内部铰支的详细
说明参照在线帮助的
“释放梁端约束” 部
分 生成梁单元时,随着先指定的i 节点和后指定的j 节点的生成决定坐标系。

只要在图标菜单显示的单元表单下打开单元坐标轴和局部方向就可以确认。

查看分析结果
查看反力
比较均部荷载作用下连续梁和多跨静定梁的反力。

单元号(关)
显示
边界条件 > 一般支承 (关), 释放梁端约束(开) ↵
结果 / 反力和弯矩
荷载工况/荷载组合> ST:均布荷载 ; 反力 > FXYZ
显示类型 > 数值(开),图例(开)
数值
小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开) ↵
图 1.13 均布荷载引起的反力
以表格的形式查看均布荷载引起的的反力。

比较外荷载总合和反力的总合来查看模型
的建立和荷载的输入是否恰当。

例题Z轴方向荷载为1.0 tonf/m2×20 m×3 = 60 tonf,与表格中Z轴方向的反力(FZ)总和相等。

结果 / 分析结果表格 / 反力
荷载组合> 均布荷载(ST) (开) ; 温度荷载(ST) (关)
图 1.14 反力结果表格
比较对温度荷载的反力。

结果 / 反力和弯矩
荷载工况/荷载组合> ST:温度荷载 ; 反力 > FXYZ
显示类型> 数值 (开),图例(开)
模型1
模型2
模型3
图 1.15 温度荷载产生的反力
查看变形图 查看温度荷载产生的变形图。

DXZ=22DZ DX +. 显示 边界条件 > 一般支承 (开) ↵ 结果 / 变形 / 变形形状 荷载工况/荷载组合 > ST:温度荷载 ; 变形 > DXZ 显示类型>变形前 (开), 图例 (开) ↵ 图 1.16 温度荷载产生的变形图
模型 1 模型 2 模型 3
查看内力
查看均布荷载产生的结构的弯矩。

结果 / 内力 / 梁单元内力图
荷载工况/荷载组合> ST:均布荷载; 内力 > My
选择显示 > 5 点;不涂色;系数 ( 2.0 )
显示类型> 等值线 (开), 数值 (开), 图例 (开)
数值
小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开)
多跨静定梁(模型 2)与连续梁(模型 1)相比,可以看出跨中弯矩减小,但支点弯矩增大的情况。

还可以看出,设有一个铰的多跨静定梁(模型3)的铰支点弯矩与(模型2)类似,无铰部分的弯矩与(模型1)类似。

图 1.17 节点荷载产生的弯矩
查看温度荷载产生的弯矩。

温度荷载产生的变形图(图1.16)中,可以看出模型2两边的悬臂梁与中间的简支梁的变形是相互独立的。

温度荷载不会约束梁的变形,所以也不会产生内力。

结果 / 内力 / 梁单元内力图
荷载工况/荷载组合> ST:温度荷载; 内力 > My
显示选项 > 精确解;不涂色;放大 ( 2.0 )
显示类型 >等值线 (开), 数值 (开)
数值
小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开)
图 1.18 温度荷载产生的弯矩图
习题
1. 请查看如下图相同跨径(span)的简支梁,多跨静定梁,连续梁及支点部分加强的梁
的正弯矩依次减小,而负弯矩依次增大。

8 m。

相关文档
最新文档