图的深度广度优先遍历操作代码

合集下载

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。

ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。

本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。

 栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。

读者可以⾃⼰画图分析⼀下,难度并不⼤。

代码写的⽐较随意,仅供参考。

~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。

第7章图的深度和广度优先搜索遍历算法

第7章图的深度和广度优先搜索遍历算法
7.3 图的遍历
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }

dfs和bfs算法代码

dfs和bfs算法代码

dfs和bfs算法代码深度优先搜索(DFS)和广度优先搜索(BFS)是常用的图遍历算法,它们可以帮助我们解决很多实际问题。

本文将详细介绍这两种算法的实现原理和应用场景。

一、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它从图的某个顶点开始,沿着一条路径尽可能深地搜索,直到无法继续为止,然后回溯到上一级节点,继续搜索其他路径。

DFS一般使用栈来实现。

DFS的代码实现如下:```def dfs(graph, start):visited = set() # 用一个集合来记录已访问的节点stack = [start] # 使用栈来实现DFSwhile stack:node = stack.pop() # 取出栈顶元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点stack.extend(neighbors) # 将邻居节点入栈return visited```DFS的应用场景很多,比如迷宫问题、拓扑排序、连通分量的计算等。

在迷宫问题中,我们可以使用DFS来寻找从起点到终点的路径;在拓扑排序中,DFS可以用来确定任务的执行顺序;在连通分量的计算中,DFS可以用来判断图是否连通,并将图分割成不同的连通分量。

二、广度优先搜索(BFS)广度优先搜索是一种逐层遍历的搜索算法,它从图的某个顶点开始,先访问该顶点的所有邻居节点,然后再访问邻居节点的邻居节点,依次进行,直到遍历完所有节点。

BFS一般使用队列来实现。

BFS的代码实现如下:```from collections import dequedef bfs(graph, start):visited = set() # 用一个集合来记录已访问的节点queue = deque([start]) # 使用队列来实现BFSwhile queue:node = queue.popleft() # 取出队首元素if node not in visited:visited.add(node) # 将节点标记为已访问neighbors = graph[node] # 获取当前节点的邻居节点queue.extend(neighbors) # 将邻居节点入队return visited```BFS的应用场景也很广泛,比如寻找最短路径、社交网络中的人际关系分析等。

深度优先遍历算法实现及复杂度分析

深度优先遍历算法实现及复杂度分析

深度优先遍历算法实现及复杂度分析深度优先遍历算法(Depth First Search, DFS)是一种常用的图遍历算法,用于查找或遍历图的节点。

本文将介绍深度优先遍历算法的实现方法,并进行对应的复杂度分析。

一、算法实现深度优先遍历算法的基本思想是从图的某个节点出发,沿着深度方向依次访问其相邻节点,直到无法继续下去,然后返回上一层节点继续遍历。

下面是深度优先遍历算法的伪代码:```1. 初始化访问标记数组visited[],将所有节点的访问标记置为false。

2. 从某个节点v开始遍历:- 标记节点v为已访问(visited[v] = true)。

- 访问节点v的相邻节点:- 若相邻节点w未被访问,则递归调用深度优先遍历算法(DFS(w))。

3. 遍历结束,所有节点都已访问。

```二、复杂度分析1. 时间复杂度深度优先遍历算法的时间复杂度取决于图的存储方式和规模。

假设图的节点数为V,边数为E。

- 邻接表存储方式:对于每个节点,需要访问其相邻节点。

因此,算法的时间复杂度为O(V+E)。

- 邻接矩阵存储方式:需要检查每个节点与其他节点的连通关系,即需要遍历整个邻接矩阵。

因此,算法的时间复杂度为O(V^2)。

2. 空间复杂度深度优先遍历算法使用了一个辅助的访问标记数组visited[]来记录每个节点的访问状态。

假设图的节点数为V。

- 邻接表存储方式:访问标记数组visited[]的空间复杂度为O(V)。

- 邻接矩阵存储方式:访问标记数组visited[]的空间复杂度同样为O(V)。

综上所述,深度优先遍历算法的时间复杂度为O(V+E),空间复杂度为O(V)。

三、应用场景深度优先遍历算法在图的遍历和搜索问题中广泛应用。

以下是一些典型的应用场景:1. 连通性问题:判断图中两个节点之间是否存在路径。

2. 非连通图遍历:对于非连通图,深度优先遍历算法可以用于遍历所有连通分量。

3. 寻找路径:在图中寻找从起始节点到目标节点的路径。

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、广度优先遍历及拓扑排序

数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。

功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。

按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。

深度优先搜索算法详解及代码实现

深度优先搜索算法详解及代码实现

深度优先搜索算法详解及代码实现深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的所有节点。

它的核心思想是从起始节点开始,沿着一条路径尽可能深入地访问其他节点,直到无法继续深入为止,然后回退到上一个节点,继续搜索未访问过的节点,直到所有节点都被访问为止。

一、算法原理深度优先搜索算法是通过递归或使用栈(Stack)的数据结构来实现的。

下面是深度优先搜索算法的详细步骤:1. 选择起始节点,并标记该节点为已访问。

2. 从起始节点出发,依次访问与当前节点相邻且未被访问的节点。

3. 若当前节点有未被访问的邻居节点,则选择其中一个节点,将其标记为已访问,并将当前节点入栈。

4. 重复步骤2和3,直到当前节点没有未被访问的邻居节点。

5. 若当前节点没有未被访问的邻居节点,则从栈中弹出一个节点作为当前节点。

6. 重复步骤2至5,直到栈为空。

深度优先搜索算法会不断地深入到图或树的某一分支直到底部,然后再回退到上层节点继续搜索其他分支。

因此,它的搜索路径类似于一条深入的迷宫路径,直到没有其他路径可走后,再原路返回。

二、代码实现以下是使用递归方式实现深度优先搜索算法的代码:```pythondef dfs(graph, start, visited):visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 示例数据graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']}start_node = 'A'visited = set()dfs(graph, start_node, visited)```上述代码首先定义了一个用于实现深度优先搜索的辅助函数`dfs`。

图的各种算法(深度、广度等)

图的各种算法(深度、广度等)

vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3

图的深度广度优先遍历C语言程序

图的深度广度优先遍历C语言程序
printf("请输入顶点数目:");
scanf("%d",&L->num);
printf("请输入各顶点的信息(单个符号):");
for(i=0;i<L->num;i++)
{
fflush(stdin);
scanf("%c",&L->vexs[i]);
}
printf("请输入边权矩阵的信息:");
{ *e=sq.data[(sq.front)]; return 1;}
}
/*******************************************************************பைடு நூலகம்*********/
int QueueIn (SEQQUEUE *sq,DATATYPE x)
for(v2=0;v2<g.num;v2++)
{
if(g.arcs[v1][v2]!=0&&mark[v2]==0)
{
QueueIn(&q,v2);
mark[v2]=1;
printf("%c ",g.vexs[v2]);
}
}
//如果顺序循环队列sq为空,成功返回1,否则返回0
{
if (sq.rear==sq.front)
return(1);
else
return(0);
}
/*****************************************************************************/

【算法】广度优先算法和深度优先算法

【算法】广度优先算法和深度优先算法

【算法】⼴度优先算法和深度优先算法⼴度(BFS)和深度(DFS)优先算法这俩个算法是图论⾥⾯⾮常重要的两个遍历的⽅法。

下⾯⼀个例⼦迷宫计算,如下图解释:所谓⼴度,就是⼀层⼀层的,向下遍历,层层堵截,看下⾯这幅图,我们如果要是⼴度优先遍历的话,我们的结果是V1 V2 V3 V4 V5 V6 V7 V8。

⼴度优先搜索的思想: ①访问顶点vi ; ②访问vi 的所有未被访问的邻接点w1 ,w2 , …wk ; ③依次从这些邻接点(在步骤②中访问的顶点)出发,访问它们的所有未被访问的邻接点; 依此类推,直到图中所有访问过的顶点的邻接点都被访问; 说明: 为实现③,需要保存在步骤②中访问的顶点,⽽且访问这些顶点的邻接点的顺序为:先保存的顶点,其邻接点先被访问。

这⾥我们就想到了⽤标准模板库中的queue队列来实现这种先进现出的服务。

步骤:  1.将V1加⼊队列,取出V1,并标记为true(即已经访问),将其邻接点加进⼊队列,则 <—[V2 V3]  2.取出V2,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V3 V4 V5]3.取出V3,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V4 V5 V6 V7]4.取出V4,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V5 V6 V7 V8]5.取出V5,并标记为true(即已经访问),因为其邻接点已经加⼊队列,则 <—[V6 V7 V8]6.取出V6,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V7 V8]7.取出V7,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V8]8.取出V8,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[]区别:深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。

这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。

我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。

我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。

在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。

于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。

当然还可以有别的排法。

像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。

这⽅式看起来很像⼆叉树的前序遍历。

没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。

2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。

这⽅式看起来很像⼆叉树的层序遍历。

没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。

图的基本操作(c语言)

图的基本操作(c语言)

图的基本操作(c语⾔)图的基本操作:创建删除遍历创建:邻接矩阵和邻接表⼗字链表下⾯代码是邻接矩阵的定义和邻接表的创建遍历:深度优先遍历(⼀条路⾛到⿊)⼴度优先遍历(树的层次遍历)具体代码:#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream>#include<conio.h>int visited[20] = {0};//标记深度优先遍历访问过的节点访问过1 未访问0//邻阶矩阵存储struct pic {int picture[20][20];//假设此图最⼤顶点数为20char data[20];//存放数据的顶点int e, top;//边的数量顶点的数量};//邻阶表存储struct anode{int array;//数组元素的下标(对应边的元素)struct anode* next;};struct node {char dat;//数据元素区域struct anode* link;};struct arc {struct node data[100];int e, top;};struct arc t;void create_pir();//⽆向图void deep_b();//深度优先遍历(主函数)void deep_b1(int i);//递归函数int find_fristnode(int i);//寻找第⼀个领节点int next_node(int i, int w);//相对于i的下⼀个元素void BFS(int i);//⼴度优先遍历//⼴度遍历需⽤队操作定义⼀个队列struct queue {int a[20];//对中的元素int top, base;};void chu_queue();void enter_queue(int i);void del_queue(int i);struct queue q;int main(){create_pir();BFS(0);return0;}void create_pir(){printf("请输⼊顶点的数量和边的数量:\n");scanf("%d %d", &t.top, &t.e);int i,s,d;printf("请输⼊顶点的数据:\n");for (i = 0; i < t.top; i++){t.data[i].link = NULL;std::cin>>t.data[i].dat;}for (i = 0; i < t.e; i++){printf("请输⼊对应的两边顶点的下标:\n");scanf("%d %d", &s, &d);//如果为有向图输⼊以s为狐尾的节点开辟⼀次空间就可struct anode* p;p = (struct anode*)malloc(sizeof(struct anode));p->array = d;p->next = t.data[s].link;t.data[s].link = p;p = (struct anode*)malloc(sizeof(struct anode));p->array = s;p->next = t.data[d].link;t.data[d].link = p;}}void deep_b(){int i;for (i = 0; i < t.top; i++){if (visited[i] == 0){//没有等于0 深度优先遍历deep_b1(i);}}}void deep_b1(int i){int a;//遍历的结束条件int w;//记录第⼀个邻接结点元素的下标//假设邻接表存储printf("%c ", t.data[i].dat);visited[i] = 1;//如果是矩阵或者⼗字链表则执⾏相应操作 //下⾯内容可根据图的存储构造函数if (t.data[i].link != NULL){w = t.data[i].link->array;}else{w = -1;}if (visited[w] == 0){deep_b1(w);}else{return;}//条件不成⽴就寻找下⼀个领接点}void BFS(int i){int w;printf("%c ", t.data[i].dat);visited[i] = 1;chu_queue();enter_queue(i);while (q.top!=q.base){del_queue(i);w = find_fristnode(i);while (w != -1){if (visited[w] == 0) {printf("%c ", t.data[w].dat);enter_queue(w);}w = next_node(i,w);}}}void chu_queue(){q.top = 0;q.base = 0;}int find_fristnode(int i){if (t.data[i].link != NULL){return t.data[i].link->array;}else{return -1;}}int next_node(int i, int w){struct anode *p;p = t.data[i].link;while (p){if (p->array != w&& p->array!=i) {return p->array;}p = p->next;}return -1;}void enter_queue(int i){q.a[q.top] = i;q.top++;}void del_queue(int i){q.top--;}。

C语言版图的深度和广度优先遍历源代码

C语言版图的深度和广度优先遍历源代码

邻接表表示的图:#include"stdio.h"#include"stdlib.h"#define MaxVertexNum 50 //定义最大顶点数typedef struct node{ //边表结点int adjvex; //邻接点域struct node *next; //链域}EdgeNode;typedef struct vnode{ //顶点表结点char vertex; //顶点域EdgeNode *firstedge; //边表头指针}VertexNode;typedef VertexNode AdjList[MaxVertexNum]; //AdjList是邻接表类型typedef struct {AdjList adjlist; //邻接表int n,e; //图中当前顶点数和边数} ALGraph; //图类型//=========建立图的邻接表=======void CreatALGraph(ALGraph *G){int i,j,k;char a;EdgeNode *s; //定义边表结点printf("Input VertexNum(n) and EdgesNum(e): ");scanf("%d,%d",&G->n,&G->e); //读入顶点数和边数fflush(stdin); //清空内存缓冲printf("Input Vertex string:");for(i=0;i<G->n;i++) //建立边表{scanf("%c",&a);G->adjlist[i].vertex=a; //读入顶点信息G->adjlist[i].firstedge=NULL; //边表置为空表}printf("Input edges,Creat Adjacency List\n");for(k=0;k<G->e;k++) { //建立边表scanf("%d%d",&i,&j); //读入边(Vi,Vj)的顶点对序号s=(EdgeNode *)malloc(sizeof(EdgeNode)); //生成边表结点s->adjvex=j; //邻接点序号为js->next=G->adjlist[i].firstedge;G->adjlist[i].firstedge=s; //将新结点*S插入顶点Vi的边表头部s=(EdgeNode *)malloc(sizeof(EdgeNode));s->adjvex=i; //邻接点序号为is->next=G->adjlist[j].firstedge;G->adjlist[j].firstedge=s; //将新结点*S插入顶点Vj的边表头部}}//=========定义标志向量,为全局变量=======typedef enum{FALSE,TRUE} Boolean;Boolean visited[MaxVertexNum];//========DFS:深度优先遍历的递归算法======void DFSM(ALGraph *G,int i){//以Vi为出发点对邻接链表表示的图G进行DFS搜索EdgeNode *p;printf("%c",G->adjlist[i].vertex); //访问顶点Vivisited[i]=TRUE; //标记Vi已访问p=G->adjlist[i].firstedge; //取Vi边表的头指针while(p) { //依次搜索Vi的邻接点Vj,这里j=p->adjvexif(! visited[p->adjvex]) //若Vj尚未被访问DFSM(G,p->adjvex); //则以Vj为出发点向纵深搜索p=p->next; //找Vi的下一个邻接点}}void DFS(ALGraph *G){int i;for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)if(!visited[i]) //Vi未访问过DFSM(G,i); //以Vi为源点开始DFS搜索} //==========BFS:广度优先遍历=========void BFS(ALGraph *G,int k){ //以Vk为源点对用邻接链表表示的图G进行广度优先搜索int i,f=0,r=0; EdgeNode *p;int cq[MaxVertexNum]; //定义FIFO队列for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<=G->n;i++)cq[i]=-1; //初始化标志向量printf("%c",G->adjlist[k].vertex); //访问源点Vkvisited[k]=TRUE;cq[r]=k; //Vk已访问,将其入队。

深度优先和广度优先算法

深度优先和广度优先算法

深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。

它们的策略不同,各有优缺点,可以在不同的场景中使用。

一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。

该算法使用栈来实现。

1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。

2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。

以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。

由于该算法使用栈来实现,因此空间复杂度为O(V)。

二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。

该算法使用队列来实现。

1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。

2. 算法实现广度优先遍历算法可以使用队列来实现。

深度优先遍历例题

深度优先遍历例题

深度优先遍历例题摘要:1.深度优先遍历基本概念2.深度优先遍历算法实现3.深度优先遍历应用实例正文:【1.深度优先遍历基本概念】深度优先遍历(Depth-First Traversal,简称DFT)是一种遍历树或图的算法。

该算法从某个起始节点开始,沿着树或图的深度优先地访问相邻节点,直到无法继续访问为止。

然后回溯到上一个节点,继续访问其他相邻节点。

重复这个过程,直到访问完所有的节点。

深度优先遍历的特点是简单易懂,实现起来较为直观。

其缺点是可能会出现重复访问节点的情况,尤其是在存在环的情况下。

【2.深度优先遍历算法实现】下面是一个使用递归方法实现的深度优先遍历算法:```void DFS(int node, vector<vector<int>>& adj, vector<bool>& visited) {// 标记当前节点已访问visited[node] = true;// 在此处执行对当前节点的操作(例如输出节点值)// 遍历当前节点的相邻节点for (int neighbor : adj[node]) {// 如果相邻节点未被访问,则继续深度优先遍历if (!visited[neighbor]) {DFS(neighbor, adj, visited);}}}```【3.深度优先遍历应用实例】深度优先遍历广泛应用于各种图算法中,例如寻找连通分量、拓扑排序、寻找最短路径等。

下面是一个简单的实例,展示如何使用深度优先遍历寻找一个无向图中的连通分量:```int main() {int n;cin >> n;vector<vector<int>> adj(n);for (int i = 0; i < n; i++) {cin >> adj[i].size();for (int j = 0; j < adj[i].size(); j++) {cin >> adj[i][j];}}vector<bool> visited(n, false);vector<int> dfn(n, -1);bool connected = true;for (int i = 0; i < n; i++) {if (!visited[i]) {DFS(i, adj, visited);dfn[i] = i;connected = connected && (i == dfn[i]);}}if (!connected) {cout << "The graph is not connected." << endl;} else {cout << "The number of connected components is " << dfn.size() << "." << endl;}return 0;}```这个实例中,我们使用深度优先遍历遍历整个图,标记每个节点的访问情况。

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结

深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。

深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。

它们在解决图的连通性和可达性等问题上具有重要的应用价值。

本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。

二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。

深度优先遍历算法通常使用栈来实现。

以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。

该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。

广度优先遍历算法通常使用队列来实现。

以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。

具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。

图的基本算法(BFS和DFS)

图的基本算法(BFS和DFS)

图的基本算法(BFS和DFS)图是⼀种灵活的数据结构,⼀般作为⼀种模型⽤来定义对象之间的关系或联系。

对象由顶点(V)表⽰,⽽对象之间的关系或者关联则通过图的边(E)来表⽰。

图可以分为有向图和⽆向图,⼀般⽤G=(V,E)来表⽰图。

经常⽤邻接矩阵或者邻接表来描述⼀副图。

在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为⼴度优先搜索(BFS)和深度优先搜索(DFS)。

⼴度优先搜索(BFS)⼴度优先搜索在进⼀步遍历图中顶点之前,先访问当前顶点的所有邻接结点。

a .⾸先选择⼀个顶点作为起始结点,并将其染成灰⾊,其余结点为⽩⾊。

b. 将起始结点放⼊队列中。

c. 从队列⾸部选出⼀个顶点,并找出所有与之邻接的结点,将找到的邻接结点放⼊队列尾部,将已访问过结点涂成⿊⾊,没访问过的结点是⽩⾊。

如果顶点的颜⾊是灰⾊,表⽰已经发现并且放⼊了队列,如果顶点的颜⾊是⽩⾊,表⽰还没有发现 d. 按照同样的⽅法处理队列中的下⼀个结点。

基本就是出队的顶点变成⿊⾊,在队列⾥的是灰⾊,还没⼊队的是⽩⾊。

⽤⼀副图来表达这个流程如下:1.初始状态,从顶点1开始,队列={1}2.访问1的邻接顶点,1出队变⿊,2,3⼊队,队列={2,3,}3.访问2的邻接结点,2出队,4⼊队,队列={3,4}4.访问3的邻接结点,3出队,队列={4}5.访问4的邻接结点,4出队,队列={ 空}从顶点1开始进⾏⼴度优先搜索:1. 初始状态,从顶点1开始,队列={1}2. 访问1的邻接顶点,1出队变⿊,2,3⼊队,队列={2,3,}3. 访问2的邻接结点,2出队,4⼊队,队列={3,4}4. 访问3的邻接结点,3出队,队列={4}5. 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来说不可达。

上⾯的图可以通过如下邻接矩阵表⽰:1int maze[5][5] = {2 { 0, 1, 1, 0, 0 },3 { 0, 0, 1, 1, 0 },4 { 0, 1, 1, 1, 0 },5 { 1, 0, 0, 0, 0 },6 { 0, 0, 1, 1, 0 }7 };BFS核⼼代码如下:1 #include <iostream>2 #include <queue>3#define N 54using namespace std;5int maze[N][N] = {6 { 0, 1, 1, 0, 0 },7 { 0, 0, 1, 1, 0 },8 { 0, 1, 1, 1, 0 },9 { 1, 0, 0, 0, 0 },10 { 0, 0, 1, 1, 0 }11};12int visited[N + 1] = { 0, };13void BFS(int start)14{15 queue<int> Q;16 Q.push(start);17 visited[start] = 1;18while (!Q.empty())19 {20int front = Q.front();21 cout << front << "";22 Q.pop();23for (int i = 1; i <= N; i++)24 {25if (!visited[i] && maze[front - 1][i - 1] == 1)26 {27 visited[i] = 1;28 Q.push(i);29 }30 }31 }32}33int main()34{35for (int i = 1; i <= N; i++)36 {37if (visited[i] == 1)38continue;39 BFS(i);40 }41return0;42 }深度优先搜索(DFS)深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。

数据结构与算法(13):深度优先搜索和广度优先搜索

数据结构与算法(13):深度优先搜索和广度优先搜索
因此访问顺序是:A => C => D => F => B => G => E
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。

图的广度优先遍历算法

图的广度优先遍历算法

图的⼴度优先遍历算法前⾔⼴度优先遍历算法是图的另⼀种基本遍历算法,其基本思想是尽最⼤程度辐射能够覆盖的节点,并对其进⾏访问。

以迷宫为例,深度优先搜索更像是⼀个⼈在⾛迷宫,遇到没有⾛过就标记,遇到⾛过就退⼀步重新⾛;⽽⼴度优先搜索则可以想象成⼀组⼈⼀起朝不同的⽅向⾛迷宫,当出现新的未⾛过的路的时候,可以理解成⼀个⼈有分⾝术,继续从不同的⽅向⾛,,当相遇的时候则是合⼆为⼀(好吧,有点扯了)。

⼴度优先遍历算法的遍历过程仍然以上⼀篇的例⼦进⾏说明,下⾯是⼴度优先遍历的具体过程:1. 从起点0开始遍历2. 从其邻接表得到所有的邻接节点,把这三个节点都进⾏标记,表⽰已经访问过了3. 从0的邻接表的第⼀个顶点2开始寻找新的叉路4. 查询顶点2的邻接表,并将其所有的邻接节点都标记为已访问5. 继续从顶点0的邻接表的第⼆个节点,也就是顶点1,遍历从顶点1开始6. 查询顶点1的邻接表的所有邻接节点,也就是顶点0和顶点2,发现这两个顶点都被访问过了,顶点1返回7. 从顶点0的下⼀个邻接节点,也就是顶点5,开始遍历8. 查询顶点5的邻接节点,发现其邻接节点3和0都被访问过了,顶点5返回9. 继续从2的下⼀个邻接节点3开始遍历10. 寻找顶点3的邻接节点,发现都被访问过了,顶点3返回11. 继续寻找顶点2的下⼀个邻接节点4,发现4的所有邻接节点都被访问过了,顶点4返回12. 顶点2的所有邻接节点都放过了,顶点2返回,遍历结束⼴度优先遍历算法的实现与深度优先遍历算法相同,都需要⼀个标记数组来记录⼀个节点是否被访问过,在深度优先遍历算法中,使⽤的是⼀个栈来实现的,但是⼴度优先因为需要记录与起点距离最短的节点,或者说能够⽤尽可能少的边连通的节点,距离短的优先遍历,距离远的后⾯再遍历,更像是队列。

所以在⼴度优先遍历算法中,需要使⽤队列来实现这个过程。

下⾯是具体的实现代码(已附详细注释):package com.rhwayfun.algorithm.graph;import java.util.LinkedList;import java.util.Queue;public class BreadFirstSearch {//创建⼀个标记数组private boolean[] marked;//起点private int s;public BreadFirstSearch(MyGraph G, int s){marked = new boolean[G.V()];this.s = s;//开始⼴度优先搜索bfs(G,s);}private void bfs(MyGraph G, int s2) {//创建⼀个队列Queue<Integer> queue = new LinkedList<Integer>();//标记起点marked[s] = true;queue.add(s);System.out.print(s + " ");while(!queue.isEmpty()){//从队列中删除下⼀个节点int v = queue.poll();//将该节点的所有邻接节点加⼊队列中for(int w : G.adj(v)){//如果没有标记就标记if(!marked[w]){marked[w] = true;System.out.print(w + " ");queue.add(w);}}}}}运⾏该程序,发现⼴度优先遍历算法对上图的遍历顺序是0,2,1,5,3,4。

广度优先遍历实现原理

广度优先遍历实现原理

广度优先遍历实现原理广度优先遍历(Breadth-First Search, BFS)是一种用于遍历或搜索树或图的算法。

这种算法从根节点开始,访问其所有相邻的节点,然后对每个相邻节点执行相同的操作。

这个过程会继续进行,直到所有节点都被访问。

广度优先遍历的原理如下:1. 队列的使用:广度优先遍历的核心思想是使用队列(先进先出,FIFO)。

开始时,将根节点放入队列。

2. 访问节点的邻居:从队列的前端取出节点,然后访问该节点的所有未被访问过的邻居节点。

将这些邻居节点加入队列的尾部。

3. 重复过程:重复上述过程,直到队列为空,这意味着所有可达的节点都已被访问。

在实现广度优先遍历时,通常需要使用一个数组或列表来存储所有节点的状态(例如,已访问或未访问)。

开始时,所有节点都标记为未访问。

然后,从根节点开始,将其标记为已访问,并将其放入队列中。

接下来,从队列中取出节点,并标记其所有未被访问过的邻居节点为已访问,然后将这些邻居节点加入队列。

这个过程会一直持续到队列为空。

以下是广度优先遍历的伪代码:```pythonfunction BFS(root):创建一个队列 Q创建一个集合/哈希 set S 来存储已访问的节点将 root 加入 Q 和 Swhile Q 不为空:current_node = () 取出队列中的第一个元素对 current_node 进行需要的操作(例如打印节点的值)对于 current_node 的每一个未被访问过的邻居节点 neighbor:将 neighbor 加入 Q 和 S```这就是广度优先遍历的基本原理和实现方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的1.掌握图的各种存储结构,特别要熟练掌握邻接矩阵和邻接表存储结构;2.遍历是图各种应用的算法的基础,要熟练掌握图的深度优先遍历和宽度优先遍历算法,复习栈和队列的应用;3.掌握图的各种应用的算法:图的连通性、连通分量和最小生成树、拓扑排序、关键路径。

二、实验内容实验内容1**图的遍历[问题描述]许多涉及图上操作的算法都是以图的遍历为基础的。

写一个程序,演示在连通无向图上遍历全部顶点。

[基本要求]建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。

以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。

[实现提示]设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。

通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。

[编程思路]首先图的创建,采用邻接表建立,逆向插入到单链表中,特别注意无向是对称插入结点,且要把输入的字符在顶点数组中定位(LocateVex(Graph G,char *name),以便后来的遍历操作,深度遍历算法采用递归调用,其中最主要的是NextAdjVex(Graph G, int v, int w);FirstAdjVex ()函数的书写,依次递归下去,广度遍历用队列的辅助。

[程序代码]头文件:#include<stdio.h>#include<stdlib.h>#define MAX_VERTEX_NUM 30#define MAX_QUEUE_NUMBER 30#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2#define TRUE 1#define FALSE 0typedef int Status;typedef int InfoType;typedef int Status;/* 定义弧的结构*/typedef struct ArcNode{int adjvex; /*该边所指向的顶点的位置*/ struct ArcNode *nextarc; /*指向下一条边的指针*/ InfoType info; /*该弧相关信息的指针*/}ArcNode;/*定义顶点的结构*/typedef struct VNode{char data[40]; /*顶点信息*/ArcNode *firstarc; /*指向第一条依附该顶点的弧的指针*/}VNode,AdjList[MAX_VERTEX_NUM];/*定义图的结构*/typedef struct {AdjList vertices;int vexnum,arcnum; /*图的当前顶点数和弧数*/int kind; /*图的类型标志*/}Graph;/*定义队列的结构*/typedef struct{int *elem;int front, rear;}Queue;/*功能选择*/void MenuSelect(int w);/*顶点定位*/int LocateVex(Graph G,char *name);/*创建无向图*/void CreateGraph(Graph &G);/*求第一个顶点*/int FirstAdjVex(Graph G, int v);/*求下一个顶点*/int NextAdjVex(Graph G, int v, int w);/*深度递归*/void DFS(Graph G, int v) ;/*深度遍历*/void DFSTravel(Graph G,int v);/*广度遍历*/void BFSTraverse(Graph G,char *name);/*初始化队列*/Status InitQueue(Queue &Q);/*判空*/Status EmptyQueue(Queue Q);/*进队*/Status EnQueue(Queue &Q, int e);/*出队*/Status DeQueue(Queue &Q, int &e);实现文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"bool visited[MAX_VERTEX_NUM];/************************************************************ 顶点定位************************************************************/int LocateVex(Graph G,char *name){int i;for(i=1;i<=G.vexnum;i++) //从1号位置开始存储if(strcmp(name,G.vertices[i].data)==0) //相等则找到,返回位序return i;return -1;}/************************************************************ 创建无向图************************************************************/void CreateGraph(Graph &G){ArcNode *p;char name1[10],name2[10];int i,j,k;printf(" 请输入顶点数,按回车键结束:");scanf("%d",&G.vexnum);printf(" 请输入弧数,按回车键结束:");scanf("%d",&G.arcnum);printf(" 请依次输入顶点名(用空格分开且字符小于10),按回车键结束:\n");printf(" ");for(i=1;i<=G.vexnum;i++) //从1号位置开始存储{scanf("%s",G.vertices[i].data); //从一号位置开始初始化G.vertices[i].firstarc=NULL;}printf("\n\n\n\n");printf(" ………………………………………输入小提示………………………………………\n");printf(" &&&&1 为避免输入遗漏,最好从选择任意一点,输入所有相邻边\n");printf(" &&&&2 输入边时格式(用空格分开,即格式为顶点(空格)顶点(空格))\n");printf(" ………………………………………输入小提示………………………………………\n\n\n\n");for(k=0;k<G.arcnum;k++){printf("请输入相邻的两个顶点,按回车键结束:");scanf("%s%s",name1,name2);i=LocateVex(G,name1); //返回位序j=LocateVex(G,name2);p=(ArcNode *)malloc(sizeof(ArcNode)); //申请边节点p->adjvex=j; //插入到邻接表中,注意此处为逆向插入到单链表中p->nextarc=G.vertices[i].firstarc;G.vertices[i].firstarc=p;//无向图,注意是对称插入结点p=(ArcNode *)malloc(sizeof(ArcNode));p->adjvex=i;p->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=p;}}/************************************************************ 求第一个顶点************************************************************/int FirstAdjVex(Graph G, int v){ArcNode *p;if(v>=1 && v<=G.vexnum){p=G.vertices[v].firstarc;if(p->nextarc==NULL)return 0;elsereturn (p->nextarc->adjvex); //返回第一个顶点字符}return -1;}/************************************************************ 求下一个顶点************************************************************/int NextAdjVex(Graph G, int v, int w){ //在图G中寻找第v个顶点的相对于w的下一个邻接顶点ArcNode *p;if(v>=1 && v<=G.vexnum && w>=1 && w<=G.vexnum){p=G.vertices[v].firstarc;while(p->adjvex!=w)p=p->nextarc; //在顶点v的弧链中找到顶点wif(p->nextarc!=NULL)return 0; //若已是最后一个顶点,返回0 elsereturn(p->nextarc->adjvex); //返回下一个邻接顶点的序号}return -1;}/************************************************************ 深度递归************************************************************/void DFS(Graph G, int v){int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc; //p为依附顶点的第一条边while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc; //下移指针}}/************************************************************ 深度遍历************************************************************/void DFSTravel(Graph G,int v){for(int i=1;i<=G.vexnum;i++)visited[i]=0;int w;ArcNode *p;visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点p=G.vertices[v].firstarc;while (p!=NULL){w=p->adjvex;if(visited[w]==0)DFS(G,w);p=p->nextarc;}}/************************************************************ 初始化队列************************************************************/Status InitQueue(Queue &Q){Q.elem = new int[MAX_QUEUE_NUMBER];Q.front = Q.rear = 0;return OK;}Status EmptyQueue(Queue Q){if(Q.front==Q.rear)return 0;elsereturn 1;}/*********************************************************** * 进队列* ***********************************************************/ Status EnQueue(Queue &Q, int e){if((Q.rear + 1)%MAX_QUEUE_NUMBER != Q.front)Q.elem[Q.rear ] = e;else ;Q.rear = (Q.rear + 1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 出队列* ***********************************************************/ Status DeQueue(Queue &Q, int &e){if(Q.rear != Q.front)e = Q.elem[Q.front];else ;Q.front = (Q.front+1)%MAX_QUEUE_NUMBER;return OK;}/*********************************************************** * 广度遍历************************************************************/void BFSTraverse(Graph G,char *name){ArcNode *p;int v,w,u,k=0;Queue Q;int visited[20];for(v=1;v<=G.vexnum;v++) //初始化visited[v]=0;InitQueue(Q);for(v=LocateVex(G,name);k!=2;v=(v+1)%(G.vexnum-1)) //v为输入的字符转化的位序{if(v+1==LocateVex(G,name)) //从v开始走完图的所有顶点k++;if(visited[v]==0){visited[v]=1;printf("%s ",G.vertices[v].data); //访问第v个顶点EnQueue(Q,v); // 进队while(EmptyQueue(Q)!=0){DeQueue(Q,u); //出队p=G.vertices[u].firstarc;while(p!=NULL){w=p->adjvex; //p边的下一个顶点if(visited[w]==0){printf("%s ",G.vertices[w].data);visited[w]=1;EnQueue(Q,w);}p=p->nextarc; //下移指针}}}}}主文件:#include <stdio.h>#include"malloc.h"#include "tuhead.h"#include "stdlib.h"#include "string.h"/************************************************************ 界面控制************************************************************/void main(){printf("\n################################# 图的遍历#################################\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf(" 1 ------- 图的创建\n");printf(" 2 ------- 图的深度优先遍历\n");printf(" 3 ------- 图的广度优先遍历\n");printf(" 0 ------- 退出\n");printf("\n $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n");printf("\n");printf("请输入选择的操作代码(0-3)按回车键结束\n");MenuSelect(1);}/************************************************************ 功能选择************************************************************/void MenuSelect(int w){int select,done;int v;Graph G; char name[10];while (done) {printf("input the operating code : ");scanf("%d",&select);switch(select){case 1: printf("根据要求创建图:\n ");CreateGraph(G);break;case 2: printf("请输入深度优先遍历开始点的名:");scanf("%s",name);v=LocateVex(G,name); //将输入字符找到在顶点数组name对应的序号Vprintf("深度优先遍历:");DFSTravel(G,v);printf("\n");break;case 3: printf("请输入广度优先遍历开始点的名:");scanf("%s",name);printf("广度优先遍历:");BFSTraverse(G,name);printf("\n");break;case 0: done=0; break;default: printf(" ERROR\n");}printf("\n");}}[实验数据与结果]测试数据:实验结果。

相关文档
最新文档